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Abstract

We study the convergence of entropically regularized optimal transport to opti-
mal transport. The main result is concerned with the convergence of the associated
optimizers and takes the form of a large deviations principle quantifying the local
exponential convergence rate as the regularization parameter vanishes. The exact
rate function is determined in a general setting and linked to the Kantorovich poten-
tial of optimal transport. Our arguments are based on the geometry of the optimizers
and inspired by the use of c-cyclical monotonicity in classical transport theory. The
results can also be phrased in terms of Schrodinger bridges.

1. Introduction
Over the last three decades, optimal transport theory has flourished due to its con-
nections with geometry, analysis, probability theory, and other fields in mathematics
(see, e.g., [53], [54], [58]). Following computational advances which have enabled
high-dimensional applications, a renewed interest comes from applied fields such
as machine learning, image processing, and statistics. Popularized in this area
by Cuturi [21], entropic regularization is a key computational approach for high-
dimensional problems. The resulting entropic optimal transport problem provides an
approximate optimal transport when solved for small regularization parameter & > 0
while admitting much more efficient algorithms than the unregularized problem,
in addition to having other desirable properties. We defer the discussion of related
literature to Section 1.1 below and proceed with a synopsis of the present study.
Given a continuous cost function ¢ : X x Y — R4 on Polish probability spaces
(X, ) and (Y, v), we consider the entropic optimal transport problem

inf / cdn +eH(m|pn Q@ v), (1.1)
mell(u,v) Jxxy
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where TI(ju,v) is the set of couplings and H(:|u ® v) denotes relative entropy (or
Kullback-Leibler divergence) with respect to the product of the marginals (see Sec-
tion 2 for the formal definitions). The constant ¢ > 0 acts as a regularization parame-
ter; ¢ = 0 recovers the (unregularized) optimal transport problem. Under mild condi-
tions detailed in Sections 2 and 3, respectively, the entropic optimal transport problem
admits a unique solution 7, € I1(, v) and 7, converges weakly to a solution 4 of
the unregularized problem. Our main interest is to quantify the speed of this conver-
gence g — Mx.

For finite-dimensional linear programs—including optimal transport problems
with marginals supported by finite sets—the solution of the entropic regularization
is known to converge exponentially fast to a solution of the original problem (in
total variation, say). In transport problems with continuous marginals, the situation
is quite different even in the most regular examples. For Gaussian marginals on R
and quadratic costs c(x, y) = |x — y|?, direct computation shows that 7, is Gaussian
and 7, is given by a linear transport (Monge) map 7. One finds that the transport
cost converges only linearly, [‘¢dm, — [c¢dmy =¢&/2 + o(g). The culprit for this
slowdown is easily spotted by inspecting the closed-form solution: the leading term
in the cost difference stems from the mass , places at a distance of approximately
/€ to the support I' of 7, (i.e., the graph of T'). See Section 1.1 for further discussion
on the asymptotics of transport costs and value functions, which have been the main
focus of the extant literature on the convergence as € — 0.

In the present study, we adopt a different, more local perspective, from which
the Gaussian example is actually encouraging: the density of 7, decays exponentially
away from I'. Indeed, it is proportional to e~ ~T)/e , where o > 0 is the quotient
of the marginal variances.

The main result of this paper is a comparable statement in a remarkably general
setting; it takes the form of a large deviations principle. We define a function /(x, y)
through the following optimization. In addition to the given point (x, y) =: (x1, y1),
choose finitely many points (xz, y2), ..., (xg, yx) from the support I of the limiting
optimal transport 7., as well as a permutation o € X (k). Then, consider the differ-
ence

k

k
D elxiyi) = Y e(xis Vo) (1.2)

i=1 i=1

between the pointwise transport costs from x; to y; with the costs for the permuted
destinations y,(;). The optimization is to maximize this difference, and we define
I(x,y) as the supremum value of (1.2) over all choices of points and permuta-
tions. For (x, y) € T, the optimality of m, implies that /(x,y) = 0, because T is
c-cyclically monotone. But outside I', we may typically expect that /(x,y) > 0.
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Part (a) of our theorem below, the large deviations upper bound, shows that I is
a lower bound for the rate function in the general Polish setting. The matching
bound (b) necessitates a condition on the optimal transport problem that is being
approximated—but still holds for the majority of continuous or semidiscrete trans-
port problems of interest. We mainly discuss the uniqueness of Kantorovich potentials
(Assumption 4.4) as a sufficient condition; it also gives rise to an insightful repre-
sentation of I as I(x,y) = c(x,y) — ¥°(y) + ¥(x), the difference between the
cost ¢(x,y) and the solution of the dual optimal transport problem (see Propo-
sition 4.5). An alternative condition imposing regularity of the optimal transport
(Assumption 4.9) is also considered. Tacitly assuming the existence of m, and its
weak limit (cf. Sections 2 and 3), the main result reads as follows.

THEOREM 1.1

Let T = sptmwy where wy = limg_o 7, is the limiting optimal transport, and define
1:XxY —[0,00] by (4.3).

(a) For any compact set C C X XY,

limsupelogm,(C) <— inf I(x,y).
>0 (x,y)eC
(b) Let Assumption 4.4 or Assumption 4.9 hold, and consider the sets Xog =

projy I' and Yo = projy I' of full marginal measure. For any open set
UcC X() X Yo,

liminfel U)>— inf I(x,y).
iminfelog 7, (U) = (eont | (x,y)

The theorem shows in particular that the rate depends (only) on the geometry of
1+, which does not seem to be clear a priori. We mention that our result can also be
stated in terms of (static) Schrodinger bridges. In this context, it is a large deviations
principle for the small-noise (or small-time) limit (cf. Section 1.1).

For finitely supported marginals, the density of m, converges exponentially for
any cost function; that is, the rate function is strictly positive outside I". We shall see
that the analogue may fail in the continuous case. Rather, positivity depends on the
geometry of the cost. The twist condition (injectivity of Vyc(x,-)) plays an impor-
tant role, like in many results on optimal transport. We include affirmative positivity
results in particular for quadratic costs, which is the most important case for appli-
cations. While not pursued in the present paper, our results should also be useful to
derive detailed quantitative bounds on the rate in more specific settings. We may also
hope to gain insights into how the rate depends on the dimension.

Geometry is a cornerstone in the now-classical theory of optimal transport, where
optimality is captured geometrically by the c-cyclical monotonicity of a transport’s
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support. Defined by comparing costs at finitely many points, it yields a powerful tool
to derive fundamental results such as stability of optimal transports under weak lim-
its or existence of dual potentials. We are not aware of a comparable technique in
the literature on entropic optimal transport (or on Schrodinger bridges). In this paper,
we exploit a cyclical invariance property satisfied by the density of w,. The invari-
ance itself can be understood as a reformulation of a classical characterization for 7,
through the solution of the dual problem, the Schrodinger potentials. The novelty here
lies in exploiting the geometric aspect and working on the primal side, following the
spirit of c-cyclical monotonicity. As in classical optimal transport, the arguments are
remarkably simple and general once the correct notions are in place. Our technique
is a departure from the control-theoretic methods in the related literature. Case in
point: the geometric proof that a weak limit 7 = lim,—,o 7, is an optimal transport
(cf. Proposition 3.2) is nearly trivial compared to the Gamma-convergence technique,
even in the general Polish context. (Of course, Gamma-convergence is applicable to
many other problems where our technique has no analogue.)

We also emphasize another benefit which may illustrate that cyclical invariance
is in fact more than just a reformulation of control theory or convex analysis: the
geometry singles out a unique coupling , even if the value function (1.1) is infinite,
and hence the usual notion of solution as a minimizer is not meaningful. This is cru-
cial, for instance, if costs are quadratic but one of the marginal distributions does not
have a finite second moment. Our arguments for the large deviations result apply in
that setting without any added difficulty, paralleling the geometric insights in classical
optimal transport. (On the other hand, the existence of m, in the case of infinite value
functions is not immediate. We establish it in [32], together with a stability theorem
for 7., using the same geometric standpoint.) Indeed, we expect the technique to be
useful in several other aspects of entropic optimal transport and Schrodinger bridges,
and thus the technique may be as important a contribution as the main theorem.

The present paper is organized as follows. After reviewing motivations for our
research and related literature in the remainder of this introduction, Section 2 details
the basic definitions and introduces cyclical invariance. In Section 3, this notion is
used to prove that cluster points of w; as &€ — 0 have c-cyclically monotone support
and hence are optimal transports. The main result on large deviations is obtained in
Section 4: part (a) of Theorem 1.1 is stated as Corollary 4.3, whereas (b) is split
into Corollaries 4.7 and 4.12, each covering one of the two alternative assumptions.
Section 5 gives examples of settings where the rate function 7 is strictly positive
outside the support I', with a focus on quadratic costs. Appendix A contains facts
about Schrodinger bridges and a derivation of the cyclical invariance property. In
Appendix B, we detail two general settings where Assumption 4.4 on the uniqueness
of Kantorovich potentials is satisfied. Finally, Appendix C shows how to translate the
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results on the positivity of I in Section 5 from quadratic costs to more general cost
functions by means of c-convex analysis.

