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Highlights
e Global attention graph neural network model was trained for 5 mechanical properties.
e Mechanical properties of 775,947 structures from the million-scale open quantum
material database were predicted in search of materials with ultrahigh hardness.
e 2 previously unreported super hard materials were identified.
e Bulk modulus was used for screening low lattice thermal conductivity materials.
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Abstract

Mechanical and thermal properties of materials are extremely important for various engineering and
scientific fields such as energy conversion and energy storage. However, the characterization of these
properties via high throughput screening at the quantum level, although highly accurate, is inefficient and
very time- and resource-consuming. In contrast, prediction at the classical level is highly efficient but less
accurate. We deploy scalable global attention graph neural network for accurate prediction of mechanical
properties which bridge the gap between the accuracy at the quantum level and efficiency at the classical
level. Using 10,158 elastic constants as training data, we trained the models on 5 mechanical properties,
namely bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and hardness. With the trained
model, we predicted 775,947 data in search of materials with ultrahigh hardness. We further verify the
recommended ultrahigh hardness materials by high precision first principles calculations, and we finally
identify 20 structures with extreme hardness close to diamond, the hardest material in nature. Among
those, two super hard materials are completely new and have not been reported in literature so far. We
further recommend potential materials from bulk modulus prediction to search low lattice thermal
conductivity, and we verify the thermal conductivity of 338 structures with first principles. Our results
demonstrate that one can find materials with extreme mechanical properties recommended by graph
neural network and low thermal conductivity material from bulk modulus prediction with minimal first
principles calculations of the structures (only 0.04%) in the large-scale materials pool.

Keywords: Graph neural network, machine learning, mechanical properties, ultrahigh hardness, lattice
thermal conductivity, DFT calculations, novel material discovery
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1. INRTODUCTION

The rapid development of industries has led to an increase in demand for steel and other materials for
manufacturing. Choosing materials that can meet the desired properties is a key issue facing material
scientists and engineers. One of the key components is understanding and cataloging the mechanical
properties of materials for rapid testing and deployment in engineering applications[1], hence the need to
calculate or predict these properties. For example, the ratio of bulk to shear modulus has been used as a
basis to understand and predict the ductility of materials[2], whereby Pugh analysis have been used to
derive descriptors for hardness in order to discover new hard materials[3]. Low lattice thermal
conductivity (LTC) of crystalline materials is another desirable physical property in many applications,
including but not limited to thermoelectric devices for waste heat recovery and energy conversion,
thermal barrier coatings for that provide thermal protection in extremely high temperature environment,
solid-solid phase change materials for solid state refrigeration and cooling, and energy storage[4]. LTC
influences the efficiency of heat transfer and photon emission in energy generation technologies such as
thermoelectric energy conversion, thermophotovoltaics devices[5]. However, the discovery of low LTC
materials is a challenging task due to the complex interplay between various factors, such as atomic
structures, chemical bonding, that determine the LTC. Although first-principles based anharmonic lattice
dynamics is one of the most featured methods to obtain phonon properties[6—10] such method is
impractical for high-throughput search of target thermal materials. From the domain knowledge, one of
the governing factors is the bulk modulus, which measures the resistance of a material to compression and
is closely related to the speed of sound, or broadly group velocities of phonons, in a crystal. Therefore,
searching mechanical properties can also be beneficial for finding materials with desired LTC.

