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1. Introduction

Computational progress has led to manifold applications of optimal transport in
high-dimensional problems ranging from machine learning and statistics to image and
language processing (e.g., [2,15,48,1]). In this context, entropic regularization is crucial to
enable efficient large-scale computation via Sinkhorn’s algorithm, hence has become the
focus of dozens of recent studies. We refer to [44] for a survey with numerous references.

Our main contribution is the stability of solutions to the entropically regularized op-
timal transport problem with respect to the marginals and the cost function. Parallel to
the fundamental stability theorem in classical optimal transport, it justifies, for example,
that approximations found by solving discretized problems indeed converge to the true
solution when the cost function is continuous. Our results are stated in terms of cyclical
invariance, a geometric notion inspired by the c-cyclical monotonicity property in classi-
cal optimal transport. When the entropic transport problem has finite value, a coupling
is cyclically invariant if and only if it is an optimal transport. Our stability theorem en-
tails a general wellposedness result beyond the realm of optimization: cyclical invariance
singles out a unique coupling even if the transport problem has infinite value—i.e., all
couplings have infinite cost—and therefore the paradigm of cost minimization does not
differentiate couplings from one another.

For ease of exposition, the Introduction focuses on entropic optimal transport. More
general results are stated in Section 2 using the language of Schrédinger bridges that
turns out to be natural for our approach. Given a measurable cost function ¢: X x Y —
R, on Polish probability spaces (X,u) and (Y,v), we consider the entropic optimal
transport problem with regularization parameter € > 0,

inf / cdr +eH(n|P), P:=puQv, (1.1)
ﬂGH(W/)X y
X

where TI(p, v) is the set of couplings and H(:|P) denotes relative entropy (or Kullback—

Leibler divergence) with respect to the product P of the marginals, defined as H(w|P) :=

f log(4%) dr for 7 < P and H(r|P) := oo otherwise. If the minimization (1.1) is finite;
e., 1f

there exists mg € II(u, v) with /Cdﬂ'o + H(m|P) < o0, (1.2)

then it admits a unique minimizer = € II(y, v) and moreover T ~ P.

Definition 1.1. A coupling 7 € II(u,v) is called (¢, €)-cyclically invariant if = ~ P and
its density admits a version dn/dP : X x Y — (0, 00) such that
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for all k € N and (z;,y;)%_, € X x Y, where y1 := y1.

By way of a factorization property that is equivalent to cyclical invariance, known
results imply the following relation to the optimization (1.1).

Proposition 1.2. Let (1.1) be finite. Then m € I(u,v) is the minimizer of (1.1) if and
only if m is (¢, €)-cyclically invariant.

See Section 5 for details and references. We are mainly interested in optimal transport
problems on Euclidean spaces X, Y. However, the only particular property of such spaces
that plays a role for our analysis is that Lebesgue’s theorem on the differentiation of
measures holds. Thus, we postulate that property (see Assumption 2.3) and otherwise
allow for a general Polish setting. We can now state the aforementioned wellposedness
result.

Theorem 1.3 (Wellposedness). Let ¢ : X x Y — [0,00) be continuous, € > 0 and (u,v) €
P(X) x P(Y). There exists a unique (c,e)-cyclically invariant coupling © € (u,v).
If (1.1) is finite, 7 is ils unique minimizer.

Uniqueness follows from known facts and does not require the continuity of c. On the
other hand, existence beyond the framework of finite cost is a completely novel result.
Rather than using convex analysis or variational arguments, it is based on the subsequent
stability theorem for cyclical invariance. One example where wellposedness with infinite
cost is of interest, is the statistical notion of rank recently proposed in [18]. Multivariate
ranks have been defined in nonparametric statistics through Brenier’s optimal trans-
port map to extend the usual scalar notions and tests; see [15,19,20,28]. Leveraging the
same idea but computationally less expensive, entropic optimal transport is used in [18]
to define “differentiable ranks.” Theorem 1.3 allows one to naturally define such ranks
for arbitrary distributions—like in the scalar case—without imposing a second moment
condition.

Theorem 1.4 (Stability). For n > 1, let (in,vn) € P(X) x P(Y), let €, > 0 and let
en t X XY = [0,00) be measurable. Let my, € I(pin, vn) be (cn,en)-cyclically invariant.
Suppose that p,,v, converge weakly to some limits u,v, that €, — € > 0 and that
¢, converges uniformly on bounded sets to a continuous function c. Then m, converges

weakly to a limit m € (u,v) and 7 is (c,e)-cyclically invariant.

If the involved optimization problems are finite, the theorem states the stability of the
(entropic) optimal transport couplings. A simple yet important application is when the
marginals p, v are approximated by discrete measures, as it would be in a computational
implementation. Even for this particular case, we are not aware of similar results in the
literature. We mention that continuity for the limiting cost ¢ in Theorem 1.4 is a sharp
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condition: Proposition 5.3 will demonstrate that any nontrivial discontinuity in ¢ leads
to a failure of Theorem 1.4, for suitable marginals.

A noteworthy application of the stability theorem was presented in the follow-up
work [40] where it was observed that convergence of Sinkhorn’s algorithm can be seen as
a stability problem. In that context, the marginals p.,,, v, are produced by the algorithm
and known to converge to p,v in great generality, while the iterates of the algorithm
correspond to m,. Theorem 1.4 then implies the weak convergence to the correct op-
timizer 7. Its geometric approach completely avoids the difficulty of establishing the
integrability properties of u,, v, or even the finiteness of the associated entropic optimal
transport problems.

