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1. Introduction

Computational progress has led to manifold applications of optimal transport in 

high-dimensional problems ranging from machine learning and statistics to image and 

language processing (e.g., [2,15,48,1]). In this context, entropic regularization is crucial to 

enable efficient large-scale computation via Sinkhorn’s algorithm, hence has become the 

focus of dozens of recent studies. We refer to [44] for a survey with numerous references.

Our main contribution is the stability of solutions to the entropically regularized op-

timal transport problem with respect to the marginals and the cost function. Parallel to 

the fundamental stability theorem in classical optimal transport, it justifies, for example, 

that approximations found by solving discretized problems indeed converge to the true 

solution when the cost function is continuous. Our results are stated in terms of cyclical 

invariance, a geometric notion inspired by the c-cyclical monotonicity property in classi-

cal optimal transport. When the entropic transport problem has finite value, a coupling 

is cyclically invariant if and only if it is an optimal transport. Our stability theorem en-

tails a general wellposedness result beyond the realm of optimization: cyclical invariance 

singles out a unique coupling even if the transport problem has infinite value—i.e., all 

couplings have infinite cost—and therefore the paradigm of cost minimization does not 

differentiate couplings from one another.

For ease of exposition, the Introduction focuses on entropic optimal transport. More 

general results are stated in Section 2 using the language of Schrödinger bridges that 

turns out to be natural for our approach. Given a measurable cost function c : X × Y →

R+ on Polish probability spaces (X, µ) and (Y, ν), we consider the entropic optimal 

transport problem with regularization parameter ε > 0,

inf
π∈Π(µ,ν)

∫

X×Y

c dπ + εH(π|P ), P := µ ⊗ ν, (1.1)

where Π(µ, ν) is the set of couplings and H(·|P ) denotes relative entropy (or Kullback–

Leibler divergence) with respect to the product P of the marginals, defined as H(π|P ) :=
∫

log( dπ
dP ) dπ for π ≪ P and H(π|P ) := ∞ otherwise. If the minimization (1.1) is finite; 

i.e., if

there exists π0 ∈ Π(µ, ν) with

∫

c dπ0 + H(π0|P ) < ∞, (1.2)

then it admits a unique minimizer π ∈ Π(µ, ν) and moreover π ∼ P .

Definition 1.1. A coupling π ∈ Π(µ, ν) is called (c, ε)-cyclically invariant if π ∼ P and 

its density admits a version dπ/dP : X × Y → (0, ∞) such that

k
∏

i=1

dπ

dP
(xi, yi) = exp

(

−
1

ε

[ k
∑

i=1

c(xi, yi) −

k
∑

i=1

c(xi, yi+1)

]) k
∏

i=1

dπ

dP
(xi, yi+1)



P. Ghosal et al. / Journal of Functional Analysis 283 (2022) 109622 3

for all k ∈ N and (xi, yi)
k
i=1 ⊂ X × Y, where yk+1 := y1.

By way of a factorization property that is equivalent to cyclical invariance, known 

results imply the following relation to the optimization (1.1).

Proposition 1.2. Let (1.1) be finite. Then π ∈ Π(µ, ν) is the minimizer of (1.1) if and 

only if π is (c, ε)-cyclically invariant.

See Section 5 for details and references. We are mainly interested in optimal transport 

problems on Euclidean spaces X, Y. However, the only particular property of such spaces 

that plays a role for our analysis is that Lebesgue’s theorem on the differentiation of 

measures holds. Thus, we postulate that property (see Assumption 2.3) and otherwise 

allow for a general Polish setting. We can now state the aforementioned wellposedness 

result.

Theorem 1.3 (Wellposedness). Let c : X × Y → [0, ∞) be continuous, ε > 0 and (µ, ν) ∈

P(X) × P(Y). There exists a unique (c, ε)-cyclically invariant coupling π ∈ Π(µ, ν). 

If (1.1) is finite, π is its unique minimizer.

Uniqueness follows from known facts and does not require the continuity of c. On the 

other hand, existence beyond the framework of finite cost is a completely novel result. 

Rather than using convex analysis or variational arguments, it is based on the subsequent 

stability theorem for cyclical invariance. One example where wellposedness with infinite 

cost is of interest, is the statistical notion of rank recently proposed in [18]. Multivariate 

ranks have been defined in nonparametric statistics through Brenier’s optimal trans-

port map to extend the usual scalar notions and tests; see [15,19,20,28]. Leveraging the 

same idea but computationally less expensive, entropic optimal transport is used in [18]

to define “differentiable ranks.” Theorem 1.3 allows one to naturally define such ranks 

for arbitrary distributions—like in the scalar case—without imposing a second moment 

condition.

Theorem 1.4 (Stability). For n ≥ 1, let (µn, νn) ∈ P(X) × P(Y), let εn > 0 and let 

cn : X × Y → [0, ∞) be measurable. Let πn ∈ Π(µn, νn) be (cn, εn)-cyclically invariant. 

Suppose that µn, νn converge weakly to some limits µ, ν, that εn → ε > 0 and that 

cn converges uniformly on bounded sets to a continuous function c. Then πn converges 

weakly to a limit π ∈ Π(µ, ν) and π is (c, ε)-cyclically invariant.

If the involved optimization problems are finite, the theorem states the stability of the 

(entropic) optimal transport couplings. A simple yet important application is when the 

marginals µ, ν are approximated by discrete measures, as it would be in a computational 

implementation. Even for this particular case, we are not aware of similar results in the 

literature. We mention that continuity for the limiting cost c in Theorem 1.4 is a sharp 
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condition: Proposition 5.3 will demonstrate that any nontrivial discontinuity in c leads 

to a failure of Theorem 1.4, for suitable marginals.

A noteworthy application of the stability theorem was presented in the follow-up 

work [40] where it was observed that convergence of Sinkhorn’s algorithm can be seen as 

a stability problem. In that context, the marginals µn, νn are produced by the algorithm 

and known to converge to µ, ν in great generality, while the iterates of the algorithm 

correspond to πn. Theorem 1.4 then implies the weak convergence to the correct op-

timizer π. Its geometric approach completely avoids the difficulty of establishing the 

integrability properties of µn, νn or even the finiteness of the associated entropic optimal 

transport problems.

