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Abstract—State-space models (SSMs) are a rich class of dy-
namical models with a wide range of applications in economics,
healthcare, computational biology, robotics, and more. Proper
analysis, control, learning, and decision-making in dynamical
systems modeled by SSMs depend on the accuracy of the
inferred/learned model. Most of the existing inference techniques
for SSMs are capable of dealing with very small systems, unable
to be applied to most of the large-scale practical problems.
Toward this, this paper introduces a two-stage Bayesian opti-
mization framework for scalable and efficient inference in SSMs.
The proposed framework maps the original large parameter
space to a reduced space, containing a small linear combination
of the original space. This reduced space, which captures the
most variability in the inference function (e.g., log-likelihood or
log-aposteriori), is obtained by eigenvalue decomposition of the
covariance of gradients of the inference function approximated
by particle filtering scheme. Then, an exponential reduction in
the search space of parameters during the inference process is
achieved through the proposed two-stage Bayesian optimization
(BO) policy, where the solution of the first-stage BO policy in the
reduced space specifies the search space of the second-stage BO
in the original space. The proposed framework’s accuracy and
speed are demonstrated through several experiments, including
real metagenomics data from a gut microbial community.

Index Terms—State-Space Models, Parameter Estimation,
Bayesian Optimization.

I. INTRODUCTION

Modeling, learning, and decision making are becoming criti-
cal parts of our everyday’s lives, including robotics [1], health-
care [2], smart grids [3], finance [4], self-driving cars [5], and
many more. Many practical systems that we are dealing with
are dynamic, large, complex, and uncertain, mostly observed
through imperfect data acquired from sensors/technologies.
State-space models (SSMs), also known as the hidden Markov
model (HMM), are perhaps one of the most popular classes
of dynamical models [6].

The main step toward modeling a system by SSMs is
to infer/estimate a set of unknown parameters given a se-
quence of observed measurements. Several techniques have
been developed for the inference of SSMs. These include:
1) direct gradient-based maximum likelihood techniques [6—
11], which try to maximize the log-likelihood func-
tion using gradient-ascent or quasi-Newton techniques;
2) expectation-maximization techniques [12-14], which at-
tempt to maximize the “complete” log-likelihood function
instead of the “incomplete” one using the fact that maximizing
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the complete log-likelihood is easier than the incomplete
one; 3) Bayesian techniques [15-18], which aim to take the
prior knowledge into account during the inference process;
and 4) surrogate-based techniques [19-22], which construct a
surrogate model for the main objective function during the
inference process and try to find its maximizer iteratively.

All aforementioned techniques become intractable or very
slow in dealing with big data and large systems. The reason is
that the aforementioned techniques require extensive sampling
of the parameter space in order to find the maximizer of the
inference function (e.g., log-likelihood or log-aposteriori). This
results in intractability or poor performance of the existing
techniques, primarily due to the following reasons:

1. Huge computational cost of a single evaluation: Evalua-
tion/approximation of the log-likelihood or log-posterior
at any single parameter sample point requires performing
a sequential Monte Carlo (SMC) based technique [6, 23].
The computational complexity of SMC approximation
increases exponentially with the system’s size, leading
to poor performance or intractability of the existing
techniques that rely on excessive inference function eval-
uations.

2. Large Parameter Space: Complexity of most practical
problems poses a huge uncertainty in the modeling
process, which appears in terms of large number of
parameters in the modeling process. The amount of search
over the parameter space for a proper inference process
increases significantly with the size of the parameter
space, resulting in intractability or poor performance of
the existing techniques.

Toward this, this paper introduces a two-stage Bayesian op-
timization framework, which consists of dimensionality reduc-
tion and sample selection processes. In the reduction process,
an eigenvalue decomposition based technique is developed for
mapping the original large parameter space to reduced space
in which the inference function has the highest variability.
Then, in the selection process, an efficient sequential search
over the parameter space is achieved by performing two
consecutive Bayesian optimization (BO) policies. The first
Bayesian optimization selects the best sample in the reduced
space, and the inverse map of the selected sample to the
original parameter space, which is a hyperplane, specifies the
search space for the second Bayesian optimization.

The main advantage of the proposed framework over the
existing techniques is the capability of dealing with expensive-
to-evaluate inference functions (e.g., likelihood or posterior),
which is often the case in large systems and big datasets.



In these cases, intelligent selection of the search space for
finding the maximizer of the inference function is extremely
critical, as the number of inference function evaluations over
the parameter space is extremely limited. This is done by
the proposed two-stage Bayesian optimization framework by
allowing selection of samples in the lower-dimensional space
in which much more informed selection can be achieved.
The non-parametric Bayesian representation of the inference
function by the proposed framework enables risk consideration
in the inference process, which is a key in sensitive domains,
where deterministic modeling might lead to unreliability of the
inferred model. This Bayesian surrogate model allows predic-
tion of the distribution of the inference function and selection
of the next sample by considering all potential outcomes
instead of a single predicted value. This is a key advantage of
the proposed framework compared with the existing inference
techniques, which allows handling of expensive-to-evaluate
inference functions commonly encountered in large systems.

The article is organized as follows. In Section II, the state-
space models and particle filters for their inference are briefly
described. In Section III, the proposed two-stage Bayesian
optimization framework is introduced. Finally, Section IV
and Section V contain numerical examples and concluding
remarks, respectively.

