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Abstract. We study the existence of fair distributions when we have more
guests than pieces to allocate, focusing on envy-free distributions among those

who receive a piece. The conditions on the demand from the guests can

be weakened from those of classic cake-cutting and rent-splitting results of
Stromquist, Woodall, and Su. We extend existing variations of the cake-

cutting problem with secretive guests and those that resist the removal of

any sufficiently small set of guests.

1. Introduction

Determining the existence of fair or envy-free distributions of goods is a funda-
mental problem in mathematical economics. One classic variant is known as the
cake-cutting problem. We have k guests. We aim to divide a cake, represented
by the interval [0, 1], into k intervals and give one to each guest. Given a parti-
tion, each guest knows which pieces are their favorites. Cake-cutting problems seek
conditions on the guests’ subjective preferences to guarantee the existence of a par-
tition and a distribution so that each guest receives one of their favorite pieces. The
appeal of these problems follows from their applications and from their connection
to topological combinatorics.

Stromquist and Woodall proved such results with mild conditions [Str80,Woo80].
Each guest must always prefer a piece of positive length to a piece of length zero
(which we call the “hungry guest” condition), and the preferences must be closed:
given a sequence of converging partitions, if the i-th guest always prefers the j-th
part, then they must do so in the limit.

Many variations of the cake-cutting problem have been studied [Wel85, BT96,
Bar05, Pro16], including partitions of multiple cakes or pieces per guest [CNS10,
NSZ20, ABB+20, SH21], partitions with secretive guests [AFP+18], and partitions
weakening the hungry condition if there are pieces of length zero [MZ19,AK21].

We study the existence of envy-free divisions if there are more guests than cake
pieces. The number of pieces we cut the cake into, k, will be fixed throughout the
paper. We exhibit weak conditions, in which a guest may reject every proposed
piece of cake, that still guarantee envy-free distributions. For positive integers
α ≤ n, we say that n guests are α-hungry if the following two conditions are met:

• for any partition of [0, 1] into k intervals and any n − α + 1 of the guests,
there is at least one guest who prefers a part of positive length and
• for any guest, their set of preferences is closed.

Theorem 1.1. Let k ≤ n be positive integers. We aim to split the interval [0, 1]
among k out of n guests. Assume that the n guests are k-hungry. Then, there exists
a partition of [0, 1] into k intervals that can be distributed among k different guests
so that each receives one of their favorite pieces.
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We interpret rejecting a partition as not listing any piece as a favorite, even
pieces of length zero. The case n = k of the theorem above is the classic cake-
cutting result of Stromquist and Woodall. If among the n guests we can find k
hungry guests, we can divide the cake among them. The result above does not hold
with (k − 1)-hungry guests. If n − k + 1 guests never want cake, we are only left
with k − 1 guests who may want a part. This forces us to give one of the parts to
a person who does not want it.

The backbone of the proof of Theorem 1.1 is an extension of a classic topological
result of Knaster, Kuratowski, and Mazurkiewicz on combinatorial properties of
coverings of high-dimensional simplices [KKM29], which we describe in Section 2.
Most variations of cake-cutting results are based on “colorful” extensions of such
covering theorems, initiated by Gale [Gal84]. Our main topological contribution,
which directly implies Theorem 1.1, is Theorem 4.1. This is a sparse version of the
colorful KKM theorem.

The case n = k = 2 is often useful to motivate fair partition problems, and can
be solved with a “moving knife” argument. The same argument shows a solution
for k = 2 and any n. We first select n − 1 guests, and make our cut at x = 0.
At this point all guests who want cake prefer the right side of the cut. We slide
the cut continuously until we reach the first point x = x0 when at least one of the
n− 1 guests prefers the left side of the cut. By the closed preferences, at least one
guest still prefers the right side. If those are different guests, we have an envy-free
distribution. If the same guest A listed both sides as favorite, we set A apart and
ask the remaining n− 1 guests if anyone wants a piece of cake when we cut at x0.
That guest and A can share the cake.