1.1. Related literature

In the literature on finite-dimensional linear programs and their entropic regulariza-
tion, the early work [17] contains a very detailed study of primal and dual conver-
gence, expansion of the value function, and characterizations of the rates. Their set-
ting includes discrete optimal transport problems with marginals supported by finitely
many points, and, in that case, the pointwise results in [17] certainly include the large
deviations result for ¢ — 0. On the other hand, our main theorem is most relevant
when at least one marginal support is connected and hence is complementary to the
discrete case. More recently, [59] proved an exponential convergence bound for finite-
dimensional linear programs. While the bound is not sharp in a pointwise sense, the
result is nonasymptotic; that is, it holds for all &€ below a known threshold. Moreover,
the constants are known in terms of the data, which provided valuable intuition for our
construction of the rate function /. One may also observe how the constants in [59]
blow up as the cardinality of the support increases.

In the last decade, optimal transport has found myriad applications in machine
learning, statistics, image processing, language processing, and other areas. The liter-
ature in the computational area has expanded very quickly, and our account is highly
incomplete (see [51] for a recent monograph with extensive references). Exact com-
putation of an optimal transport between marginals with n atoms costs O(n>logn),
which is prohibitive for modern applications with large data sets. The recent success
of applied optimal transport is enabled by the advent of fast approximate solvers, and
entropic regularization is among the most influential schemes for high-dimensional
problems. Popularized by Cuturi [21] in this domain, it allows for the application
of Sinkhorn’s algorithm (also called iterative proportional fitting, and also due to
Deming, Stephan, Fortet, Knopp, and others), where each iteration is a matrix-vector
multiplication costing O(n?). Importantly for modern applications, it is highly paral-
lelizable on GPUs; a number of further advantages are highlighted in [8]. The con-
vergence of this algorithm was rigorously discussed in [35] and [56], among oth-
ers. More recently, it was shown that §-accurate approximations of the transport cost
can be obtained in O (n2/§) operations via entropic regularization (cf. [10], [41] and
the references therein). In addition to computation accuracy, a second error in prac-
tice stems from sampling the marginals. For entropic optimal transport (with ¢ > 0
fixed), the rate of convergence of the empirical cost toward its population limit does
not depend on the dimension, in contrast to the curse of dimensionality suffered by
its unregularized counterpart (see [31], [45]). Addressing the combined problem, [9]
studies the convergence of the discrete Sinkhorn algorithm to an optimal transport
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potential in the joint limit when &, — 0 and the marginals p, v are approximated
by discretizations u,, v, satisfying a certain density property. Explicit error bounds
are derived, for instance, for quadratic cost on the torus, yielding important insights
into the optimal trade-off between n and ¢. In the present study, we focus on the dis-
crepancy between the entropic optimizer 7, and the optimal transport 7, in a general
setting and adopt a local point of view.

Continuing with a different branch of related literature, recall that entropic opti-
mal transport can also be phrased as the (static) Schrodinger bridge problem. Infor-
mally stated, consider a system of diffusing particles from time #y to #; in thermal
equilibrium, and a given joint “reference” law R for its configuration at those times.
If marginals (u,v) differing from the ones of R are observed, what is the most
likely evolution (joint law of w, v) of the system conditional on R? Schrodinger’s
answer amounts to 7* = arg mingy, ) H (-|R); see [28] and [39] for extensive sur-
veys including historical accounts. (This is the static formulation. Given the origins in
physics, it is natural that much of the literature focuses on the dynamic Schrodinger
bridge problem, which asks for the dynamic evolution of the particle system over time
t € [to, 11]. The static problem is recovered by projecting to the marginals.)

The minimization of H(:|R) over IT(u,v) coincides with the entropic optimal
transport problem (1.1) if we introduce the cost function ¢ := —¢log(a™' dR/d(u ®
v)), where the parameter & > 0 is arbitrary and « is a normalizing constant (we tac-
itly assume that R ~ p ® v). Conversely, taking (1.1) as the starting point, defining
R(¢) by dR(e)/d(n ® v) = awe~¢/¢ yields the associated Schrodinger bridge prob-
lem. Assuming for simplicity that {¢ = 0} is the graph of a function f : X — Y, Theo-
rem 1.1 is then a large deviations principle as the reference measure R(e) degenerates
to a deterministic coupling (meaning that a particle with given origin x travels to the
predetermined destination f(x)).' This is also called the small-noise or small-time
limit. While not pursued here, it seems plausible that a similar principle could be
established for more general sequences R(¢). From the point of view of Schrodinger
bridges, another interesting follow-up question is whether a comparable large devia-
tions result can be stated for the dynamic problem on path space.

Mikami [46], [47] first highlighted the connection between Schrddinger equa-
tions and optimal transport in the small-noise limit (see also [14] for a connection
through a fluid dynamic formulation). Léonard studied Schrodinger bridges in a series
of works starting with [36] and [37] (see [39] for further references). In [38], he
established convergence of the value function to an optimal transport problem in the
sense of Gamma-convergence for a general formulation of the problem. See also [13],
where a very accessible proof of the Gamma-convergence is presented for quadratic

!'Schrodinger’s ideas about the “most likely evolution” are usually presented as a large deviations result in the
modern literature. That result is very different from the one just discussed.
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costs. More recently, [18] and [50] study the limit in specific settings and determine
higher-order terms in the expansion of the Schrodinger (or entropic) value func-
tion around the optimal transport cost. These works complement earlier results of
[1], [26], and [27] showing that the large deviation rate function for the empirical
distribution of independent Brownian particles with drift is asymptotically equivalent
to the Jordan—Kinderlehrer—Otto functional arising in the Wasserstein gradient flow.
We mention that [18] also considers the large-time limit (corresponding to & — 00);
cf. [16] for recent developments. The setup in [50] is closest to ours in that the entropic
penalty and the limit & — 0 are formulated in the same way, whereas the literature on
Schrodinger bridges often formulates the zero-noise limit through a vanishing Lapla-
cian. We also mention [34], which establishes convergence of the dual potentials for
compact marginals (see [49] for a follow-up and more on the relation to the present
work).

While the focuses of the aforementioned works are on value functions and global
quantities, the present study focuses on the local geometry and convergence. The
value functions are not used at all, and so it is quite natural that the results hold, even
when costs are infinite. We are not aware of a large deviations principle similar to
ours in the extant literature. One concrete example where these aspects are of interest
are the multidimensional ranks and quantiles that have been introduced in statistics
to extend the usual scalar notions and familiar nonparametric tests (see [15], [23],
[24], [33]). Here Brenier’s map is fundamental, but, as in the scalar case, moment
conditions are not natural. McCann’s geometric extension in [44] of Brenier’s map
(see also [58, pp. 249-258]) can be used to provide a definition irrespectively of the
finiteness of the value function. Unlike their scalar counterparts, the ranks defined
through optimal transport are computationally expensive. Entropic optimal transport
resolves that issue and provides an approximate Brenier’s map. Leveraging this idea,
a notion of “differentiable ranks” based on entropic optimal transport was recently
proposed in [22]. We expect that our results can be used to study the local deviations
of these differentiable ranks from the unregularized ones.

Related to our technique in a broader sense, there have been recent works suc-
cessfully using ideas of c-cyclical monotonicity outside the setting of classical opti-
mal transport. Examples include martingale optimal transport (see [6]) and optimal
Skorokhod embeddings (see [5], [7]). Finally, we mention the intriguing “optimal
entropy-transport problem” studied in [40]. Here, the usual optimal transport prob-
lem is relaxed in that the marginal constraints are replaced by an entropic penalty
relative to a given pair of measures. While similar in name, this problem is quite dif-
ferent from ours, where the marginal constraints are strictly enforced and the entropy
of the joint distribution is used as penalty.
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2. Cyclical invariance

Let (X, 1) and (Y, v) be Polish probability spaces endowed with their Borel o-fields,
and let ¢ : X x Y — R, be a measurable (cost) function. The associated optimal
transport problem is

inf / cdm, (2.1)
mell(u,v) JXxY

where IT(u, v) is the set of all couplings; that is, probability measures 77 on X X Y with
marginals p = (projy)sm and v = (projy)sm. Given a constant ¢ > 0, the entropic
optimal transport problem is

inf / cdn +eH(x|P), P:=pu®v, (2.2)
mell(p,v) JXxY

where H denotes the relative entropy or Kullback-Leibler divergence:

flog(g—g)dn, T L P,

H(x|P):= {oo, X &P

As detailed in Proposition A.1 of Appendix A, this problem admits a unique mini-
mizer 7, whenever the value (2.2) is finite; that is, whenever

there exists 7 € I1(u,v) with /cdn + H(x|P) < o0. (2.3)
Moreover, we then have 7, ~ P.

Definition 2.1
A coupling 7 € T1(u, v) is called (c, &)-cyclically invariant if w ~ P and its density
admits a version Z—g : XxY — (0,00) such that

k
dm
[15 000

i=1
1 k k k d
=oxp(— [ ey =Y ctnyin) ) [Tgptaosn @4
S i=1 i=1
for all k € N and (xi,yi){.‘zl C XxY, where yg41:= y1.
We omit the qualifier (c, &) when there is no ambiguity. One elementary way to

motivate Definition 2.1 is to derive a first-order condition of optimality for (2.2)
through variational arguments in the case of discrete marginals, which indeed



ENTROPIC OPTIMAL TRANSPORT 3371

yields (2.4). Cyclical invariance can be phrased more succinctly using the auxil-
iary reference measure R = R(¢) defined by the Gibbs kernel

dR

5= ae~c/®, (2.5)
where o = ([ e~¢/¢ dP)~" is the normalizing constant. As R ~ P, we can state (2.4)
as

K dn K dn

Hd—R(xi,yi)=Hd—R(Xi,yi+1)- (2.6)
i=1 i=1

This condition, in turn, is related to a multiplicative decomposition of the den-

sity dm/dR (cf. Appendix A). For our analysis of the limit ¢ — 0, the less elegant

definition (2.4) will be the more useful one, as it makes explicit the role of & and links

directly to the c-cyclical monotonicity condition of optimal transport.