II. BACKGROUND

A. State-Space Models (SSMs)

The general nonlinear state-space models (SSMs) can be
represented by the following two main processes:

xp = f(Xk-1,up_1,nk,0) (State Process),

6]

Vi = 8k(Xk, Vi, 0) (Measurement Process),

for £ =1,2,... where x; € X is the state variable, uy € U is
the input to the system, and yj, € Y is the output of the system.
The nonlinear functions f(.) and g (.) model the state and
measurement processes, with a set of parameters denoted
by 6 € ©, where © denotes the parameter space. Finally,
{ng,vi;k = 1,2,...} are mutually independent i.i.d. noise
processes, which are also independent of xq. The parameter
vector @ models the uncertainty in both state and measure-
ment processes. Equivalently, x; ~ pg(xg | Xp-1,ur-1) and
Vi ~ po(¥yk | Xi), where pg(.) is a probability density or
probability mass function. Without loss of generality and for
the sake of simplicity, we will drop the input ug_; in what
follows.

B. Problem Formulation: Inference in SSMs

A key step in modeling systems or processes with SSMs
is to estimate the set of unknown parameters of these models
according to the available data. Letting y1.7 = (y1,...,y7) be
the sequence of observed measurements, one needs to find the
best estimate of parameter vector 8. Two common estimators
for inference in SSMs are the maximum-likelihood (ML) and
the maximum a-posteriori (MAP), that can be formulated as:

= 1 .
arg max log pg (yur),

S
1l

. 2
argmaxp(6 | yi.r) )

arg max [logp() +logpe(yi:1)],

where p(6@) denotes the prior distribution of the parameters,
and log pe(y1.7) is the data log-likelihood function. It can be
seen that the data log-likelihood function appears in both ML
and MAP estimators. This term can be further expanded as:

L (8) =logpe(y1:T)

I (3)
=logpe(y1) + D logpe(yr | yik-1),
f=2

where

o (Vi | Yik-1) = fpe(yk | x1) po(Xk | Y1k-1) dXi, (4)

po(Xk | y1:k-1) = /Po(xk | Xk-1) Po(Xp-1 | y1:h-1) dXp-1-

(&)
The integrals in (4) and (5) need to be replaced by summations
in the case of a discrete state space.

For a general nonlinear state-space model, the exact com-
putation of (4) and (5) is not tractable and techniques such
as sequential Monte-Carlo (SMC), also known as particle
filtering, are often used for their approximation. SMC methods
comprise a general class of techniques for inference of non-
linear state-space models [6, 23]. The idea of these techniques
is to approximate the target distribution using a finite set of
samples drawn from a proposal distribution, using the fact that
sampling from the proposal distribution is easier than from the
target.

The basic algorithm to perform particle filtering is called
sequential importance resampling (SIR). The auxiliary particle
filter (APF) [24] is a successful variation of SIR technique
which can efficiently predict the location of particles with
high probability at time step k using information up to time
step k — 1 via an auxiliary variable (;. The method first
draws a sample of points (particles) from the joint distribution
po(Xk,Ck | Y1:), then drops the auxiliary variable to obtain
particles from pg(xx | ¥1:%)-

Let {Xj_1.i,wk-1:}y; be N particles and their associated
weights at time k — 1 approximating pg(Xx—-1 | y1:x-1). New
weights and particles can be obtained upon observing the new
measurement yy, as follows:

1) The first stage weights can be computed as:

Vk,i = Po (Vi | th,i)Wh-1,i » (6)

for ¢ = 1,...,N; where puy; is a characteristic of x; given
Xj-1,i» which can be the mean, the mode or even a sample
from pe(xy | Xgx-1,) [24]. The auxiliary variables {(k,}f\il
are obtained by sampling from a discrete distribution:

{Cei} iy ~ Cat({Tri}ity) (7

where {0}, are the normalized first-stage weights, and
Cat(aq,...,an ) represents a categorical distribution with prob-
ability mass function f(( =1i) = a;.



2) The new particles {xy, ;} ¥, and the associated second-stage
weights {wy, ;} Y, can be obtained as follows:

po (Y | Xk,i)
p@(yk | /’[’k7<k,i)

Continuing this process iteratively for all measurements, the
log-likelihood function can be approximated as [25]:

L+ (6 Tl L s L5 9
7( )~I;Og[(N;Uk,i)(N;wk,i)]~ 9

This quantity is used in Section III when the proposed frame-
work is discussed. See [25], for comprehensive discussions
regarding the unbiasedness of the log-likelihood approxima-
tion in (9).

®)

Xki ~ Po(Xk | Xk-1,¢,) » Whi =

C. Previous Work

Particle-Based Maximum-Likelihood (ML) Techniques:
The existing particle-based ML techniques for inference of
general nonlinear state-space models can be divided into three
main categories:

Direct Gradient-Based ML Techniques: The idea here is to
maximize the log-likelihood function using gradient-ascent
or quasi-Newton techniques [6, 7]. These methods start by
drawing an initial sample point from the parameter space,
approximating the log-likelihood function and moving to an-
other sample point based on the approximated gradient at
the current sample. The computational complexity of suc-
cessful techniques in this class per each sample is of order
O(N?*(T +1)) [6, 7], where N is the number of particles
and T is the length of the time series data. These techniques
require extensive sampling of the parameter space to avoid
local optimum traps.