If one guest’s preferences are secret and all guests are hungry, Woodall showed
that it is possible to split the cake into k intervals without consulting the secretive
guest and still find an envy-free distribution of that partition among the k guests
regardless of which piece the secretive guest prefers [Woo80]. An elegant proof was
recently found by Asada et al. [AFP+18]. We extend those results as well, with
more guests than pieces of cake.

Theorem 1.2. Let k ≤ n be positive integers. Suppose we have n guests who are
k-hungry. The preferences of one guest, Alice, are secret. If we know that Alice is
hungry, then it is possible to partition [0, 1] into k intervals so that, regardless of
which piece Alice prefers, there is an envy-free distribution of the cake among her
and k − 1 other guests.

If we drop the assumption that Alice is hungry, the result above still holds but
we cannot guarantee that she will get a piece of cake. However, we can conclude
that if she does want one of the pieces in the proposed partition then there is an
envy-free distribution where she gets that piece.

Meunier and Su proved other results for cake-cutting with more guests than cake
pieces [MS19]. One of their results shows that the cake can be divided into k pieces
in advance of the n guests arriving, and even if d(n− k)/ke guests miss the party,
we can distribute the cake in an envy-free way among k of those who showed up.
Their result also extends to the α-hungry setting.

Theorem 1.3. Let k ≤ r ≤ n be positive integers. We aim to split the interval
[0, 1] among k out of n guests. Assume that the n guests are r-hungry. Then,
there exists a partition of [0, 1] into k intervals that, regardless of which d(r−k)/ke
guests don’t show up, we can distribute the cake among k different remaining guests
so that each receives one of their favorite pieces.

The case r = n is Meunier and Su’s result. We highlight the case r = k + 1, as
it is easier to prove and to interpret.
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Corollary 1.4. Let k < n be positive integers. We aim to split the interval [0, 1]
among k out of n guests. Assume that the n guests are (k+ 1)-hungry. Then, there
exists a partition of [0, 1] into k intervals so that, regardless of which single person
is excluded, the cake can be distributed among k different remaining guests so that
each receives one of their favorite pieces.

The dual problems to cake-cutting results are known as rent-splitting problems.
In this setting, guests prefer empty pieces over non-empty ones. We also obtain
rent-splitting versions of the theorems mentioned above. The interpretation, in this
case, is that we have n potential tenants and an apartment with k rooms and a fixed
rent. Given a price distribution for the rooms, each potential tenant states which
rooms they are willing to rent or if they do not want any room with the current
proposal. The key condition is that if any room is free, they will only accept a free
room.

Theorem 1.5. Let k ≤ n be positive integers. We aim to rent an apartment with
k rooms and have n potential tenants. Suppose that for any price distribution of
the rooms and any n−k+1 potential tenants, at least one of them is willing to rent
one of the rooms with the proposed price, and their preferences are closed. Then,
we can find a price distribution and k tenants such that each is willing to rent a
different room.

Theorem 1.5 is the version of Theorem 1.1 for rent division. The analog rent
division versions of Theorem 1.2 and Theorem 1.3 also hold although we do not
state them explicitly. The weakening of the hungry condition in Theorem 1.1 is
similar to sparse versions of the colorful Carathéodory theorem [Hol16, Sob18]. A
relaxed version says that given n sets of points in Rk−1, if the convex hull of the
union of any n− k+ 1 sets contains the origin, we can choose one point from each
of k of the sets such that the convex hull of the resulting set contains the origin.

Frick and Zerbib proved a colorful version of a theorem of Komiya regarding cov-
erings of polytopes [FZ19,Kom94] which generalizes both the colorful Carathéodory
theorem [Bár82] and the colorful KKM theorem [Gal84]. The colorful KKM theo-
rem is the topological backbone behind most cake-cutting results, including those
of this manuscript. Since both the colorful Carathéodory theorem and the colorful
KKM theorem can be extended as in Theorem 1.1, it would be interesting to know
if the colorful Komiya theorem has such an extension. After this manuscript was
uploaded to a public repository, McGinnis and Zerbib proved such an extension of
Komiya’s theorem [MZ21].