PROPOSITION 2.2

(a) There is at most one (c, €)-cyclically invariant coupling 7w € T1(u,v).

(b)  Let(2.3) hold. Then v € T1(w,v) is (¢, &)-cyclically invariant if and only if it
minimizes (2.2). Moreover, there exists a unique such coupling.

The proof is detailed in Appendix A. Under condition (2.3), Proposition 2.2
shows the equivalence between minimality and cyclical invariance. The notion of
minimality is meaningful only under (2.3); otherwise, all couplings have infinite cost.
By contrast, we show in [32] that the notion of cyclical invariance remains meaningful
in this context of infinite costs: existence and uniqueness hold under mild regularity
conditions, for example, when X, Y are Euclidean spaces and ¢ is continuous.

In the remainder of this paper, we simply assume that a (c, £)-cyclically invariant
coupling 7, € I1(u, v) exists for every & > 0, rather than imposing Condition (2.3) as
in much of the literature. One reason is that this condition precludes some applications
of interest to us. In any event, the arguments in this paper do not simplify if (2.3) is
assumed.

3. Cluster points as ¢ — 0

Denote by m; the unique (c, €)-cyclically invariant coupling. In this section we show
that cluster points of 7, as ¢ — 0 are c-cyclically monotone. The estimates leading to
that conclusion are obtained by simply integrating the cyclical invariance condition.

LEMMA 3.1
Letk >2and 0 < § < §’ < co. Define
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k k
Ar(8,8) = {(x,-,y,-)f-;l e (X x Y)k 8 < Zc(xi, Vi) — Zc(x,-,y,-H) < 5’},
i=1 i=1
and let A C Ay (8,8') be Borel. Then ¥ := ]_[f-czl we(dx;, dy;) satisfies
7k (A) <e™® foralle>o0. (3.1)

Suppose in addition that A := {(x,-,yi_,_l)f-‘:l : (Xi,yi)le € A} satisfies
liminf,_,¢ elog ﬂf (A) = 0. Then

liminfelog 7¥(4) > —§'. (3.2)
e—>0

Proof
Set Z = dn,/dP. Using (2.4), we have for P*-a.e. (x;, y,-)f-‘=1 € A that

[[2¢i.y) = eXP{—S_l [Z c(xi, yi) — Zc(xivyi+l):|} [Tz yiv)
< e_a/enz(xi,)h‘ﬂ)-
Integrating over A with respect to P* =[] P(dx;,dy;) =[] P(dx;.dyi+1) yields
wk(A) < e ¥enk () < e7he,
which is (3.1). Analogously, nf (A) > 6—8’/5715 (A), and hence
glogmk(A) > —8' + elogn¥(A),

so that (3.2) follows under the stated condition on A. O

In all that follows, probability measures are considered with weak convergence,
that is, the topology induced by bounded continuous functions. We recall that TT(u, v)
is weakly compact (cf. [58, p. 45]). As a consequence, any sequence of couplings
admits at least one cluster point, and any cluster point is a coupling. A set ' C X x Y
is called c-cyclically monotone if Zle c(xi,yi) < Zle c(xi,yiy1) forall k > 1
and (x;,y;) e, 1 <i <k.

PROPOSITION 3.2

Let ¢ be continuous, and let @ be a cluster point of () as € — 0. Then sptx is c-
cyclically monotone; hence 1 is an optimal transport as soon as the optimal transport
problem (2.1) is finite. If (2.1) admits a unique c-cyclically monotone coupling m €
II(w,v), then mg — w4 as € — 0.
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Proof

Let &, — 0 and 7, — 7. Suppose for contradiction that there are (x;, y;) € spt,
1 <i <k with ) ; c(x;,yi) > >, c¢(xi, yi+1). By continuity, there exist § > 0 and
open neighborhoods U; > (x;, ;) such that ) ; ¢(X;, Ji) =6 + >, c(Xi, yi41) for
all (X;,y;) € U;. Moreover, w(U;) > 0, and hence liminf, w, (U;) > 0. On the other
hand, Uy X --- x Uy C Ay (8, 00) implies nfn (Uy x---x Ug) — 0 by Lemma 3.1, a
contradiction. This shows that sptz is c-cyclically monotone. It is well known that
cyclical monotonicity and optimality are equivalent when (2.1) is finite (cf. [58, The-
orem 5.10, p. 57]). As I1(u, v) is compact, . must have cluster points as ¢ — 0, so
that uniqueness implies convergence. O

Remark 3.3

For the particular case of quadratic cost on R¢ and marginals satisfying certain inte-
grability conditions, the conclusion of Proposition 3.2 is obtained in [13] by (arguably
much more involved) Gamma-convergence arguments. That line of argument focuses
on the properties of the value function and hence cannot be applied when the value
function is infinite. A related but slightly different convergence result, also obtained
by Gamma-convergence, is stated in [38, Theorem 2.4] and includes lower semicon-
tinuous cost functions. On the other hand, the convergence in Proposition 3.2 may
fail if continuity is relaxed to lower semicontinuity: one example, discussed in more
detail in [48, Remark 4.3], is ¢(x, y) = 1{x#y} and . = v = Unif[0, 1].

Uniqueness of c-cyclically monotone transports is known for many examples
of continuous or semidiscrete optimal transport problems—arguably for most of the
important examples except distance costs—and then Proposition 3.2 shows the con-
vergence of w; as € — 0. See, e.g., [58, Theorem 5.30, p. 84]. When the transport
problem admits multiple solutions, it is not obvious whether m, converges. If there
exists an optimal transport 7 with H (7 |P) < 0o, one can show that 7, converges
to the unique optimal transport . with minimal relative entropy H(-|P) (cf. [48,
Theorem 5.1]). This includes the discrete case with finitely supported marginals as
analyzed in [17], but also the semidiscrete case (where one marginal is continuous)
under minor integrability conditions. Convergence is also known for the scalar Monge
problem where c¢(x,y) = |x — y| on X =Y = R and the marginals are absolutely
continuous; here a relatively explicit analysis is possible (see [25]). It has been con-
jectured that convergence holds in a general setting.

4. Rate function
Throughout this section, the cost function c is assumed to be continuous. For simplic-
ity of exposition, we shall also assume that
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e —> s ase— 0, 4.1)

for some (necessarily c-cyclically monotone) transport . € I1(u, v). However, if it
is merely known that 7, — 4 along a specific sequence &, — 0, then all of our
results hold along that sequence, regardless of whether (77;) has other cluster points.
In fact, the arguments in this paper are complementary to the question of conver-
gence discussed in the preceding paragraph: given the convergence of a sequence, we
describe the large deviations.

4.1. Large deviations upper bound

In this subsection we introduce the function / and show the large deviations upper
bound, that is, that I provides a lower bound for the large deviations rate. With the
definitions in place, the arguments are straightforward and apply in great generality.
We write B, (z) for the open ball of radius r around z, in any metric space. The first
lemma is a way to bound the decay of a ball in X x Y based on the estimate for subsets
of (X x Y)¥ in Lemma 3.1.

LEMMA 4.1
Let (x,y) € Xx Y. Suppose there exist (x;, y;i)a<i<k C Sptaws with k > 2 such that

k k
8o = ZC(Xi,J’i) — Zc(xi,yiﬂ) >0, where (x1,y1):=(x,y).

i=1 i=1
Given § < 8, there exist «,r, &9 > 0 such that

ﬂs(Br(x7 y)) = ae e

for e <¢gy.

Proof

Once again, continuity of ¢ implies that for r > 0 small enough, Y c(%;, ;) —
ZC()Z,’,)Z’.;.]) > ¢ for all (X;,y;) € B; := By(xj,yi), and then By X --- X By C
Ay (8,00) in Lemma 3.1 yields

7e(B1) - me(By) < e %/, 4.2)

For i > 2 we have liminfw.(B;) > m.(B;) due to the weak convergence w, — 7,
and B; := m.(B;) > 0 as (x;,y;) € sptmws. Let § = min;>5 B;. Then 7. (B;) > /2
for i > 2 and ¢ small, and thus (4.2) yields 7. (B;) < (B/2)}Fe=d/¢, ([

Denote by X (k) the set of permutations of {1,...,k}. Next, we state the defini-
tion of I(x, y); it is designed to capture the rate § in Lemma 4.1 and optimize it over
the choice of (x;, yi)a<i<k-
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LEMMA 4.2
Given a c-cyclically monotone set @ # T' C X x Y, define

k

k
I(x,y):=sup sup  sup » c(xi,yi)— Y c(xi Vo)) (4.3)
k=2 (x;,y;)k_,croeXk) ;= i=1

where (x1,¥1) := (x,). Then I : XxY — [0, 00] is lower semicontinuous and I = 0
on I'. We have

k

k
I(x,y)=sup  sup Y c(xi,yi)— Y c(xi,yit), 4.4)
k=2 (x;,y))5_,CT i=1 i=1

and equality holds as soon as x € Xo 1= projy I or y € Yo := projy I'.