Expectation-Maximization Techniques: Unlike direct ML tech-
niques, which attempt to maximize the “incomplete” log-
likelihood function Lr(0) = logpe(y1T), €xpectation-
maximization (EM) considers instead the “complete” log-
likelihood function log pg (xo:1, y1:7). The logic behind this is
that maximizing the complete log-likelihood is easier than the
incomplete one. The EM algorithm thus consists of picking
an initial guess 6 = 6 and iterating two steps:

1) E-Step: Compute Q(6,0™), where
Q(a’ 0(”)) = IEXO:T I:logpe(xO:TaylzT) | Yur, 0(71)] ;

2) M-Step: Find 8("*") = argmax,. Q(6,0™).

These steps need to be performed iteratively until a stopping
criterion is met. The exact computation of the E-step is
not possible for general nonlinear state-space models, and
one needs to use particle methods for its approximation.
Two popular particle smoothers are the backward simulation
smoother [26] and the reweighing particle smoother [27],
which have led to two different particle-based EM algorithms
for general nonlinear state-space models introduced in [12]
and [13] respectively. The computational complexity of both
methods are of order O(N?(T + 1)). It should be noted that
a closed-form solution for the M-step might not be achievable

in general, posing another expensive computation. Similar to
direct ML techniques, this class of estimators requires several
iterations to avoid local optimum traps.

Particle-Based Bayesian Techniques: There are several
particle-based Bayesian techniques for the inference of gen-
eral nonlinear state-space models. An important representa-
tive is the particle marginal Metropolis-Hastings (PMMH)
method [15]. Given that 0 is the current sample and pg(y1.7)
is the likelihood associated with @ approximated by a par-
ticle filter (e.g., APF), one needs to draw a new sample
parameter 8’ ~ ¢(0' | 6) from the proposal distribution and
run a particle filter to approximate the likelihood pe/ (y1:7).
Then, the new parameter @’ gets accepted with probabil-
ity min {1, pe(y1:1) p(6") ¢(8 | 8") [pe(y 1) p(68) 4(6" | 6) }.
This process continues for a large enough (usually pre-
specified) number of iterations in order to ensure a good
inference performance.

All the aforementioned techniques require extensive sam-
pling of the parameter space to approximate the com-
plete/incomplete log-likelihood function. For large systems,
which require a large number of particles, and for tall data sets,
the computational cost of approximating the log-likelihood
function per parameter sample point can be prohibitive.

Surrogate-Based Techniques: This class of techniques has
been developed for fast inference in SSMs with an intractable
likelihood functions [19-21]. The idea of these techniques
is to use Gaussian process regression [28] for log-likelihood
approximation and apply Bayesian optimization techniques for
efficient exploration of the maximizer of the log-likelihood
function using an SMC approximator. These techniques’ com-
putational complexity is of order O(N(T + 1)) for each
function evaluation. In addition, a multi-fidelity Bayesian op-
timization framework is introduced in [22? ? ], which enables
incorporation of various SMC approximators with different
fidelities and computational costs during the inference process.
Despite these techniques’ relative success in reducing the
sample inefficiency issue of the aforementioned techniques,
their performance is highly impacted by the parameter space’s
size. In fact, it can be shown that the number of samples for
achieving a proper inference process increases exponentially
with the size of parameter space, rendering intractable the
computation of this class of techniques in large-scale practical
problems.

III. PROPOSED FRAMEWORK

In this paper, we introduce an adaptive two-stage Bayesian
optimization framework for scalable and efficient inference
in SSMs. According to (2), the inference process in SSMs
consists of solving the optimization in the following form:

0" = argmax f(6),
0cO

(10)

where we refer to f(.) as “inference function”. Two com-
mon inference functions are the log-likelihood and the log-
aposteriori, denoted by f(6) := logpe(y1.r) and f(0) :=
logp(0 | y1.7) respectively (see (2)).



A. Modeling the Inference Function by Gaussian Process
Regression

For general SSMs, the inference function can only be
approximated by a particle filter with NV particles at any given
sample. The approximation made in the inference function
evaluation, indicated by f (@) for any 0 € O, and correlation
over the parameter space are accounted by employing the
Gaussian process (GP) regression [28] as:

f(8) » F(8) + Afy, (11)

where F(0) indicates the GP over the parameter space ©,

and Afy is a zero-mean Gaussian residual with variance o3
which models, for all parameters, the uncertainty arising from
the use of a particle filter with IV particles.

The following prior distribution is assumed for the GP:
F(0) =GP (u(8).k(6.9)).

where 1(0) and k(.,.) are the mean function and a real-
valued kernel function which encodes our prior belief on
the correlation in the parameter space. A common kernel
choice for a continuous parameter space is the well-known
exponential kernel function [28].

Let ®; = (0(1),...,0(t)) be a sample from the param-
eter space, with the approximated inference functions f; =
[£(0D), ..., f(8D)]T. The posterior distribution of F(8)
in equation (12) can be obtained as [28]:

F(0) | O£ ~ N (F(6),cov¢ (6,6)),

12)

(13)
where
ﬁt(e) = u(0) + Ko o, (Ket@t + 2t)_1 (f: — 1(©4)),

-1
covi(6,0) = k(8,0) -Ko o, (Ko, 0, + ) Kje,,
(14)
3, is a diagonal matrix of size ¢ with diagonal elements 012\,,
and

k(61,07) k(61,0.)
Koo = : : : (15)
k(6:,67) k(6:,6))
for © = {64,...,0,},0" ={6},...,0.}.

Using the above formulation, the inference function before
observing any data is modeled by a zero-mean Gaussian
process with covariance k(@,0), while at iteration ¢, the
inference function is predicted based on the sequence of
queried samples ®; and the approximate inference function
values f;.

