
This article was downloaded by: [128.59.222.107] On: 01 July 2023, At: 06:36

Publisher: Institute for Operations Research and the Management Sciences (INFORMS)

INFORMS is located in Maryland, USA

Mathematics of Operations Research

Publication details, including instructions for authors and subscription information:

http://pubsonline.informs.org

Mean Field Contest with Singularity

Marcel Nutz, Yuchong Zhang

To cite this article:

Marcel Nutz, Yuchong Zhang (2023) Mean Field Contest with Singularity. Mathematics of Operations Research 48(2):1095-1118.

https://doi.org/10.1287/moor.2022.1297

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-

Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2022, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)

and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual

professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to

transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org



Mean Field Contest with Singularity

Marcel Nutz,a Yuchong Zhangb,*

aDepartments of Statistics and Mathematics, Columbia University, New York, New York 10027; bDepartment of Statistical Sciences,
University of Toronto, Toronto, Ontario M5G1Z5, Canada
*Corresponding author

Contact:mnutz@columbia.edu, https://orcid.org/0000-0003-2936-2315 (MN); yuchong.zhang@utoronto.ca,
https://orcid.org/0000-0002-7687-2783 (YZ)

Received: March 9, 2021

Revised: February 21, 2022

Accepted: June 5, 2022

Published Online in Articles in Advance:

August 31, 2022

MSC2020 Subject Classification: Primary:

91A13; secondary: 91A65, 91A15

https://doi.org/10.1287/moor.2022.1297

Copyright: © 2022 INFORMS

Abstract. We formulate a mean field game where each player stops a privately observed
Brownian motion with absorption. Players are ranked according to their level of stopping
and rewarded as a function of their relative rank. There is a unique mean field equilibrium,
and it is shown to be the limit of associated n-player games. Conversely, the mean field
strategy induces n-player ε-Nash equilibria for any continuous reward function—but not
for discontinuous ones. In a second part, we study the problem of a principal who can
choose how to distribute a reward budget over the ranks and aims to maximize the per-
formance of the median player. The optimal reward design (contract) is found in closed
form, complementing the merely partial results available in the n-player case.We then ana-
lyze the quality of the mean field design when used as a proxy for the optimizer in the n-
player game. Surprisingly, the quality deteriorates dramatically as n grows. We explain
this with an asymptotic singularity in the induced n-player equilibrium distributions.
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1. Introduction
We formulate a mean field game where each player stops a privately observed Brownian motion with drift and
absorption at the origin. Players are ranked according to their level of stopping and paid a reward, which is a
decreasing function of the rank. This is an infinite-player version of the n-player game studied in Nutz and
Zhang [42], which, in turn, extends the Seel–Strack model (Seel and Strack [46]), where only the top-ranked
player receives a reward. First, we establish the existence and uniqueness of a mean field equilibrium for any
given reward function. Second, we solve the problem of optimal reward design (optimal contract) for a principal
who can choose how to distribute a given reward budget over the ranks and aims to maximize the performance
(i.e., stopping level) at a given rank—for instance, the median performance among the players. An analogous
problem was studied for the n-player case in Nutz and Zhang [42], but only a partial characterization of the opti-
mal design is available. Here, taking the mean field limit enables a clear-cut answer.

The present work also serves as a case study: from the perspective of mean field analysis, a particular feature
of this game is to be tractable without necessarily being smooth. Atoms occur naturally in the equilibrium distri-
bution, but the mean field game nevertheless admits an equilibrium that can be described in closed form, and we
can prove analytically that the equilibrium is unique. As the n-player equilibrium can also be described in detail,
we can observe the quality of the mean field approximation, not only for the mean field game (with fixed reward
function) but also for the reward design problem—which is a Stackelberg game between the principal and a con-
tinuum of players. It turns out that this case study offers a cautionary tale.