Historically, material scientists rely on either experiments or simulation for material characterization[11].
From theoretical point of view, numerical characterization of these properties at the quantum level is
accurate and time consuming[12], while at the classical level it is efficient but less accurate[13,14].
Compromising the advantages of quantum mechanics calculations and classical modeling would be a
good solution to quickly screen and predict materials properties. In recent years, machine learning (ML)
and deep learning has been used for structure property prediction and been deployed in the field of
material science in many different applications[15-20] such as superconductors[21], photovoltaics,
thermoelectric, super hard - materials[22-24]. Yufeng et al[25] has used ab initio calculations in
investigating the elastic and mechanical properties of B19TiAl intermetallic compounds, and Han et
al[26] used neural network based surrogate model to reduce the number of finite-element method conical
indentation simulations to extract material properties. Though machine learning and deep learning is
highly efficient, it has some limitations which reduces its accuracy in predicting properties. Such
limitations include target measurement error[27], reliance on high-quality data[28], poor in
extrapolation[29,30], and artifacting(noise)[31]. However, machine learning is now being used for the
discovery of novel materials, its accuracy depends on the input representation of the crystal
structures[18,24,32], and such representations are called descriptors or features. The scalable global
attention graph neural network (deeperGATGNN)[33] model was used in this study for training the
mechanical properties, which was developed by Sadman et al in 2021 based on previously global
attention graph neural network (GATGNN)[15]. The deeperGATGNN model combines the descriptors
and learning model into one step, and the model learns material properties directly from the connection of
atoms in the crystals[34]. Thus, this model improves its accuracy in predicting material properties. In
addition, the atomistic line graph neural network (ALIGNN)[35] was used to train the bulk modulus for
the purpose of screening low LTC. In this study, we deploy scalable global attention graph neural network
(deeperGATGNN) for accurate prediction of mechanical properties and the ALIGNN for accurate training
and predicting bulk modulus as screening strategy for identifying materials with low lattice thermal
conductivity, based on the prediction of the bulk modulus, thus bridging the gap between quantum level
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accuracy and classical level efficiency leading to efficient screening and finding of novel materials. After
screening 775,947 crystal structures from the million-scale open quantum material database (OQMD), we
identified 20 structures with ultrahigh hardness and verified the LTC of 338 materials, among which 273
structures have LTC below 10 W/mK.

2. METHODOLOGY

Our approach was mainly training an ML model to predict mechanical properties on a pool of structures
from OQMDJ[36,37]. Secondly, we used the prediction of bulk modulus to recommend low LTC
materials.

2.1 Data generation and machine learning model

The 10,158 elastic constants training data are obtained from Jarvis-DFT database[38,39], with 70% of our
data used for training and 30% for testing. Then, the model is deployed to predict inorganic crystal
structures taken from OQMD database. Originally, there were about 1 million structures collected in the
OQMD. After downloading these structures, we exclude the structures whose elements have never
showed up in the training dataset. We finally ended up with 775,947 crystal structures for the screening
pool. The deeperGATGNN was used in this work and has found success in material discovery for
accurate and efficient prediction of material properties[18,40]. GATGNN uses two graph soft-attention
variants to learn structural properties[41,42]. These attention layers are called augmented graph attention
(AGAT) layers because they augment the node feature vectors with the features from connecting edge.
Because these AGAT layers are only used to extract the locally dependent features, GATGNN then uses a
unique soft-attention at the end to transform neighborhood-dependent information to global context. The
soft attention a;,; between a node i and a neighbor j can be represented as

exp(a;j)
PP i A 1
=3, eN; exp(aik) W
where N; represents the neighborhood of node i and a;,; is the parameterized weight coefficients between

nodes i and j which represents the importance of node j to node i. The global attention g;, which is
applied right before the global pooling, calculates each node’s overall importance. It can be described as

o lBw
9i = S & Ew @)

where X € RF represents a learned embedding, E is a compositional vector of the crystal, W €
R™F+ED js a parameterized matrix, and X, is the learned embedding of any atom ¢ within the crystal.
The main advantage of deeperGATGNN is the ability to perform with increasing graph convolutional
(GC) layers. Our model was trained for a total of 1,500 epochs using early stopping with patience
parameter 10, learning rate of 5 X 1073, batch size of 100, and with the AdamW optimizer.