The general existence result of Theorem 1.3 is a consequence of Theorem 1.4 applied 

with cn = c, εn = ε and approximations (µn, νn) → (µ, ν) where µn, νn are discrete 

measures with finite support. To solve the problem with marginals (µn, νn), one could 

use Proposition 1.2, but this particular case is a finite-dimensional minimization problem 

that can also be solved by standard calculus arguments. In particular, Theorem 1.4

yields an approach to construct cyclically invariant couplings which is novel even when 

the optimization problem is finite. This approach does not use the (classical but non-

trivial) arguments of convex analysis and density factorization behind Proposition 1.2

(see [12,13,17,25,49,50], among others). It is also quite different from the iterative method 

of [26] which uses another finiteness condition; see [35] for a modern presentation, analysis 

and extension of that method. Instead, our approach is close in spirit to the construction 

of c-cyclically monotone couplings that is standard in classical optimal transport; cf. [52, 

pp. 64–65].

The analogy with classical optimal transport extends in several directions. McCann 

showed in [36] that cyclical monotonicity singles out a particular transport map for 

quadratic cost c on Rd even if the optimal transport problem (here the 2-Wasserstein dis-

tance) is infinite, thus extending Brenier’s map to this setting; see also [52, pp. 249–258]

for more general results. Here, the analogy becomes precise in the limit ε → 0: the 

extended Brenier coupling is the weak limit of the couplings π = πε established in Theo-

rem 1.3 (this follows from [10]). Another important parallel occurs at the technical level. 

Working with cyclical invariance, we proceed in a local fashion and focus on finitely many 

points (xi, yi) at a time, rather than working with global objects like the Schrödinger 

potentials and their function spaces. For instance, non-compact marginal supports do 

not cause any particular difficulty in this approach. We emphasize that the novelty of 

the present study lies in how cyclical invariance is exploited and proved for the limit; 

the invariance property itself is merely an equivalent way of stating a factorization prop-

erty of the density that is well known (see [12] or Proposition 4.4 below). It turns out 

that, once the line of argument is found, remarkably general results can be obtained 

with fairly concise proofs. We may hope that the techniques developed here can yield 

further insights into asymptotic questions on entropic optimal transport, and thus view 

the technique itself as a central contribution. Such questions may include quantifying the 
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speed of convergence in our stability theorem or finding analogous results for dynamic 

Schrödinger bridge problems.

The companion paper [10] illustrates the use of cyclical invariance for the limit ε → 0. 

In this degenerate asymptotic, the limiting object is classical optimal transport as charac-

terized by c-cyclical monotonicity. The latter property describes the shape of the support 

of the coupling and, therefore, is readily amenable to weak convergence arguments via 

Portmanteau’s theorem. The same fact is often exploited in classical optimal transport 

theory, for instance in the standard proof of its stability theorem [52, p. 77]. In the 

present study, the limit is entropic optimal transport. Being a property of the density, 

the relation of cyclical invariance with weak convergence is less direct (especially as the 

measures in Theorem 1.4 may well be mutually singular). Our general principle is to blow 

the points (xi, yi) in Definition 1.1 up to small balls, pass to the weak limit, and then 

recover information about the limiting density by shrinking the balls, via differentiation 

of measures. This technique appears to be novel in this area.

Starting with [38,39], a number of works examine the degenerate asymptotic ε → 0

where the limiting problem is classical optimal transport. The fact that weak limits 

of entropic optimizers are optimal transports was established by [33] using Gamma-

convergence arguments in a more general context of Schrödinger bridges; see also [14]

for the case of optimal transport with quadratic cost. As mentioned above, [10] extends 

this result to transport problems with infinite value by way of cyclical invariance and 

c-cyclical monotonicity; moreover, a large deviations principle quantifies the local rate of 

convergence. Related results can be found in [16,42] where the expansion of the optimal 

cost as a function of ε is studied. We remark that Gamma convergence seems difficult 

to use in the context of Theorem 1.4 due to the reference measures changing along the 

sequence. The limit ε → 0 can also be analyzed in the associated dual problem, here the 

solutions are called potentials. Convergence of potentials was shown in [29] for quadratic 

costs and compactly supported marginals, and recently in [41] for a general Polish setting. 

Closer to the problem occurring in computational practice as well as the present question 

of stability, [9] studies the convergence of the discrete Sinkhorn algorithm to an optimal 

transport in the joint limit when εn → 0 and the marginals µ, ν are approximated by 

discretizations µn, νn satisfying a certain density property. Explicit error bounds are 

derived, for instance for quadratic cost on the torus, to establish near-linear complexity 

of the resulting algorithm. For more on the computational challenges and remedies in 

this regime, see for instance [51] and the references therein.

While we are not aware of general stability results for the nondegenerate limit 

εn → ε > 0 in the literature, the sampling complexity of entropic optimal transport 

(with fixed ε) can be seen as a particular form of stability with respect to the marginals. 

Indeed, [27,37] study how the empirical entropic Wasserstein distance, obtained by op-

timally coupling i.i.d. samples from the marginals, converges to the population version. 

The results are based on global arguments exploiting the regularity of the Schrödinger 

potentials, which, in turn, is achieved by imposing compactness and decay conditions 

on the marginals. See also [30] which studies a related asymptotic regime for a differ-
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ent regularization of optimal transport. Related to the present work at least in spirit, 

there are several areas where analogues of c-cyclical monotonicity have recently lead to 

breakthroughs, including martingale optimal transport [7], optimal Skorokhod embed-

dings [5,8] and weak transport [4].

The remainder of this paper is organized as follows. Section 2 details the setting 

and main results in the language of Schrödinger bridges. The first step towards the 

stability theorem is reported Section 3 where we establish that weak limits of cyclically 

invariant couplings remain absolutely continuous. This is based on comparing measures 

of rectangles, an analysis that may be of independent interest. Section 4 continuous the 

main proof by showing that limits of cyclically invariant couplings are again cyclically 

invariant. It comprises of two steps; the aforementioned principle of blowing up points 

and passing to the limit first yields a weakened version of the invariance property, and 

then measure-theoretic arguments can be used to show that the (proper) invariance 

property already follows. The concluding Section 5 collects the arguments to prove the 

main results and their ramifications, including that continuity of the cost function is 

necessary for stability.

2. Main results

Let (X, d) be a complete, separable metric space; we write P(X) for the space of 

probability measures on the Borel σ-field B(X) endowed with weak convergence (induced 

by bounded continuous functions). The same is assumed for the second marginal space 

(Y, d), and we equip X × Y with the metric d((x, y), (x′, y′)) = max{d(x, x′), d(y, y′)}. 

Throughout this section, two measures (µ, ν) ∈ P(X) × P(Y) play the role of given 

marginals for the static Schrödinger bridge problem

inf
π∈Π(µ,ν)

H(π|R) (2.1)

where R ∈ P(X×Y) is a given reference measure. We refer to [24,34] for extensive surveys 

on Schrödinger bridges. The entropic optimal transport problem (1.1) can be recovered 

(up to constants) as a special case for R defined by

dR

dP
= ae−c/ε, P := µ ⊗ ν (2.2)

where a = (
∫

e−c/ε dP )−1 is the normalizing constant. In particular, R ∼ P , which will 

also be an important condition in many of our results for (2.1). By way of (2.2), the 

following generalizes Definition 1.1.