The general existence result of Theorem 1.3 is a consequence of Theorem 1.4 applied
with ¢, = ¢, &, = € and approximations (pn,v,) — (u,v) where u,,v, are discrete
measures with finite support. To solve the problem with marginals (u,,v,), one could
use Proposition 1.2, but this particular case is a finite-dimensional minimization problem
that can also be solved by standard calculus arguments. In particular, Theorem 1.4
yields an approach to construct cyclically invariant couplings which is novel even when
the optimization problem is finite. This approach does not use the (classical but non-
trivial) arguments of convex analysis and density factorization behind Proposition 1.2
(see [12,13,17,25,49,50], among others). It is also quite different from the iterative method
of [26] which uses another finiteness condition; see [35] for a modern presentation, analysis
and extension of that method. Instead, our approach is close in spirit to the construction
of c-cyclically monotone couplings that is standard in classical optimal transport; cf. [52,
pp. 64-65].

The analogy with classical optimal transport extends in several directions. McCann
showed in [36] that cyclical monotonicity singles out a particular transport map for
quadratic cost ¢ on R? even if the optimal transport problem (here the 2-Wasserstein dis-
tance) is infinite, thus extending Brenier’s map to this setting; see also [52, pp. 249-258]
for more general results. Here, the analogy becomes precise in the limit ¢ — 0: the
extended Brenier coupling is the weak limit of the couplings m = 7. established in Theo-
rem 1.3 (this follows from [10]). Another important parallel occurs at the technical level.
Working with cyclical invariance, we proceed in a local fashion and focus on finitely many
points (z;,y;) at a time, rather than working with global objects like the Schréodinger
potentials and their function spaces. For instance, non-compact marginal supports do
not cause any particular difficulty in this approach. We emphasize that the novelty of
the present study lies in how cyclical invariance is exploited and proved for the limit;
the invariance property itself is merely an equivalent way of stating a factorization prop-
erty of the density that is well known (see [12] or Proposition 4.4 below). It turns out
that, once the line of argument is found, remarkably general results can be obtained
with fairly concise proofs. We may hope that the techniques developed here can yield
further insights into asymptotic questions on entropic optimal transport, and thus view
the technique itself as a central contribution. Such questions may include quantifying the
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speed of convergence in our stability theorem or finding analogous results for dynamic
Schrédinger bridge problems.

The companion paper [10] illustrates the use of cyclical invariance for the limit & — 0.
In this degenerate asymptotic, the limiting object is classical optimal transport as charac-
terized by c-cyclical monotonicity. The latter property describes the shape of the support
of the coupling and, therefore, is readily amenable to weak convergence arguments via
Portmanteau’s theorem. The same fact is often exploited in classical optimal transport
theory, for instance in the standard proof of its stability theorem [52, p.77]. In the
present study, the limit is entropic optimal transport. Being a property of the density,
the relation of cyclical invariance with weak convergence is less direct (especially as the
measures in Theorem 1.4 may well be mutually singular). Our general principle is to blow
the points (z;,y;) in Definition 1.1 up to small balls, pass to the weak limit, and then
recover information about the limiting density by shrinking the balls, via differentiation
of measures. This technique appears to be novel in this area.

Starting with [38,39], a number of works examine the degenerate asymptotic € — 0
where the limiting problem is classical optimal transport. The fact that weak limits
of entropic optimizers are optimal transports was established by [33] using Gamma-
convergence arguments in a more general context of Schrodinger bridges; see also [14]
for the case of optimal transport with quadratic cost. As mentioned above, [10] extends
this result to transport problems with infinite value by way of cyclical invariance and
c-cyclical monotonicity; moreover, a large deviations principle quantifies the local rate of
convergence. Related results can be found in [16,42] where the expansion of the optimal
cost as a function of € is studied. We remark that Gamma convergence seems difficult
to use in the context of Theorem 1.4 due to the reference measures changing along the
sequence. The limit € — 0 can also be analyzed in the associated dual problem, here the
solutions are called potentials. Convergence of potentials was shown in [29] for quadratic
costs and compactly supported marginals, and recently in [41] for a general Polish setting.
Closer to the problem occurring in computational practice as well as the present question
of stability, [9] studies the convergence of the discrete Sinkhorn algorithm to an optimal
transport in the joint limit when €, — 0 and the marginals p, v are approximated by
discretizations p,, v, satisfying a certain density property. Explicit error bounds are
derived, for instance for quadratic cost on the torus, to establish near-linear complexity
of the resulting algorithm. For more on the computational challenges and remedies in
this regime, see for instance [51] and the references therein.

While we are not aware of general stability results for the nondegenerate limit
€n — € > 0 in the literature, the sampling complexity of entropic optimal transport
(with fixed €) can be seen as a particular form of stability with respect to the marginals.
Indeed, [27,37] study how the empirical entropic Wasserstein distance, obtained by op-
timally coupling i.i.d. samples from the marginals, converges to the population version.
The results are based on global arguments exploiting the regularity of the Schrédinger
potentials, which, in turn, is achieved by imposing compactness and decay conditions
on the marginals. See also [30] which studies a related asymptotic regime for a differ-
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ent regularization of optimal transport. Related to the present work at least in spirit,
there are several areas where analogues of c-cyclical monotonicity have recently lead to
breakthroughs, including martingale optimal transport [7], optimal Skorokhod embed-
dings [5,8] and weak transport [4].

The remainder of this paper is organized as follows. Section 2 details the setting
and main results in the language of Schrédinger bridges. The first step towards the
stability theorem is reported Section 3 where we establish that weak limits of cyclically
invariant couplings remain absolutely continuous. This is based on comparing measures
of rectangles, an analysis that may be of independent interest. Section 4 continuous the
main proof by showing that limits of cyclically invariant couplings are again cyclically
invariant. It comprises of two steps; the aforementioned principle of blowing up points
and passing to the limit first yields a weakened version of the invariance property, and
then measure-theoretic arguments can be used to show that the (proper) invariance
property already follows. The concluding Section 5 collects the arguments to prove the
main results and their ramifications, including that continuity of the cost function is
necessary for stability.