Unlike most graph neural network model which descriptors are based on atomic distance information, the
ALIGNNJ35] model incorporates bond angles which are important for distinguishing many atomic
structures. This addition of bond angles gives the ALIGNN model better performance over others graph
neural network model. The ALIGNN model was specifically trained and used to screen for low LTC
structures. The ALIGNN model was trained on the same 10,158 elastic constants data obtained from the
Jarvis-DFT database, with 80% of the data used for training and 20% for testing. Our ALIGNN model
was trained for a total of 2,000 epochs, learning rate of 1 X 1073, batch size of 100, and with the AdamW
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optimizer.
2.2 DFT calculations

For validation of mechanical properties of recommended structures by the deeperGATGNN, the DFT
calculations are performed using the plane-wave basis projector augmented wave (PAW) method[43]
within the Perdew-Burke-Ernzerhof exchange-correlation functional[44] as implemented in the VASP
package[45—47]. The cutoff energy is set to 520 eV for the recommended crystal structures to calculate
hardness. The energy and force criteria for the DFT calculation of elastic constants were 10° eV and 10
eV/A, respectively. Parameters IBRION=6 (second derivatives and Hessian matrix calculation) and
NFREE = 4 (number of ionic displacements in frozen phonon calculations) were used for computing
elastic constants in VASP package. For k-points for electrons, we generally use the product of the number
of k-points and the lattice parameter in that specific direction at least 50 A. The phonon dispersions of
selected structures were calculated by the finite displacement method using PHONOPY package[48] with
the atomic forces for the harmonic second-order force constants calculated by VASP. The corresponding
interatomic force constants were obtained using 3 x 3 x 3 supercells and with KPOINTS resolution of 4 x
4 x 4 for high precision self-consistent static DFT calculations. For DFT calculation of LTC, the second
and third order interatomic force constants were fitted to at least 20 random displaced supercells for each
structure by the compressive sensing lattice dynamics (CSLD) method|49], which extracts the IFC from
Taylor-expanded interatomic forces in terms of atomic displacement via advanced compressive sensing
techniques. The 3™ order interatomic force constants for all materials were truncated to the third nearest
neighbors. The LTC calculation was solved by phonon Peierls Boltzmann transport equation (BTE) with
the ShengBTE package[50]. The ngrid parameter, which is used for sampling the entire Brillouin zone
(BZ), was chosen to be at least 16x16x16 for cubic structures, or equivalent numbers for noncubic
structures, or the total number of scattering events on the order of 2 to 5x 10, whichever is larger.

3. RESULTS AND DISCUSSION

In Fig. 1, we show the statistics of our training and prediction data. Fig. 1a, b shows the number of space
group types in our training and prediction data. All 230 space groups categorized into triclinic,
monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and cubic were included in our training and
prediction data. For the training data, the majority space groups are tetragonal and cubic symmetries,
while for the prediction data the distribution of all space groups is uniform. Note that Fig. 1b shows the
log-scale of the space group counts in the prediction data. Fig. 1c, d shows the number of elements in the
training and prediction data, respectively. Both our training and prediction data cover 87 elements across
the periodic table, and the distribution of all elements is uniform for the training and prediction data.
From Fig. 1, we can see that the samples seen during training are independently and identically
distributed, and they are drawn from the same distribution as unseen samples. This will help us avoid the
so-called dataset shift issue during training. Therefore, predictions made by the model should have a
small uncertainty, as we will see later.

3.1 Bulk modulus

The bulk modulus describes the strain response of a body to hydrostatic stress involving change in
volume without change in shape i.e., resistance to compression[51]. It is defined as the reciprocal of
compressibility[52]. It can predict compression and indirectly indicate the types of chemical bonding
within substance. The application of bulk modulus is not limited to optimization of mechanical
performance of materials[53], but it could be employed in optimizing materials for low LTC
application[54]. In our study we trained the deeperGATGNN model that can predict the bulk modulus of
materials with R* 0.9438 and mean absolute error (MAE) 7.94 GPa as shown in Fig. 2. We also see that
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the distribution of bulk modulus is wide and uniform, i.c., from low values (just a few GPa) to high values
up to ~400GPa. The deeperGATGNN model can capture the atomic features inherent in the atomic
structures.