In the n-player setting, the Seel–Strack model has been generalized and varied in several directions: more gen-
eral diffusion processes (Feng and Hobson [23]), random initial laws (Feng and Hobson [24]), heterogeneous loss
constraints (Seel [45]), and behavioral players (Feng and Hobson [25]), among others. See also Fang et al. [22]
and Nutz and Zhang [42] for references to other models on risk taking under relative performance pay, and see
Vojnović [48] for an introduction to rank-order prize allocation. The novelty in the present work is the analysis of
a mean field model along the lines of Seel–Strack and its optimal design problem; we focus on the original Brow-
nian dynamics. For the theory and applications of mean field games, the monographs by Bensoussan et al. [4]
and Carmona and Delarue [8, 9] provide an excellent overview and references. The very recent mean field model
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Ankirchner et al. [1] can be related to the first part of this work. In Ankirchner et al. [1], players control the vola-
tility of a Brownian motion up to an independent exponential time and are then ranked. The reward is 1 above a
certain rank and 0 below. As the horizon is exponential and volatilities can only be chosen within an interval that
is bounded and bounded away from 0, the model has a smooth equilibrium, and the distinct features of the
present work do not appear. (Questions of optimal design, or reward functions other than the binary one, are not
studied.) Contracts between a principal and n agents have been analyzed in Demski and Sappington [16], Green
and Stokey [27], Harris et al. [29], Holmstrom [30], Mookherjee [38], and Nalebuff and Stiglitz [39], among many
other studies. Closer to the present work, Carmona and Wang [11] and Elie et al. [20] study optimal contracts
between a principal and infinitely many agents using the theory of mean field games for diffusion control.

1.1. Mean Field Equilibrium
The mean field game as formalized in Section 2 admits an equilibrium as soon as the reward function R is right
continuous and a natural integrability condition on the drift parameter holds (the latter is also present in the n-
player game). The equilibrium stopping distribution can be described in closed form using the right-continuous
inverse of y ⊢→ R(1− y) (see Theorem 1). Once the correct ansatz is guessed, the existence result is reduced to a
verification proof following a direct martingale argument. The uniqueness result is more involved, in part
because—in contrast to the n-player game and many other mean field models—atoms in the equilibrium cannot
be excluded; in fact, the closed-form solution already indicates that atoms will arise unless R is strictly monotone.
The first part of the proof (Section 3.1) relates flat stretches in reward to atoms in any potential equilibrium distri-
bution. The basic idea is to show, a priori, that equal pay must correspond to equal performance: ranks with the
same reward are occupied by players that stop at the same level, and ranks with different rewards are occupied
by players that stop at different levels. On the other hand, jumps in reward are related to gaps in the support of
the equilibrium distribution. The second part of the uniqueness proof (Section 3.2) is based on the idea that in any
equilibrium, the opposing players collectively act such as to minimize the value function of a given representative
player. This approach enables an analytic proof using optimal stopping theory and dynamic programming argu-
ments: using the additional constraints shown in the first part, the minimization is shown to have a unique solu-
tion, proving the uniqueness of the equilibrium. This analysis is complicated by the presence of atoms. We
remark that a similar uniqueness proof could be given for the n-player game, in which case it would simplify sub-
stantially because atoms can be excluded a priori (however, a different proof is already available).

1.2. Optimal Reward Design
In the n-player game, Nutz and Zhang [42] study the design problem for a principal maximizing the perform-
ance at the kth rank—for example, maximizing the revenue in a second-best auction or the median performance
among employees, customers, students, and the like. To consider the analogue in the mean field limit, we replace
the kth rank by the quantile α � k=n—for instance, α � 0:5 for the median player. A reasonable guess for the opti-
mal reward design is to (a) pay nothing to the ranks below the target α and (b) distribute the reward budget uni-
formly over the ranks above. We show in Theorem 2 that this guess is correct for any value of the drift
parameter. By contrast, the guess is wrong in the finite player game: for nonnegative drift, the general shape is
correct, but the optimal cutoff point can be at a rank strictly below the target rank k. For negative drift, the sharp
cutoff can be replaced by a smoothed shape that also pays a small number of rewards of different sizes. (A full
characterization of the optimal reward is only available for zero drift; see Nutz and Zhang [42].) Again, the mean
field limit proves useful in allowing for a fuller description and a clearer result. On the other hand, knowing only
the mean field limit may suggest an oversimplified picture for the finite player game. One previous model where
the optimal reward design problem was solved completely for both the n-player and mean field setting is the
Poissonian game of Nutz and Zhang [41], where players control the jump intensity and are ranked according to
their jump times. There, the optimal designs are more similar between the two settings; part (a) of the above-
mentioned guess is always correct—the optimal reward has a sharp cutoff exactly at the target rank—though the
shape over the ranks above the target is concave rather than being flat as in part (b). A related mean field game is
considered in Bayraktar et al. [3], with diffusion instead of Poissonian dynamics. Both (a) and (b) turn out to be
correct in the mean field setting. The n-player game is not tractable, and its optimal design was not studied. In
the light of the present work, one should not take for granted that the shape is analogous to the mean field limit.