Definition 2.1. Let π ∈ Π(µ, ν) and R ∈ P(X × Y). We call (π, R) cyclically invariant if 

π ∼ R ∼ P and there exists a version dπ/dR : X × Y → (0, ∞) of the relative density 

satisfying
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k
∏

i=1

dπ

dR
(xi, yi) =

k
∏

i=1

dπ

dR
(xi, yi+1)

for all k ∈ N and (xi, yi)
k
i=1 ⊂ X × Y, where yk+1 := y1.

The analogue of the finiteness condition (1.2) is that

there exists π0 ∈ Π(µ, ν) with H(π0|R) < ∞.

We summarize the pertinent facts; see Lemma 5.1 for detailed references.

Proposition 2.2. Let R ∼ P and let (2.1) be finite. There exists a unique minimizer 

π ∈ Π(µ, ν) for (2.1), it satisfies π ∼ R, and it is the unique coupling π such that (π, R)

is cyclically invariant.

In the remainder of the paper we assume that the underlying spaces allow for differ-

entiation of measures in the following sense.

Assumption 2.3. Given ρ, λ ∈ P(X) satisfying ρ ≪ λ, there exists X
′ ⊂ X of full λ-

measure such that

f(x) := lim
r→0

ρ(Br(x))

λ(Br(x))
, x ∈ X

′ (2.3)

defines a version of the Radon–Nikodym density dρ/dλ. The analogous property is as-

sumed on the space X × Y.

For Euclidean spaces X, Y, the assumption holds by the standard differentiation the-

orem [21, Theorem 1.32, p. 53]. More generally, it holds in the context of so-called Vitali 

covering relations; the classical reference is [23, Theorem 2.9.8, p. 156]. For example, As-

sumption 2.3 holds when X and X×Y are compact subsets of Riemannian manifolds (due 

to the “directionally limited” property established in [23, Section 2.8.9, pp. 145-146]), or 

more generally, countable unions of such sets. See also [31, pp. 4-8, esp. Example 1.15] for 

an accessible introduction. For our purposes, the main restriction is that differentiation 

of measures generally fails on infinite-dimensional spaces; see [47] for a counterexample 

and [46] for a related result on coverings. An alternative to Assumption 2.3, making our 

results slightly more general, is to impose a doubling condition on the specific marginal 

measures (µ, ν); cf. Remark 5.2.

We have seen in the Introduction that continuity of c is essential for the stability of 

entropic optimal transport. In view of (2.2), it is then clear that the regularity of dR/dP

is pivotal. The following generalizations of Theorems 1.3 and 1.4 are our main results.

Theorem 2.4 (Wellposedness). Suppose that R ∼ P := µ ⊗ ν and that the density dR/dP

admits a continuous version. Then there exists a unique coupling π ∈ Π(µ, ν) such that 

(π, R) is cyclically invariant. If (2.1) is finite, π is its minimizer.
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Theorem 2.5 (Stability). For n ≥ 1, consider (µn, νn) ∈ P(X) × P(Y), Rn ∈ P(X × Y)

and πn ∈ Π(µn, νn). Let (πn, Rn) be cyclically invariant and suppose that µn, νn, Rn

converge weakly to some limits µ, ν, R, where R ∼ P := µ ⊗ ν. Writing Pn := µn ⊗ νn, 

suppose also that for some versions dRn

dPn

, dR
dP : X × Y → (0, ∞) of the respective densities 

and some constants αn > 0, it holds that for any fixed z ∈ spt R,

dRn

dPn
(z′) = [1 + o(1)]αn

dR

dP
(z), (2.4)

where o(1) stands for a function φz(z′, n) → 0 as d(z′, z) + 1/n → 0. Then πn converges 

weakly to a limit π ∼ R and (π, R) is cyclically invariant.

Schrödinger bridges are closely related to so-called Schrödinger systems (also called 

Schrödinger equations). For instance, Theorem 2.4 entails the following wellposedness 

result.

Corollary 2.6 (Schrödinger system). Let (µ, ν) ∈ P(X) ×P(Y) and let f : X×Y → (0, ∞)

be continuous with 
∫

X×Y
f dP = 1. There exist Borel functions ϕ : X → (0, ∞) and 

ψ : Y → (0, ∞) such that

∫

Y

f(x, y)ψ(y) ν(dy) = ϕ(x)−1,

∫

X

f(x, y)ϕ(x) µ(dx) = ψ(y)−1 (2.5)

for µ-a.e. x ∈ X and ν-a.e. y ∈ Y. The pair (ϕ, ψ) is a.s. unique up to a multiplicative 

constant.2

As above, the uniqueness follows from known results. Existence for continuous func-

tions f such that f, f−1 are uniformly bounded was first shown in [11]. Under the bound-

edness condition alone, existence is due to [32]. Using the connection with Schrödinger 

bridges, [49] relaxed the boundedness to a condition of finite entropy, corresponding to 

the finiteness of (2.1) in our setting. We refer to [34] for a more complete review of the lit-

erature which dates back to Schrödinger. In Corollary 2.6, we reintroduce the continuity 

condition of [11] but avoid any condition of finite entropy or boundedness. Of course, the 

stability result of Theorem 2.5 also has an analogous corollary for Schrödinger systems.

3. Absolute continuity of limits

In this section we show that if (πn, Rn) is cyclically invariant and Rn ∼ µn ⊗ νn

holds in a locally uniform sense (to be made precise), then any weak limit pair (π, R) =

(limn πn, limn Rn) must satisfy π ≪ R.

2 I.e., any solution (ϕ′, ψ′) satisfies ϕ′ = aϕ µ-a.s., ψ′ = a−1ψ ν-a.s., for some a > 0.
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As the method of proof is novel, we first sketch the line of argument. We shall be 

comparing the measures of rectangles Fi×Gi ⊂ X×Y for i = 1, 2 with their permutations 

Fi × Gi+1.3 Consider first the trivial case Rn = Pn := µn ⊗ νn, then cyclical invariance 

of (πn, Rn) implies

πn(F1 × G1)πn(F2 × G2) = πn(F1 × G2)πn(F2 × G1). (3.1)

This will of course no longer hold if Rn 
= Pn, but the equivalence Rn ∼ Pn suggests 

that the two sides of (3.1) should still be comparable. We will quantify the equivalence 

Rn ∼ Pn and assume it to hold uniformly in n. Then, we prove that the two sides of (3.1)

are comparable in the sense that their quotient remains bounded uniformly in n. For 

suitable rectangles, the bound propagates to the weak limit (π, R), accomplishing the first 

step of the proof. The second step is to argue by contraposition that this bound implies 

π ≪ R. Indeed, we establish that if π ∈ Π(µ, ν) is singular wrt. µ ⊗ ν, then there exist 

Fi, Gi such that π(F1×G1)π(F2×G2) is above a threshold whereas π(F1×G2)π(F2×G1)

is arbitrarily small.