2. Main results

Let (X,d) be a complete, separable metric space; we write P(X) for the space of
probability measures on the Borel o-field B(X) endowed with weak convergence (induced
by bounded continuous functions). The same is assumed for the second marginal space
(Y,d), and we equip X x Y with the metric d((z,y), (2',y")) = max{d(z,z'),d(y,y’)}.
Throughout this section, two measures (p,r) € P(X) x P(Y) play the role of given
marginals for the static Schréodinger bridge problem

inf H(«w|R 2.1
et (m|R) (2.1)

where R € P(XxY) is a given reference measure. We refer to [24,34] for extensive surveys
on Schrodinger bridges. The entropic optimal transport problem (1.1) can be recovered
(up to constants) as a special case for R defined by

dR
P ae™%, P:=pu®v (2.2)
where a = ([ =%/ dP)~"! is the normalizing constant. In particular, R ~ P, which will
also be an important condition in many of our results for (2.1). By way of (2.2), the
following generalizes Definition 1.1.

Definition 2.1. Let 7 € II(u,v) and R € P(X x Y). We call (m, R) cyclically invariant if
m ~ R ~ P and there exists a version dr/dR : X x Y — (0,00) of the relative density
satisfying
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for all k € N and (2, yi)le C X xY, where yg1 := 1.

:u|>1

The analogue of the finiteness condition (1.2) is that
there exists mg € II(p, v) with H(m|R) < o0
We summarize the pertinent facts; see Lemma 5.1 for detailed references.

Proposition 2.2. Let R ~ P and let (2.1) be finite. There exists a unique minimizer
m € I(p,v) for (2.1), it satisfies m ~ R, and it is the unique coupling m such that (7, R)
is cyclically invariant.

In the remainder of the paper we assume that the underlying spaces allow for differ-
entiation of measures in the following sense.

Assumption 2.3. Given p, A € P(X) satisfying p < A, there exists X’ C X of full A-
measure such that

zeX (2.3)

defines a version of the Radon—Nikodym density dp/d). The analogous property is as-
sumed on the space X x Y.

For Euclidean spaces X, Y, the assumption holds by the standard differentiation the-
orem [21, Theorem 1.32, p. 53]. More generally, it holds in the context of so-called Vitali
covering relations; the classical reference is [23, Theorem 2.9.8, p. 156]. For example, As-
sumption 2.3 holds when X and X XY are compact subsets of Riemannian manifolds (due
to the “directionally limited” property established in [23, Section 2.8.9, pp. 145-146]), or
more generally, countable unions of such sets. See also [31, pp. 4-8, esp. Example 1.15] for
an accessible introduction. For our purposes, the main restriction is that differentiation
of measures generally fails on infinite-dimensional spaces; see [47] for a counterexample
and [46] for a related result on coverings. An alternative to Assumption 2.3, making our
results slightly more general, is to impose a doubling condition on the specific marginal
measures (i, v); cf. Remark 5.2.

We have seen in the Introduction that continuity of ¢ is essential for the stability of
entropic optimal transport. In view of (2.2), it is then clear that the regularity of dR/dP
is pivotal. The following generalizations of Theorems 1.3 and 1.4 are our main results.

Theorem 2.4 (Wellposedness). Suppose that R ~ P := p®v and that the density dR/dP
admits a continuous version. Then there exists a unique coupling m € I(u,v) such that
(m, R) is cyclically invariant. If (2.1) is finite, 7 is its minimaizer.
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Theorem 2.5 (Stability). For n > 1, consider (pin,vy) € P(X) x P(Y), R, € P(X xY)
and w, € (upn,vy). Let (m,, Ry) be cyclically invariant and suppose that pip,, vy, Ry,
converge weakly to some limits p,v, R, where R ~ P := p®v. Writing P, := p, ® v,

suppose also that for some versions 3};" , % : X XY = (0,00) of the respective densities

and some constants o, > 0, it holds that for any fired z € spt R,

R, . dR
() = 1+ o(D]an S5.(2). (2.4

where o(1) stands for a function ¢,(z',n) — 0 as d(z',z)+1/n — 0. Then m, converges
weakly to a limit m ~ R and (mw, R) is cyclically invariant.

Schrodinger bridges are closely related to so-called Schrodinger systems (also called
Schrodinger equations). For instance, Theorem 2.4 entails the following wellposedness
result.

Corollary 2.6 (Schrédinger system). Let (u,v) € P(X)x P(Y) and let f : XxY — (0, 00)
be continuous with fodeP = 1. There exist Borel functions ¢ : X — (0,00) and
P Y — (0,00) such that

/j@wwwwwwzwwr% /fmwwmmwmzw@rl (2.5)

for p-a.e. x € X and v-a.e. y € Y. The pair (¢,1)) is a.s. unique up to a multiplicative
constant.’

As above, the uniqueness follows from known results. Existence for continuous func-
tions f such that f, f~! are uniformly bounded was first shown in [11]. Under the bound-
edness condition alone, existence is due to [32]. Using the connection with Schrodinger
bridges, [49] relaxed the boundedness to a condition of finite entropy, corresponding to
the finiteness of (2.1) in our setting. We refer to [34] for a more complete review of the lit-
erature which dates back to Schrédinger. In Corollary 2.6, we reintroduce the continuity
condition of [11] but avoid any condition of finite entropy or boundedness. Of course, the
stability result of Theorem 2.5 also has an analogous corollary for Schrédinger systems.

3. Absolute continuity of limits
In this section we show that if (m,, R,) is cyclically invariant and R, ~ u, ® v,

holds in a locally uniform sense (to be made precise), then any weak limit pair (7, R) =
(limy, 7, lim,, R,,) must satisfy = < R.