1.3. Mean Field Approximation
In the preceding discussion, the mean field model is formulated directly as a game with infinitely many players.
To connect this model rigorously with the n-player game, we show in Theorem 3 that for any given reward func-
tion, the unique n-player equilibrium for the induced reward converges to the mean field counterpart. Moreover,
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the value function of a player in the n-player game converges uniformly to the value function in the mean field
game. This way of connecting the two models is classical in the mean field game literature starting with Lasry
and Lions [36]; see, in particular, Bardi [2], Cardaliaguet et al. [6], Carmona et al. [12], Fischer [26], and Lacker
[33, 34] and the recent works by Djete [17, 18], Iseri and Zhang [32], and Lacker and Le Flem [35]. Another way
of connecting the two models, going back to Huang et al. [31], is to fix the optimal strategy from the mean field
equilibrium and consider it in the n-player game for large n. Consistent with a broad literature (e.g., Campi and
Fischer [5], Carmona and Delarue [7], Carmona and Lacker [10], Carmona et al. [12], and Cecchin and Fischer
[13]), we show in Theorem 4 that for any continuous reward function, this control induces an ε-Nash equilibrium
for large n; that is, players cannot improve their expected performance by more than ε through unilateral devia-
tions from the mean field strategy. Surprisingly, continuity is necessary: any discontinuity in the reward function
is shown to rule out the ε-Nash equilibrium property for large n. A discontinuity in reward leads to a gap in the
support of the mean field equilibrium distribution. Because of a knife-edge phenomenon in the sampling for
large but finite n, a player can improve substantially by unilaterally stopping inside the gap with a well-chosen
distribution. In the study of diffusive mean field games with absorption, Campi and Fischer [5, section 7]
describe an example with degenerate volatility where the ε-Nash equilibrium property fails. The degeneracy is
exogenously chosen so that absorption cannot occur in the n-player game but will occur in the mean field game,
therefore creating a disconnect between the two. In Ankirchner et al. [1], on the other hand, the ε-Nash equili-
brium property always holds, despite the reward being discontinuous, because the dynamics of the game itself
(nondegenerate volatility) guarantee a smooth equilibrium. The models of Cecchin et al. [14], Delarue and
Tchuendom [15], Martin et al. [37], and Nutz [40], highlight a different type of discrepancy where some mean
field equilibria can fail to be limits of n-player equilibria. Those examples arise as a result of nonuniqueness of
mean field equilibria and thus are orthogonal to the issues in the present work.

Next, we discuss the quality of the mean field approximation for the reward design problem (Section 5.3);
here, using the mean field proxy seems particularly attractive because the optimal n-player design was fully
solved only for zero drift. Our numerical discussion uses the zero drift case for that same reason. We observe
that the optimal design for the n-player problem converges to the mean field counterpart. Moreover, the induced
performance of the former in the n-player game converges to the performance of the latter in the mean field
game. This is consistent with Elie et al. [20], where the authors prove convergence of the optimal designs and
induced performances for an example of their diffusive game—which is much more complex, yet smoother, than
ours. But more important, and maybe surprising, the quality of the mean field proxy from the point of view of the
principal is strikingly poor in the present model (this aspect was not studied in Elie et al. [20]): for moderate n,
the performance induced by the mean field optimizer is significantly inferior to the exact n-player optimal
design. For large n, the performance deteriorates even further, eventually achieving only 50% of the optimum.
The tractability of the present model allows us to explain the reason for this phenomenon in detail. In the litera-
ture, mean field approximations are often applied in finite-player games without further analysis. The present
study may offer the message that the quality of the approximation warrants consideration, especially when
smoothness is not guaranteed, and that the mean field model can yield an oversimplified picture of the n-player
game in some cases.

2. Mean Field Equilibrium
In this section we define the mean field contest as a game with a continuum of players and prove that there exists
a unique Nash equilibrium. It will be shown in Section 5 that this equilibrium is indeed the limit of associated n-
player games as n→∞. Throughout, we fix a reward function, defined as a right-continuous and decreasing1

function R : [0, 1] → R+ satisfying R(0) > R(1−) � R(1). It will be shown in Remarks 2 and 5, respectively, that left
continuity at the last rank is essential for the uniqueness of the equilibrium and right continuity is essential for
its existence.