For ease of reference, we first record two measure-theoretic facts.

Lemma 3.1. Let ρ be a σ-finite measure on a Polish space (Ω, d). We say that C ⊂ Ω is 

ρ-continuous if its boundary ∂C is a ρ-nullset.

(i) ρ-continuous sets form a field; i.e., unions, intersections, complements, differences 

of ρ-continuous sets are again ρ-continuous.

(ii) For fixed z ∈ Ω, the open ball Br(z) = {z′ : d(z, z′) < r} is ρ-continuous for all 

but countably many values of r > 0. In particular, given r > 0, there exists 0 < r′ ≤ r

such that Br′(z) is ρ-continuous.

(iii) If F ⊂ X is µ-continuous and G ⊂ Y is ν-continuous, then F ×G is π-continuous 

for any π ∈ Π(µ, ν).

(iv) Given A ∈ B(Ω) and ε > 0, there exists an open set B ⊂ Aε := {d(·, A) < ε}

with ρ(∂B) = 0 and ρ(A∆B) < ε.

Proof. Statement (i) is verified directly; (ii) holds because a σ-finite measure admits at 

most countably many disjoint sets of positive measure; (iii) follows from ∂(F × G) =

(F × ∂G) ∪ (∂F × G). Let A, ε be as in (iv). By interior and exterior regularity of ρ, 

there is a compact set K ⊂ A with ρ(A \ K) < ε and an open set A ⊂ O ⊂ Aε with 

ρ(O \ A) < ε. We have r(z) := d(z, Oc) > 0 for all z ∈ K by the closedness of Oc, 

and K is covered by the open balls Br(z)(z) with z ∈ K. After making r(z) smaller if 

necessary, each of these balls is ρ-continuous. Choosing a finite cover {Br(zi)(zi)}i≤N , 

the set B := ∪iBr(zi)(zi) has the required properties. �

The second fact is a conditional version of the differentiation of measures, based on 

Assumption 2.3 for the marginal space X. While not widely known, this concept was 

3 We use the cyclical convention for i ∈ {1, 2}; that is, i + 1 := 1 for i = 2.
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already established in [45], although the author defined differentiation of measures in a 

slightly different way. For the convenience of the reader, we detail the adaptation to our 

setting.

Lemma 3.2. Let π ∈ P(X × Y) and let µ be its first marginal. Consider for x ∈ spt µ and 

r > 0 the probability measure π
(r)
x ∈ P(Y) defined by

π(r)
x (C) =

π(Br(x) × C)

µ(Br(x))
, C ∈ B(Y).

Under Assumption 2.3 on X, there exists X0 ⊂ spt µ with µ(X0) = 1 such that for all 

x ∈ X0, the weak limit

πx := lim
r→0

π(r)
x

exists. Moreover, πx defines a regular conditional probability of π given x.

Proof. As X, Y are Polish, there exists some regular conditional probability π̂x; it suffices 

to show that limr→0 π
(r)
x = π̂x weakly for µ-a.e. x ∈ X. Fix a countable collection C

of nonnegative bounded continuous test functions φ : Y → R that determine weak 

convergence (cf. [43, Theorem 6.6, p. 47]). Then we need to show, for fixed φ ∈ C, that

∫

φ dπ(r)
x →

∫

φ dπ̂x for µ-a.e. x ∈ X. (3.2)

As π̂x is a regular conditional probability, it holds for µ-a.e. x ∈ X that

∫

φ dπ(r)
x =

1

µ(Br(x))

∫

Br(x)

µ(dx′)

∫

φ(y) π̂x′(dy)

=
1

µ(Br(x))

∫

Br(x)

f dµ, f(x′) :=

∫

φ(y) π̂x′(dy).

We now apply Assumption 2.3 to the pair f dµ ≪ dµ and deduce that the right-hand 

side converges to f(x) for µ-a.e. x ∈ X, which is (3.2). �

The next result is the main ingredient for the second step as sketched above: the sets 

{xi} × Ui constructed in Lemma 3.3 will be “blown up” to rectangles in the proof of 

Proposition 3.5 and used to show by contraposition that π ≪ R.

Lemma 3.3. Let π ∈ Π(µ, ν) and let π = µ(dx) ⊗πx(dy) be a disintegration. If π 
≪ µ ⊗ν, 

then

µ2{(x1, x2) ∈ X
2 : ∃U1, U2 ∈ B(Y) with πxi

(Ui) > 0, πxi
(Ui+1) = 0} > 0.
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In addition, the sets Ui can be chosen to be disjoint, of arbitrarily small diameter, and 

such that πxi
(∂Uj) = ν(∂Uj) = 0 for i, j ∈ {1, 2}.

Proof. Let π 
≪ µ ⊗ ν; that is, there exists a set A ∈ B(X × Y) with π(A) > 0 and 

(µ ⊗ ν)(A) = 0. Let Ax = {y : (x, y) ∈ A} denote the x-section, then ν(Ax) = 0 for 

µ-a.e. x ∈ X. On the other hand, any B ∈ B(Y) satisfies ν(B) =
∫

X
πx′(B) µ(dx′). In 

particular, ν(Ax) = 0 implies that πx′(Ax) = 0 for µ-a.e. x′ ∈ X. Therefore,

F = {(x, x′) ∈ X
2 : πx′(Ax) = 0} has full measure µ2.

As π(A) > 0, the set W = {x : πx(Ax) > 0} satisfies µ(W ) > 0 and hence µ2((W ×

W ) ∩ F ) > 0. For (x1, x2) ∈ (W × W ) ∩ F we have πxi
(Axi

) > 0 and πxi
(Axi+1

) = 0. 

In particular, the disjoint sets U ′
i := Axi

\ Axi+1
satisfy πxi

(U ′
i) > 0 and πxi

(U ′
i+1) = 0. 

By intersecting with a suitable ball, the diameter of U ′
i can be assumed to be arbitrarily 

small. Finally, let ρ = πx1
+ πx2

+ ν and choose ρ-continuous sets U ′′
i for U ′

i as in 

Lemma 3.1 (iv), with ε > 0 small enough such that the sets Ui := U ′′
i \ U ′′

i+1 have the 

required properties; cf. Lemma 3.1 (i). �

The next lemma establishes that the two sides of (3.1) are comparable with a bound 

related to the equivalence Rn ∼ Pn. The following notation is useful: when k ≥ 1 and a 

k-tuple (z1, . . . , zk) ∈ (X × Y)k are given, and

if zi = (xi, yi) ∈ X × Y, we set z̄i := (xi, yi+1), (3.3)

with the cyclical convention yk+1 := y1.