B. Linear Dimensionality Reduction

Let m be the size of parameter vector, i.e., @ € © c R™.
This paper aims to find a small subset of linear combinations of
the original parameter space, capturing the highest variability
of the objective function and mapping the inference function
to this reduced space for an informative and efficient search
process. It is shown in [29] that this linear subset corresponds
to eigenvectors associated with the largest eigenvalues of the
covariance of the gradients of the main objective function.

Since the goal of this paper is inference in SSMs, one needs
to compute the covariance of the gradients of the inference
function as:

C=E[Vef(6)Vef(6)'], (16)

where the expectation is taken over the prior distribution of
the parameter. In maximum aposteriori (MAP) estimator, this
prior information is known, but in the maximum likelihood
(ML) estimator, the expectation in (16) should be taken over
a uniform distribution over the parameter space. Likewise the
inference function, the gradients of the inference function
can only be approximated at each sample in the parameter
space using one of the existing particle filtering techniques,
such as direct particle-based gradient approximations [7-10]
or particle-based Fishers identity approximations [10, 30-32].
Thus, assuming that the approximate values of gradients are
available up to time step ¢, the covariance in (16) can be
approximated as:
1 2 P
Cw Z Z ng(0)|9=9(1:)Vef(o)T|9=9(i). (17)
i=1

The expression in (17) approximates the covarience of the
gradients of the inference function in (16). As the number
of samples from the inference function becomes more, (17)
becomes a better approximation of the covariance function in
(16).

The eigenvalue decomposition of covariance of the gradients
of the inference function leads to:

C=WAW", (18)

where A is a diagonal matrix containing eigenvalues with the
corresponding eigenvectors W, which is a matrix of size m x
m. The eigenvectors need to be placed in a descending order
of eigenvalues, followed by partitioning the eigenvectors with
normalized eigenvalues greater and smaller than a small pre-
specified threshold 0 < € < 1 as:

[Umxn mem—n]mxm7

where U contains n columns of W (i.e., n < m) associated to
the normalized eigenvalues greater than e. Then, the original
parameter space, ©, can be mapped to the reduced space
denoted by T, using the following mapping:

v=U"09,

19)

(20)

for any 6 € © and v € Y. The available information up to
current step ¢ can be transferred to the reduced space, called

also active subspace, as:
(®t7ft) d (Tt :UT(")t,ft). (21)

Now, one can construct a Gaussian process over the reduced
parameter space as:

H(’U) | Tt = UT@t,ft ~ N(’}:lt(v),covt ('U,'U)), (22)
where
Ho(v) = u(v) + Koo, (Kror, +20) (£ - u(L0)),

covi(v,v) = k(v,v) - Ky v, (K'rt,'rt + Et)_l Kz,rt ,



with
k(vi,v'1) k(vg,v'))
Ky vy = : : ; 24)

k(v 0'h) k(v v'y)

for Y = {vy,...,v}, X = {v'y,..., v}

A simple example of a reducible inference function is shown
in Fig. 1. One can see that the original inference function
defined over a two-dimensional parameter space (top-left plot)
can be represented in a one-dimensional space (top-right plot)
containing a linear combination of the original space. The
surrogate models, after three queries over the original space
(bottom-left) and the reduced space (bottom-right), are also
shown in Fig. 1. One can see that the surrogate model in the
reduced space provides a better representation of the inference
function compared to the original space.

Objective Function in Original Space Objective Function in Low-Dimensional Space

100

-6 -4 2 0 2 4 6
v

0
0 [
Surrogate Model in Original Space

Surrogate Model in Low-Dimensional Space

100

o0
0,

Fig. 1: A simple example in which the inference function can
be represented in a lower dimension.

C. Two-Stage Bayesian Optimization Policy for Next Sample
Selection

The computational complexity of the inference function
approximation at any sample of parameters can be extremely
expensive. For instance, the computational complexity of
approximation of an inference function with a particle filter
with N particles for a time series of length T is of order
O(N(T+1)), where N should be chosen very large for large
systems and big/tall datasets (see [6], for more information).
In addition, as shown in Fig. 1, under limited evaluation
scenarios, the surrogate model in the reduced space provides
much better insight about an objective function in comparison
to the surrogate model in the original parameter space. Thus,
what needs to be achieved is to use this reduced space to make
an informed decision about the selection in the original space
for the next inference function approximation. Toward this, we
introduce a two-stage Bayesian optimization policy, described
below:

First-Stage Bayesian Optimization: The first-stage Bayesian
optimization aims to take advantage of the better representa-
tion of the objective function over the reduced space by select-
ing the best sample for evaluation of the objective function in

this low-dimensional parameter space. Using the GP surrogate
model constructed over the reduced space, the best sample
for making the balance between exploration and exploitation
trade-off can be obtained by performing an arbitrary Bayesian
optimization policy (e.g., see [33]). For a particular choice
of knowledge gradient policy [34], the next selection is the
sample in the reduced space with the highest single-period
expected increase in the maximum of the inference function:

v = argmaxE,

max E[H (V') | Yy, £, 0D = 0]
veY v'eT

(25)
- rr}a%(E[”H(U') | Xy, £] |,

where [E; denotes expectation over the unobserved inference
function at point vt given all available information up to
iteration ¢, and the inner expectations are with respect to the
posterior distribution of H(v’). An example of the selected
sample is indicated by the red point in the x-axis of the left
plot in Fig. 2.