3.2 Shear modulus

The shear modulus describes material response to the shear deformation, and it involves change in shape
without change in volume[51]. It is defined as the ratio of shear stress and shear strain. This mechanical
property tells us how resistant a material is to shearing deformation. In our study we trained the
deeperGATGNN model that can predict the shear modulus of materials with R*0.8675 and MAE 7.79GPa
as shown in Fig. 3. In contrast to the bulk modulus, we notice that the distribution of the shear modulus is
not uniform. Unlike bulk modulus, the shear modulus has biased distribution. The majority of structures
have shear modulus less than 200GPa, while only several structures possess shear modulus higher than
200GPa and very few above 400GPa. Despite such highly biased data distribution, the deeperGATGNN
model still correctly captures the bonding nature in the structures and yields a high R* score.

3.3 Young’s modulus

The Young’s modulus is a mechanical property that measures the tensile or compressive stiffness of a
material when force is applied, and it is defined as the ratio of tensile stress to tensile strain[55]. It
describes the yield strength of a material. In our study we trained the deeperGATGNN model that can
predict the young’s modulus of materials with R* 0.8567 and mean absolute error 19.62GPa as shown in
Fig. 4. The Young’s modulus has an extremely wide range of distribution, i.e., from nearly zero to up to
~1,000GPa. Still, the deeperGATGNN model is successful in training and has a relatively high R* score in
validation. It is worth noting that, for extremely high modulus, the prediction error could be higher, since
there are very limited number of training data in that range and thus the model was not trained very well
for those regions. Adding more data in the rare regions will significantly improve the quality of the
model.

3.4 Poisson’s ratio

Poisson’s ratio measures how a material deforms under stress, and it is defined as the ratio of the lateral
contraction to the elongation|[56]. It is important because it allows materials to be chosen that suit the
desired function. Materials with negative Poisson’s ratio are of high importance because they improve
mechanical properties[S7] such as toughness, shear resistance, and they used in several applications such
as in medicine, sports, automobile, and defense. In our study, we trained the deeperGATGNN model that
can predict the Poisson’s ratio of materials with R*0.5409 and mean absolute error 0.027 as shown in Fig.
5. It is worth noting that we do not have any negative Poisson’s ratio materials in our training dataset.
Therefore, as the usual trend of traditional machine learning models, it is highly expected that we will not
be able to identify too many negative Poisson’s ratio materials in the screening pool as well. Although the
extrapolation ability is a common problem for most of machine learning models, new approaches have
been developed recently to expand the trained models to unknown or unseen regions, such as the
boundless objective-free exploration method[24]. Such approaches are promising for pushing the original
material properties to the limit or beyond the current range.

3.5 Hardness
Hardness characterizes the property of a material to resist plastic deformation, therefore hardness is
important from an engineering standpoint because resistance to wear generally increases with hardness. In

our study, we trained the deeperGATGNN model that can predict hardness of materials with R* 0.7581
and mean absolute error 1.66GPa as shown in Fig. 6a. Like shear modulus, the hardness distribution is
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also highly non-uniform or biased. Most of the structures have hardness below 40GPa, while only several
structures possess hardness above 40GPa, the so-called super hard materials. With the trained
deeperGATGNN model, we predicted on 775,947 crystal structures from the OQMD, and we identify 20
structures with ultrahigh hardness (hardness exceeding 40GPa[23]) close to that of diamond, as shown in
Table 1. We also list other relevant material information such as space group, bandgap in Table 1. We find
that those super hard materials have quite different space groups or structural symmetry, meaning that
ultrahard materials do not necessarily happen in some specific space groups. We also find that the
bandgap is irrelevant to the hardness of a material, as we can see from Table 1 the 20 structures have large
range of bandgaps. Fig. 6b shows the hardness of predicted structures and the validated DFT calculations
for our 20 top ranked structures. Of the 20 top ranked structures, to the best of our knowledge, two
structures, namely B,C,;N, and C¢Ng, have not been reported in literature. The two new structures turned
out again to be compositions of B-C-N elements, which follow the general trend of majority of the known
ultrahigh hardness materials.