Proof

We have I > 0 as 0 = Id is a possible choice in (4.3). For (x, y) € ', the difference
of sums in (4.3) is nonpositive by cyclical monotonicity. The semicontinuity follows
from the continuity of c.

Let I’(x, y) be the right-hand side of (4.4). As the pairs (x;, y,-)f“=2 can be rela-
beled arbitrarily, this is the same as (4.3) except that the last supremum in (4.4) is
taken over o € X (k) \ {Id}. If I(x, y) > 0, then the identity permutation is not opti-
mal for the relevant pairs (x;, y,-)f-‘=2 and equality must hold in (4.4). Thus, if equality
fails, then I(x, y) = 0, whereas I'(x,y) < 0. Let x € Xo; then we can choose k =2
and (x5, y2) € I with x, = x, which yields Zz'2=1 c(xi,yi) — Ziz=1 c(xi,viv1) =0,
and hence I'(x, y) > 0. The argument for y € Yq is symmetric. O

The reader may ignore the difference between (4.3) and (4.4); it is merely a
notational nuisance. We have the following result for the c-cyclically monotone set
I' := spt «, which is also stated as Theorem 1.1(a) in the Introduction.

COROLLARY 4.3
For any compact set C C X x Y,
limsupelogme(C) <— inf I(x,y).
(x,y)eC

e—0

Proof
Fix n > 0 and (x,y) € C. By the definition of [I(x,y), there are k > 1 and
(Xi,yi)ﬁz C I such that

k k

ZC(Xi,yi)—ZC(Xi,J’iH) > In(x,y)—n/2,

i=1 i=1
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where (x1,y1) := (x,y) and I(x,y) := I(x,y) A n~'. (The truncation is needed
only if /(x,y) = co.) Lemma 4.1 thus yields a ball B,(x, y) with

limsupelog 7, (B (x,y)) < —Iy(x.y) + 1. 4.5)

This holds for every (x, y) € C, and as C is covered by finitely many such balls, we
deduce that

limsupelogn,(C) <— inf I,(x,y)+n.
(x,y)eC
Recalling that n > 0 was arbitrary, the claim follows. (]

We note that the measure . = lim, ¢ is not compactly supported in general. It
is then an open problem how to relax the compactness condition in Corollary 4.3 and
hence obtain a “stronger” version of the large deviations principle.

4.2. Large deviations lower bound

Our next aim is to show that / is also an upper bound for the large deviations rate,
thus matching the bound in Corollary 4.3. This will be accomplished in two slightly
different settings and approaches. The dual approach expresses I as the gap (4.6)
between the cost ¢ and the solution of the dual optimal transport problem, whereas
the primal directly uses the definition (4.3) of I and imposes regularity conditions.
The results correspond to Theorem 1.1(b) in the Introduction.

4.2.1. Bound via Kantorovich potential

We start with the dual approach, first recalling some standard notions of optimal
transport—we have tried to consistently use the notation of [58]. A proper func-
tion ¥ : X — (—o00,¢] is called c-convex if there exists some ¢ : Y — [—00, 00]
such that ¥ (x) = sup,,cy[{(y) — c(x, )] for all x € X. Its c-conjugate is defined by
e (y) :=infyex[¥ (x) + c(x, y)] for y € Y, and its c-subdifferential is

Iy = {(x,y) eXX Y :9(y) =¥ (x) = c(x, y)}.

Given a c-cyclically monotone set I', a c-convex function v is called a Kantorovich
potential if ' C 0.V, that is, if ¥¢(y) — ¥ (x) = ¢(x, y) on I'. This implies in partic-
ular that ¥, ¥€ are finite on

Xo := projy I, Yo := projy I'.

In the context of optimal transport, sptw C d.i for some optimal 7 € IT(u,v)
implies that 0.1 contains the support of any optimal transport. Indeed, d.v is a
maximal c-monotone set for inclusion. In what follows, the cyclically monotone set
of interest is I' = spt 7, where 7, is the limiting optimal transport (4.1).
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Assumption 4.4
Uniqueness of Kantorovich potentials holds on Xg; that is, for any c-convex functions
Y1, Y2 on X with I' C 0., it holds that ¥, — v, is constant on Xg.

This is often considered a fairly weak assumption, at least for differentiable cost
functions, and we detail sufficient conditions in Proposition B.2 of Appendix B. How-
ever, we emphasize that connectedness of at least one marginal support is crucial (cf.
Example 4.8 below).

As announced, Assumption 4.4 allows us to express / through the Kantorovich
potential (see (4.6)). For our present purpose, the key consequence is (4.7). It is worth
noting that (4.6) also allows us to translate a large body of known results about
c-convex functions, such as regularity results, into statements about /. Finally, the
gap (4.6) also plays a role in the regularity theory of optimal transport maps (espe-
cially in [42]), thus relating to the second approach in Section 4.2.2 below.

PROPOSITION 4.5
Let Assumption 4.4 hold. Then

I(x,y) =c(x.y) =¥+ ¥(x). (x.y)eXoxYo (4.6)

for any Kantorovich potential . In particular, I < oo on Xo X Y. If (x,y), (x',y') €
Xo X Yo are such that (x', y), (x,y") € T, then

10, y) + 1Y) = c(x,y) + (X y) —e(x, y) —e(x', p). (4.7)

Proof
We first elaborate on Assumption 4.4. A particular family of Kantorovich poten-
tials, sometimes called Rockafellar antiderivatives of T', is defined as follows (cf.
[58, (5.17), p. 65]): fix (xg, yo) € T, and set
k
Voow () :=sup sup Y [e(xi.yi) = c(rigr. )], where xgsq = x.
k=1 (x;,y)f_ €T i=0

(4.8)
It then holds that V(x,, y)(x) = 0 for x = xo. Clearly, Assumption 4.4 implies that

changing the reference point (x¢, yo) only changes this potential by a constant. In
particular,

ql(xo,yo) (.X', y) = W(L'XO,yO) (y) - W(Xo,yo) (X), (xv y) € XO X YO (49)

does not depend on (xg, yo) € I', and we may simply write W := W, ). Indeed,
under Assumption 4.4, W is even the same for any potential V.
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We now use this independence to prove the lemma. To avoid notational conflict,
we first rewrite the definition (4.8) as

k
V(5 (x) =sup  sup C(??J)+Z[C(xi,yi)—c(xi+1,yi)]—C(Xz,ﬁ),
k=2 (x;,y;)%_, el i=2

(4.10)
where we have avoided the subscript i = 1. Fix (x, y) € X¢ X Yq. Writing (x1, y1) :=
(x,y) as in Lemma 4.2, the definition x4 := x of (4.8) becomes our usual cycli-

cal convention xz4+; = x1. As y € Yy, there exists X € Xy such that (x,y) € I
Using (4.10) with y := y then yields

k k
Ve =sup  sup  c(F,0) 4+ ) clxi,yi) = Y c(Xitr,yi) —c(xa,y)
i=2 i=2

k=2 (x;,y)k_,er

k k
=sup sup  c(X.y)—c(x. )+ D clxiyi)— Y c(Xit1. yi)
i=1

k=2 (x;,yi)k_,er i=1
k k
=c(®y)—cle,y)+sup  sup Y c(xi,yi) = ) clxi,yit1)
k=2 (x;,y;)k_, el =1 i=1

=c(x,y)—c(x,y)+1(x,y),

where we have used the last part of Lemma 4.2. In view of ¥z ,)(X) = 0, the fact
that W(z,,) = ¢ on I' shows in particular that ¢(X, y) = ¥ (), and hence the
preceding display yields

I(x,7) = (6, 1) + Ve (8) = Yy (0) = (X, 1) = Wz (X, ).

By the first part of the proof, W(z ,)(-) = W(-) does not depend on (X, y), and the
above is precisely (4.6).
To see (4.7), let (x’, y),(x,y") € T'. Using that I = 0 on I" by Lemma 4.2 and
then (4.6),
I(va) + I(X/’y/) = ](X,y) + I(XI,y/)— I(Xry/)_[(x/’y)
=c(x,y) +e(x,y) —c(x.y) —cx,y)
- \Ij(xvy) - ll.l(x/’y/) + lIJ(x’y/) + \Ij(x/’y)’

where the last line vanishes as W is a sum of marginal functions (4.9). O
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Remark 4.6
The proof of Proposition 4.5 is based on the condition that

Y(x0,y0) Of (4.9) does not depend on (xg, yo) € T', 4.11)

which may seem weaker than Assumption 4.4. However, Assumption 4.4 is in fact
equivalent to (4.11); the proof is stated below. As a direct consequence, another equiv-
alent condition is that the Rockafellar antiderivative (4.8) be independent of (xg, o).
The symmetry of (4.11) shows that it is further equivalent to impose the analogue of
Assumption 4.4 on Y instead of X.