Inverse Mapping: It is easy to show that the selected sample in
the reduced space corresponds to a hyperplane in the original
space. The reason is that the inverse map of the selected
sample in the reduced space, vt o the original space
according to mapping U leads to infinite solutions, denoted by
@“(HD. To better understand this, let v*1) be the selected
sample in the low dimensional space. This sample needs to be
mapped back to the original space. This can be done through
the following transformation:

0(t+1)
1
(t+1) .
U, ui; w2 0 Uip o Uim :
: - : (t+1)
= : ol |,
(t+1) u u u u :
Un nl n2 nn nm :
(t+1)
[ — Om
L+ ur
S
o(t+1)
(26)

where GU(M) € O is the solution to the above linear equations.
It is easy to verify that the solution to the inverse mapping
in (26) is not unique and the transformation will thus lead
to infinite set of samples in the original space, denoted by:
ov"™ = (9: vt =UTH,0 < O).

The inverse map consists of transferring from n dimensions
to m dimensions (n < m). This can be done through dis-
cretizing m —n dimensions of the original space and plugging

in these discretized values in the equations and solving the
t+1)

n equations to find the remaining n values of 0”( . For
simplicity and without loss of generality, V;,, samples from
the last m —n dimensions are generated using techniques such
as Latin Hypercube sampling [35]. Then, the other dimensions
of these Ny, samples are obtained by solving (26). This leads
to an unbiased set of alternatives from this hyperplane. An
example of these samples represented over a line in the original
space is shown in the right plot of Fig. 2.

Second-Stage Bayesian Optimization: The hyperplane ob-

tained by the inverse mapping denotes the prescribed solu-
tion according to the surrogate model in the reduced space.



Therefore, as the surrogate model in the reduced space is
often a better representation of the objective function, this
hyperplane would be the best region in the original space
during the search. Therefore, to achieve a proper balance
between exploration and exploitation trade-off, one needs to
select a sample in this hyperplane for the next inference func-
tion approximation. This requires performing another Bayesian
optimization over this hyperplane. For a particular choice of
knowledge gradient policy [34], this can be achieved as:

o+ - argmaxEt[ max E []—'(0’) | ©,,f,0"" = 0]
GcOvt+1 g'e@v(t*'l)
- E[F(8) | ©,.f,
o155, BT 1O t]]’

27
where [E; denotes expectation over the unobserved inference
function at sample (D approximated by a particle filter (ap-
proximator) with N particles, given all available information
up to iteration ¢, and the inner expectations are with respect
to the posterior distribution of F(8"). The intuition behind
the proposed two-stage Bayesian optimization framework is
very interesting. For a regular Bayesian optimization policy,
the search space would be the whole original space, ©,
whereas the search space in the proposed framework is a
hyperplane in the original parameter space, i.e., @”(m), which
is in an exponentially lower-dimensional space. An example
of this reduction can be seen in Fig. 2, where instead of
conducting the Bayesian optimization over the whole two-
dimensional space in the right plot, the search space of the
Bayesian optimization is narrowed to the red line in this
two-dimensional space, which is the solution of the Bayesian
optimization in the reduced space. The schematic diagram
and the detailed procedure of the proposed framework are
presented in Fig. 3 and Algorithm 1 respectively. Two possible
stopping criteria for the proposed framework could be: 1) the
changes in the maximum of the mean of the constructed GP
over the original space fall below a pre-specified threshold
in consecutive iterations; 2) the algorithm is performed for a
fixed pre-specified amount of time or number of iterations.

Surrogate Model in Low-Dimensional Space
100

Surrogate Model in Original Space

Fig. 2: Schematic diagram of inverse mapping in the proposed
framework.

To better understand the selection in (25) and (27), let @¢ =
{01,...,0,,} c O be a fixed set of alternative samples in which
the maximization in (27) at the (¢ + 1)th selection is planned
to be taken over. Using (14), the mean and covariance of the

Reduction Process

[ Particle Filter P[Reduction Mapping}

Selection Process

[Second-Stage Bo}ﬁ[l nverse Mapping]ﬁ[ﬁrst-srage BO]

Fig. 3: Schematic diagram of the proposed framework.

alternative samples can be computed as:
o -1
pi=(©") +Kgr o, (Koo, + i) (£ —u(©))),

a a a -1
3 = k(0%,0") -Kg- o, (Ko, 0, +5:) K¢ "o,
(28)
Using the mean and covariance of the alternative set, the policy

in (27) can be expressed as:

0V = argmaxE,
01,E®a

max  p;(f) |

max  pgy (J) -
je{1,...,n}

| je{1,...,n}

®t7 ft7 0t+1 = 01]

=argmaxE;| max pi(j) ] O£, 01 = 0{|,
0,0 | je{l,...,n}
(29)

where the expectation in (29) is with respect to the unknown
inference function at @;,1, and the last line is derived due to
the independency of pf to the outcome of the inference func-
tion at @;.1. The knowledge gradient policy allows picking
the next sample from the alternative set without the need for
inference function evaluation. Given that 8; € ®“ is chosen
for the next selection and the outcome is unobserved, it can
be shown that pf,; is a normal random variable, denoted by:

b~ N(M?,ﬁ(E?,i)&(E?J)T), G0)

where "
Et €e;

\Jo3 + (E]jf)“,7

and the term e; is a column vector of size ¢ with a single one
at index 7 and the rest zeros, and (E?)ii refers to the element
in the ith row and ith column of matrix X}

Thus, replacing (30) into (29), the selection can be simpli-
fied as:

o (2,i) = €10

ot+Y = argmax

Oie@a
Et[_ max }(uf+&(2?,i)Z)j | ©,,£,0,.1=0;].
Jeil,...,n

(32)
where (.); indicates the jth element of the vector. The exact
solution for the above optimization is provided in [34].