3.6 Data-driven insight to hardness

Here, we perform further study to deeply understand the bonding nature of the structures with ultrahigh
hardness. In principle, the mechanical behavior of a material depends on its interatomic bonding, which
can be traced backed to the spatial distribution of electron clouds. To analyze the mechanism for hardness,
we establish a correlation between electron work function (EWF), which is the minimum energy required
to move electrons inside a material at the Fermi level to its surface without kinetic energy[58],
interatomic bonding, and hardness. Most known super hard materials like diamond have a strong covalent
bonding[59], and previous studies have shown that the higher the EWF, the higher the hardness[59]. We
also study the electron localization function (ELF) which is the measure of electron localization in atomic
structures. The ELF in Fig. 7 reflects the probability of finding an electron in the structure and the local
potential (LOCPOT) for the two super hard structures, namely B,C4N, (structure ID: 16166, hardness:
~76 GPa) and C4¢Njg (structure ID: 14925, hardness: ~52 GPa), that have never been published in literature
to the best of our knowledge. Figs. 7a, b also shows the possibility of finding an electron and strong
covalent bond existing between the elements of the material, which explains why the materials have high
hardness. Figs. 7c, d also show the preseice of strong covalent bonds between the atoms of the structures,
which is a strong feature or indication for high hardness. Thus, all figures agree with the high hardness
exhibited by all structures as.confirmed by DFT calculations.

Figure 8 shows the phonon dispersion curves for the two structures that have not been reported in
literature. We can see that both structures are thermodynamically stable since there are no negative
frequencies found in the Brillouin zone. We also find that, the cutoff frequency in both structures is as
high as 40 THz, which is consistent with the high modulus and light element (boron, carbon, and
nitrogen) of both structures, because the speed of sound or group velocity of phonons is generally
proportional to the square root of Young’s modulus and inversely proportional to the square root of mass

density (vg~+/E/p). We also noticed that the frequency of the acoustic phonon modes can go up to 10 to
15 THz, which is comparable to that for diamond, another material that has extremely high hardness.
Again, this result is consistent with the previous DFT results of ultrahigh hardness where strong
interatomic bonding is necessary.

3.7 Low lattice thermal conductivity prediction
Prediction of LTC is very important to material scientists and engineers since it has many applications
ranging from thermal management to energy conversion. However, the accurate measurement or

prediction of LTC is cumbersome. From the classical molecular dynamics to empirical models, prediction
is efficient but less accurate, while prediction from full first-principles calculations like DFT is accurate
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but less efficient. ML models help us in bridging the gap between accuracy and efficiency, but accurate
training of an LTC ML model is also difficult due to unavailability of many high quality LTC data needed
to train a good model. According to the kinetic theory of phonon transport[60] and using the

single mode relaxation time approximation of the Boltzmann equation, the total thermal conductivity
contributed by phonon modes can be expressed as

K =X C(@)vi(@)T:(q) 3)

Where the summation is conducted to all phonon modes, C; is the specific heat of a specific phonon mode
represented by wave vector q, v; is the group velocity, and t; is the phonon relaxation time (lifetime).
From Eq. (3) we know that, if the phonon group velocity is significantly reduced, the thermal
conductivity is anticipated to be very low. Therefore, it is an intuitive idea to search low LTC materials by
alternatively screening low group velocity materials. From physics law, we also know that the phonon
group velocity can be roughly estimated as v o« /E /p, where E is the Young’s modulus characterizing the
bonding strength and p is the mass density of the material. We finally choose bulk modulus for searching
low LTC materials based on following reasons: (1) From our previous ML models’ results, in particular
comparing Figs. 2 and 4, the performance of deeperGATGNN model on bulk modulus is way higher than
that on Young’s modulus. Using a more accurate ML model for materials screening would lead to less
uncertainty for the finally filtered-out structures. (2) The bulk modulus (B) is also directly correlated with

the Young’s modulus by B = where v is the Poisson’s ratio. Considering that the Poisson’s ratio