Proof that (4.11) implies Assumption 4.4

By construction, the Rockafellar antiderivative Vo := ¥ (x,,y,) Of (4.8) has the min-
imality property ¥ < & on X whenever £ is a potential with &(x¢) = 0 = ¥ (x0).
(See [58, p. 62] or [4] for a more general result and further context.) Consider another
point (x1,y1) € I',let Y11 := ¥(x,,5,), and let £ be any potential. Using the minimality
twice,

Vo(x1) — Yo(xo) = &(x1) — &(xo0) = Y1 (x1) — Y1 (x0).
Given (4.11), the right-hand side can be expressed as
Y1(x1) = ¥1(xo) = Y1 (x1) — Y7 (vo) — ¥1(xo) + ¥ (yo)
= Yo(x1) — Y5 (¥o) — Yo(xo) + ¥ (¥o)
= Yo(x1) — Yo(xo),

which is the left-hand side. It follows that o (x1) — ¥ (x0) = £(x1) — £ (x¢) for any
potential £, and as xg, x; € Xo were arbitrary, Assumption 4.4 holds. O

We can now show the large deviations lower bound.

COROLLARY 4.7
Let Assumption 4.4 hold. For any open set U C Xg X Yo,

1. i f 1 > i f 9 .
1£1||1n & Ogﬂg(l/) ( ’111) I(X y)
PlOOf

It suffices to show that given (x, y) € U and n > 0, there exists o > 0 such that, for
all r <ryo,

limsup —elog s (B, (x,y)) < I(x,y) + 1.

e—0
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Let n > 0, pick any (x’, y’) € Xo x Yy such that (x’, y), (x,y’) € T, and set
a=c(x,y) +c(x',y) —clx,y) —c(x,y).

We have I(x,y) < oo and I(x’, y") < oo by Proposition 4.5. For r > 0 small enough
we may use Lemma 3.1 with §’ :=« + /2 and B,(x,y) X B,(x’,y’) C 45(0,6') to
obtain

limsup —&[log 7¢ (B (x, y)) + log e (B (x', )]
= limsup —elog 7 (Br(x,y) x Br(x',)"))
<o+ /2. 4.12)
On the other hand, for r small enough, Lemma 4.1 yields as in (4.5) that
liminf—elog 7, (B, (x', y")) = I(x', ") — /2. (4.13)
Using (4.12), then (4.7) and finally (4.13),
limsup —elog 74 (B, (x. y)) + liminf —e log w4 (B, (x', y"))
<limsup —¢[log ¢ (B, (x, y)) + log we(Br(x', )]
<a+1n/2
=1(x.y) +1(x".y) +n/2
< I(x,y)+ liminf—glog s (B, (x", y")) + 1,
and the claim follows. O
The following simple example shows that if both marginals supports are discon-

nected (and Assumption 4.4 is violated), then / may fail to be an upper bound for the
rate function.

Example 4.8 (Disconnected supports)
Consider the normalized 2 x 2 assignment problem: X =Y = {1,2} and p =v =
(8g1y + 8¢23)/2. Here I1(, v) is the convex hull of the two couplings

e = (§ga,0y + 81221 /2, mo = (81,23 + Sg2,13) /2

In particular, every 7 € I1(u, v) is symmetric: 7{(1,2)} = 7w{(2, 1)}. Consider a cost
function ¢ with ¢(1,1) = ¢(2,2) =0and c(1,2) 4+ ¢(2,1) > 0. Then 7, is the unique
optimal transport, and we know that m, — .. Let

r@i,j):= lin}) —clogm:({i.j}) (4.14)
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be the exponential rate of convergence. Using Lemma 3.1 with
A=1{(1,2),(2,1)} C 42(8.,9)

for § :=c(1,2) + c(2,1) > 0 shows r(1,2) + r(2,1) = §. As m, must be symmetric,
we conclude that the true exponential rate is

r(1,2)=r2,1)=4§/2.

(A priori, it may not be obvious that the limit (4.14) exists, but a posteriori, this is
justified as every subsequential limit leads to the same value.) On the other hand, the
definition (4.3) of I readily yields that / = 0.

4.2.2. Bound via regularity

In the remainder of the section, we present an alternative approach to the large devia-
tions lower bound which does not (directly) refer to potentials but instead employs a
continuity condition for the limiting optimal transport .. We call a subset of a met-
ric space arcwise connected if any two points are connected by a continuous curve of
finite length.

Assumption 4.9

(a) I'=graphT foramap T : Xo — Y.

(b) Xo is arcwise connected.

(c) The function c(-, T'(+)) has the following continuity property: given a compact
K C Xy, we have uniformly over x1, x, € K that

’c(xl, T(xl)) + c(xz, T(xz)) - c(xl, T(xz)) - c(xz, T(xl))’
= o0(d(x1,x2)). (4.15)

As an example, consider X = Y = R¢ with cost ¢(x, y) = ||x — y||?/2 and an
optimal transport ;v given by a continuous transport map 7" on the arcwise-connected
support spt ;. Then Assumption 4.9 holds with Xo = spt , as (4.15) equals

{1 = x2. T(x1) = T(x2))] < lx1 — x2l | T(x1) = T(x2) |

and T is uniformly continuous on compact sets. General sufficient conditions for the
continuity of 7" can be found in [19, Theorem 1].
Next, we show how to establish the key half of (4.7) under Assumption 4.9.

LEMMA 4.10
Let Assumption 4.9 hold. If (x, y), (x', y") € Xo xY¢ are such that (x', y), (x,y’) €T,
then
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106, y) + I Y) Ze(x,y) +e(x, y) —e(x,y) —e(x, y). (4.16)

Proof
Set (x1,y1) := (x,y) and (x},y}) := (x/,)’). Let k > 2 and consider arbitrary
(xi,yi). (x},y}) € I for 2 <i < k. The definition of / yields that

k k
I, p) + 1y =D ey + el yD] = [e(xin yirn) + e(x). yip))]-

i=1 i=1

This holds in particular for the choices xi := x’ and x; := x, which entail that y; =
T(x') =y and y; = T(x) = y’. Moreover, we have y; = T'(x;) and y; = T'(x}) for
i > 2. Separating the first term of the first sum and the last term of the second sum,
we obtain that

I(x,y) + 1(x" y) = e(x,y) + (¥, y) —e(x,y) —e(x', y)
k

+ Z[C(xivJ’i) +e(x.y0)]
i=2
k—1
— Z[c(xi,yH_l) + C(‘xl{’ yl/+l)]

i=1

We further choose x/ := xx_;4q fori =2,...,k — 1, which implies y; = yx_; 41 for

i =2,...,k — 1. Then the first sum can be rearranged as
k k—1
Y clriy) +etxy) =Y (i Te)) + e(xipr. T(xig1),  (417)
=2 i=1

and the second sum can be rearranged as

k—1 k—1
D el yiv) e yi) =Y _clxi. Txign) + c(xigr. T(xi)).  (4.18)
i=1 i=1

(These rearrangements are elementary if tedious; Figure | may be helpful to complete
them.) In summary, we have

I(x,y) +I1(x".y) = c(x.y) + c(x'.y) —c(x,y) —c(x',y) + E,

where, always with the conventions x; = x and x; = x/,
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Y2 =Yp_1 = T(x2) yp—1 =y =T(xp—1) Y2 =Yp_1 = T(x2) yr—1 =y =T(wp-1)

Yp = v = T(1) - y1 =y = T(xx) yj, = vy = T(21) e y1 = yk = T(xp)
99— o

A A A A
A A A AR
" " n VA VAR VA AN
1 n n / v v v \
n " I A/ \/ A/ \
— e — 0o —¢ o o — — & ¢ & 9o ——
-’L'l:-’L';C , mk:z'l xrp =Ty , Tk:T/l
Ty=Tp_y T =TH Ty=ap_y  xp_y =Th

Figure 1. Schematic representation of the sums (4.17) (left) and (4.18) (right). Each dashed line
stands for a term c(,-).

[1]

& 1= sup sup k
k>2X2,...;X—1 ESpt i
k—1
for &y := ZC(X:', T(x;)) + c(xit1. T(xi11))
i=1

— (. T(xi1)) — c(xi 1. T(x)).

It remains to show that, given 1 > 0, we can achieve By > —n by a suitable
choice of k and x5, ..., x;x_;. Fix a continuous, rectifiable curve ¢ : [0, 1] = X¢ with
¢(0) = x and ¢(1) = x’, and denote its length by C. For each k > 2 there exist 0 =
t <tp <.+ <tg—1 <t =1 suchthat x; := ¢(t;) satisfy d(x;,x;+1) <C/(k —1)
forall 1 <i <k — 1. Applying Assumption 4.9 on the compact set ([0, 1]), we have
that

Ii|c(xi, T(x) + € (i, i) — (i, T(ia1) — ¢ (xi1, T(x0)|

_ < (k=1o(C/(k = 1)) =o(1) 4.19)
as k — oo. .
Remark 4.11

The preceding arguments can be generalized to handle certain discontinuities in 7,
even though at a discontinuity, (4.15) can only be expected with o(1) rather than
0(d(x1,x2)). Indeed, the conclusion of (4.19) still holds if, for a bounded number
of i’s, the term under the sum is only o(1). For instance, this can be used to handle
the case of semidiscrete transport with quadratic cost, where v has finite support and
hence the transport map is necessarily discontinuous.
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COROLLARY 4.12
Let Assumption 4.9 hold. For any open set U C X¢ X Yo,

liminfel U)>— inf I(x,y).
12)1(1)180;;718( ) > (ngU (x.y)

s

Proof

The argument is similar to the proof of Corollary 4.7, using the inequality (4.16)
instead of the equality (4.7). In the course of the argument, one also obtains that (4.16)
already implies (4.7). We omit the details. O

5. Positivity of the rate function

The aim of this section is to establish that, under certain conditions, /(x, y) of (4.3)
is strictly positive for (x,y) € Xo x Yo outside the support I of the limiting opti-
mal transport 7. In view of Corollary 4.7, this implies that that the mass of m,
around (x, y) converges exponentially fast.