2 Le., any solution (¢, ') satisfies ¢’ = ap p-a.s., ¥’ = a~ 4 v-a.s., for some a > 0.
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As the method of proof is novel, we first sketch the line of argument. We shall be
comparing the measures of rectangles F; x G; C XX Y for ¢ = 1,2 with their permutations
F; x G;41.° Consider first the trivial case R, = P, := i, ® v, then cyclical invariance
of (mp, Ry,) implies

7Tn(F1 X Gl)ﬂ'n(FQ X Gg) = 7Tn(F1 X Gg)ﬂ'n(FQ X Gl) (31)

This will of course no longer hold if R, # P,, but the equivalence R,, ~ P, suggests
that the two sides of (3.1) should still be comparable. We will quantify the equivalence
R, ~ P, and assume it to hold uniformly in n. Then, we prove that the two sides of (3.1)
are comparable in the sense that their quotient remains bounded uniformly in n. For
suitable rectangles, the bound propagates to the weak limit (7, R), accomplishing the first
step of the proof. The second step is to argue by contraposition that this bound implies
7 < R. Indeed, we establish that if 7 € II(u, v) is singular wrt. g ® v, then there exist
F;, G; such that 7(Fy x G1)7(Fy x G2) is above a threshold whereas m(Fy x Go)m(F2 x Gy)
is arbitrarily small.
For ease of reference, we first record two measure-theoretic facts.

Lemma 3.1. Let p be a o-finite measure on a Polish space (2,d). We say that C C Q is
p-continuous if its boundary OC is a p-nullset.

(i) p-continuous sets form a field; i.e., unions, intersections, complements, differences
of p-continuous sets are again p-continuous.

(ii) For fized z € Q, the open ball B.(z) = {2’ : d(z,2") < r} is p-continuous for all
but countably many values of v > 0. In particular, given r > 0, there exists 0 < r’ <r
such that B/ (z) is p-continuous.

(iii) If F C X is p-continuous and G C Y is v-continuous, then F x G is w-continuous
for any m € M(u,v).

(iv) Given A € B(Q?) and € > 0, there exists an open set B C A, := {d(-,A) < €}
with p(0B) = 0 and p(AAB) < e.

Proof. Statement (i) is verified directly; (ii) holds because a o-finite measure admits at
most countably many disjoint sets of positive measure; (iii) follows from O(F x G) =
(F x 0G) U (OF x G). Let A, ¢ be as in (iv). By interior and exterior regularity of p,
there is a compact set K C A with p(A\ K) < € and an open set A C O C A, with
p(O\ A) < e. We have r(z) := d(z,0°) > 0 for all z € K by the closedness of O°,
and K is covered by the open balls B,(.)(z) with z € K. After making r(z) smaller if
necessary, each of these balls is p-continuous. Choosing a finite cover {B,(.,)(2:)}i<n,
the set B := U;B,(.,)(2;) has the required properties. O

The second fact is a conditional version of the differentiation of measures, based on
Assumption 2.3 for the marginal space X. While not widely known, this concept was

3 We use the cyclical convention for i € {1,2}; that is, i + 1 := 1 for i = 2.
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already established in [45], although the author defined differentiation of measures in a
slightly different way. For the convenience of the reader, we detail the adaptation to our
setting.

Lemma 3.2. Let m € P(X xY) and let p be its first marginal. Consider for x € spt p and

r >0 the probability measure 7 € P(Y) defined by

(B (z) x C)
(B (x))

Under Assumption 2.3 on X, there exists Xo C sptp with u(Xo) = 1 such that for all
T € Xg, the weak limit

m(C) = C € BY).

Ty = lim (")
r—0

exists. Moreover, T, defines a reqular conditional probability of © given x.

Proof. As X,Y are Polish, there exists some regular conditional probability 7, ; it suffices

to show that lim,_ ﬂg(f) = 7, weakly for py-a.e. x € X. Fix a countable collection C

of nonnegative bounded continuous test functions ¢ : Y — R that determine weak
convergence (cf. [43, Theorem 6.6, p.47]). Then we need to show, for fixed ¢ € C, that

/gﬁdwfﬂr) — /cbdfrm for p-a.e. x € X. (3.2)

As 7, is a regular conditional probability, it holds for u-a.e. x € X that

/ bl = s [ty [ o) i)
B,

(z)
1 N -
~WB@) { T [ o7t

We now apply Assumption 2.3 to the pair fdu < dp and deduce that the right-hand
side converges to f(x) for p-a.e. x € X, which is (3.2). O

The next result is the main ingredient for the second step as sketched above: the sets
{z;} x U; constructed in Lemma 3.3 will be “blown up” to rectangles in the proof of
Proposition 3.5 and used to show by contraposition that m < R.

Lemma 3.3. Let m € II(p,v) and let 7 = p(dr) @7, (dy) be a disintegration. If 1 &L pQv,
then

/,1/2{(3317.1:2) € X2 . dU,,U5 € B(Y) with 7T$1(U1) > Ovﬂ'wi(Ui+1) = O} > 0.
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In addition, the sets U; can be chosen to be disjoint, of arbitrarily small diameter, and
such that 7, (0U;) = v(0U;) =0 fori,j € {1,2}.

Proof. Let 7 4« p ® v; that is, there exists a set A € B(X x Y) with 7(A) > 0 and
(L®v)(A) =0. Let A, = {y : (z,y) € A} denote the a-section, then v(A,) = 0 for
p-a.e. x € X. On the other hand, any B € B(Y) satisfies v(B) = [y mp/(B) pu(da’). In
particular, v(A4,) = 0 implies that 7,/ (A4,) = 0 for p-a.e. 2’ € X. Therefore,

F={(z,2') € X*: 1(A,) =0} has full measure .