E
3(1-2v)’
does not change too much among all structures tested herein, as has been treated as a constant in many
previous studies for mechanics, the bulk modulus can be almost solely dependent on the Young’s
modulus. Therefore, we expect that there is a positive correlation between bulk modulus and LTC. It is
worth noting that, we did a separate test by training a machine learning model (ALIGNN) on bulk
modulus (B) only, the ratio of bulk modulus to density (B/p), and the square root of the ratio between

bulk modulus and density (,/B/p). We find that there is no significant difference among all three models,

as shown in Figure S1 in Supplementary Information. We also trained ALIGNN on Young’s modulus (E),
the ratio of Young’s modulus to density (E/p), and the square root of Young’s modulus to density

(/E/p). For all properties used, the bulk modulus has the best performance (the highest R* score) as
shown in Figure S1 and S2 in Supplementary Information. Therefore, we only use the bulk modulus for
our screening.

We first trained a high quality ALIGNN model for bulk modulus using the same high quality DFT data as
deeperGATGNN. We did a further prediction of bulk modulus and comparison using ALIGNN, orbital
graph convolutional neural network (OGCNN), deeperGATGNN, and crystal graph convolutional neural
network (CGCNN). Again, the ALIGNN model was the best performing model among all four graph
neural networks trained and tested (see Figure S2 in the Supplementary Information for testing results).
Fig. 9a shows our trained ALIGNN model for the test result of bulk modulus on 20% of our 10,158 elastic
constants training data. The ALIGNN model predicts the bulk modulus of materials with R? value of 0.98
and mean absolute error (MAE) of 5.354 GPa. This shows that the ALIGNN model has much higher
performance than the deeperGATGNN model as shown in Fig. 2. The ALIGNN model performs very well
because it incorporates both bond length and bond angles information in the descriptors, which is
important factors contributing to mechanical properties of crystalline materials and play dominant roles in
determining harmonic interatomic force constants.

We then use the trained ALIGNN model to predict the bulk modulus of all 775,947 structures taken from
the OQMD database. After model prediction, we sort the predicted bulk modulus from low to high and
get the recommended potential materials with low LTC, corresponding to low bulk modulus. We verify
the LTC of 338 recommended structures as seen in Fig. 9b. From Fig. 9b we can see that, overall, the LTC
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has a strong positive correlation with bulk modulus, as expected earlier by us, which also validated our
previous hypothesis. Moreover, the structures with bulk modulus below 130 GPa have LTC value in the
range of 0.1 — 10 W/mK and in total 273 structures possess LTC below 10 W/mK. Information about all
recommended 338 structures, including OQMD structure ID, space group number, number of atoms in the
unit cell, corresponding LTC values by full DFT calculations, are given in Table S1 in the Supplementary
Information. With this result, we can conclude that bulk modulus is an effective and accurate index to
serve as an indicator to screen and recommend materials with low or high LTC when there is no sufficient
high quality LTC data for training a ML model. With our high quality DFT LTC data, we believe it will
benefit other researchers for future training high fidelity LTC ML models.

4. CONCLUSIONS

In summary, we build a scalable global attention graph neural network model to screen extreme
mechanical properties (bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and hardness) of
materials, which is trained on elastic properties of 10,158 materials. We deployed the trained hardness
model to predict 775,947 inorganic crystal structures from the open quantum materials database to search
super hard materials. We finally identified 20 structures with ultrahigh hardness. Among these
predictions, two structures, namely B,C;N, (structure ID: 16166, space group number: 17) and Cg¢Ng
(structure ID: 14925, space group number: 220) have not been reported in previous studies and possess
ultrahigh hardness of 76 GPa and 52 GPa, respectively. These hardness results were validated by high
precision DFT calculations and deep insight into the ultrahigh hardness was understood from electronic
level. We also trained a high quality atomistic line graph neural network model for bulk modulus and
applied it to predict bulk modulus of 775,947 structures, from which we recommend potential structures
with low lattice thermal conductivity, which is a critical physical property for rational design of high
performance thermoelectric energy conversion systems and thermal insulation structures. We continue to
verify the lattice thermal conductivity of 338 predicted structures by conducting first principles
calculations and solving the phonon Peierls Boltzmann transport equation. Considering the total number
of first principles calculations is only 0.04% of all 775,947 structures that have been screened, the
approach of combining machine learning and first principles is very promising for accelerating discovery
of novel energy materials with high efficiency and accuracy, such as energy efficiency electronics.
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Tablel. Structures identified by deeperGATGNN with corresponding material information and ultrahigh hardness
validated by DFT calculations.

