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Large-Scale Objective-Based Experimental Design
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Abstract—Design is an inseparable part of most scientific
and engineering tasks, including real and simulation-based
experimental design processes and parameter/hyperparameter
tuning/optimization. Several model-based experimental design
techniques have been developed for design in domains with
partial available knowledge about the underlying process. This
paper focuses on a powerful class of model-based experimental
design called the mean objective cost of uncertainty (MOCU).
The MOCU-based techniques are objective-based, meaning that
they take the main objective of the process into account during
the experimental design process. However, the lack of scalability
of MOCU-based techniques prevents their application to most
practical problems, including large discrete or combinatorial
spaces. To achieve a scalable objective-based experimental de-
sign, this paper proposes a graph-based MOCU-based Bayesian
optimization framework. The correlations among samples in the
large design space are accounted using a graph-based Gaussian
process, and an efficient closed-form sequential selection is
achieved through the well-known expected improvement policy.
The proposed framework’s performance is assessed through the
structural intervention in gene regulatory networks, aiming to
make the network away from the states associated with cancer.

Index Terms—Model-Based Experimental Design, Mean Ob-
jective Cost of Uncertainty (MOCU), Graphical Models, Bayesian
Optimization, Gene Regulatory Networks.

I. INTRODUCTION

Design is a key element of most scientific and engineering
tasks, including real experimental design settings, such as
materials/drugs design [1], and aerospace engineering [2],
[3]; simulation-based experimental design, such as design in
robotics [4], and transportation [5]; and parameter learning
or hyper-parameter tuning, such as efficient tuning of the pa-
rameters of Markov chain Monte Carlo (MCMC) methods [6],
Bayesian networks [7]–[9], and deep neural networks [10].
The advancements in technology have highly expanded the
size of systems and phenomena that are under study.

Experimental design can be categorized into two broad
classes of model-based and data-driven techniques. Model-
based experimental design techniques have significantly im-
pacted several science and engineering applications [11]–[17].
These techniques aim to select proper designs according to the
partial knowledge about the underlying systems/processes, and
have been successfully applied in various domains including
parameter inference, prediction, or model discrimination [18],
as well as real experimental processes such as materials
science [19], genomics and metagenomics [20]–[22], and
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aerospace engineering [3], [23], [24]. Information theoretic-
based [25], [26] and objective-based [12], [27], [28] techniques
are two popular classes of model-based experimental design
techniques, where the former techniques aim to reduce the
uncertainty in the whole system/process, whereas the latter
ones aim to reduce the uncertainty that matters the most with
respect to the main objective of the process.

The main focus of this paper is the mean objective cost of
uncertainty (MOCU) [12], [27], [28], which is the most popu-
lar policy in the class of objective-based experimental design
techniques. Despite the success of the existing MOCU-based
experimental design techniques, the main challenges rendering
intractable their application to most practical domains are:

● Large Design Spaces: many real experimental design
settings are in large discrete/combinatorial design spaces.
This makes searching over all possible design inputs and
selecting the best one an impossible or computationally-
expensive task.

● Computations Associated with the Selection Process:
evaluating the effectiveness of each design input is a big
challenge in most practical problems. The complexity
of evaluation increases exponentially with the size of
systems and the amount of uncertainty, which limits or
makes impossible the selection process in most realistic
scenarios.

● Huge Cost of Real Experiments: the huge cost associated
with taking real experiments limits the total number of ex-
periments to take in many practical domains. The existing
model-based experimental design techniques often come
short during the efficient selection of costly experiments
in systems with large design inputs and huge uncertainty.

These challenges mentioned above abound in domains such
as cyber-physical systems for finding the type of interactions
between components through huge uncertainty sources for
making reliable decisions, and smart cities for selecting the
best locations for bike or bus stations, parking, shopping
centers, new highways, or roads, bridges, traffic signs, and
surveillance cameras for enhancing social welfare, boosting
the traffic flow, and increasing the safety of our communities.
To expand the MOCU-based experimental design techniques

to domains with large discrete or combinatorial spaces, this
paper develops a graph-based Bayesian optimization MOCU-
based experimental design (GBO-MOCU) framework. The
proposed framework is capable of selecting the minimum num-
ber of experiments that reveal the highest information about
the underlying process. The proposed framework constructs
a graph-based Gaussian process surrogate model representing
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the MOCU-related cost function over the design space. An
efficient sequential search over the design space is achieved
through the well-known expected improvement policy [29],
[30]. The proposed framework offers several benefits, includ-
ing:
● Scalable design in large discrete or combinatorial spaces

and systems/processes with a huge amount of uncertainty,
where exhaustive exploration of all options is intractable
or inefficient;

● Fast selection of experiments in large domains with
tight time-limit constraints by enabling the incorporation
of arbitrary Bayesian optimization techniques for the
selection process;

● Efficient experimental design in domains with expen-
sive/costly experiments, in which the total number of
experiments to take is highly limited.

The aforementioned features (i.e., scalability, fast decision
making, and efficiency) distinct the proposed framework from
a broader range of model-based experimental design tech-
niques.

A primary goal in genomics studies is to find proper
treatments for chronic diseases such as cancer. Genomics
signal processing often models genomics systems as networks,
known as gene regulatory networks, and tries to derive inter-
vention strategies to shift these systems’ undesirable behavior
to desirable ones. This can be seen as finding ways to shift the
dynamics of gene regulatory networks away from carcinogenic
states [31]–[33]. Structural intervention [34] comprises a wide
class of intervention techniques, which aim to make a single
change in the network structure (e.g., alter the interaction
between genes) in such a way that the maximum reduction
in the probability of observing undesirable (e.g., cancerous)
states occur. The optimal solution for this type of intervention,
which is based on the Markov properties of the dynamics of
gene regulatory networks, is provided in [20].