Our proofs are topological and rely on the computation of the topological degree
of a map, combined with compactness arguments. We describe the topological and
linear-algebraic preliminaries in Section 2 and Section 3, respectively. The proofs
of the theorems described in the introduction follow in Section 5.

2. Topological preliminaries

We can identify a partition of [0, 1] into k intervals with a vector (x1, . . . , xk)
where xj is the length of the j-th piece, so it is a point in the (k − 1)-dimensional
simplex ∆k−1. Let v1, . . . , vk be the vertices ∆k−1. For j = 1, . . . , k, let Fj be the
facet of ∆k−1 opposite to vj . We denote by [n] the set {1, . . . , n}.

Given a guest, we can denote by Aj ⊂ ∆k−1 the set of partitions of [0, 1] in which
they prefer the j-th piece. The conditions described in the introduction imply that
Aj must be a closed set.

Definition 2.1. We say that a k-tuple (A1, . . . , Ak) is a KKM cover of ∆k−1 if for

every face σ of ∆k−1, we have σ ⊂
⋃
vj∈σ

Aj .
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Figure 1. Two preferences for k = 3. Person 1 preferss the small-
est piece, but won’t have cake if someone has almost half the cake.
Person 2 prefers a sufficiently large piece of the cake. Neither is a
KKM cover, but their union is a KKM cover.

Note that we can take σ = ∆k−1, so the union of the sets Aj covers ∆k−1.
KKM covers of ∆k−1 were defined by Knaster, Kuratowski, and Mazurkiewicz

[KKM29]. A KKM cover corresponds to the preferences of a hungry guest. Knaster,

Kuratwoski, and Mazurkiewicz proved that, for any KKM cover,
⋂k
j=1Aj 6= ∅. This

translates to the existence of a partition in which the hungry guest does not mind
which part they get. Gale proved the following “colorful” version of this result.

Theorem 2.2 (Gale 1984 [Gal84]). Let k be a positive integer. For i = 1, . . . , k,
let (Ai1, . . . , A

i
k) be a KKM cover of ∆k−1. Then, there exists a permutation

π : [k]→ [k] for which
⋂k
j=1A

π(j)
j 6= ∅.

In the context of cake-cutting, the result above guarantees the existence of a
partition in which guest π(j) is content to receive the j-th piece, so we have an
envy-free distribution. If we write our condition of α-hungry in terms of KKM
covers of ∆k−1 we require the following definition.

Definition 2.3. Let α, k, and n be positive integers so that n ≥ α and n ≥ k. For
every i = 1, . . . , n we have a k-tuple (Ai1, . . . , A

i
k) of closed subsets of ∆k−1. We say

that the family of k-tuples is α-weakly KKM if for every C ∈
(

[n]
n−α+1

)
the k-tuple(⋃

i∈C
Ai1, . . . ,

⋃
i∈C

Aik

)
is a KKM cover of ∆k−1.

We illustrate an example in Fig. 1 of two preference triples that could appear
in such covers of ∆2. Finally, for the rent-splitting version of our theorems we use
dual KKM covers defined as follows.

Definition 2.4. We say that a k-tuple (A1, . . . , Ak) is a dual KKM cover of ∆k−1

if

• for j = 1, . . . , k the set Aj is a closed subset of ∆k−1,
• if j 6= j′, then Aj ∩ Fj′ ⊂ Fj ∩ Fj′ , and
• the union of A1, . . . , Ak covers ∆k−1.
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The condition Aj∩Fj′ ⊂ Fj∩Fj′ corresponds to the statement “if room j′ is free,
we may only prefer room j over it if it is also free”. Alternatively, the condition
on the set is equivalent to Aj ∩∂∆k−1 = Fj . This is because the relative interior of
Fj can only be covered by Aj , and since Aj is closed we obtain Fj ⊂ Aj . For our
results, we extend the definition as follows.