Lemma 3.4. Let π ∈ Π(µ, ν) and π ≪ R ∼ P := µ ⊗ ν. Consider rectangles Ai ∈

B(X) ×B(Y) for 1 ≤ i ≤ k and denote Ā1 ×· · ·× Āk := {(z̄1, . . . , ̄zk) : zi ∈ Ai}. For some 

α, ᾱ > 0, suppose that dR/dP ≤ α on Ai and (dR/dP )−1 ≤ ᾱ on Āi, for all i. Then

πk(A1 × · · · × Ak) ≤ (αᾱ)kπk(Ā1 × · · · × Āk).

Proof. Set Z = dπ/dR and note that

P (dz1) · · · P (dzk) = µ(dx1) · · · µ(dxk)ν(dy1) · · · ν(dyk) = P (dz̄1) · · · P (dz̄k). (3.4)

Using the cyclical invariance of (π, R) and the rectangular form of Ai,

πk(A1 × · · · × Ak)

=

∫

A1×···×Ak

Z(z1) · · · Z(zk)
dR

dP
(z1) · · ·

dR

dP
(zk) P (dz1) · · · P (dzk)
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≤ αk

∫

A1×···×Ak

Z(z1) · · · Z(zk) P (dz1) · · · P (dzk)

= αk

∫

A1×···×Ak

Z(z̄1) · · · Z(z̄k) P (dz̄1) · · · P (dz̄k)

= αk

∫

Ā1×···×Āk

Z(z1) · · · Z(zk) P (dz1) · · · P (dzk)

≤ (αᾱ)k

∫

Ā1×···×Āk

Z(z1) · · · Z(zk) R(dz1) · · · R(dzk)

= (αᾱ)kπk(Ā1 × · · · × Āk). �

We can now prove the main result of this section.

Proposition 3.5. Let (µn, νn) ∈ P(X) ×P(Y), let πn ∈ Π(µn, νn) and Rn ∼ Pn := µn⊗νn. 

Suppose that (πn, Rn) is cyclically invariant for each n and that πn converges weakly to 

some limit π. In particular, µn, νn converge to some limits µ, ν, and π ∈ Π(µ, ν). Set 

P = µ ⊗ ν and suppose that (Rn, Pn) are uniformly locally equivalent in the following 

sense: there are versions dRn

dPn

: X × Y → (0, ∞) of the relative densities and constants 

αn > 0 such that given z ∈ spt P , there exist r = r(z) > 0 and n0 = n0(z, r) with

sup
z′∈Br(z), n≥n0

(

αn
dRn

dPn
(z′) + α−1

n

dPn

dRn
(z′)

)

< ∞. (3.5)

Then π ≪ P .

Proof. Note that the weak convergence of πn ∈ Π(µn, νn) implies the weak convergence 

of its marginals to some limits µ and ν, and then π ∈ Π(µ, ν). By Lemma 3.2, there is a 

set X0 ⊂ spt µ of full µ-measure such that for x ∈ X0, the weak limit

πx(·) := lim
r→0

π(Br(x) × ·)

µ(Br(x))

exists, and π = µ ⊗x πx is a disintegration of π. In particular, for any x ∈ X0 and any 

πx-continuity set U ,

πx(U) = lim
r→0

π(Br(x) × U)

µ(Br(x))
. (3.6)

Suppose for contradiction that π 
≪ µ ⊗ν. Then Lemma 3.3 yields xi ∈ X0 (i = 1, 2) and 

disjoint sets Ui such that

q := min
i

πi(Ui) > 0 and πi(Ui+1) = 0, where πi := πxi
.
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Moreover, given r0 > 0, the sets Ui can be chosen to be (π1 + π2 + ν)-continuous and 

contained in a ball Br0
(yi) around some yi ∈ spt ν. Using also (3.5), we can choose r0, n0

such that for some α∗ > 0,

αn
dRn

dPn
≤ α∗ on Br0

(xi) × Ui, α−1
n

dPn

dRn
≤ α∗ on Br0

(xi) × Ui+1, (3.7)

for all 1 ≤ i ≤ k and n ≥ n0. Writing Bi,r := Br(xi) for brevity, (3.6) implies in 

particular that

π(Bi,r × Ui)

µ(Bi,r)
→ πi(Ui) ≥ q,

π(Bi,r × Ui+1)

µ(Bi,r)
→ πi(Ui+1) = 0.

That is, given ε > 0, choosing r ≤ r0 small enough results in

π(Bi,r × Ui)

µ(Bi,r)
≥ q − ε,

π(Bi,r × Ui+1)

µ(Bi,r)
≤ ε, (3.8)

and we may further choose r such that µ(∂Bi,r) = 0. Specifically, we choose ε > 0 such 

that ε/(q − ε) < α−2
∗ , then (3.8) implies

∏

i=1,2

π(Bi,r × Ui) > α4
∗

∏

i=1,2

π(Bi,r × Ui+1).

Note that Bi,r × Uj is a π-continuity set for i, j ∈ {1, 2}; cf. Lemma 3.1 (iii). In view of 

πn → π, it then follows that

∏

i=1,2

πn(Bi,r × Ui) > α4
∗

∏

i=1,2

πn(Bi,r × Ui+1) (3.9)

for n sufficiently large. On the other hand, we apply Lemma 3.4 with k = 2 and Ai =

Bi,r × Ui. In view of (3.7), the condition of the lemma holds with α := α−1
n α∗ and 

ᾱ := αnα∗. Noting that the αn cancel to yield (αᾱ)k = α4
∗, the lemma yields the 

inequality opposite to (3.9), a contradiction. �

4. Cyclical invariance of limits

In this section we aim to show that limits of cyclically invariant couplings are again 

cyclically invariant, under suitable conditions. We proceed in two steps. First, we estab-

lish that limits are weakly cyclically invariant as defined below. Second, we show that 

weak cyclical invariance already implies cyclical invariance. This second step has little 

to do with the passage to the limit; rather, it settles some measure-theoretic aspects to 

get rid of pesky nullsets.

The “weak” notion is introduced mainly to disentangle the proof of the main result. 

It weakens in two ways the cyclical invariance of (π, R) as stated in Definition 2.1: the 
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equivalence of π and R is reduced to absolute continuity and the cyclical relation only 

holds for points from specific sets. We recall the notation z̄i from (3.3).