As w(A) > 0, the set W = {z : m,(A;) > 0} satisfies (W) > 0 and hence p?((W x
W)NF) > 0. For (z1,22) € (W x W)NF we have 7, (A,,) > 0 and m,,(A,,,,) = 0.
In particular, the disjoint sets U] := A, \ Az, satisfy m,, (U]) > 0 and 7, (U ;) = 0.
By intersecting with a suitable ball, the diameter of U/ can be assumed to be arbitrarily
small. Finally, let p = 7, + 7y, + v and choose p-continuous sets U/’ for U/ as in
Lemma, 3.1 (iv), with € > 0 small enough such that the sets U; := U/’ \ U;’.; have the
required properties; cf. Lemma 3.1 (). O

The next lemma establishes that the two sides of (3.1) are comparable with a bound
related to the equivalence R, ~ P,. The following notation is useful: when k£ > 1 and a
k-tuple (z1,...,21) € (X x Y)¥ are given, and

if z; = (z,y:) €XXY, weset Z:= (2 Yit1), (3.3)
with the cyclical convention y;41 := y1.
Lemma 3.4. Let 7 € (p,v) and 71 < R ~ P := p ® v. Consider rectangles A; €
B(X)xB(Y) for1 <i <k and denote Ay x ---x Ay := {(21,..., %) : z; € A;}. For some
a,a > 0, suppose that dR/dP < o on A; and (dR/dP)™' < & on A;, for alli. Then
(AL X - x Ag) < (a@)k TR (AL x - x Ay).

Proof. Set Z = dw/dR and note that

P(dz) - P(dzg) = p(dxy) - - - p(dag)v(dyr) - - - v(dyg) = P(dz1) - - - P(dzy). (3.4)

Using the cyclical invariance of (m, R) and the rectangular form of A;,

Wk(Al X oo X Ag)

= [ 22 Gpta) - Ghla) Plda) - P(d)

A1><---><Ak
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<oF / Z(1) -+ Z(z) P(d2) -+~ Pdz)

Al XX Ag
—o* / Z(31) - Z(5) Pldz) -+~ P(d%)
Al XX Ag
—a* [ Z() 2 Pldn) - Plda)
(e 21 2k 21 2k
Ay XX Ag
< (aa)® / Z(z1) - Z(z) R(dz1) - - - R(dzy,)
Ay XX Ay

= (aa)kn*(A; x - x A). O
We can now prove the main result of this section.

Proposition 3.5. Let (un, vn) € P(X)XP(Y), let m, € (pn, vn) and Ry, ~ Py, := pn, Q.
Suppose that (my,, Ry) is cyclically invariant for each n and that m, converges weakly to
some limit w. In particular, p,,v, converge to some limits p,v, and © € I (p,v). Set
P = p®v and suppose that (R, P,) are uniformly locally equivalent in the following

sense: there are versions 31;" : X XY = (0,00) of the relative densities and constants

ay, > 0 such that given z € spt P, there exist r = r(z) > 0 and ng = no(z,r) with

] dR,, , , _, 4P,
sup (an P, () + a, iR, (2 )) < o0. (3.5)

Z/GBT(Z)v n>ng

Then ™ < P.

Proof. Note that the weak convergence of 7, € II(u,,v,,) implies the weak convergence
of its marginals to some limits x4 and v, and then m € TI(u, v). By Lemma 3.2, there is a
set Xo C spt p of full p-measure such that for x € Xy, the weak limit

e w B )
me() = i = R )

exists, and m = u ®, m, is a disintegration of 7. In particular, for any = € Xy and any
m.-continuity set U,

(3.6)

Suppose for contradiction that 7 4« p®v. Then Lemma 3.3 yields x; € Xq (i = 1,2) and
disjoint sets U; such that

q¢:=minm(U;) >0 and m;(Uis1) =0, where m; := my,.
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Moreover, given o > 0, the sets U; can be chosen to be (71 + m2 + v)-continuous and

contained in a ball B, (y;) around some y; € sptv. Using also (3.5), we can choose 79, ng

such that for some a, > 0,
dR,

a"ﬁ <a, on By (z;) xU;

1Py
" dR,

<a, on B, (x;) x Uit1, (3.7)
forall 1 < ¢ < k and n > ng. Writing B;, := B,(z;) for brevity, (3.6) implies in
particular that

F(Biﬂ- X Ul)
N(Bi,r)

7(Bir % Uit1)

—mi(U;) > q,
) u(B:,)

— 7Ti(Ui+1) =0.

That is, given € > 0, choosing r < rg small enough results in

(B x U;) 7(Bi X Uiy1)

Z q—E¢g, < g, 38
(B (3:8)

1(Bir) B
and we may further choose r such that p(90B; ) = 0. Specifically, we choose € > 0 such
that e/(q — €) < a2, then (3.8) implies

I 7B, x Ui) > i T[] #(Bis x Uisa).

i=1,2 i=1,2

Note that B;, x U, is a m-continuity set for i, j € {1,2}; cf. Lemma 3.1 (iii). In view of
T, — m, it then follows that

I 7 (Bir x Us) > ot T] 7a(Bir x Uia) (3.9)

i=1,2 i=1,2

for n sufficiently large. On the other hand, we apply Lemma 3.4 with £k = 2 and A; =

B;» x U;. In view of (3.7), the condition of the lemma holds with a = «;!

a = apa,. Noting that the a, cancel to yield (a@)® = a?, the lemma yields the

o, and
inequality opposite to (3.9), a contradiction. O
4. Cyclical invariance of limits

In this section we aim to show that limits of cyclically invariant couplings are again
cyclically invariant, under suitable conditions. We proceed in two steps. First, we estab-
lish that limits are weakly cyclically invariant as defined below. Second, we show that
weak cyclical invariance already implies cyclical invariance. This second step has little
to do with the passage to the limit; rather, it settles some measure-theoretic aspects to
get rid of pesky nullsets.