Despite huge progress in deriving efficient intervention
strategies for gene regulatory networks, the large amount of
uncertainty in these systems often leads to the poor perfor-
mance of the intervention. The uncertainty, which arises from
the complexity of genomics systems, appears in terms of
unknown interactions between genes in networks’ topology.
This necessitates the development of proper experimental
design strategies to reduce the amount of uncertainty in these
systems so that the highest performance of the intervention
process is achieved. Toward this, this project will employ the
proposed graph-based MOCU-based experimental design pol-
icy for optimal sequential experimental design in the context
of structural intervention in large gene regulatory networks
with a large amount of uncertainties.

The structural intervention in regulatory networks deals
with making optimal changes in the structure of fully-known
GRNs. However, there are often huge sources of uncertainty in
regulatory networks; for instance, certain regulatory relations
are unknown, or at least not known with certainty. In these
scenarios, it is highly critical to reduce the uncertainty in
regulatory networks to achieve better performance in the in-
tervention process. This paper demonstrates the application of
the proposed graph-based MOCU-based experimental design

policy in the context of structural intervention of large GRNs
with a large amount of uncertainties.

The article is organized as follows. In section II, the model-
based experimental design is described. The proposed graph-
based Bayesian optimization MOCU-based experimental de-
sign is formulated in Section III. Experimental design for
structural intervention in genomics is described in Section IV.
Section V presents results for the numerical experiments with
random Boolean networks and the mammalian cell-cycle gene
regulatory network. Finally, section VI contains the concluding
remarks.

II. MODEL-BASED EXPERIMENTAL DESIGN — MEAN
OBJECTIVE COST OF UNCERTAINTY (MOCU)

Model-based experimental design has a very long his-
tory in science and engineering [11], [35]. Two well-known
classes of them are information theoretic-based [25], [26],
[36], [37] and objective-based techniques [12], [28]. These
techniques require the existence of rich prior knowledge about
the underlying process. However, in most practical problems,
the experiments are often so costly, either economically or
computationally, necessitating taking the minimum number of
costly experiments to achieve the desired performance.

Entropy-based experimental design refers to a wide class
of techniques that aim to take experiments that maximally
reduce the uncertainty in systems/processes [13]. By contrast,
the mean objective cost of uncertainty (MOCU) [12], [27], [28]
is the most well-known objective-based experimental design
policy that quantifies the uncertainty based on the degree to
which the model uncertainty affects the objective. The simplest
MOCU policy, which aims to sequentially take experiments
to maximally reduce the MOCU values, is described in the
following paragraphs.

Suppose that the uncertainty in the system/process is en-
coded in a parameter vector θ, with P (θ) indicates the prior
distribution over the parameter space Θ. Let A denote the
action space and ξθ(a) be the cost of model parameterized
by θ and action a ∈ A. The actions and action-outcomes
(i.e., costs associated with actions) differ from experiments
and experiment-outcomes. In fact, action and action-outcome
depend on the main objective of the process: for instance,
in classification, estimation, or filtering, the action could be
selecting features, sensors, or biomarkers, and action-outcome
could be classification, estimation, or filtering error. For a
fully-known system, the best action should lead to the smallest
cost value (i.e., action-outcome). However, the system is often
uncertain, and the cost is defined over the uncertainty class.

Let D be the design/experiment space. The way that each
experiment d ∈ D impacts the main objective is through
reducing the amount of uncertainty in the systems, in order
to maximally improve the performance of the main objective
of the process. Let d1∶t = (d1, ...,dt) and y1∶t = (y1, ..., yt) be
the sequences of taken experiments and their corresponding
outcomes up to step t. The posterior distribution can be
computed as:

P (θ ∣ d1∶t, y1∶t) =
pθ(d1∶t, y1∶t)P (θ)

∫θ′∈Θ pθ′(d1∶t, y1∶t)P (θ′)dθ′
, (1)
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for θ ∈ Θ, where the integral in denominator of (1) should
be replaced by summation in cases with discrete parameter
spaces. The way that experiments impact the posterior depends
on the applications; for instance experiments could reduce the
uncertainty or create some new sets of data.

Letting P (θ ∣ d1∶t, y1∶t) to be the posterior probability of
model θ given (d1∶t, y1∶t), the optimal Bayesian (OB) action
can be defined as [38], [39]:

aOB = argmin
a∈A

Eθ∣d1∶t,y1∶t[ξθ(a)] , (2)

where the expectation is over the uncertainty represented in the
posterior distribution of parameter θ, and the OB action in (2)
yields the minimum expected cost relative to this posterior.

The mean objective cost of uncertainty (MOCU) selects
an experiment at each step to reduce the uncertainty that
maximally impacts the objective of the process. Let aθ be the
optimal action for a model defined by uncertainty θ. Then
ξθ(a) ≥ ξθ(aθ), for any θ ∈ Θ and a ∈ A. The MOCU
value associated with the posterior distribution of the unknown
parameter P (θ ∣ d1∶t, y1∶t) and the class of actions A can be
defined by:

Mθ∣d1∶t,y1∶t = Eθ∣d1∶t,y1∶t [ξθ(aOB) − ξθ(aθ)] , (3)

where aOB is the OB action (defined in (2)) and its value
depends on the posterior of the parameter, whereas the optimal
action aθ is designed for a specific model θ ∈ Θ. The MOCU
in (3) is the expected increase in cost values, that results from
applying an OB action to the entire models represented in Θ
instead of applying the optimal action to the unknown true
model. The MOCU-based policy [12], [27], [28] selects an
experiment d at each step from the set of experiments D that
results in the maximal reduction in the MOCU value in the
next step. This can be written as:

dt+1 = argmax
d∈D

ht(d), (4)

where ht(d) is the MOCU-Reduction function defined as:

ht(d) = Et[Mθ∣d1∶t,y1∶t −Mθ∣d1∶t,y1∶t,dt+1=d], (5)

and the expectation in (4) is taken with respect to the posterior
probability P (θ ∣ d1∶t, y1∶t).

The prior probability over the parameter space depends on
the application. In cases that no prior knowledge is available,
the non-informative (uniform) prior distribution should be used
over the parameter space.