Definition 2.5. Let α, k, and n be positive integers so that n ≥ α and n ≥ k. For
every i = 1, . . . , n we have a k-tuples (Ai1, . . . , A

i
k) of closed subsets of ∆k−1. We

say that the family of k-tuples is α-weakly dual KKM if for every C ∈
(

n
n−α+1

)
the

k-tuple (⋃
i∈C

Ai1, . . . ,
⋃
i∈C

Aik

)
is a dual KKM cover of ∆k−1.

3. Linear-algebraic preliminaries

In our proofs, we use properties of non-square matrices with non-negative entries
with some conditions on their rows and columns. These are extensions of Birkhoff’s
theorem on doubly stochastic matrices [Bir46]. Birkhoff proved that every doubly
stochastic matrix is a convex combination of permutation matrices. In particular,
if X is a k × k doubly stochastic matrix, there exists a permutation π : [k] → [k]
such that its entries xji satisfy xjπ(j) > 0 for all j ∈ [k].

We extend this result to certain non-square matrices. The proof relies on boot-
strapping Birkhoff’s theorem.

Lemma 3.1. Let k ≤ n be positive integers and X be a k × n matrix with non-
negative entries. Assume that the sum of rows of X , the sum of each column
of X is at most 1, and there are at least k columns that each sums to 1. Then,
there exists an injective function π : [k] → [n] such that xjπ(j) > 0 for all j ∈ [k].
Moreover, if xj0i0 > 0 for some particular values j0 ∈ [k], i0 ∈ [n], we may impose
the condition π(j0) = i0.

Proof. The case k = n is Birkhoff’s theorem, so we assume k < n. Let si be the
sum of the entries in the i-th column of X and p =

∑n
i=1 si. The sum of each row

is p/k. We append n− k rows to X such that each entry added to the i-th column
is equal to

1

n− k

(p
k
− si

)
.

First, since k columns add to 1, we know p/k ≥ 1 ≥ si for all i, so each new entry
is non-negative. Second, the sum in each new row is

n∑
i=1

(
1

n− k

(p
k
− si

))
=

n

n− k
· p
k
−
∑n
i=1 si
n− k

=
n

n− k
· p
k
− p

n− k
=
p

k
.

Third, the sum of each column is si + (n− k)[(p/k − si)/(n− k)] = p/k. The new
n×n matrix is a scalar multiple of a doubly stochastic matrix, so we can write it as
a linear combination of permutation matrices with only positive coefficients. Since
the entry (j0, i0) of X is positive, in the linear combination there must also be a
permutation with a 1 at the (j0, i0) entry. The first k rows of that permutation
matrix induce the injective function we were looking for. �

If we know that more columns sum to 1, we can extend a similar result of
Meunier and Su [MS19, Lemma 2.10]. The proof for r = k gives an alternative
proof of Lemma 3.1 without imposing a single fixed value on π.
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Lemma 3.2. Let k ≤ r ≤ n be positive integers and X be a k × n matrix with
non-negative entries. Assume that the sum of rows of X is constant. The sum of
each column of X is at most 1, and there are at least r columns that each sums to 1.

Then, for each set C ∈
(

[n]
d(r−k)/ke

)
there exists an injective function π : [k]→ [n]\C

such that xjπ(j) > 0 for all j ∈ [k].

Proof. The argument of Meunier and Su transfers directly to this setting. We
include it here for the reader’s convenience. We construct a bipartite graph G on
[k] × [n] whose edges have positive weights. If xji > 0 for some j ∈ [k], i ∈ [n], we
include the edge (j, i) and give it weight xji. Let si be the sum of the i-th column
of X and p be the sum of all entries of X. The sum of each row must be p/k ≥ r/k.