It should be noted that other Bayesian optimization acqui-
sition functions, such as expected improvement [36, 37] and
entropy search [38], can be used instead of the knowledge
gradient policy in selection processes in (25) and (27). The



Algorithm 1 Two-Stage Bayesian Optimization for Scalable Inference in SSMs (Two-Stage BO)

1: Set the particle size IV, and the reduction threshold e, the stopping threshold 6.

2: Construct a GP over parameter space © c R™.
3:t=-1,00={}, fo ={}, C=Lxm.

Do
4 t=t+1.

5: Put the eigenvectors of C corresponding to normalized eigenvalues greater than € in U (column-wise).

6: Map the latest information to the reduced space: (YX; = UT @y, f;).

7: Construct a GP over the reduced space using (22) and (23).

8: Run BO over Y to select v(t*1) using (25).
9: Inverse map v(**1) to the original space to obtain OV

10: Perform BO over @”(M) to select (1) using (27).

(t+1)

11: Run a particle filter tuned to "1 to get £(0*D) and Vo f(0)[gc1).

12: 0441 = {0,001V, £,.0 = {£, f(OD)).
13: C= [tC + vef(0)|0=0(”1)v@f(o)T|g=0(t+l)] /(t + 1)

14: Update the GP in the original space according to (@1, fr11).

Until |argmaxg.g Fi+1(0) — argmaxg g 5 (0)] < &

15: éép = argmaxg.q F¢(0), where F;(8) is the mean of the final GP in the original space.

reasons for using the knowledge gradient policy in this paper
are its unique features in accounting for the uncertainty in the
log-likelihood function approximation and efficient correlation
consideration in the selection process.

The future work includes investigating the theoretical anal-
ysis of the proposed two-stage Bayesian optimization frame-
work. The analysis requires the integration of the theoretical
analysis of the dimensionality reduction process and the selec-
tion in lower and higher dimensional spaces. The theoretical
analysis of the reduction process relies on the error bounds
of the active subspace framework presented in [29]. The
theoretical analysis of the selection process depends on the
Bayesian optimization in use; for instance, for the knowledge
gradient policy employed in this manuscript, the analysis is
provided in [34].

D. Complexity

The complexity of the proposed framework is discussed in
this section. Two main components of the proposed framework
are the dimensionality reduction and the selection process.
Assuming that 7" is the length of data and N is the number of
particles, the complexity of the dimensionality reduction pro-
cess at iteration ¢ is of order O(#?), coming from the posterior
update of the GP model. The complexity of the selection pro-
cess is of order O(max{N(T+1),t3,|®%}), where N(T+1)
comes from the inference function approximation, ¢ is the
complexity of computation of the posterior of GP model, and
|©®“| is the number of samples in the alternative set. Combining
the complexity of these two processes, the complexity of the
proposed framework is of order O(max{|®°|,#3, N(T +1)}),

which is approximately O(N (T + 1)). The reason for dom-
inancy of the term N(7 + 1) over t3 and |®“| is the large
number of particles, N, required in large-scale systems for
properly capturing the system dynamics and approximating
the inference function. The number of iterations, ¢, (i.e.,
number of samples acquired from the parameter space), is
often small due to the correlation consideration over the
parameter space and intelligent selection, making ¢> the non-
dominant term in complexity of the proposed framework.
Finally, comparing the complexity of O(N(T + 1)) in the
proposed framework with the complexity of O(N?(T + 1))
in the particle-based EM and ML techniques [7, 12, 13],
a significant reduction in computational complexity by the
proposed framework can be understood in large systems. The
aforementioned complexities correspond to a single iteration
of various frameworks; however, the number of iterations
in the proposed framework is also significantly smaller than
existing surrogate-based and non-surrogate based techniques.
The smaller number of iterations by the proposed framework
comes from the selections that are made in lower dimensions,
as opposed to the large original space.

IV. EXPERIMENTS

All experiments have been conducted on a PC with an Intel
Core 17-4790 CPU@3.60-GHz clock and 16 GB of RAM. To
assess the performance of the proposed framework, the results
are averaged over 1,000 independent runs. The comparison
has been made through the following algorithms:

1) The proposed Two-Stage Bayesian optimization method

(Two-Stage BO);
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Fig. 4: Average results for Experiment 1.

2) Multi-Fidelity Bayesian optimization method [22] (Multi-
Fidelity BO);

High-Fidelity Bayesian optimization method [20] (High-
Fidelity BO);

Low-Fidelity Bayesian optimization method [20] (Low-
Fidelity BO);

Particle marginal Metropolis-Hastings algorithm [15]
(PMMH);

Particle-based ML algorithm [7] (ML);

Particle-based EM algorithm [13] (EM).

3)
4)
5)

6)
7)

All methods stop when the changes in the estimated values
of all parameters over a window of 20 consecutive iterations
fall below 5% of their ranges, whereas the PMMH algorithm
runs over a fixed number of 10, 000 iterations. The confidence
intervals represent 68% deviations from the means, which is
equivalent to one standard deviation from the means. For the
PMMH, which is a distribution estimator, the mean of the esti-
mated distribution is used for the comparison purpose. Finally,
in all experiments, the “mean” is used as a characteristic index

in auxiliary particle filter implementation.