Each infinitesimal player i privately observes a drifted Brownian motion Xi
t � x0 +µt+ σWi

t with absorption at
x � 0 and chooses a (possibly randomized) stopping time τi <∞. The initial value x0 ∈ (0,∞), drift µ ∈ R, and dis-
persion σ ∈ (0,∞) are identical across players, whereas the Brownian motions are independent. Let Yi � Xi

τi
be

the position at stopping. If Yi are independent and identically distributed (i.i.d.) across players with law F, the
empirical distribution of (Yi) is almost surely (a.s.) equal to F, by the exact law of large numbers (see Remark 3).
That is, if all players choose the same stopping distribution, then the collection of players (deterministically)
ends up distributed accordingly. Hence the rank of player i if she stops at xwhile all other players stop according
to distribution F is defined as 1− F(x).2 If F does not have an atom at x, meaning that there are no ties at this
rank, she receives the reward R(1− F(x)). Otherwise, she receives the average of R(1− y) over y ∈ [F(x−),F(x)],
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which is equivalent to splitting ties uniformly at random. Thus, writing

g(y) :� R(1− y),
the payoff ξF(x) for stopping at x if all other players use F is

ξF(x) �
g(F(x)) if F(x) � F(x−),

1

F(x) − F(x−)

∫ F(x)

F(x−)
g(y)dy if F(x) > F(x−):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1)

The set F of distributions that are feasible (i.e., can be attained by stopping Xi with a randomized stopping time)
is characterized through Skorokhod’s embedding theorem and the scale function h of X :� Xi, as observed in Seel
and Strack [46].

Lemma 1. The set F consists of all distributions F on [0,∞) satisfying
∫
hdF � 1 if µ > 0 and

∫
hdF ≤ 1 if µ ≤ 0, where

h(x) � hx0(x) �

exp
−2µx
σ2

( )
− 1

exp
−2µx0
σ2

( )
− 1

if µ≠ 0,

x

x0
if µ � 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

This result is due to Hall [28].3 We say that F ∈ F is a mean field equilibrium if no player is incentivized to deviate

from F; that is,
∫
ξF dF ≥

∫
ξF dF̃ for all F̃ ∈ F . The associated value function u(x) is defined as the supremum

expected reward achievable for a player starting at level x (instead of x0) if all others use F. Denote the average

reward by R̄ �
∫ 1

0
R(r)dr and set

µ̄∞ :� σ2

2x0
log

R(0) −R(1)
R(0) − R̄

( )
> 0:

In the following result, g−1 denotes the right-continuous inverse:

g−1(z) � inf {y ∈ [0, 1] : g(y) > z} for z ∈ [R(1),R(0)), g−1(R(0)) :� 1:

Theorem 1. Let µ < µ̄∞. There exists a unique equilibrium. Its cumulative distribution function (cdf ) is

F∗(x) � g−1 [R(1) + (R̄ −R(1))h(x)]�R(0)
( )

, (3)

where g−1 is the right-continuous inverse of g, and the equilibrium value function is

u∗(x) � [R(1) + (R̄ −R(1))h(x)]�R(0):
In particular, the equilibrium has compact support [0, x̄] for x̄ � h−1 R(0)−R(1)

R̄−R(1)

( )
, and its atoms are in one-to-one correspond-

ence with intervals where the reward R is constant.

Remark 1. The equilibrium distribution (3) is invariant under affine transformations of the reward R. In particu-
lar, we may normalize the reward to satisfy R(1) � 0 and R̄ � 1 without loss of generality.