Definition 4.1. Let π ∈ Π(µ, ν) and R ∈ P(X × Y). We call (π, R) weakly cyclically 

invariant if π ≪ R ∼ P := µ ⊗ ν and there exist

(i) a version Z : X × Y → [0, ∞] of the density dπ/dR,

(ii) Ω1, Ω0 ∈ B(X × Y) with π(Ω1) = R(Ω0) = 1 and 0 < Z < ∞ on Ω1

such that for all k ∈ N,

k
∏

i=1

Z(zi) =
k

∏

i=1

Z(z̄i) for all (zi)
k
i=1 ⊂ Ω1 with (z̄i)

k
i=1 ⊂ Ω0.

Proposition 4.2. Let (µn, νn) ∈ P(X) ×P(Y), let πn ∈ Π(µn, νn) and Rn ∼ Pn := µn⊗νn. 

Suppose that (πn, Rn) is cyclically invariant for each n and that πn, Rn converge weakly 

to some limits π, R. In particular, µn, νn converge to some limits µ, ν, and π ∈ Π(µ, ν). 

Suppose that R ∼ P := µ ⊗ ν and that there are versions fn, f : Ω → (0, ∞) of the 

densities dRn

dPn

, dR
dP and constants αn > 0 such that for any fixed z ∈ spt R,

fn(z′) = [1 + o(1)]αnf(z), (4.1)

where o(1) stands for a function φz(z′, n) → 0 as d(z′, z) + 1/n → 0. Then (π, R) is 

weakly cyclically invariant. Specifically, the quantities Ω1, Ω0, Z of Definition 4.1 can be 

chosen as

Ω0 =

{

z ∈ spt R : Z(z) := lim
r→0

π(Br(z))

R(Br(z))
exists in [0, ∞)

}

∩

{

z ∈ spt P : f(z) = lim
r→0

R(Br(z))

P (Br(z))

}

and Ω1 = Ω0 ∩ {Z > 0}.

Proof. Assumption 2.3 for the space X × Y shows that Z is a version of dπ/dR and 

R(Ω0) = 1. As (4.1) implies (3.5), Proposition 3.5 yields that π ≪ P , hence π ≪ R and 

the definition of Ω1 implies π(Ω1) = 1.

Let z1, . . . , zk ∈ Ω1 be such that z̄i ∈ Ω0 and consider for r > 0 the balls Ai = A
(r)
i :=

Br(zi) = Br(xi) × Br(yi). To avoid unwieldy formulas, we use the vector notation

z = (z1, . . . , zk), z̄ = (z̄1, . . . , z̄k), A = A1 × · · · × Ak, Ā = {z̄ : z ∈ A}

together with the convention that functions and measures are evaluated by multiplication 

over the components, for instance
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f(z) = f(z1) · · · f(zk), π(A) = π(A1) · · · π(Ak).

As dπn/dPn = (dπn/dRn)(dRn/dPn), we then have

πn(A) =

∫

A

Zn(z′) fn(z′) Pn(dz
′), Zn := dπn/dRn.

We also have πn(Ai) > 0 for n large as Z(zi) > 0 and πn → π. On the other hand, 

Zn(z′) and Pn(dz
′) are invariant under z

′ �→ z̄
′ due to the assumption on πn and the 

form of Pn; cf. (3.4). Thus

πn(Ā) =

∫

Ā

Zn(z′) fn(z′) Pn(dz
′) =

∫

A

Zn(z′) fn(z̄′) Pn(dz
′).

Applying the assumption on fn to each of the points zi, ̄zi then yields

πn(Ā)

πn(A)
=

∫

A
Zn(z′) fn(z̄′) Pn(dz

′)
∫

A
Zn(z′) fn(z′) Pn(dz′)

=
[1 + o(1)]αnf(z̄)

∫

A
Zn(z′) Pn(dz

′)

[1 + o(1)]αnf(z)
∫

A
Zn(z′) Pn(dz′)

= [1 + o(1)]
f(z̄)

f(z)

where o(1) stands for a function of (z, ̄z) converging to zero as r + 1/n → 0. For values 

of r > 0 such that Ai, Āi are continuity sets of P (and hence also of π and R), taking 

n → ∞ yields

π(Ā)

π(A)
= [1 + o(1)]

f(z̄)

f(z)
. (4.2)

On the other hand, zi, ̄zi ∈ Ω0 also guarantees that R(Ai)
P (Ai) = [1 + o(1)]f(zi) and similarly 

for z̄i. Recalling P (Ā) = P (A), we deduce

R(Ā)

R(A)
=

R(Ā)/P (Ā)

R(A)/P (A)
= [1 + o(1)]

f(z̄)

f(z)
. (4.3)

Combining (4.2) and (4.3) yields

π(A)

R(A)
= [1 + o(1)]

π(Ā)

R(Ā)

and then letting r → 0 (along a sequence of r such that Ai, Āi are continuity sets of P ) 

shows Z(z) = Z(z̄), as desired. �
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Remark 4.3. Assumption (4.1) on fn, f in Proposition 4.2 is a sufficient condition for

lim
r→0

lim
n→∞

∫

A
Zn(z′) fn(z̄′) Pn(dz

′)
∫

A
Zn(z′) fn(z′) Pn(dz′)

=
f(z̄)

f(z)
; (4.4)

it can be replaced by any other condition implying (4.4). We note that (4.4) can be seen 

as a differentiation of measures intertwined with a weak limit.

As mentioned above, the second step is to upgrade the weak cyclical invariance. Some 

of these considerations are similar to arguments in the proofs of [3], where it is shown 

by variational arguments that minimizers of certain static Schrödinger bridge problems 

admit a factorization.

Proposition 4.4. Let π ∈ Π(µ, ν) and let R ∈ P(X × Y) satisfy R ∼ P := µ ⊗ ν. The 

following are equivalent:

(i) (π, R) is cyclically invariant,

(ii) (π, R) is weakly cyclically invariant,

(iii) there exist Borel functions ϕ : X → (0, ∞) and ψ : Y → (0, ∞) such that (x, y) �→

ϕ(x)ψ(y) is a version of the density dπ/dR.

The implications (i) ⇒ (ii) and (iii) ⇒ (i) are immediate. The fact that (i) ⇒ (iii)

is also well known, cf. [12], but will not be used directly. For the proof of (ii) ⇒ (iii), a 

measure-theoretic fact will be useful. Given a set A ⊂ X × Y with P (A) = 1, Lemma 4.5

below states that within any set B of positive measure we can find a point (x∗, y∗) which 

acts like an airline hub for A: any two points of A are connected through (x∗, y∗), modulo 

marginal nullsets. In particular, any trip can be achieved with at most one stopover, 

and we may stop within B. (The bound of one is optimal as the set A need not be a 

rectangle; in fact, A may fail to contain any measurable rectangle of positive measure 

[22, Exercise 5.4, p. 74].) Lemma 4.5 is refinement of [6, Lemma 4.3] which asserts the 

connectedness of A in the sense of [12]—in our analogy, connectedness means that any 

trip between two points of A can be achieved with finitely many stopovers at some points 

in A.