Experiment 1 — Large-Scale Simulated State Space Model
We consider the following dynamical system:

(

yi(@) ~ N (x(0),02,),

Xi—1 (J)ng(7)

If Xk )+ 1)Jrnk(z') ,nk(i)NN(O,o'?.ﬂ;)’
sJ -

d
xi(i)= Z exp
=1

(33)
for i =1,...,d, where |.| denotes the absolute value. The prior
distribution of state is assumed to be x¢ (i) ~ Uniform[0 1],
i=1,..,d.

The inference in this process consists of estimating the
parameters of the state and measurement processes. These
parameters can be encoded in a single parameter vector as:

0= [O'f,l, ...,0‘f7d,lf71, -'-7lf,d70g,17 ...,O‘g,d]T. (34)

We assume the following uniform distributions for the prior
and true distributions of parameters: of; ~ Uniform[1 5],



ly; ~ Uniform[0.1 1], o4; ~ Uniform[0.2 2], ¢ = 1,...,d.
Accordingly, we assume the following parameter space: O =
[15]% x [0.1 1]¢ x [0.2 2]%. All numerical experiments are
based on the fixed set of values for the system parameters dis-
played in Table I. The high-fidelity particle size N = 10,000xd
is used for all methods expect for low-fidelity BO and multi-
fidelity BO algorithms.

TABLE I: Parameter values for experiment 1.

Parameter Value
Number of state variables d 10, 20, 30
Number of parameters |6 3xd
Low-Fidelity particle number N 1,000xd
High-Fidelity particle number N 10,000xd
PMMH iterations 10,000
Dimensionality reduction rate € 0.1

Fig. 4 represents the following three sets of results, for
1,000 time series of length 71" = 1,000, with respect to running
time: 1) the average maximum of the log-likelihood values;
2) the mean square errors (MSE) of the estimated parameters;
3) the average size of reduced space in the proposed Two-
Stage BO method. Notice that the running time is equivalent
to the computational cost of performing particle filters by each
algorithm during the inference process.

On the top plots of Fig. 4, one can observe that the
proposed framework achieves much lower MSE with respect
to the running time in comparison to others. The same
trend can be seen in the middle plots regarding the average
maximum log-likelihood function, as the proposed two-stage
BO method achieved much faster maximization of the log-
likelihood function relative to other methods. The second
best results correspond to the Multi-Fidelity BO method. This
method, which is capable of intelligent switch between particle
filters with different particle sizes, has outperformed both
Low-Fidelity and High-Fidelity BO methods. The ML, EM,
and PMMH are all less efficient than the methods built on
Bayesian optimization. The reason is the reliance of these
techniques on excessive search over the parameter space in
the system defined in (33), in which approximation of the
log-likelihood function is computationally expensive.

The bottom plots represent the average size of the reduced
spaces for the proposed Two-Stage BO algorithm. The original
parameter sizes from left to right are 30,60, and 90, respec-
tively. One can see that the proposed framework has reduced
the size of the parameter spaces significantly at early iterations.
The reason for this significant reduction is the approximation
made in the computation of the covariance function in (16)
due to the few numbers of inference function evaluations.
However, at the end of iterations, the reduced spaces’ size
is on average less than one-third of the original number of
parameters (i.e., [0]/3).

The results presented in different columns of Fig. 4 explore
the effect of system size (i.e., d) on the performance of
different methods. One can see that the larger the size of the
system is, the more difficult the inference process becomes

(i.e., larger MSE and longer running time). This is due to
the fact that the log-likelihood function evaluation becomes
more expensive for large systems and an efficient search over
a large parameter space becomes extremely critical. However,
the superiority of the proposed framework compared to other
techniques is clear in all system sizes.

Finally, the confidence intervals in the log-likelihood values
are represented in the left middle plot of Fig. 4. The robustness
of the results obtained by the proposed Two-Stage BO method
can be seen in relatively small confidence intervals compared
to other methods. The largest confidence interval is associated
with the ML method due to the ML method’s sensitivity to
initialization and local optimum traps.

The effect of particle size on the performance of the
inference process by the proposed method is presented in
Fig. 5. 1000 independent datasets simulated from the system
with d = 10 are used in this part of the experiment. The running
time is set to 100 minutes for all cases. One can see that
the MSE is large for small and very large particle sizes. The
reason is that the inference process becomes less accurate for
very small particle sizes due to the approximation made in
the log-likelihood evaluation, whereas for very large particle
sizes, the huge computation associated with log-likelihood
approximation prevents a proper search over large parameter
spaces. Selecting the best particle size depends on the size of
the system and the length of datasets and has been studied
extensively in the past. For more information, see [39, 40].

MSE

10,000

50,000 100,000 500,000

Particle Size (N)
Fig. 5: Effect of particle size on performance of the proposed
framework.

1,000,000

Experiment 2 — Gut Microbial Community

In the second experiment, the results of the proposed method
is investigated through real datasets from the gut microbial
community. The collection of 16S rRNA sequences from
the experiments in [41] are used for our analysis. The
regulatory relationship representing the relationship among
microbes in the gut microbial community is presented in
Fig. 6. The normal arrows represent activating regulations and
dash arrows represent suppressive regulations. The network
contains information of 10 microbes, and their values are rep-
resented in a single state vector as: x; = [Lachnospiraceae,,
Othery,, Lachnospiraceae_Other,, Barnesiela;, C. Difficile,
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Fig. 6: Dynamical pathway for gut microbial communities.