When both marginals are supported by finitely many points, it is known that
exponential convergence holds for any cost function (see [17], [59]). We shall see that
in the continuum case, such a statement must depend on the geometry of the cost.
Throughout this section, we assume that X = R4 (while Y is Polish). The cost ¢ is
continuous and differentiable in x with Vyc continuous, and there exists an optimal
transport 74 as in (4.1). We recall the twist condition of optimal transport (see, e.g.,
[58, p. 234]) which requires that V,c(x,-) be injective; it holds in particular for the
quadratic cost. Example 5.7 below shows that / may vanish on a set of large mea-
sure i ® v when the twist condition does not hold.

As in the preceding section, we present a primal and a dual approach. The direct
approach proceeds as follows. Given (x, y) ¢ I', we use the geometry of ¢ and regu-
larity of the optimal transport to find an auxiliary pair (X, y) € I" such that c(x, y) —
c(x,y) + c(X,7) —c(x,¥y) > 0. Then, the definition (4.3) of I (with k = 2) shows
that /(x, y) > 0. The following is one possible implementation.

LEMMA 5.1
Fix (x,y") €T and y € Y. Suppose that

v = Vye(x,y) = Vee(x,y") #0 (5.1
and that there exist (x,, yn) € T such that (x,, yn) — (x,y’) and
liminfcosa, >0 foro, ;= Z(v,x — Xxp). (5.2)

Then I1(x,y) > 0.
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Proof
Set A(x, Y, yn) := Vyic(x,y') — Vye(x, yn); then A(x,y', y,) — 0as d(y', yn) —
0, and we have

§n = c(x,y) —c(xXn. y) + c(Xn. yn) — (X, yn)
= (Vxe(x,y) = Ve (x, yn), x — Xn) + 0([x — xa )
= (Vee(x,¥) = Vae(x, ») + Ax, ¥, yn), x = xa) + o([|lx = xa )
= (v,x = xn) +0o(|lx = xx[) + O(d(Y', yu)) ¥ = xn||
= cos(@) |[v[[[lx = xa ]l + o(llx = xn[l) + O(d(Y', yn))lIx = xn].

As v # 0 and liminf, cosa, > 0, it follows that §,, > 0 for n large enough. Fix such
an n; then choosing k = 2 and (X3, y2) := (xn, y,) in (4.3) shows that I(x,y) >
8, > 0. O

Recall the notation Xy = projy I' and I" = sptm,. If x is interior in X, then we
can choose auxiliary points in any direction from x and Lemma 5.1 yields a positivity
result for /(x, y) as follows.

LEMMA 5.2
Let x € intXg and y €Y. Let my be given by a transport map T which is continuous

at x. If Vyc(x,y) — Vyc(x,T(x)) #0, then I(x,y) > 0.

Proof

For n large we can uniquely define a point x,, € 9B/, (x) C Xo by the requirement
that x — x,, be parallel to v := V,c(x, y) — Vxc(x, T(x)) (here 0B denotes the bound-
ary). Then cos;, = 1 in the notation of (5.2) and we conclude using Lemma 5.1 with
(x,¥) = (x, T(x)) and (xn, yn) = (Xn, T (xn))- U

Sufficient conditions for the continuity (and higher regularity) of the transport
map have been studied extensively; see [58, Section 12] for an overview of now-
classical results and, among others, [19] for recent results including unbounded
domains.

The situation is more delicate if x is a boundary point of Xy or a point of dis-
continuity of the transport map, as that restricts the viable choices for approximating
sequences. We provide some examples of possible results; for simplicity of exposi-
tion, they are stated for the quadratic cost on X = Y = R?. The extension of such
arguments to a general class of cost functions is discussed in Appendix C.
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LEMMA 5.3

Let c(x,y) = ||x —y||?, let Xg be strictly convex,” and consider (x,y) € (XoxYo)\T
with x € dXg. Suppose that 7wy is given by a transport map T which is continuous on
a neighborhood B, (x) N Xg for some r > 0. Then I(x,y) > 0.

Proof
The main step is to find a point x” € X such that

(v,x —x")>0. (5.3)

Once that is achieved, we may choose a sequence x,, — x in the open segment (x”, x)
which is contained in int Xy due to strict convexity. As (x,, T (x,)) — (x, T (x)) by
continuity and o, = Z(v, x —x") for all n, we conclude by Lemma 5.1 with (x, y’) :=
(x. T (x)).

To find x” satisfying (5.3), we first fix x’ € Xq such that (x’,y) € T'. As ¢ is
quadratic, we have v = y’ — y in (5.1), and the cyclical monotonicity of I yields

(v,x—x"Y=(0"—y.x—x")>0.

If this inequality is strict, then we choose x” := x’. Whereas if (v, x — x’) = 0, then
we consider the midpoint ¥ = (x’ — x)/2 which satisfies X € int Xq by strict convexity
as well as (v, x —x) = 0. After choosing p > 0 small enough such that dB,(x) C Xo,
we can find a point x” € dB,(X) C Xo such that (v,x — x”) > 0, completing the
proof. O

Next, we illustrate the dual approach in a problem with discontinuous optimal
transport map. For the remainder of the section, we assume that there exists a Kan-
torovich potential ¥ such that

I(X’)’)=C(x,)’)—1/fc(J’)+‘//(x)v (X’Y)EXOXYO- (54)

As seen in Proposition 4.5, a sufficient condition is Assumption 4.4 (uniqueness of
potentials). If we assume that @ ~ £4 on its support, then the quadratic cost and the
convexity condition in the results below already guarantee that Assumption 4.4 holds
(cf. Proposition B.2). The relevance of (5.4) is that it yields the representation

I =0}NXoxYo)=0dc¥ N(Xo X Yo), (5.5)
so that our question regarding exponential convergence can be phrased as:
Does I fill the entire set d. ¢ N (Xo X Yy)?

2In the sense that the open segment (x, x”) is contained in int X for distinct x, x” € Xo.
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The intersection with Xg x Yy is crucial to avoid a negative answer in many cases with
discontinuous transport (see also the proof of Proposition 5.5 below). On the other
hand, the intersection is justified because the interpretation of / as rate of convergence
is meaningless outside spt 7z,.

We first state the following continuation argument similar to Lemma 5.3.

LEMMA 5.4

Letc(x,y) = ||x —y|?, let Xo be strictly convex, and consider (x,y) € (Xox Yo)\ T’
with x € 0Xg. Suppose that 1(X,y) > 0 for all X € intXy N B (x), for some r > 0.
Then I(x,y) > 0.

Proof

We may state the proof with the equivalent cost ¢(x,y) = —(x, y)/2, so that the
notions of c-convex analysis and convex analysis coincide. Suppose for contradiction
that I(x, y) = 0. Fix x" € X¢ such that (x’, y) € ', and denote ¢ := —y¢ for ¢ as
in (5.4); then both x and x’ are in the set

U y)=0) =3:4(y) =3(y),

where d¢(y) denotes the subdifferential of the convex function ¢ in the usual sense.
The latter set being convex, it must include the whole segment [x, x], meaning that
I(X,y) =0 for all X € [x,x’]. The interior of the segment is included in int Xy by
strict convexity, contradicting the hypothesis. O

PROPOSITION 5.5 (Semidiscrete transport)

Let c(x,y) = ||x — y||> on X =Y =R?, let Xq be strictly convex, let p < £¢,
and let sptv be at most countable, with no accumulation points. Then {I = 0} N
Xo xYg)=T.

Proof

Again, we may state the proof with the equivalent cost c(x,y) = —(x,y)/2. Let
(x,y) € Xo x Yy. In view of Lemma 5.4, it suffices to treat the case x € int Xy. Denote
by dom Vi the set of points where v is differentiable, and assume that /(x, y) = 0;
that is, y € d,¥ (x) = 0¥ (x). The (ordinary) subdifferential dv (x) equals {Vi{(x)}
if x € domVy, whereas in general, it can be described (cf. [55, Theorem 25.6,
p- 246]) as the closed convex hull of

S(x) = {nlggo V¥ (xp) : Xp = X, X, € dom Vi, nli)n;o Vi (xp) exists}. (5.6)

Case 1: x e domVy. As I' C dy and 9y (x) is a singleton, it follows that
(x.y)=(x,Vy(x)) eT.
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Case 2: y € S(x). Let x, — x be as in (5.6). Recalling that x € intXq, we have
Xn € Xp for n large. Thus (x,, Viy(x,)) € " by Case 1, and closedness entails that
the limit (x, y) pertains to I" as well.