Lemma 4.5. Let P = µ ⊗ ν and let A, B ⊂ X × Y be Borel sets with P (B) > 0 and 

P (A) = 1. There are Borel sets X0 ⊂ X and Y0 ⊂ Y with µ(X0) = ν(Y0) = 1 such that 

setting A0 := A ∩ (X0 × Y0) and B0 := B ∩ (X0 × Y0), there exists a point

(x∗, y∗) ∈ B0 such that (x, y∗), (x∗, y) ∈ A0 for any (x, y) ∈ X0 × Y0.

Proof. Let Cx = {y : (x, y) ∈ C} denote the section of a set C ⊂ X × Y at x ∈ X, and 

analogously for y ∈ Y. Let X1 = {x ∈ X : ν(Ax) = 1}. In view of Fubini’s theorem, 



P. Ghosal et al. / Journal of Functional Analysis 283 (2022) 109622 17

P (A) = 1 implies µ(X1) = 1. Similarly, P (B) > 0 implies that {x ∈ X : ν(Bx) > 0} has 

positive µ-measure. In particular, there exists a point x∗ ∈ X1 with ν(Bx∗
) > 0.

Next, let Y0 = {y ∈ Y : µ(Ay) = 1} ∩ Ax∗
. Then again ν(Y0) = 1, and in particular 

there exists a point y∗ ∈ Y0 ∩ Bx∗
. Moreover, the set X0 := X1 ∩ Ay∗

satisfies µ(X0) = 1. 

By passing to Borel subsets of full measure, we may assume that X0, Y0 are themselves 

Borel.

Writing A0 = A ∩ (X0 × Y0) and B0 = B ∩ (X0 × Y0), we have by construction that 

(x∗, y∗) ∈ B0 satisfies (x∗, y) ∈ A0 for all y ∈ Y0 and (x, y∗) ∈ A0 for all x ∈ X0. �

Proof of Proposition 4.4 (ii) ⇒ (iii). Let Z, Ω1, Ω0 be as in Definition 4.1. Our aim is to 

find Borel functions ϕ : X → (0, ∞) and ψ : Y → (0, ∞) such that Z ′(x, y) := ϕ(x)ψ(y)

defines a version of the density dπ/dR. It is sufficient to construct ϕ on a Borel set 

X0 ⊂ X of full marginal measure, as we may then extend ϕ by setting ϕ = 1 on X \ X0, 

and similarly for ψ. In particular, we may assume that projX Ω1 = X and projY Ω1 = Y.

Noting that P (Ω1) > 0 due to π ≪ P , we can apply Lemma 4.5 to Ω1 and Ω0, and in 

view of the above observation, we may assume that X0 = X and Y0 = Y in its assertion. 

We then obtain a point

(x∗, y∗) ∈ Ω1 such that (x, y∗), (x∗, y) ∈ Ω0 for any (x, y) ∈ X × Y.

Define ϕ(x∗) := a > 0 as an arbitrary number and ψ(y∗) := Z(x∗, y∗)/ϕ(x∗). Given 

(x, y) ∈ X × Y, we have (x∗, y) ∈ Ω0 and (x, y∗) ∈ Ω0, allowing us to define

ψ(y) := Z(x∗, y)/ϕ(x∗) ∈ (0, ∞), ϕ(x) := Z(x, y∗)/ψ(y∗) ∈ (0, ∞).

The fact that Z is Borel readily implies that ϕ, ψ are Borel. Define Z ′(x, y) := ϕ(x)ψ(x)

for (x, y) ∈ X × Y. Clearly Z ′ is Borel and takes values in (0, ∞). Let (x, y) ∈ Ω1. Then 

(x, y∗), (x∗, y) ∈ Ω0 and weak cyclical invariance yields

ϕ(x)ψ(y) =
Z(x, y∗)

ψ(y∗)

Z(x∗, y)

ϕ(x∗)
=

Z(x, y∗)Z(x∗, y)

Z(x∗, y∗)
= Z(x, y).

That is, Z ′ = Z on Ω1. To prove the same relation on Ω0, consider (x, y) ∈ Ω0. There 

are x′ ∈ X and y′ ∈ Y such that z1 := (x, y′) and z2 := (x′, y) are in Ω1, and of course 

we also have z3 := (x∗, y∗) ∈ Ω1. Thus the already established fact that Z ′ = Z on Ω1

implies

ϕ(x)ψ(y) =
ϕ(x)ψ(y′) ϕ(x′)ψ(y) ϕ(x∗)ψ(y∗)

ϕ(x′)ψ(y∗) ϕ(x∗)ψ(y′)
=

Z(x, y′)Z(x′, y)Z(x∗, y∗)

Z(x′, y∗)Z(x∗, y′)
.

On the other hand, z̄1 = (x, y) and z̄2 = (x′, y∗) and z̄3 = (x∗, y′) are all in Ω0, so that 

the invariance yields

0 < Z(x, y′)Z(x′, y)Z(x∗, y∗) = Z(x, y)Z(x′, y∗)Z(x∗, y′).
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As a result, Z ′(x, y) = ϕ(x)ψ(y) = Z(x, y), showing Z ′ = Z on Ω0. Recalling R(Ω0) = 1, 

it follows that Z ′ is again a version of dπ/dR. �

5. Proof of main results and ramifications

For ease of reference, we first summarize some known results.

Lemma 5.1. Let (µ, ν) ∈ P(X) × P(Y), R ∈ P(X × Y) and R ∼ P := µ ⊗ ν.

(i) If the static Schrödinger bridge problem (2.1) is finite, it admits a unique mini-

mizer π ∈ Π(µ, ν). Moreover, (π, R) is cyclically invariant.

(ii) Let π ∈ Π(µ, ν). If (π, R) is cyclically invariant and (2.1) is finite, then π is its 

minimizer.

(iii) There exists at most one π ∈ Π(µ, ν) such that (π, R) is cyclically invariant.

Proof. Recall that cyclical invariance of (π, R) is equivalent a factorization of the den-

sity dπ/dR into strictly positive functions; cf. Proposition 4.4 or [12]. Taking that into 

account, (i) and (ii) can be found in [40, Theorem 2.1] in the stated generality. (The 

original results are due to [12,13,17,25,50], among others.) Finally, (iii) follows from (ii), 

as was also noted in [40, Corollary 2.9]: if π, π′ ∈ Π(µ, ν) have positive densities dπ/dR, 

dπ′/dR admitting factorizations, then dπ/dπ′ also admits a factorization and now (ii), 

applied with π′ as reference measure, implies that π is the unique minimizer of H(·|π′). 