deene A )

D O 0 0

637352 Cie 12 3.731 93.06 79.74

16166 B,C,N, 17 2.374 76.02 75.67
16167 BC,N 25 1.878 75.36 74.23
22418 BC, 115 0 66.04 71.78
22421 BC; 25 0 79.83 67.00
21183 B,Cg 119 0 74.32 66.49
7494 B,N, 186 5.411 65.14 64.84
22419 BC, 156 0 73.69 62.84
22422 B;Cy, 160 0 74.49 57.56
1214685 Bs 64 0 74.47 55.64
21185 BCs 156 0 63.18 54.55
14925 CeNg 220 2.995 60.23 52.17
21186 B,Co 2 0 78.31 51.70
1106039 BNy 225 1.557 50.92 46.98
22420 BC; 215 0 86.77 59.24
1218562 BNy 216 4.795 51.28 64.10
686735 Cs 227 4.37 97.80 94.37
599492 Cie 194 4.508 98.21 94.72
599493 Cspo 166 4.622 92.64 94.99
610558 Cie 206 2.609 100.35 105.20

Page 15 of 25



Journal Pre-proof

3000 6
-
(a) 5. (b)
S 2500 8 5
3
3 g
B >4
a 2000 = 4
> s
- o
Q. 1500 4 = 3
3 )
o
hd
© 1000 g 24
] 1 Q
g )
o S
? 500 4 o'
o
-l
04 0
triclinic  monoclinic orthorhombic tetragonal  trigonal  hexagonal cubic triclinic  monoclinic orthorhombic tetragonal  trigonal  hexagonal cubic

Space Group Type Space Group Type

T© | |

Ag Al As Au B BaBe Bi Br C CaCd Cl CoCrCsCu F FeGaGe H HI Hg | In Ir K LiMgMnMo N NaNb Ni O Os P PbPd Pt RbReRhRu S SbScSe SiSnSrTaTe Ti TI VW Y Zn 2r
Element Count

Log of Element Count

(d)

-

w

Log of Element Count
~

0

AcAgAl ArAsAu B BaBeBI Br C CaCdCeCICoCrCsCubyEr F FeGaGe H HeHfHgHo | In Ir K KrlLa LiLuMgMrMoN 00sP S SbScSeSi TaTbTcTeThTi TITmU V WXe Y YbZn2r
Element

Figure 1. Statistics (structural symmetries and element distribution) for 10,158 training data and 775,947 prediction
data. (a, b) shows the space group type for training and predicting data, respectively. (c, d) shows the element
distribution for training and predicting data, respectively.
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Figure 2. Testing result of the deeperGATGNN model for bulk modulus of 3,047 structures.
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Figure 3. Testing result of the deeperGATGNN model for shear modulus of 3,047 structures.
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Figure 6. (a) Testing result of the deeperGATGNN model for hardness of 3,047 structures. (b) Comparison of
deeperGATGNN prediction and DFT results for 20 recommended ultrahigh hardness structures.
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Figure 7. The electron localization function (ELF) (a, b) and local potential (LOCPOT) (c, d) of two identified
ultrahard structures Be,C4N, (OQMD structure ID: 16166) (left panel) and C4Ng (OQMD structure ID: 14925) (right
panel). Strong covalent bonding exists in both structures.
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Fig. 8. Phonon dispersions of two identified ultrahard structures (a) B,C4N, and (b) C¢Ng along high symmetry paths
in the Brillouin zone. There is no negative frequency in phonon dispersions, indicating these structures are
thermodynamically stable.
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