III. PROPOSED FRAMEWORK

A. Difficulties of Design in Large Discrete or Combinatorial
Spaces

Let (d1∶t, y1∶t) be all available information at step t of an
experimental design process, where d1∶t and y1∶t denote the
taken experiments and their outcomes respectively. The goal
of MOCU policy is to select the experiment at step t + 1,
i.e., dt+1. This can be done through finding the solution for
the maximization problem in (4), which requires computation
of the MOCU-Reduction function in (5) for all samples in
the design space D. However, this can be computationally

very expensive or impossible for most large-scale uncertain
practical problems due to the following reasons:
● Large Systems with Huge Uncertainty: The computational

expense associated with the evaluation of the MOCU-
Reduction function in (5) at any single design sample
in D increases exponentially with the size of systems,
and amount of uncertainty. This makes the selection by
the MOCU policy impossible or computationally very
expensive in most practical domains.

● Large Discrete or Combinatorial Design Spaces: The
design space, i.e., D, in most practical problems is
often large discrete or combinatorial, which necessities
conducting a large number of experiments to achieve
a proper performance in the design process. However,
the number of experiments is often limited due to the
limitation in resources or the huge cost associated with
the experiments, rendering intractable the application of
the existing MOCU-based techniques or resulting in their
poor performance.

An example of domains in which both of the aforementioned
issues are often encountered is genomics/metagenomics [22],
where the experiments should be taken in a sequentially
and timely manner. For instance, perturbations/excitations in
genomics studies should be performed at tight time slots,
aligned with the dynamical evolution of these complex sys-
tems/processes [40]–[43]. Toward addressing the above is-
sues, in the following paragraphs, the proposed graph-based
Bayesian optimization mean-objective cost of uncertainty
(GBO-MOCU) framework for scalable and efficient experi-
mental design is described.

B. Graph-Based Gaussian Process for Modeling the MOCU-
Reduction Function

Let ht(d) be the MOCU-Reduction function, which can
be approximated by performing a computationally expensive
process (see equation (5)) at any given sample d. This MOCU-
Reduction function can be expressed as:

ht(d) ≈ Ht(d) +∆ht, (6)

where Ht(d) is a Gaussian process (GP) surrogate model
representing the MOCU-Reduction function, and ∆ht is a
zero-mean Gaussian residual with standard deviation σt, which
models the uncertainty coming from the approximation made
in evaluation of the MOCU-Reduction function.

The prior distribution for the GP model can be expressed
as:

Ht(d) = GP (µt(d), kt(d,d)) ,

where µt(.) and kt(., .) are the mean and a real-valued kernel
function. Since the design takes in a large discrete or combina-
torial space, the graph-based kernel function proposed in [44]
is considered for modeling the correlation in the MOCU-
Reduction function over the design space. We represent the
search space as a graph G = (V,E), where each vertex in
V specifies a design input, and an edge in E determines
whether the MOCU-Reduction values in two design inputs are
considered to be similar or not. Letting AG be the adjacency
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matrix and DG be the degree matrix of a graph (see [45], for
more information), the correlation can be assessed through the
graph Laplacian as [45]:

L(G) =DG −AG . (7)

The eigenvalues and eigenvectors of the graph Laplacian
can be seen as the Fourier frequencies and bases. Letting
{λ1, λ2,⋯, λ∣V ∣} and {u1,u2,⋯,u∣V ∣} be the eigenvalues and
eigenvectors respectively, we can define the diffusion kernel
function as:

kt(p, q) =
n

∑

i=1
exp(βtλi)ui(p)ui(q), (8)

where p and q are two arbitrary nodes of the graph, and βt is
the hyperparameter of the kernel function. Large eigenvalues
(i.e., λi >> 1) correspond to high frequencies and model a
large dependency between two nodes of the graph. Defining
Λ = diag(λ1,⋯, λ∣V ∣) and U = [u1,⋯,u∣V ∣], the kernel over
all nodes of the graph (i.e., the entire design inputs) can be
computed as:

K = U exp (βtΛ) UT . (9)

It should be noted that for any two sets of D ⊂ D and D′ ⊂ D,
the kernel function can be denoted by KD,D′ , and can be
reconstructed from the kernel function in (9). Notice that the
graph Cartesian product can be employed for computation of
the kernel in combinatorial spaces [45].

Let Dm = (d
(1), . . . ,d(m)) be the set of m design sam-

ples from the design space, with the approximated MOCU-
Reduction values hm = [ht(d

(1)
), . . . , ht(d

(m)
)]
T . The pos-

terior distribution of Ht(d) can be obtained as [46]:

Ht(d) ∣Dm,hm ∼N (H̄t(d), covt (d,d)) , (10)

where

H̄t(d)=µt(d)+Kd,Dm
(KDm,Dm+Σm)

−1
(hm − µt(Dm)) ,

covt(d,d)=kt(d,d)−Kd,Dm
(KDm,Dm +Σm)

−1
KT

d,Dm
,

(11)
and Σm is a diagonal matrix of size m with the ith diagonal
element (Σm)ii = σ

2
t , and

KD,D′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

kt(d1,d
′
1) . . . kt(d1,d

′
r)

⋮ ⋱ ⋮

kt(dl,d
′
1) . . . kt(dl,d

′
r)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (12)

for D = {d1, ...,dl} and D′ = {d′1, ...,d
′
r}. The MOCU-

Reduction function before any evaluation is large, represented
by a Gaussian process with covariance kt(d,d), while at itera-
tion m, this function can be predicted based on the sequence of
queried samples Dm and the approximate MOCU-Reduction
values hm. The uncertainty in the MOCU-Reduction function
decreases as more samples from the design space are evaluated
and added to the GP.

C. Hyperparameter Learning

The hyperparameters of the GP, such as the parameters of
the mean and kernel functions, can be estimated at each step.
Specifically, for determining βt, which is crucial for obtaining

a flexible kernel function, one can employ the following
sampling procedure:

1) Set r = 0 and choose a starting β
(r)
t for which the

probability is non-zero.