We use Hall’s marriage theorem to find a matching in G that covers [k]. For a
non-empty set R ⊂ [k], the sum of the weights of edges incident to R is at most
the sum of weights of edges incident to its neighborhood N(R) ⊂ [n]. This implies
the following inequalities: ( r

k

)
|R| ≤

(p
k

)
|R| ≤

∑
i∈N(R)

si ≤ |N(R)|

|R|+
(
r − k
k

)
≤
(

1 +
r − k
k

)
|R| ≤ |N(R)|

|R|+
⌈
r − k
k

⌉
≤ |N(R)|.

Therefore, if we remove any d(r − k)/ke elements from [n], we still have Hall’s
condition for a matching covering [k]. This matching induces the injective function
we were looking for. �

4. Reduction to facet avoiding KKM covers

We first rewrite the statement of Theorem 1.1 in terms of k-weakly KKM covers.

Theorem 4.1. Let k ≤ n be positive integers. For i ∈ [n], let (Ai1, . . . , A
i
k) be

a k-tuple so that they form a k-weakly KKM set. Then, there exists an injective

function π : [k]→ [n] such that
⋂k
j=1A

π(j)
j 6= ∅.

In the next section we will use a slightly stronger condition on the sets, namely
that for each i, j we have Aij ∈ ∆k−1 \Fj . In other words, if there are empty pieces,
person i never lists those among their favorites.

Lemma 4.2. It is sufficient to prove Theorem 4.1 for families of sets so that
Aij ⊂ ∆k−1 \ Fj for all i, j to know that it holds in general.

Proof. Let k ≤ n be positive integers and that (Ai1, . . . , A
i
k) are k-tuples of subsets

of ∆k−1 so that they form a k-weakly KKM set.
Consider ∆k−1 to be embedded linearly in Rk−1 so that it is a regular simplex

centered at the origin. We now construct a set of k-tuples (Y i1 , . . . , Y
i
k ) that form

a k-weakly cover of 2∆k−1, a scaled copy of ∆k−1 from the origin. We start by
forming some intermediary sets Xi

j .

For x ∈ ∆k−1, we take x ∈ Xi
j if and only if x ∈ Aij . For x ∈ (2∆k−1) \∆k−1,

let p(x) be the closest point of ∆k−1 to x. By convexity and compactness of ∆k−1,
the point p(x) is well defined and unique. Moreover, p(x) ∈ ∂∆k−1. Let σ(x) be
the smallest face that contains p(x). We include x in Xi

j if and only if p(x) ∈ Aij
and vj ∈ σ(x). Finally, we let Y ij be the closure of Xi

j . See Fig. 2 for an illustration
of the construction.

Since the union of every n − k + 1 of the k-tuples (Ai1, . . . , A
i
k) covers ∆k−1,

the union of every n− k + 1 of the k-tuples (Y i1 , . . . , Y
i
k ) covers 2∆k−1. Note that



FAIR DISTRIBUTIONS FOR MORE PARTICIPANTS THAN ALLOCATIONS 7

v1

v2v3

{1}

{1, 2}

{2}

{1, 3}

{3} {2, 3}

Figure 2. An illustration of the auxiliary subdivision of a simplex
used in the construction of the sets Y ij . The set (2∆k−1) \ ∆k−1

is divided into regions, each with a set S assigned. We only allow
x ∈ Y ij if x is in the closure of a region for which j ∈ S. Each facet

of 2∆k−1 completely misses one label.

the k-weakly KKM condition is necessary so that every point in (2∆k−1) \∆k−1 is
covered east one Xi

j from the union. By the construction of Y ij in (2∆k−1) \∆k−1,

we have that Y ij does not intersect the facet of 2∆k−1 opposite to vertex vj . We

also have Y ij ∩∆k−1 = Aij for all i, j.