As π′ ∈ Π(µ, ν) is itself a coupling, this minimizer is π′. �

Proof of Theorems 1.3, 1.4, 2.4 and 2.5. Given data as in Theorem 2.5, the sequences 

(µn) and (νn) are tight, which readily implies the tightness of (πn); cf. [52, Lemma 4.4, 

p. 44]. In view of Propositions 4.2 and 4.4, any cluster point π is such that (π, R) is 

cyclically invariant. The uniqueness of cyclically invariant couplings, see Lemma 5.1 (iii), 

shows that all cluster points coincide and hence that the original sequence (πn) converges. 

This proves Theorem 2.5.

To deduce Theorem 1.4 from Theorem 2.5, we choose the reference measure as in (2.2); 

i.e.,

dRn

dPn
= ane−cn/εn ,

dR

dP
= ae−c/ε,

where an, a are the normalizing constants. Combining the uniform convergence cn/εn →

c/ε on bounded sets with the continuity of c, we see that (2.4) holds, for instance with 

αn = an/a.

The uniqueness part of Theorem 2.4, as well as its last assertion, is stated in 

Lemma 5.1. To deduce existence from Theorem 2.5, we consider the constant marginals 

(µn, νn) := (µ, ν) and define approximating reference measures Rn via
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dRn

dP
= an

(

dR

dP
∨

1

n

)

,

where an is the (finite) normalizing constant. As dR
dP is continuous and positive, hence 

bounded away from zero on small balls, the condition (2.4) is satisfied with Pn = P

and a function o(1) independent of n. The static Schrödinger bridge problem (2.1) for 

Rn falls into the classical setting of Lemma 5.1 (i) because the product coupling π0 :=

µ ⊗ν satisfies H(π0|Rn) < ∞. In particular, the associated cyclically invariant couplings 

πn ∈ Π(µ, ν) exist, and now Theorem 2.5 implies the existence of π ∈ Π(µ, ν) such that 

(π, R) is cyclically invariant. Finally, Theorem 1.3 is a direct consequence of Theorem 2.4

via (2.2). �

Proof of Corollary 2.6. Define R ∈ P(X × Y) by dR/dP := f and let π be as in The-

orem 2.4. As (π, R) is cyclically invariant, a version of the relative density admits a 

factorization dπ/dR(x, y) = ϕ(x)ψ(y) into positive Borel functions; cf. Proposition 4.4. 

The fact that π has marginals (µ, ν) then translates to the fact that (ϕ, ψ) solve the 

Schrödinger system. Uniqueness of ϕ, ψ up to a constant follows from the uniqueness 

of π (here the fact that R ∼ P is particularly important). �

Remark 5.2. Assumption 2.3 can be replaced by the assumption that the marginals (X, µ)

and (Y, ν) satisfy the so-called doubling property. The latter assumption is structurally 

different as it refers to the specific measures rather than the metric spaces. Indeed, let 

(X, µ) be doubling; i.e., there exist C > 0 such that

µ(B2r(x)) ≤ Cµ(Br(x))

for any ball Br(x) ⊂ X. This ensures that differentiation of measures (in the sense of 

Assumption 2.3) holds for measures ρ ≪ µ; cf. [31, Theorem 1.8, p. 4]. In particular, 

Lemma 3.2 holds as stated, and then so does Proposition 3.5. If (Y, ν) is also doubling, 

then so is (X × Y, P ) where P = µ ⊗ ν, showing that differentiation wrt. P holds for 

measures ρ ≪ P , in particular for ρ := R ∼ P in the context of Proposition 4.2. As 

dR/dP > 0, it follows that differentiation also holds wrt. R. This ensures that the proof 

of Proposition 4.2 remains valid, and hence the main results.

5.1. Instability for discontinuous costs

We show that stability of entropic optimal transport fails as soon as the cost function 

has an “essential” discontinuity. To see why the qualifier is necessary, consider a cost 

function c of the form

c(x, y) = ĉ(x, y) − f(x) − g(y)

for some possibly discontinuous functions f : X → R, g : Y → R and a continuous 

function ĉ. It is immediate from Definition 1.1 that the marginal functions f and g do 
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not affect cyclical invariance. The cost c is equivalent to ĉ from this perspective; in terms 

of optimal transport, the interpretation is that f, g change the cost of any coupling by the 

same constant, and therefore do not change the optimizer. As a result, a discontinuity 

in c can only be relevant for stability if c cannot be written in the above form with a 

continuous ĉ, which is the condition below.

Proposition 5.3. Let c be a cost function such that (x, y) �→ c(x, y) − f(x) − g(y) is 

discontinuous for any functions f : X → R and g : Y → R. Then the stability of entropic 

optimal transport fails for c. That is, there are marginals (µn, νn) → (µ, ν) and (c, 1)-

cyclically invariant couplings πn ∈ Π(µn, νn) with πn → π ∈ Π(µ, ν) where π is not 

(c, 1)-cyclically invariant.

Proof. Fix arbitrary (x0, y0) ∈ X × Y. As (x, y) �→ c(x, y) − c(x, y0) − c(x0, y) is discon-

tinuous, there is a sequence (xn, yn) → (x∞, y∞) such that

c(xn, yn) − c(xn, y0) − c(x0, yn) 
→ c(x∞, y∞) − c(x∞, y0) − c(x0, y∞). (5.1)

Consider the marginals µn = (δx0
+ δxn

)/2 and νn = (δy0
+ δyn

)/2. Let πn ∈ Π(µn, νn)

be (c, 1)-cyclically invariant; that is,

πn(x0, y0)πn(xn, yn)

πn(x0, yn)πn(xn, y0)
= exp

[

c(x0, yn) + c(xn, y0) − c(x0, y0) − c(xn, yn)
]

. (5.2)

After passing to a subsequence, πn converge weakly to a coupling π ∈ Π(µ, ν) of µ :=

(δx0
+ δx∞

)/2 and ν := (δy0
+ δy∞

)/2. Suppose for contradiction that π is cyclically 

invariant, then

π(x0, y0)π(x∞, y∞)

π(x0, y∞)π(x∞, y0)
= exp

[

c(x0, y∞) + c(x∞, y0) − c(x0, y0) − c(x∞, y∞)
]

. (5.3)

As the left-hand side of (5.2) converges to the left-hand side of (5.3), the convergence of 

the right-hand sides follows, contradicting (5.1). �
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