2) Sample q uniformly from [0, p (β(r)t ∣ hm,Dm)]

3) Draw a new value β
(r+1)
t uniformly from regions for

which p (β(r)t ∣ hm,Dm) > q.

4) Repeat from 2 using β(r+1)
t .

The value of the noise statistics, σ2
t , which represents the

variance in the evaluation of the MOCU-Reduction function
can be estimated in the following three possible ways: 1)
approximating the MOCU-Reduction function at a single
design input several times and measuring the variance of the
approximated values; 2) using the available error estimation
theoretical upper bounds for the variance of the approximation
(e.g., Monte Carlo approximation [47]) in computation of the
expectation in (5); 3) learning the noise parameter on the fly
using the following marginal likelihood:

hm ∣Dm ∼N (µt(Dm),KDm,Dm
) +Σm . (13)

Finally, adaptive constant mean is one possible choice for the
mean function µt(d), which can be expressed as µt(d) =
mini=1,...,m hm(i), for d ∈ D. This mean function does not
have any parameter, and prevents over/under estimating the
MOCU-Reduction function.

D. Bayesian Optimization for Sequential Experimental Design

Intelligent selection of samples from the large design space
is critical in achieving a fast and accurate solution for opti-
mization problem in (4). Let Dm = (d

(1), . . . ,d(m)) be m
samples from the design space D, with the evaluated MOCU-
Reduction functions, hm = [ht(d

(1)
), . . . , ht(d

(m)
)]
T . Let

hmax
m = maxi=1,...,m hm(i) be the maximum value of the

evaluated MOCU-Reduction function up to iteration m. The
Expected Improvement (EI) policy evaluates ht at the sample
that, in expectation, increases upon hmax

m the most. This can
be formulated as:

d(m+1)
= argmax

d∈D
αtEI(d), (14)

where

αtEI(d)=Em [max
d∈D
(0, ht(d) − h

max
m ) ∣ d(m+1)

= d,Dm,hm]

= (H̄t(d) − h
max
m ) Φ((µt(d) − h

max
m ) /

√

covt(d,d))

+

√

covt (d,d) φ((µt(d) − hmax
m ) /

√

covt(d,d)),

(15)
where Φ(.) and φ(.) are the cumulative standard normal
and the standard normal density, and the expectation in (15)
is with respect to the posterior distribution at iteration m.
Notice that the expected improvement policy measures gain
(hmax
m −ht(d)) if ht(d) turns out to be larger than hmax

m , and
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no gain otherwise. One can see in (15) that there is a closed-
form solution for computation of the expected improvement,
i.e., αtEI (d). It should be noted that other Bayesian optimiza-
tion acquisition functions, such as knowledge gradient [48]
and entropy search [49], can be used instead of the expected
improvement policy [29], [50] in selection processes.

It is worth mentioning that optimization techniques based
on non-GP surrogate models, also referred to as sequential
model-based optimization algorithms [51], [52], can also be
used for the selection process in non-continuous design spaces.
However, the main advantage of using the graph-based kernel
function in the Gaussian process surrogate model in this paper
is the possibility of employing arbitrary Bayesian optimization
techniques for an efficient experimental design process.

For very large design spaces, finding the exact solution for
maximization in (14) could be computationally expensive. This
comes from the need for evaluating the acquisition function,
i.e., αtEI, at all nodes of the graph (i.e., all samples in the
design space). The following two ways can be considered for
overcoming the aforementioned difficulties:

1) Employing a population-based optimization technique
such as particle swarm optimization technique [53], ge-
netic algorithm [54], [55], the breadth-first local search
(BFLS) [56] or any other optimization technique.

2) Performing a greedy search over the vertices of the graph.
This can be done by selecting a set of experiments
(i.e., nodes of the graph) and comparing their acquisi-
tion functions with their neighboring vertices. Then, one
needs to move in a greedy way to the vertices with the
higher acquisition function values. The procedure should
continue until reaching a fixed number of steps or when
no movement in all vertices is possible.

After the selection of d(m+1) using (14), the MOCU-
Reduction function can be approximated for the design
d(m+1). Then, the Gaussian process should be updated ac-
cording to all available information, denoted by Dm+1 =

(Dm,d
(m+1)

) and hm+1 = [hm, h(d
(m+1)

)]
T . The process

can stop when reaching a fixed number of iterations, or when
the changes in the maximum of the mean of GP in consecutive
iterations falls below a small pre-specified threshed.

Assuming the process stops at iteration M , the next design
to be conducted can be selected according to the mean of the
latest constructed GP given all available information as:

dt+1 = argmax
d∈D

H̄t(d)

= argmax
d∈D

E[Ht(d) ∣DM ,hM ].
(16)

Upon selection of dt+1, the experiment should be conducted
over dt+1 and the outcome of the experiment yt+1 should
be used for updating the posterior distribution over the un-
knwon parameter (i.e., p(θ ∣ d1∶t+1,y1∶t+1)). This updated
posterior then can be used for computation of the new MOCU-
Reduction function, ht+1(.), and selection of the next experi-
ment.

The algorithm and the schematic diagram of the proposed
framework are presented in Algorithm 1 and Figure 1 respec-
tively.

Fig. 1: Schematic diagram of the proposed GBO-MOCU framework.

IV. EXPERIMENTAL DESIGN FOR STRUCTURAL
INTERVENTION IN GENOMICS

In genomic signal processing, the main goal is to derive
intervention strategies for gene regulatory networks (GRNs) to
shift the systems from undesirable states such as carcinogenic
states [20], [57]–[59] to desirable ones. In the following para-
graphs, the Boolean network model, the structural intervention,
and experimental design in the GRNs context are described.

A. Boolean Network Model of Gene Regulatory Networks
(GRNs)

Several models have been developed to capture the dy-
namical behavior of gene regulatory networks. These include
the ordinary differential equation (ODE) models [60], [61],
Bayesian network models [62]–[65] and Boolean network
models [33], [66]–[69]. Unlike most models which suffer from
overfitting problem, large number of parameters and lack of
interpretability, the Boolean network models can effectively
model the dynamical processes, as well as discover causal
interactions.