Case 3: y € 0y (x) \ S(x). We shall show that this case does not occur. As a first
step, we argue that

Y (x) = conv S(x) (5.7)

in the present context (without taking closure). As x € int Xy C int{yy < oo}, the sub-
differential dv (x) is bounded (see [55, Theorem 23.4, p. 217]). Let U be a bounded
neighborhood of d1(x). The discreteness assumption on spt v entails that U N Yy is
a finite set (and that Yy = sptv). Let x,, — x be as in (5.6). For x,, close to x, we have
Vi (x,) € U, but also Vi (x,,) € Yo by Case 1. As a result, the set S(x) of limits is
finite. In particular, its convex hull is already closed, and (5.7) follows.

Now let y € dy(x) \ S(x). By (5.7), y is a nontrivial convex combination y =
Zf-;l 6; y; for some distinct y; € S(x) and 6; € (0,1) with )" 6; = 1. Let ¢ := —y°
(which is the Legendre—Fenchel transform of ¥ in this context) and x” € d¢(y). Then
cyclical monotonicity of d¢ implies that (x" — x, y — y;) > 0 for all i and as

k

Db —xy—yi) = (x' —x.0) =0, (5.8)
i=1

it follows that (x’ — x, y — y;) = 0 for all i. That is, we have
0p(y)—{x}Ly—y; foralll <i <k,

which implies in particular dim d¢ (y) < d. On the other hand, v({y}) > 0 by the dis-
creteness of Y. Thus (3¢ (y)) = v({y}) > 0, contradicting that u < £¢ does not
charge lower-dimensional sets. This shows that Case 3 does not occur and completes
the proof. O

The preceding arguments can be extended to a class of cost functions satisfying
a Ma-Trudinger—Wang condition. This is detailed in Appendix C.

PROPOSITION 5.6
After replacing convexity by c-convexity, Lemma 5.4 and Proposition 5.5 extend to
cost functions ¢ satisfying Assumption C.1.

We conclude with a simple example illustrating the relevance of the twist con-
dition. Here, V,c(x, y) vanishes below the diagonal, so that the condition fails, and
indeed the convergence m, — 7, is subexponential in that region.
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Example 5.7 (No twist)
Consider X =Y = R with identical marginals @ = v having support [0, 1] and the
cost function

(y—x)?, y=>x,

c(x,y)=
(x.7) {O, y<X.

As Vyc(x,y) =0forall y < x, this cost does not satisfy the twist condition. Clearly,
there is a unique optimal transport 77, € I1(u, v), given by the Monge map 7 (x) = x.
Its support is I' = {(x,x) : 0 < x < 1}, and one can check by direct calculation based
on (4.3) that I = ¢ on X¢ x Yo = [0, 1]?. Assumption 4.9 is readily verified, and hence
Corollary 4.12 shows that [ is indeed the rate function in this context. We can obtain
the same conclusion from Corollary 4.7, at least if we also suppose that u is equivalent
to the Lebesgue measure on [0, 1]: then, Proposition B.2 shows that Assumption 4.4
holds. Or, as a third option, we may verify directly that I satisfies (4.7) and then
conclude as in the proof of Corollary 4.7. In any event, we see that / = 0 on {y < x},
indicating subexponential decay of the weight of 7.

Appendix A. Cyclical invariance and factorization

In this section we detail some classical facts about static Schrodinger bridges as well
as the proof of Proposition 2.2. Let (X, ) and (Y, v) be Polish probability spaces; as
before, we denote by IT(u, v) the set of couplings.

PROPOSITION A.1
Let R be a probability measure on X X Y, and suppose that

there exists w € I1(w,v) with H(t|R) < o0. (A.1)

Then there is a unique minimizer w* € I1(j,v) for infrer(u,v) H(7|R). Assume in
addition that R ~ i ® v. Then m, ~ L @ v, and there exist measurable functions
Z XxY—(0,00), f:X—(0,00), g:Y — (0,00) such that

Z(x.y)=f(x)g(y). (x.y) eXxY, (A.2)

and Z is a version of the Radon—Nikodym density dm*/dR. Conversely, if w €
I1(w, v) and a version of its density has the form (A.2) on a set of full 1 @ v-measure,
where f and g are arbitrary [—o00, 00]-valued functions, then m = m*.

The uniqueness result also holds without Assumption (A.1), if stated as follows.
Let w,m’ € II(,v) and w, ', R ~ u ® v. If versions of dw/dR and dw'/dR both
admit factorizations as above, then m = 1’.
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Proof
The result under (A.1) can be found in [48, Theorem 2.1] in the stated form (where
we do not assume a priori that one can choose 7 ~ R in (A.1)).

For the final generalization on the uniqueness claim, let 7, 7’ be as stated and
note that a version of the density d 7 /d ' then admits a factorization. We consider 7’
as an auxiliary reference measure, instead of R. Then the analogue of (A.1) holds, as
7’ is itself a coupling and clearly 7’ is the unique minimizer of H(-|x"). We can now
apply the above results. O

We mention that the existence and uniqueness of . are due to [20], and that the
factorization of the density and its measurability are delicate in general (see [11], [12],
[29], [57], among others) but less so under our condition that R ~ y ® v. An insightful
approach with a direct construction of the factorization was recently proposed in [2]; it
yields similar results for the entropic function /(x) = x log x considered here but also
allows for a generalization to nonconvex penalties 4. In addition, it portrays what we
called cyclical invariance as the cyclical monotonicity of an optimal transport problem
arising from the linearization of the static Schrodinger bridge problem. Another recent
work, [3], uses Markovian methods to obtain a generalized factorization result for
Schrédinger bridges with additional constraints.

Proof of Proposition 2.2

Recall the definition (2.5) of R, and note that R ~ P = u ® v. The entropic optimal
transport problem (2.2) can we rewritten as infyem(u,v) €H (7| R), putting it in the
realm of Proposition A.1. Similarly, (2.3) is equivalent to (A.1). Let Z be as in (A.2).
Then (2.6) follows and hence also (2.4).

Conversely, if 7 € IT(u,v) is cyclically invariant, then 7 ~ P and (2.6) holds
for its density Z. Fix an arbitrary x¢ € X, and note that f(x) := Z(x,y)/Z(xo,y) is
independent of y due to (2.6) with k = 2. Setting g(v) = Z(xo, v)/f(xo0) then yields
the (measurable) factorization Z(x,y) = f(x)g(y), and we conclude by Proposi-
tion A.l. Alternately, the existence of a factorization can be deduced from (2.6) by
the general result of [11, Theorem 3.3]. O

Remark A.2
The above proof shows that if the cyclical invariance condition (2.4) holds for k = 2,
then it already holds for arbitrary k > 2.

Appendix B. Uniqueness of potentials

Definition B.1
Let ' € X x Y and A C X. We say that uniqueness of potentials holds on A if for
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any c-convex functions 1, ¥, on X with I' C d.;, it holds that ¥; — ¥, is constant
on A.

We detail two classes of optimal transport problems where uniqueness of poten-
tials holds. Connectedness of at least one marginal support is essential—uniqueness
fails even for the simplest discrete problem, pu = v = (8{1} + 8(23)/2 with cost

c({ih A1) =Lizj.

PROPOSITION B.2

Let X =R% and . ~ £2 on spt ju, where £ (dspt 1) = 0 and intspt ju is connected.
Let T' = sptw, where w € T1(u,Vv) is an optimal transport for the continuous cost
function c.

(a) Lipschitz cost: Suppose that

c(+, y) is differentiable for all y, and locally Lipschitz uniformly in y.

Then uniqueness of potentials holds on spt i, and in particular on projy I'.
(b)  Convex, superlinear cost: Ler Y = R? and ¢(x, y) = h(y — x), where
i) h:R? — R is convex and differentiable;
(1)  h has superlinear growth: h(x)/| x|| = oo whenever || x| — oo;
(iii) given r < oo and 0 € (0,7), and for p € R? sufficiently far from the
origin, there is a cone of the form {x € R% : |x — p||||z| cos(6/2) <
(z,x —p) <r|z|} for some z € R% \ {0} on which h assumes its max-
imum at p.
Then uniqueness of potentials holds on projy I

Remark B.3

(a) Ifc e C'(R? x Rd/) and v is compactly supported, then we can always change
¢ outside a neighborhood of spt ;. x spt v to satisfy the condition of (a), without
affecting the set of optimal transports.

(b)  The convex cost with superlinear growth is essentially the well-known setting
of Gangbo and McCann [30] (cf. their hypotheses (H2)—(H4)). The technical
condition (iii) is implied by (ii) in the radial case h(x) = h(||x|); in particu-
lar, all the conditions are satisfied for c(x,y) = ||y — x||? with p € (1, 00).
In contrast to the main result of [30], / is not assumed to be strictly convex—
strictness is required for uniqueness of optimal transports but not for unique-
ness of potentials. For instance, the “parabola with an affine piece,” given by
h(x) = h(||x|) with a(t) = t*19.17 + 21 — 1)1 (1.2) + (£ =21 +3)1[.00), SaL-
isfies all the assumptions in (b). The affine piece will lead to nonuniqueness of
optimal transports for a large class of marginals in the one-dimensional case.
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(c)  Dual uniqueness may fail if ¢ is not differentiable. For ¢(x, y) = |y — x| on
R x R, the c-convex functions are exactly the 1-Lipschitz functions. If 4 = v
is the Lebesgue measure on [0, 1], then the identical transport 7 is optimal and
any 1-Lipschitz function y satisfies I' = {(x,x) : x € [0, 1]} C d.¥.

The proof of the proposition is based on the following standard consideration
(e.g., [30, Lemma 3.1]).