Therefore, we can find an injective π : [k] → [n] so that
⋂k
j=1 Y

π(j)
j 6= ∅. Let x

be a point in this intersection. If x ∈ ∆k−1, we have x ∈
⋂k
j=1A

π(j)
j and we are

done. If x 6∈ ∆k−1, we can extend the ray starting at p(x) in the direction of x
until it hits a point x′ ∈ ∂(2∆k−1). The points x′ and x are covered by the same
sets Y ij . However, since x′ is in the boundary of ∆k−1, there is at least one value

of j so that x′ 6∈ Y ij for all i ∈ [n], so it was impossible to find an injective function
as we claimed. �

5. main proofs

Proof of Theorem 4.1. By Lemma 4.2, we may assume that Aij ⊂ ∆k−1 \Fj for all

j. Let τ > 0. For each Aij , let Aij(τ) = {x ∈ ∆k−1 : dist(x,Aij) < τ}. This is

an open set, and if τ is sufficiently small we still have Aij(τ) ⊂ ∆k−1 \ Fj for all

i ∈ [n], j ∈ [k]. Let Bij = ∆k−1 \ Aij(τ). Given ε > 0 and x ∈ ∆k−1, we define the
k × n matrix M(x, ε) with entries mji given by

mji =
1

max{ε,
∑k
h=1 dist(x,Bih)}

dist(x,Bij).

All the entries are non-negative. Since the family of k-tuples is k-weakly KKM,
at most n− k columns of M(x, ε) are zero.

Consider ∆k−1 identified with its natural embedding in Rk, as the set of vectors
with non-negative entries whose sum is 1. If we denote by ū the n× 1 vector with



8 SOBERÓN

all entries equal to 1, we can define the function

fε : ∆k−1 → ∆k−1

x 7→ 1

‖M(x, ε)ū‖1
M(x, ε)ū.

The function fε gives us the sums of rows of M(x, ε) normalized by the sum of
all entries in M(x, ε). The function fε is continuous. Moreover, since each Aij(τ) is

a subset of ∆k−1 \Fj , for every face σ of ∆k−1 we have fε(σ) ⊂ σ. Therefore, fε is
of degree one on the boundary and must be surjective. In particular, there exists
xε ∈ ∆k−1 such that fε(xε) = (1/k, . . . , 1/k)T .

Now we take a sequence (εm)m≥1 of positive real numbers that converges to 0.
By the compactness of ∆k−1 we may assume without loss of generality that the

sequence (xεm)m≥1 converges to a point xτ0 ∈ ∆k−1. For i ∈ [n], if xτ0 ∈
⋃k
j=1A

i
j(τ),

then for all sufficiently small values of ε, the i-th column of M(xτ0 , ε) will add to

one. If, on the other hand, xτ0 6∈
⋃k
j=1A

i
j(τ), then the i-th column of M(xτ0 , ε) will

always be zero. Let ε0 be a value so that all the columns of M(xτ0 , ε0) sum to zero
or one.

We assume without loss of generality that the matrices M(xεm , εm) converge to

some matrix M . Note that M may be different from M(xτ0 , ε0). If xτ0 ∈
⋃k
j=1A

i
j(τ),

then the i-th column of M and of M(xτ0 , ε0) are equal. Therefore, at least k
columns of M sum to one. Suppose the entry (j, i) of M is positive. We have
dist(xεm , B

i
j) > 0 for infinitely many m since otherwise the limit of the (j, i) entry

of M(xεm , εm) would converge to zero. We thus have xεm ∈ Aij(τ) for infinitely

many m, which implies dist(xτ0 , A
i
j) ≤ τ .

By the convergence of the matrices M(xεm , εm), we know that M has only non-
negative entries, the sum of its rows is constant, and the sum of its columns is
bounded above by 1. By the coincidence of columns of M and M(xτ0 , ε0), at least
k columns of M have sum equal to 1.

We can therefore apply Lemma 3.1 and obtain an injective function πτ : [k]→ [n]

that selects positive entries of M . In particular, dist(xτ0 , A
πτ (j)
j ) ≤ τ for all j ∈ [k].