The Boolean network with perturbation (BNp) [57] is a
well-known Boolean network model capable of capturing the
dynamical behavior of gene regulatory networks. The state
values of a gene regulatory network with n genes at time
step k can be described by {X(t);k = 0,1, . . .}, where
X(t) = [X1(t), ...,Xn(t)]

T is a vector of size n. The ith
gene at any time k takes a real value from the set {0,1},
where 0 and 1 correspond to cases that the ith gene is OFF
and ON, respectively. The state values of genes are updated
through the following process:

X(t + 1) = F (X(t)) ⊕ η(t), (17)

for k = 0,1, . . .; where ⊕ is component-wise modulo 2 addi-
tion, η(t) is the transition noise at time k, and F is the network
function. The noise process η(t) = [η1(t), η2(t),⋯, ηn(t)]
is assumed to have independent components distributed as
ηi(t) ∼ Bernoulli(p), where p > 0 denotes the amount of
“perturbation” to the Boolean state process.
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Algorithm 1 The Proposed Graph-Based Bayesian Optimization Mean Objective Cost of Uncertainty (GBO-MOCU)

1: Initialization: Set the following values: TMax ∶ Total Number of Experiments; ε ∶ Stopping Criterion Threshold; P (θ):
Initial Distribution.

2: for t = 0 to TMax − 1 do

3: Surrogate Model Construction: Initialize the hyper-parameters of the Gaussian process GP (0, kt(., .)), i.e., βt, σt.

4: D0 = {}, h0 = {}, m = 0, flag = 0.

5: while flag = 0 do

6: Acquisition Function Computation: Evaluate acquisition function, αtEI, on vertices in D using Eq. (15).

7: Design Selection: Select the best design input: d(m+1)
= argmaxd∈D α

t
EI(d).

8: MOCU Computation: Compute ht(d(m+1)
) using (5).

9: Training Data Augmentation: Update the GP training data: Dm+1={Dm,d
(m+1)

},hm+1={hm, ht(d
(m+1)

)}.

10: Surrogate Model Update: Update the hyper-parameters of the GP, i.e., βt, σt.

11: If ∣maxd∈D H̄m(d) −maxd′∈D H̄m+1(d
′
)∣ < ε, set flag = 1.

12: m =m + 1;

13: end while

14: Real Experiment: Select dt+1 = argmaxd∈D H̄m(d) and conduct the experiment over dt+1 to get the outcome yt+1.

15: Posterior Update: Update the posterior distribution: P (θ ∣ d1∶t+1, y1∶t+1).

16: end for

The Boolean function representing the temporal dynamics
of gene regulatory networks with n genes can be represented
as F = (f1, ..., fn). A commonly used network model for
capturing the dynamical behavior of gene regulatory networks
is based on the majority voting rule [70]–[73] and can be
described as:

fi (X(t)) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

1 If ∑j RijXj(t) > 0,

0 If ∑j RijXj(t) < 0,

Xi(t) If ∑j RijXj(t) = 0,

(18)

for i = 1, ..., n, where Rij = +1 and Rij = −1 indicate an
activating regulation (A) and a suppressive regulation (S) from
gene j to gene i respectively, and Rij = 0 represents the case
when gene j is not an input to gene i.

Let {x1, ...,x2n

} be a set of all possible state vectors. The
controlled transition matrix or the transition probability matrix
(TPM) is indicated by P and can be computed as:

pij = P (X(t + 1) = xi ∣X(t) = xj)

= p∣∣x
i ⊕F(xj)∣∣1

(1 − p)n−∣∣x
i ⊕F(xj)∣∣1 ,

(19)

for i, j = 1, ..., 2n, where the ith row and jth column of the
TPM matrix P is indicated by pij , and ∣∣.∣∣1 is the L1 norm.

The steady-state distribution (SSD) of the gene regulatory
network modeled by the TPM in (19) can be computed as
πT = πTP, where πT is the transpose of π. .

B. Structural Intervention of GRNs

Several intervention strategies have been developed in recent
years for various Boolean network models [20], [21], [57],
[74], [75]. These techniques can be grouped into two main
categories: Dynamical Intervention [21], [33], [59], [76],
[77] and Structural Intervention [20], [34], [74]. Dynamical
intervention aims to make temporal changes in networks to
reduce the probability of observing undesirable states either
in a long run (i.e., infinite-horizon) or a fixed horizon (i.e.,
finite-horizon) [21], [33], [38], [77], [78]. The structural inter-
vention, however, aims to make a single change in network
structure of GRNS to beneficially change the steady-state
distribution of networks. The optimal solution for this type
of intervention has been provided in [20] and is described in
the following paragraphs.

The rank-1 function perturbation is a well-known type of
structural intervention. Let {x1,x2, ...x2n

} be 2n different
states for a GRN with n genes. According to this intervention,
the system transition probability matrix (TPM) P is altered to
P̃ = P + cbT [20], where c and b are arbitrary vectors and
bT e = 0 (e is an all unity column vector). In this paper, we
consider a single-gene perturbation process, which is a special
case of a rank-1 perturbation. This intervention only changes
the output state of a single input state, while the outputs of
other states stay unchanged. Let A be the rank-1 perturbation
space, and F̃ = (f̃1, ..., f̃n) be the Boolean functions after
intervention. Let also consider the structural intervention taken
over (j, s). This intervention changes the output value of
the Boolean function xs = F̃(xj) ≠ F(xj) = xr, and
F̃(xi) = F(xi), for i = 1, ..., 2n and i ≠ j.



7

The TPM after the perturbation over (j, s) can be rep-
resented by P̃, where the elements of the altered TPM are
p̃jr = pjr − (1− p)

n and p̃js = pjs + (1− p)n. Letting π and π̃
be the steady state distributions of the system before and after
intervention, the new steady state distribution impacted by the
changes in the TPM can be computed as [20]:

π̃i(j, s) = πi +
(1 − p)n πj (zsi − zri)

1 − (1 − p)n (zsj − zrj)
, (20)

where Z = [I − P + eπT ]−1 is the fundamental matrix, I is
the diagonal identity matrix of size n, and zsi, zri, zsj , zrj are
elements of Z.