The “weak” notion is introduced mainly to disentangle the proof of the main result.
It weakens in two ways the cyclical invariance of (m, R) as stated in Definition 2.1: the
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equivalence of m and R is reduced to absolute continuity and the cyclical relation only
holds for points from specific sets. We recall the notation z; from (3.3).

Definition 4.1. Let m € II(p,v) and R € P(X x Y). We call (7, R) weakly cyclically
tnvariant if m < R ~ P := p ® v and there exist

(i) a version Z : X X Y — [0, 00] of the density dr/dR,
(i) Q1,0 € B(X xY) with 7(©;) = R(2) =1 and 0 < Z < o0 on

such that for all k € N,

k k
HZ(ZZ> = HZ(EZ) for all (Zi)le C Qq with (ii)§:1 C Q.
i=1 i=1

Proposition 4.2. Let (pn, vn) € P(X)XP(Y), let w1, € W(pn, vn) and Ry, ~ Py, := i, Q.
Suppose that (mn, Ry) is cyclically invariant for each n and that 7,, R, converge weakly
to some limits w, R. In particular, ., v, converge to some limits p,v, and 7= € M (p,v).
Suppose that R ~ P := u ® v and that there are versions fn,f : @ — (0,00) of the

densities ZI;" , % and constants o, > 0 such that for any fived z € spt R,

fn(zl) = [1+o(1)]an f(2), (4.1)

where o(1) stands for a function ¢,(z',n) — 0 as d(z’,2z) + 1/n — 0. Then (7, R) is
weakly cyclically invariant. Specifically, the quantities 21, , Z of Definition 4.1 can be
chosen as

Q= {z esptR: Z(z) := lim ((— exists in [0,00)}

N {z esptP: f(z) = lim

and :Qom{Z>0}.

Proof. Assumption 2.3 for the space X x Y shows that Z is a version of dr/dR and
R(Qp) = 1. As (4.1) implies (3.5), Proposition 3.5 yields that 7 < P, hence 7 < R and
the definition of €y implies 7(Q) = 1.

Let z1,..., zx € £ be such that z; € 0y and consider for » > 0 the balls A; = Al(-r) =
B, (z;) = By(x;) x B.(y;). To avoid unwieldy formulas, we use the vector notation

z=(21,...,2,), z=(%21,...,2), A=A x---xA,, A={z:2¢€ A}

together with the convention that functions and measures are evaluated by multiplication
over the components, for instance
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f(z) = f(z) - fzk), 7(A) =m(Ar) - m(A).
As dr, /dP, = (dn,/dR,)(dR, /dP,), we then have
n(A) = / Zo(2) ful(2) Pa(dZ)),  Zy = dmn /AR
A

We also have 7, (A;) > 0 for n large as Z(z;) > 0 and m, — m. On the other hand,
Zn(2') and P,(dz') are invariant under 2’ — 2z’ due to the assumption on 7, and the
form of P,; cf. (3.4). Thus

T(A) = / Zu(#) ful#) Pa(dz)) = / Zu(2') fu(Z') Pa(d2").

A A

Applying the assumption on f, to each of the points z;, Z; then yields

Tn(A) _ JaZn(2') fu(Z) Pu(dz')

n(A) fA Zn(2') fu(2') Pa(dz)
[+ oW)]anf(Z) [4 Zn(2") Pu(dz") o f(z)
T Wt oDJanf(2) [4 Za(2) Pa(dz') L+ oWIF2

where o(1) stands for a function of (z,z) converging to zero as r + 1/n — 0. For values
of 7 > 0 such that A;, A; are continuity sets of P (and hence also of m and R), taking
n — oo yields

(A

~—
~

(z

~—

On the other hand, z;, z; € g also guarantees that ?Eﬁ; = [1+0(1)]f(z) and similarly
for z;. Recalling P(A) = P(A), we deduce
R(A) _ R(A)/P(A) _ f(2)
r(4) ~ mA)PA) WG 43
Combining (4.2) and (4.3) yields
m(A) _ m(A)
RA) ~ [1+0(1)] R(A)

and then letting r — 0 (along a sequence of r such that A;, A; are continuity sets of P)
shows Z(z) = Z(Z), as desired. O
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Remark 4.3. Assumption (4.1) on f,, f in Proposition 4.2 is a sufficient condition for

lim lim fA Zn(2") fn(Z)) Po(dz") _ f
r0n=mo [3 Z0(#) ful2) Pald=) ~ f

(%)

(z)’

(4.4)

it can be replaced by any other condition implying (4.4). We note that (4.4) can be seen
as a differentiation of measures intertwined with a weak limit.

As mentioned above, the second step is to upgrade the weak cyclical invariance. Some
of these considerations are similar to arguments in the proofs of [3], where it is shown
by variational arguments that minimizers of certain static Schrédinger bridge problems
admit a factorization.

Proposition 4.4. Let m € II(u,v) and let R € P(X X Y) satisfy R ~ P := p®v. The
following are equivalent:

(i) (m, R) is cyclically invariant,
(i) (7, R) is weakly cyclically invariant,
(iii) there exist Borel functions ¢ : X — (0,00) and ¢ : Y — (0,00) such that (x,y) —
w(x)Y(y) is a version of the density dr/dR.

The implications (i) = (i%) and (¢9¢) = (i) are immediate. The fact that (i) = (4i7)
is also well known, cf. [12], but will not be used directly. For the proof of (i7) = (iii), a
measure-theoretic fact will be useful. Given a set A C X x Y with P(A) = 1, Lemma 4.5
below states that within any set B of positive measure we can find a point (z., y) which
acts like an airline hub for A: any two points of A are connected through (z., y.), modulo
marginal nullsets. In particular, any trip can be achieved with at most one stopover,
and we may stop within B. (The bound of one is optimal as the set A need not be a
rectangle; in fact, A may fail to contain any measurable rectangle of positive measure
[22, Exercise 5.4, p.74].) Lemma 4.5 is refinement of [6, Lemma 4.3] which asserts the
connectedness of A in the sense of [12]—in our analogy, connectedness means that any

trip between two points of A can be achieved with finitely many stopovers at some points
in A.