As τ → 0, we may assume without loss of generality that πτ remains constant and is
equal to some injective function π : [k]→ [n], and xτ0 converges to some x0 ∈ ∆k−1.

Observe that, since the sets Aij are closed, x0 ∈ Aπ(j)
j for all j ∈ [k]. �

The rest of the proofs are modifications of the proof of Theorem 1.1. We start
with the secretive version.

Proof of Theorem 1.2. By Lemma 4.2, we may assume that Aij ⊂ ∆k−1 \Fj for all
j for i > 1. We assume that person 1 is Alice. Since we don’t know her preferences,
we provisionally use the k-tuple (B1

1 , . . . , B
1
k) where B1

j = Fj for each j ∈ [k] to
construct our functions. We follow the same proof of Theorem 1.1 up until the
construction of M .

If the entry mji of M is not zero, it means x0 is in Aij(τ), so x0 6∈ Fj . Since none

of the rows in M is zero, the point x0 must be in the interior of ∆k−1. Therefore,
the first column has only positive coordinates and coincides with the first column
of M(x0, ε0). Take j ∈ [k]. We know the entry in row j and column 1 of M is
positive. We may choose an injective function πj : [k] → [n] such that πj(j) = 1
from Lemma 3.1. As τ → 0 we can assume without loss of generality that each
function πj is constant and that x0 converges, finishing the proof. �

A similar approach gives us Corollary 1.4. In the proof of Lemma 3.1, if we
instead ask that k+ 1 ≤ n and k+ 1 columns add to 1, we need to append at least
one row. Moreover, since p/k ≥ (k + 1)/k > 1, all the entries of this new row are
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positive. We can then impose the condition π(k + 1) = i for any i ∈ [n] in the
function we construct, which is equivalent to excluding person i. Corollary 1.4 is
also a direct corollary of Theorem 1.3, which we prove now.

Proof of Theorem 1.3. We follow the same proof of Theorem 1.1 and use Lemma 3.2
instead of Lemma 3.1. As there are only

(
n

d(r−k)/ke
)

possible sets of guests to

exclude, the convergence arguments when τ → 0 still hold. �

Proof of Theorem 1.5. The approach is similar to the one of Theorem 1.1, except
we use k-weakly dual KKM families of k-tuples instead.

First recall that if (A1, . . . , Ak) is a dual-KKM cover of ∆k−1, then every point
in the relative interior of the facet Fj can only be covered by Aj . Therefore,
Aj ∩ ∂∆k−1 = Fj .

Given a proper face σ of ∆k−1, there must be an index j ∈ [n] so that vj ∈ σ
and vj+1 6∈ σ, where the sum is taken modulo n. Therefore, σ ⊂ Fj+1. This
implies that if (A1, . . . , Ak) is a dual KKM cover, we can shift the sets by one and
obtain (A2, . . . , Ak, A1), which is now a KKM cover of ∆k−1. The same shift means
that the set of k-tuples (Ai2, . . . , A

i
k, A

i
1) forms a k-weakly KKM family. We apply

Theorem 4.1 to this family and we are done. �
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Choice, Combin. Probab. Comput. 27 (2018), no. 3, 427–440.

[Str80] Walter Stromquist, How to cut a cake fairly, Amer. Math. Monthly 87 (1980), no. 8,

640–644.
[Wel85] Dietrich Weller, Fair division of a measurable space, J. Math. Econom. 14 (1985),

no. 1, 5–17.

[Woo80] Douglas R. Woodall, Dividing a cake fairly, J. Math. Anal. Appl. 78 (1980), no. 1,
233–247.

Baruch College, City University of New York, New York, NY 10010

Email address: pablo.soberon-bravo@baruch.cuny.edu


	1. Introduction
	2. Topological preliminaries
	3. Linear-algebraic preliminaries
	4. Reduction to facet avoiding KKM covers
	5. main proofs
	6. Acknowledgments
	References