Let π̃U(j, s) = ∑i∈U π̃i(j, s) be the steady-state probability
mass of undesirable states after applying a (j, s) intervention,
where U is the set of undesirable Boolean states. The optimal
structural intervention can be computed through the following
minimization problem:

(j∗, s∗) = argmin
j,s∈{1,2,...,2n}

π̃U(j, s) . (21)

C. Experimental Design in GRNs’ Intervention

The complexity in most GRNs poses a huge amount of
uncertainty in the modeling process. Most of these uncertain-
ties appear in terms of unknown interactions between different
genes in the network. Consider a GRN with L unknown reg-
ulations, denoted by r1, r2, ..., rL, using the model presented
in (18), each non-zero interaction could be either A or S .
This means that L unknown interactions result in 2L different
possible network models represented by Θ = {θ1, ...,θ2L},
where θj ∈ {A,S}

L, for j = 1, ..., 2L. Let also P (θ) be
the prior distribution over the network models defined as
P (θ) = P (r1

= θ(1), r2
= θ(2),⋯, rL = θ(L)), for θ ∈ Θ.

There exist L experiments D = {d1, ....,dL}, where di
determines the regulation ri. This type of experimentation
is common in genomics studies, where each experiment can
completely reveal the true type of targeted interaction.

Let ξθ(a) be the cost representing the steady-state mass
of undesirable states after performing the intervention a ∈ A
for the network denoted by the uncertainty θ ∈ Θ. The
optimal intervention associated with the whole uncertainty in
the network is aθ = (j

∗
θ , s

∗
θ), where ξθ(a) ≥ ξθ(aθ) for any

a ∈ A.
The MOCU relative to an uncertainty class represented by

taken experiments d1∶t = (d1, ...,dt) and the outcomes y1∶t =

(y1, ..., yt) for a class of interventions A can be defined by:

Mθ∣d1∶t,y1∶t = Eθ∣d1∶t,y1∶t [ξθ(aOB) − ξθ(aθ)]

=

2L

∑

i=1
P (θi ∣ d1∶t, y1∶t) [ξθi(aOB) − ξθ(aθi)] ,

(22)
where aOB is an optimal Bayesian (OB) intervention defined
in (2).

The goal of sequential MOCU-based experimental design in
structural intervention in GRNs is to select a regulation (i.e.,

experiment) at each step that results in the maximal reduction
in MOCU in the next step:

dt+1= argmax
dj∈{d1,....,dL}

Et[Mθ∣d1∶t,y1∶t −Mθ∣d1∶t,y1∶t,dt+1=dj
]

= argmax
dj∈{d1,....,dL}

[Mθ∣d1∶t,y1∶t − (p
j
tMθ∣d1∶t,y1∶t,dt+1=dj ,yt+1=A+

(1 − pjt)Mθ∣d1∶t,y1∶t,dt+1=dj ,yt+1=S)],

(23)
where pjt is the probability that the jth regulation is activating
(A) according to the posterior distribution P (θ ∣ d1∶t, y1∶t),
which can be computed as:

pjt = P (r
j
= A ∣ d1∶t, y1∶t) = Eθ∣d1∶t,y1∶t[1θ(j)=A]

=

2L

∑

j=1
P (θ(j) ∣ d1∶t, y1∶t) 1θ(j)=A,

(24)

and 1θ(j)=A if θ(j) = A and 0 otherwise.
After taking the experiment dt+1 and getting outcome yt+1,

one needs to update the posterior probability over the Boolean
network models and repeat the same process for selecting
the next experiment. However, a large number of unknown
regulations and a huge cost associated with each experiment
limit the total number of experiments that can be taken. This
magnifies the need for an experimental design process for
taking the minimum number of experiments helping the most
during the structural intervention process.

V. NUMERICAL EXPERIMENTS

A. Simulation Set-Up

The prior probability defined over network models depends
on the available prior knowledge. For instance, in gene regu-
latory networks, described in Section IV, the prior probability
represents the biologist/expert knowledge regarding the type
of interaction between genes in regulatory networks. For
large and less-studied regulatory networks with no or limited
available prior knowledge, the prior distribution is similar to
the uniform distribution. In contrast, for small and well-known
regulatory networks, the prior probability is peaked over
some models in parameter space. To investigate the proposed
framework’s performance in all ranges of proper distributions,
the simulations are conducted for various prior distributions
over the network’s uncertainty. Toward this, we consider the
symmetric Dirichlet distribution for prior distribution as:

P (.) ∼ f(P (.);φ) =
Γ (φ2L)

Γ(φ)2L

2L

∏

j=1
P (θj)

φ−1, (25)

where Γ is the gamma function and φ > 0 is the symmetric
Dirichlet distribution parameter. This distribution is capable
of generating a wide range of prior distributions: the small
values of φ generate prior distributions that are highly peaked,
whereas the large values of φ correspond to the prior distri-
butions closer to the uniform.

The following experimental design strategies are consid-
ered in the numerical results: 1) The proposed GBO-MOCU
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framework, 2) Best-First Search [56], 3) Entropy Experi-
mental Design Technique [13], [79], 4) Sequential Model-
based Algorithm Configuration (SMAC) [51], and 5) Random
Search. For all numerical results, we represent the Bayesian
intervention cost over the true network model, where the
Bayesian intervention is computed according to the posterior
distribution over the network models.

SMAC [51] is a popular model-based optimization tech-
nique. This method constructs a regression tree to predict
the function values and uses this model to select the next
design sample. The Best-First search selects 10% of the total
number of design samples randomly. Then, 20 design samples
with the highest function values are used as initial points for
optimization. The search then continues by a local search over
the design samples close to the selected samples. The process
is repeated until no function value on adjacent samples is
higher than the current design sample’s function value. Best-
First search is a local search; however, the initial random
search and multi-starts are used to escape from local optima.