Lemma 4.5. Let P = p® v and let A,B C X X Y be Borel sets with P(B) > 0 and
P(A) = 1. There are Borel sets Xo C X and Yo C Y with u(Xo) = v(Yo) = 1 such that
setting Ag := AN (Xo x Yg) and By := BN (Xo X Yy), there exists a point

(Zw,yx) € By such that (x,y.), (2., y) € Ao for any (z,y) € Xo X Y.

Proof. Let C, = {y : (z,y) € C} denote the section of a set C C X x Y at € X, and
analogously for y € Y. Let X; = {z € X : v(A;) = 1}. In view of Fubini’s theorem,
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P(A) =1 implies u(X1) = 1. Similarly, P(B) > 0 implies that {x € X : v(B,) > 0} has
positive y-measure. In particular, there exists a point ., € Xy with v(B,,) > 0.

Next, let Yo ={y € Y : u(A,) = 1} N A,,. Then again v(Yy) = 1, and in particular
there exists a point y, € Yo N By, . Moreover, the set Xo := X; N A4,, satisfies u(Xo) = 1.
By passing to Borel subsets of full measure, we may assume that Xg, Yo are themselves
Borel.

Writing Ag = AN (Xo X Yp) and By = BN (X x Yg), we have by construction that
(24, y«) € By satisfies (z,,y) € Ag for all y € Yy and (z,y.) € Ap for all x € Xo. O

Proof of Proposition 4.4 (ii) = (ii3). Let Z, 1, be as in Definition 4.1. Our aim is to
find Borel functions ¢ : X — (0,00) and 9 : Y — (0, 00) such that Z'(x,y) := ¢(x)¥(y)
defines a version of the density dm/dR. It is sufficient to construct ¢ on a Borel set
Xo C X of full marginal measure, as we may then extend ¢ by setting ¢ = 1 on X\ Xo,
and similarly for ¢. In particular, we may assume that projy ; = X and projy Q; =Y.

Noting that P(Q1) > 0 due to 7 < P, we can apply Lemma 4.5 to 7 and g, and in
view of the above observation, we may assume that Xo = X and Yy =Y in its assertion.
We then obtain a point

(X4, yx) € Q1 such that (z,ys), (z«,y) € Qg for any (z,y) € X x Y.

Define ¢(z.) := a > 0 as an arbitrary number and ¥(y.) := Z (2., y«)/¢(x). Given
(z,y) € X x Y, we have (z.,y) € Qo and (x,y.) € Qo, allowing us to define

Y(y) = Z(2,y)/o(2:) € (0,00),  @(x) := Z(2,9.)/Y(y«) € (0,00).

The fact that Z is Borel readily implies that ¢, 1) are Borel. Define Z'(z,y) := ()9 (x)
for (z,y) € X x Y. Clearly Z’ is Borel and takes values in (0, 00). Let (z,y) € ©1. Then
(,9s), (x4, y) € Qo and weak cyclical invariance yields

_ Z(x,y.) Z(24,y) _ Z(x,y) Z (74, y) — Z(x

That is, Z' = Z on Q. To prove the same relation on €, consider (z,y) € Qy. There
are ' € X and ¢’ € Y such that z; := (z,9’') and 25 := (2/,y) are in Q;, and of course
we also have z3 := (2, yx) € Q1. Thus the already established fact that Z’ = Z on Q4
implies

p@)Y(y) e (y) ple)dy.) _ Z(x,y) 2" y)Z(xs,ys)
P (y+) p(z)Y(y) Z(@y)Z(zay)

e(x)Y(y) =

On the other hand, z; = (z,y) and 25 = (¢/,y.) and z3 = (x.,y’) are all in g, so that
the invariance yields

0<Z(2,y") 22", 9)Z (2, y) = Z(2,9) Z (2, y:) Z (24, Y ).
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As aresult, Z'(z,y) = p(2)¥(y) = Z(z,y), showing Z’' = Z on Q. Recalling R(Q) = 1,
it follows that Z’ is again a version of dn/dR. O

5. Proof of main results and ramifications

For ease of reference, we first summarize some known results.
Lemma 5.1. Let (p,v) € P(X) x P(Y), Re PXXY) and R~ P :=uQ®uw.

(i) If the static Schrodinger bridge problem (2.1) is finite, it admits a unique mini-
mizer m € (u,v). Moreover, (m, R) is cyclically invariant.
(ii) Let m € I(p,v). If (7w, R) is cyclically invariant and (2.1) is finite, then m is its
minimaizer.
(iii) There exists at most one w € II(p,v) such that (m, R) is cyclically invariant.

Proof. Recall that cyclical invariance of (w, R) is equivalent a factorization of the den-
sity dm/dR into strictly positive functions; cf. Proposition 4.4 or [12]. Taking that into
account, (i) and (ii) can be found in [40, Theorem 2.1] in the stated generality. (The
original results are due to [12,13,17,25,50], among others.) Finally, (iii) follows from (ii),
as was also noted in [40, Corollary 2.9]: if m, " € II(u, v) have positive densities dr/dR,
dr’' /dR admitting factorizations, then dr/dn’ also admits a factorization and now (ii),
applied with 7" as reference measure, implies that 7 is the unique minimizer of H(-|7").
As 7" € TI(p, v) is itself a coupling, this minimizer is /. O

Proof of Theorems 1.3, 1.4, 2.4 and 2.5. Given data as in Theorem 2.5, the sequences
(1n) and (vy,) are tight, which readily implies the tightness of (m,,); cf. [52, Lemma 4.4,
p.44]. In view of Propositions 4.2 and 4.4, any cluster point 7 is such that (w, R) is
cyclically invariant. The uniqueness of cyclically invariant couplings, see Lemma 5.1 (iii),
shows that all cluster points coincide and hence that the original sequence (7,,) converges.
This proves Theorem 2.5.