LEMMA B.4

Let T C X x Y, and let r, ¢ be R-valued functions such that ¢(y) — v (x) < c(x,y)
on XxY and ¢(y) —¥(x) =c(x,y) on T. If X =R? and (x,y) € T are such
that  and c(-,y) are differentiable at x, then Vi (x) = —Vyc(x, y). In particular,
if ¢(-, y) is differentiable for all y € Y, then Vi (x) is uniquely determined for x €
projx I' Ndom V.

Proof
Let (x,y) € T be as stated. Then
Y(x)+VY(x)-h+oh) =y (x+h)=d(y) —clx+hy)
=yx)+clx,y)—clx+hy)
=V (x) = Vxe(x,y)-h+o(h),

and hence Vy/(x) = —Vyc(x, y) as the direction of # is arbitrary. O

LEMMA B.5
Let I' = sptm for some w € T1(w, v). Then spt ;= projy I

Proof

Let (x,y) € I'; then w(By(x)) = 7 (Br(x) x Y) > 0 for all r > 0. This shows
projy I' C sptu. Let x € sptu. As u(By(x)) > 0, there must be some x’ € B,(x)
with x” € projy I, and this holds for all > 0. Hence, spt it C projy I'. O

Proof of Proposition B.2.
We denote by dom i the set where a function ¥ is finite and by dom V the subset
where it is differentiable.

(a) Let ¥ be a c-convex function on X = R¢ with ' C d.v. The local Lips-
chitz bound of c(-, y) implies the same bound for . In particular, v is continuous
and £%-a.e. differentiable on domy = R¥. The coupling property guarantees that
projy I' C spt u has full y-measure and hence also full £4-measure. It follows that
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A :=dom Vi N projy I' C sptu has full £7-measure, and V is uniquely deter-
mined on A by Lemma B.4. As ¢ is locally Lipschitz and intspt u is open and con-
nected, this implies that ¥ is uniquely determined (up to constant) on intspt u (see,
e.g., [52, Formula 2]). By continuity on R4, it is also determined on the closure, which
equals spt s due to £ (dsptu) = 0.

(b) In this setting, the local Lipschitz property will only hold within intspt
and ¥ need not be continuous (or even finite) up to the boundary. As we require
uniqueness at all (rather than almost all) points x, we argue the boundary case in a
second step.

Step 1. We first show that uniqueness of potentials holds on intspt w. It is proved
in [30, Proposition C.3 and Corollary C.5] that for any c-convex function v there is
a convex set K with int K C domy C K and that ¥ is locally Lipschitz (and hence
£9-a.e. differentiable) within intdom . By convexity, int K = int K = intdom . If
' C 3., then projy I' C dom v, and hence spt 1 = projy I' C dom ¢ C K, showing
that

intspt . C int K = intdom .

It follows that 1 is locally Lipschitz and £¢-a.e. differentiable on intspt s. On the
other hand, projy I has full ©-measure in int spt ; by the coupling property, and hence
also full £%-measure. Thus A := dom Vi N projy I' has full £4-measure within
intspt i, and we conclude as in (a).

Step 2. Define X; := projy I' N intspt . Then

=T, forly:={(x,y):x€Xi.yelk} (B.1)

where Iy denotes the section {y € Y : (x,y) € I'}. Indeed, u(X;) =1 as stated in
Step 1, which implies 7(I";) = 1, and hence I" C T'; by the definition of I" = spt .
Conversely, I'y C T is clear, and then fl C I' by closedness.

Fix (x,y) € I'. By (B.1) we can find (x,, y,) € I'y with (x,, y,) — (x,y) and,
in particular,

Y — ¥ (x) = c(x, y) = lime(xn, yu) = Em[Y € (ya) — ¥ (xa) |-

The c-convex functions —¢ and ¥ are lower semicontinuous thanks to the continu-
ity of ¢, so that ¥¢(y) > limsup ¥ ¢(y,) and —y(x) > limsup —y (x, ). Together, it
follows that ¥¢(y) = limy¥“(y,) and ¥ (x) = limy (x,). As x, € intspt u, we know
from Step 1 that ¥ (x,) is uniquely determined, and then so is ¥ (x). O

Appendix C. Proof of Proposition 5.6
In this section, we discuss how to extend Proposition 5.5 to a general class of cost
functions ¢ satisfying the Ma—Trudinger—Wang condition “(Aw)” introduced in [43];
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we use Loeper’s equivalent geometric characterization in [42] to generalize from the
quadratic case. We recall that the dual representation (5.4) of I has been assumed.

A number of terms from c-convex analysis are needed. For ease of reference, we
(mostly) follow the notation of [42], whose Section 2 also provides an excellent intro-
duction to the notions used below. Consider a C! function ¢(x, y) on the product of
two domains €2, ' C R?, and suppose that ¢ satisfies the twist condition in both vari-
ables; that is, Vyc(x,+) and Vyc(:, y) are injective. Given x € 2, the c-exponential
map T, is defined by T, = —Vyc(x,)"'. A c-segment with respect to (w.r.t.) x
is the image of a segment (in the usual sense) under the map .. The c-segment of
Y1, Y2 € Q' w.rt. x is the image of the segment joining —Vyc(x, y1) and —Vyc(x, y2)
under Ty. The set Q' is c-convex w.r.t. Q if the c-segment of y1, y, w.r.t. x is con-
tained in @’ for all y1, y» € Q' and x € Q or, equivalently, if —V,c(x, Q') is convex
for x € Q. Strict c-convexity means that, in addition, the interior of the c-segment is in
the interior of Q. A proper function ¥ : @ — R U {400} is c-convex if if there exists
: Q" — [~00, 00] such that ¥ (x) = supyeq/[{(y) — c(x, y)]. The c-transform of yr
is defined by ¥ ¢(y) := infyeq[c(x, y) + ¥ (x)] for y € Q’, and its c-subdifferential
at x isthe set 0. ¥ (x) ={y € Q" :y¥°(y) — v (x) =c(x, y)}.

The function v is semiconvex if it is the sum of a convex function and a function
of class C "1, Its (ordinary) subdifferential 9y (x) at x € Q is

() :={yeR?:y(x) =Y (x)+ (y.x' —x) +o(|lx —x'

Clearly, dvr(x) is convex. Moreover, it coincides with the subdifferential of convex
analysis if ¥ is convex, and it satisfies an analogue of the cyclical monotonicity of
convex analysis: adding up the defining inequalities shows that

(y=y.x=x)=o(lx=x']) foryedy(x),y €dyx). (C.1)

We shall use analogous notation for functions on Q’ instead of 2 (a minor abuse

).x" € Q}.

of notation since c is then used with its variables exchanged).

Assumption C.1

Let €, Q' be domains in RY with Xo € © and Yo C €/, and let ¢ € C! satisfy the
twist condition in both variables. Moreover, let Xy be strictly c-convex w.r.t. Yq, and
let Q' be c-convex w.r.t. . Finally, we assume that any ¢-convex function ¥ on £ is
locally semiconvex and satisfies

— Ve (x. 009 (x)) = 0 (x), (C2)

and that the analogue holds for functions on €',

The main condition is (C.2). As 0¥ (x) is convex, it implies in particular that
dc¥ (x) is c-convex. (The converse implications also holds; see [42]. Note that our
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notation differs slightly from [42], where d.v (x) denotes what is —V,.c(x, d. ¥ (x))
in our notation.) It is shown in [42] how (C.2) can be deduced from the (Aw) condi-
tion when the the domains are bounded and sufficiently c-convex and ¢ € C*. Local
semiconvexity of c-convex functions can be ensured by comparably mild conditions
on the data (see, e.g., [42, Proposition 2.2] or [30, Corollary C.5]). Apart from the
quadratic cost, another classical example treated in [42] is the reflector-antenna cost
c(x,y) =—log|lx — y|. See also [58] for further background.

Proof of Proposition 5.6

Step 1: Generalization of Lemma 5.4. This extension is straightforward: using the
same notation as in the proof of Lemma 5.4, we again have x,x’ € {I(-,y) =0} =
dc (=¥ €)(y). The latter set is c-convex by Assumption C.1 and hence contains the
c-segment of x, x’ w.r.t. y. The interior of the segment is contained in int Xq by strict
c-convexity, and it includes points from the neighborhood were I/ was assumed to be
positive—a contradiction.

Step 2: Generalization of Proposition 5.5. Let (x,y) € Xo X Yo be such that
1(x,y) =0.In view of Step 1, it again suffices to treat the case x € int Xo. Moreover,
as the c-convex function y is semiconvex by our assumption, it still holds that dv (x)
is the closed convex hull of S(x) as defined in (5.6). The proofs for Case 1 and Case 2
carry over by simply replacing dv (x) with d.¢ (x) and Vi (x) with T, (V¢ (x)).
In Case 3, the proof of (5.7) also carries over using semiconvexity. The arguments
around (5.8) can be adapted as follows: Let ¢ := —¢ and x’ € d¢(y). Then the
cyclical monotonicity property (C.1) of d¢ implies (x’ —x, y — y;) > o(||x’ — x]||) for
all i. In view of (5.8), it now follows that (x’ — x, y — y;) = o(||x" — x||) for all , but,
noting that the convex set d¢ () contains the segment [x’, x], this already implies that
(x"—x,y — y;) =0 for all i. The remainder of the proof is identical. O
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