The results of the proposed framework are compared with
the entropy experimental design policy [13], [79]. The entropy
policy only accounts for the uncertainty, as opposed to the ob-
jective, in the selection process. The entropy for the posterior
distribution pt = [P (θ1 ∣ d1∶t, y1∶t), . . . , P (θ2L ∣ d1∶t, y1∶t)]

T

can be computed as:

Hθ∣d1∶t,y1∶t = −
2L

∑

j=1
pt(j) log2 pt(j), (26)

where the entropy takes a value between 0 and L. The values
of entropy close to L indicate the case when all network
functions have almost equal posterior values (i.e., maximum
uncertainty).

The Entropy approach sequentially chooses an experiment
which maximizes the reduction in expected entropy at the next
step:

dt+1= argmax
d∈{d1,....,dL}

Et [Hθ∣d1∶t,y1∶t −Hθ∣d1∶t,y1∶t,dt+1=d]

= argmax
d∈{d1,....,dL}

−(pjt Hθ∣d1∶t,y1∶t,dt+1=dj ,yt+1=A+

(1 − pjt)Mθ∣d1∶t,y1∶t,dt+1=dj ,yt+1=S),

(27)

where pjt is defined in (24).

B. Synthetic BNps

The synthetic GRNs are used here for evaluating the
performance of the proposed framework. According to the
model proposed in the previous section, we generate 500
random GRNs with 20 genes, in which each network has
L unknown regulations. Interactions between the components
of random BNs are selected randomly from {−1,0,+1} with
the constraint that each component has at most two non-zero
inputs. The Bernoulli parameter, specifying the stochasticity
in the network model, is assumed to be p = 0.001. For
the intervention purpose, we assume observing the activation
of the first gene undesirable, denoting the undesirable set

U = {x1, ...,x524,288
}. All numerical experiments are based

on the fixed set of values for the system parameters displayed
in Table I.

TABLE I: Parameter values for Synthetic BNps.

Parameter Value

Total Number of Experiments, TMax 1 to 150

Stopping Criterion Threshold, ε 0.02

Initial Values for βt Uniform [0,2]

Initial Values for σt Uniform [0,2]

Dirichlet Distribution Parameter, φ 0.1,1,100

Number of Genes, n 20

Number of Unknown Regulations, L 60,100,150

Process Noise, p 0.001

Undesirable States U = {x1, ...,x524,288
}

20-gene random Boolean networks with 60 and 100 un-
known regulations (L) are considered in this part of numerical
experiments. The average cost of Bayesian intervention with
respect to the number of conducted experiments for different
experimental design strategies is shown in Figure 2 and 3.
It can be seen that the system under the proposed GBO-
MOCU experimental design policy has achieved the lowest
average cost of Bayesian intervention in comparison to other
techniques. This comes from the fact that the experiment
selected by the GBO-MOCU policy at each step is based on
all the previously taken experiments and their outcomes during
the selection process. By contrast, the Best-First and Random
policies do not model the correlation over the experimental
space, and as a result, systems under these policies undergo a
much higher cost of Bayesian intervention.

Comparing the results for different prior distributions (φ),
one can see that the initial average cost of intervention is
larger for more uniform prior distributions (larger φ). This
comes from the fact that the Bayesian intervention becomes
less accurate in the presence of less-peaked (more uniform)
distributions. The MOCU-based strategies achieve the maxi-
mum reduction in cost for φ = 0.1, which is due to the fact
that having a few informative experiments in the presence of
rich prior distribution results in a significant reduction in the
intervention cost.

The number of unknown regulations in the numerical results
provided in Figure 2 and 3 is 60 and 100, respectively.
As expected, the amount of intervention cost is larger in
the presence of larger unknown regulations, and a much
larger number of experiments have been taken to achieve the
same intervention performance in cases with larger unknown
regulations. An instance of that can be seen by comparing
the proposed framework’s performance in the left plots of
Figures 2 and 3. In fact, the cost value of 0.1 is achieved
after taking 7 experiments for the case with 60 unknown reg-
ulations, whereas the same average cost (i.e., 0.1) is achieved
after taking 27 experiments for the case with 100 unknown
regulations.
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Fig. 2: The average cost of Bayesian intervention for synthetic Boolean networks. The results are averaged over 500 randomly
generated networks with 60 unknown regulations (L).

Fig. 3: The average cost of Bayesian intervention for synthetic Boolean networks. The results are averaged over 500 randomly
generated networks with 100 unknown regulations (L).

Fig. 4: The average cost of Bayesian intervention for the
proposed GBO-MOCU framework and the Entropy policy for
synthetic Boolean networks. The results are averaged over 500
randomly generated networks with 40 unknown regulations
(L).

In this part of the experiments, the results of the proposed
GBO-MOCU policy and the Entropy policy are compared for
20-gene random Boolean networks with L = 40 unknown
regulations. The results after taking 10 experiments are shown

Fig. 5: Pathway diagram for the cell-cycle mammalian net-
work. The normal and blunt arrows denote activating and
suppressive regulations respectively.

in Figure 4. One can see that the average cost of Bayesian
intervention is lower for more non-uniform distributions (i.e.,
smaller φ). However, as the prior distribution gets closer to
a uniform one (larger φ), much higher intervention costs
are obtained for systems under the Entropy policy. Indeed,
the Entropy scheme does not discriminate between potential
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experiments and performs like a random policy for less-peaked
prior distributions. By contrast, the GBO-MOCU policy is
capable of selecting the most effective experiments to reduce
the intervention cost (as opposed to only uncertainty). Thus,
systems under the Entropy policy have undergone a much
higher average intervention cost in comparison to the GBO-
MOCU policy in cases with more uniform prior distributions.
Meanwhile, comparing the results of the proposed framework
and Best-First Search and SMAC, one can see the con-
crete performance of the proposed framework. The Best-First
Search’s low performance comes from the random selection of
the design samples and local search around them. The SMAC
technique requires a huge number of early function evaluations
for reliable construction of the deterministic surrogate model
(i.e., regression tree), leading to the optimization process’s
inefficiency. However, the Bayesian surrogate model in the
proposed framework allows predicting the distribution of the
MOCU values and selecting the next sample by considering
all potential outcomes instead of a single predicted value.