To deduce Theorem 1.4 from Theorem 2.5, we choose the reference measure as in (2.2);
ie.,

dR,
dp,

dR _
i

—c/e

_Cn/5n ae
)

= ape

where a,, a are the normalizing constants. Combining the uniform convergence ¢, /e, —
¢/e on bounded sets with the continuity of ¢, we see that (2.4) holds, for instance with
ap, = ap/a.

The uniqueness part of Theorem 2.4, as well as its last assertion, is stated in
Lemma 5.1. To deduce existence from Theorem 2.5, we consider the constant marginals
(tin, vn) := (1, v) and define approximating reference measures R,, via



P. Ghosal et al. / Journal of Functional Analysis 283 (2022) 109622 19

dR, ( dR 1 >
= Qn \ ’

dP dP " n
where a,, is the (finite) normalizing constant. As g—g is continuous and positive, hence
bounded away from zero on small balls, the condition (2.4) is satisfied with P, = P
and a function o(1) independent of n. The static Schrodinger bridge problem (2.1) for
R, falls into the classical setting of Lemma 5.1 (i) because the product coupling g :=
n® v satisfies H(mg|R,,) < 0o. In particular, the associated cyclically invariant couplings
7 € I, v) exist, and now Theorem 2.5 implies the existence of m € II(p, v) such that

(m, R) is cyclically invariant. Finally, Theorem 1.3 is a direct consequence of Theorem 2.4
via (2.2). O

Proof of Corollary 2.6. Define R € P(X x Y) by dR/dP := f and let w be as in The-
orem 2.4. As (m, R) is cyclically invariant, a version of the relative density admits a
factorization dn/dR(z,y) = ¢(z)1(y) into positive Borel functions; cf. Proposition 4.4.
The fact that 7 has marginals (u,r) then translates to the fact that (p,) solve the
Schrodinger system. Uniqueness of ¢, up to a constant follows from the uniqueness
of 7 (here the fact that R ~ P is particularly important). O

Remark 5.2. Assumption 2.3 can be replaced by the assumption that the marginals (X, )
and (Y, v) satisfy the so-called doubling property. The latter assumption is structurally
different as it refers to the specific measures rather than the metric spaces. Indeed, let
(X, ) be doubling; i.e., there exist C' > 0 such that

(B2 (x)) < Cu(By(x))

for any ball B,(x) C X. This ensures that differentiation of measures (in the sense of
Assumption 2.3) holds for measures p < p; cf. [31, Theorem 1.8, p.4|. In particular,
Lemma 3.2 holds as stated, and then so does Proposition 3.5. If (Y, v) is also doubling,
then so is (X x Y, P) where P = pu ® v, showing that differentiation wrt. P holds for
measures p < P, in particular for p := R ~ P in the context of Proposition 4.2. As
dR/dP > 0, it follows that differentiation also holds wrt. R. This ensures that the proof
of Proposition 4.2 remains valid, and hence the main results.

5.1. Instability for discontinuous costs

We show that stability of entropic optimal transport fails as soon as the cost function
has an “essential” discontinuity. To see why the qualifier is necessary, consider a cost
function ¢ of the form

c(x,y) = é(z,y) — f(x) — g(y)

for some possibly discontinuous functions f : X — R, ¢ : Y — R and a continuous
function é. It is immediate from Definition 1.1 that the marginal functions f and g do
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not affect cyclical invariance. The cost ¢ is equivalent to ¢ from this perspective; in terms
of optimal transport, the interpretation is that f, g change the cost of any coupling by the
same constant, and therefore do not change the optimizer. As a result, a discontinuity
in ¢ can only be relevant for stability if ¢ cannot be written in the above form with a
continuous é, which is the condition below.

Proposition 5.3. Let ¢ be a cost function such that (z,y) — c(z,y) — f(z) — g(y) s
discontinuous for any functions f : X = R and g : Y — R. Then the stability of entropic
optimal transport fails for c. That is, there are marginals (fn,vn) — (u,v) and (¢, 1)-
cyclically invariant couplings m, € I(pin,vy) with m, — © € I(u,v) where 7 is not
(¢, 1)-cyclically invariant.

Proof. Fix arbitrary (zo,y0) € X X Y. As (z,y) — c(z,y) — c(z,y0) — c(x0,y) is discon-
tinuous, there is a sequence (Zn,Yn) — (Zoo, Yoo) such that

C(Lu?Jn) - C(»’Umyo) - c(anyn> 7L> C(xoovyoo) - C(wtxn yO) - C<x07y00)' (51)

Consider the marginals p, = (6, + 92,,)/2 and v, = (§y, + 9y, )/2. Let 7, € II(pn, V1)
be (¢, 1)-cyclically invariant; that is,

Tn (20, Y0) T (Trs Yn)
Tn (-TOa yn)ﬂ—n (xna yO)

= exp [¢(20, Yn) + c(Tn, Yo) — c(x0,Y0) — (Zn, Yn)]. (5.2)

After passing to a subsequence, 7, converge weakly to a coupling 7w € II(u,v) of p =
(0py + 02..)/2 and v = (J,, + J,..)/2. Suppose for contradiction that m is cyclically
invariant, then

7T(.730, 90)77(3300, yoo)
ﬂ(an yoo)ﬂ—(wooa yO)

= €exp [C(-T07 yoo) + C(l‘oo,yo) - C(l‘o,yo) - C(xomyoo)]' (53)

As the left-hand side of (5.2) converges to the left-hand side of (5.3), the convergence of
the right-hand sides follows, contradicting (5.1). O
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