Mollicutes;,, Entero,, Enterobacteriaceae;, Enterococcusy,
Blautiay ]7. The activation/inactivation of these microbes can
be modeled through the following Boolean state process:

Xp = Axp1 @1y, (35)

where vV maps the positive elements of vector v to 1 and others
to 0, @ is the module-2 addition, ny, is the process noise, and
A =[a;;] is the connectivity matrix. a;; specifies the type of
regulation from component j to component ¢: it is equal to +1
for the activating regulation, —1 for the inactivating regulation
and 0 for no regulation. This connectivity matrix for the gut
microbial community shown in Fig. 6 is as:

+1 +1 +1 O 0 0 0 0 0
+1 +1 0 +1 0 O 0 0 O
+1 +41 41 0 0 0 O 0 O
+1 +1 0 0O O O 0 0 O
A={0 O O -1 41 0 0 0 O
O o O O 0 +41 0 0 O
0o o O O 0 0 +1 0 O
0O 0 0 0 +1 +1 +1 0 +1
o o0 O O 0 0 0 +1 o0

The process noise ny is assumed to have independent com-
ponents distributed as Bernoulli(p), where the noise parameter
p specifies the amount of “perturbation” in the Boolean state
process.

Since the available data are the 16S rRNA sequence, we
consider the following Gaussian linear observation model [42—
44]:

Vi = p+diag(d)xg +vg, k=1,2,... (36)

where v, ~ N'(0,02I) is an uncorrelated zero-mean Gaussian
noise vector, g is a vector of baseline expressions (correspond-
ing to the “zero” state for each microbe), “diag” puts elements
of its input vector into diagonal elements of a matrix, and §
is a vector containing differential expression values for each
microbe along the diagonal elements (these indicate by how
much the activated state of each microbe is over-expressed
over the inactivated state).

Here, we assume that p = [p,..., 410 and
8=1[01,...,010]F. Since the value of the Bernoulli
state noise process, i.e., p, is also unknown, the goal
is to infer the following unknown parameter vector:
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'
N
T

'
N

'
w

= Two-Stage BO
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Fig. 7: Average results for Experiment 2.

6 = (w,0,0,p). The parameter space is assumed to be
0; = [5,40]' x [5,40]*° x [5,20] x [0.01,0.3]. The prior
distribution is uniform over ©. For Low-Fidelity BO method
and EM, the particle size is set to N = 10,000; whereas for
Multi-Fidelity BO method, the combination of N = 1,000,
N =5,000 and N = 10,000 is employed.

The average maximum of the log-likelihood value overrun-
ning time is displayed in Fig. 7. One can observe that the log-
likelihood value is maximized faster by the proposed frame-
work than the other methods. It can be seen that the standard
deviation of results obtained by the proposed framework is
smaller than other methods, which indicates the robustness of
the inference process by the proposed framework.

Experiment 3 — Cell-Cycle Gene Regulatory Network:

In the third experiment, we consider the cell cycle gene
regulatory network model in [45]. This is a Boolean network
consisting of 14 genes, where each gene can be activated or
inactivated. Hence, there are 2'* = 16384 different possible
system states. The pathway diagram for this gene regulatory
network is displayed in Fig. 8. The state vector x; contains
the expression state of all 14 genes at time k£ and process noise
p =0.01 is used in our simulation.

The model presented in (35) and (36) is used for modeling



Fig. 8: Pathway diagram for the cell-cycle gene regulatory
network model.

the cell-cycle gene regulatory network. Thus, the parameter
vector is @ = (u,d,0). The true values of parameters are
randomly generated from u} ~ [25,35], §; ~ [15,25] and
o* ~[5,10], for i = 1,...,14. The parameter space is assumed
to be ©; = [5,40]* x [5,40]** x[5,20]. The prior distribution
is uniform over ©. Given 100 time series of length 100,
the MSE of the estimated parameters and running time for
different algorithms are displayed in Table II. The particle size
is set to be N = 10,000.

TABLE II: MSE (running time in minutes) for the cell-cycle
gene regulatory network.

(e = 0.05) 6.714 (42.59)
(e =0.10) 7.928 (29.59)
9.566 (91.15)
9.499 (168.01)
11.031 (200.13)
11.311 (369.12)

Two-Stage BO

High-Fidelity BO (Dahlin, et. al. 2014)
EM (Wills, et. al. 2013)
ML (Johansen, et. al. 2008)
PMMH (Andrieu, et. al. 2010)

In Table II, we can observe that the proposed Two-Stage BO
method achieves more accurate results with smaller running
time than other algorithms. Indeed, the proposed Two-Stage
BO is 2 times faster than the fastest competitor. The main
reason of this boost in the performance can be justified through
the average sizes of the reduced space, which are 12.34 and
7.09 for € = 0.05 and € = 0.10 respectively.

V. CONCLUSION

This paper introduced a two-stage Bayesian optimization
framework for scalable inference in general nonlinear state-
space models. The proposed DRBO-SSM framework maps
the original parameter space to a reduced space containing a
small subset of linear combinations of the original parameter
space. Then, the proposed framework sequentially selects
the sample according to the proposed two-stage Bayesian
optimization framework. First, a sample in the reduced space
is selected by performing a Bayesian optimization policy.
Then, the inverse map of the selected sample to the original

parameter space, which is a hyperplane, is used as a search
space for performing the second-stage Bayesian optimization
policy. In numerical experiments, using real and synthetic data,
the proposed algorithm performed significantly faster than the
competing algorithms, at similar or better accuracy levels.
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