In this part of the experiment, for 500 randomly generated
networks with 150 unknown regulations (L), the average cost
of Bayesian intervention is shown in Figure 6. The total
number of experiments is varied between 1 and 150, where the
uncertainty in any selected interaction disappears after taking
each experiment. Therefore, as expected, the average cost of
intervention is the same when 150 experiments are taken for
all methods due to removing all uncertainties in the network
interactions. However, in practice, the number of experiments
to be taken is often limited due to the real cost of conducting
experiments. Thus, looking at Figure 6, one can see that for
a small number of experiments (i.e., between 1 and 150), the
proposed framework significantly outperforms other methods.

Fig. 6: The average cost of Bayesian intervention with respect
to the total number of experiments for synthetic Boolean
networks with 150 unknown interactions and φ = 1.

The proposed framework’s effectiveness in terms of com-
putational cost compared with the original MOCU policy is
demonstrated in this part of the experiments. The experi-
ments have been conducted on a PC with an Intel Core i7-
4790 CPU@3.60-GHz clock and 16 GB of RAM, and the

running time (per minutes) for both methods is presented in
Figure 7. The number of unknown interactions is 150, and the
computational time is reported till both experimental design
frameworks have performed all 150 experiments. It can be seen
that a much faster reduction in the intervention cost is achieved
by the proposed framework relative to the original MOCU
policy. This is due to the fact that the surrogate model over
150 available experiments significantly helps the proposed
framework to select better experiments in comparison to
the original MOCU policy, which exhaustively explores all
possible experiments for its selection process.

Fig. 7: The average cost of Bayesian intervention with respect
to time (per minutes) for the proposed GBO-MOCU frame-
work and the MOCU policy for synthetic Boolean networks
with 150 unknown interactions and φ = 1.

C. Mammalian Cell Cycle Network

The mammalian cell cycle [68] is considered here for
assessing the performance of the proposed framework. Fig-
ure 5 represents the pathway diagram for this network, where
the blunt and normal arrows represent suppressive and acti-
vating regulations, respectively. Mammalian cell division is
coordinated with the growth of organisms according to the
extracellular signals that control the activation of CycD in
the cell. The state vector is x =(CycD, Rb, p27, E2F, CycE,
CycA, Cdc20, Cdh1, UbcH10, CycB). As described in [68],
mammalian cell division is tightly controlled. In a growing
mammal, the cell division should coordinate with the overall
growth of the organism. This coordination is controlled via
extracellular signals. These signals indicate whether a cell
should divide or remain in a resting state. The positive signals,
or growth factors, instigate the activation of CycD in the
cell. The key genes in this model are CycD, retinoblastoma
(Rb), and p27. Rb is a tumor-suppressor gene. This gene is
expressed in the absence of the CycD, which inhibits Rb
by phosphorylation. Whenever p27 is present, Rb can be
expressed even in the presence of CycE or CycA. Gene p27 is
active in the absence of the CycD. Whenever p27 is present,
it blocks the action of CycE or CycA and stops the cell cycle.
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Fig. 8: The average cost of Bayesian intervention with respect to the number of experiments for the Mammalian Cell Cycle
network with 20 unknown regulations (L) and three different Dirichlet distributions (φ).

Therefore, states with downregulated CycD, Rb, and p27 are
undesirable ones, which correspond to cancerous phenotypes
and are represented by U = {x1, ...,x128

}. Thus, the goal is to
shift the steady-state distribution of undesirable states through
structural intervention.

We consider 20 unknown regulations (L) which are selected
randomly among all regulations shown in Figure (5). We
apply the proposed GBO-MOCU policy and the Entropy
policy to predict the experiment to be performed. 500 initial
distributions have been generated from three different Dirichlet
distributions. The experiments are based on the fixed set of
values for the system parameters displayed in Table II.

TABLE II: Parameter values for mammalian cell cycle net-
work.

Parameter Value

Total Number of Experiments, TMax 1 to 10

Stopping Criterion Threshold, ε 0.02

Initial Values for βt Uniform [0,2]

Initial Values for σt Uniform [0,2]

Dirichlet Distribution Parameter, φ 0.1,1,100

Number of Genes, n 10

Number of Unknown Regulations, L 20

Process Noise, p 0.001

Undesirable States U = {x1, ...,x128
}

The average intervention cost for the GBO-MOCU policy
and the Entropy policy are presented in Figure 8. One can see
that the system under the GBO-MOCU policy has achieved
the minimum intervention cost after taking a few experiments,
whereas the cost reduction is much less significant for the sys-
tem under the Entropy policy. This again comes from the fact
that the proposed framework takes the main objective function
into account in the decision-making process. Meanwhile, one
can see that the average intervention cost is larger for less-
peaked prior distributions (larger φ). While the experimental
design for both policies becomes more challenging in the pres-
ence of less-peaked distributions. The average cost obtained

under the Entropy policy is much larger than the proposed
framework in those cases. This is due to the fact that the
entropy policy behaves like a random policy in the presence
of prior distribution.

VI. CONCLUSION

This paper introduced the Graph-Based Bayesian Opti-
mization Mean Objective Cost of Uncertainty (GBO-MOCU)
framework for scalable objective-based experimental design.
The proposed framework is built on the combination of the
graphical model, the Bayesian optimization, and the mean
objective cost of uncertainty (MOCU). The difficulties in
large discrete or combinatorial design spaces were handled
through a graphical model, and the correlation over the MOCU
reduction function is considered through the Gaussian process.
Using the proposed graph-based Gaussian process, an efficient
and closed-form policy for the sequential experimental design
was achieved through the well-known expected improvement
policy. In numerical experiments using the intervention process
of gene regulatory networks, the high performance of the
proposed framework is demonstrated.
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