Remark 2. The condition R(1−) � R(1) is not necessary for the existence result in Theorem 1 (it is not used in the
proof), but it is crucial for uniqueness. Indeed, we claim that infinitely many equilibria arise whenever
R(1−) > R(1). To see this, fix a constant R(1−) ≥ β > R(1) and define the new reward R̃ by R̃(1) � β and R̃(r) � R(r)
for r < 1. We assume that β is so that the constant µ̄∞ associated with R̃ still satisfies µ < µ̄∞. As mentioned previ-
ously, the reward R̃ admits an equilibrium F̃

∗
as described Theorem 1, and inspection of the formula shows that

F̃
∗
differs from the equilibrium F∗ corresponding to R. More generally, F̃

∗
is different for any two choices of β. To

prove the claim, we argue that F̃
∗
is also an equilibrium for R. If all players use the same stopping distribution,

their value functions are the same under both rewards because achieving the last rank is a null set for any player.
However, the rewards differ in the analysis of unilateral deviations: the inequality R̃(1) > R(1) implies that if a
player is not incentivized to deviate under R̃, the same holds under R. In particular, F̃

∗
is also an equilibrium

under R, proving the claim. Conversely, F∗ need not be an equilibrium under R̃, as can be seen from our unique-
ness result for β � R(1−).
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Remark 3. The framework of Sun [47] allows for the rigorous construction of a continuum of (almost everywhere
(a.e.)) independent processes satisfying an exact law of large numbers. A short summary of the pertinent results
can be found, for example, in Nutz [40, section 3]. As an alternative to explicitly formulating the game with a
continuum of players, one can also directly analyze the problem of a “representative” player facing a distribu-
tion, as is sometimes done in the literature on mean field games—this corresponds to taking the exact law of
large numbers as a given.

3. Proof of Theorem 1
We first show by a direct verification argument that the stated distribution is indeed an equilibrium. The proof
of uniqueness occupies the remainder of the section.

Proof of Theorem 1—Existence. In view of

∫
hdF∗ �

∫ h(∞)

0

(1 − F∗ ◦ h−1(w))dw �
∫ g(1)−g(0)

R̄−g(0)

0

(1 − g−1(g(0) + (R̄ − g(0))w))dw

� 1

R̄ − g(0)

∫ g(1)

g(0)
(1 − g−1(z))dz � R̄ − g(0)

R̄ − g(0)
� 1,

Lemma 1 yields that F∗ ∈ F . To see that F∗ is an equilibrium, fix some player i and suppose that all other players
stop according to F∗. Using the property g( g−1(z)) ≤ z of the right-continuous inverse of the left-continuous func-
tion g(y) � R(1− y), we have

ξF
∗(x) ≤ g(F∗(x)) ≤ [R(1) + (R̄ −R(1))h(x)]�R(0)≕ φ(x):

By Itô’s formula and Jensen’s inequality, φ(Xt) is a bounded supermartingale. Hence, optional sampling implies
that for any finite stopping time τ,

E[ξF∗ (Xτ)] ≤ E[φ(Xτ)] ≤ φ(x0) � R̄:

On the other hand, player i can attain R̄ by choosing F∗, by symmetry. This shows that F∗ is optimal for player i
and hence that F∗ is an equilibrium. w

3.1. Relating Constant Rewards to Atoms and Jumps in Reward to Gaps in Support
We first relate atoms in equilibrium distributions to intervals of constancy of the reward (and hence of g). Techni-
cal details aside, the message is that, in equilibrium, equal pay must correspond to equal performance: ranks
with the same reward are occupied by players that stop at the same level, and ranks with different rewards are
occupied by players that stop at different levels.

We do not yet impose the continuity properties of R, which will allow us to prove that they are important for
the existence of equilibria. Instead, R is any decreasing function in this subsection, which, of course, implies that
its discontinuities are of the jump type.

Lemma 2. Let F ∈ F be a mean field equilibrium. If F has an atom at x1 ∈ R+, then g is constant on (F(x1−),F(x1)]. As a
result, we have ξF(x) � g(F(x)) for all x ∈ R+.

Proof. Set y0 :� F(x1−) and y1 :� F(x1). Let ν be the measure associated with F. Consider for each ε > 0 the per-
turbed measure

νε :� λε(ν+ (y1 − y0)(δx1+ε − δx1)) + (1−λε)δ0,
where λε ∈ (0, 1) is chosen so that

∫
h(x)dνε(x) � λε

∫
h(x)dν(x) + (y1 − y0)[h(x1 + ε) − h(x1)]

( )
�

∫
h(x)dν(x):

This ensures that νε ∈ F . Suppose that g is not constant on (y0,y1]; then

ξF(x1 + ε) − ξF(x1) ≥ g(y1) −
1

y1 − y0

∫ y1

y0

g(y)dy≕ η > 0:
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where η is clearly independent of ε. This implies
∫

ξF(x)dνε(x) −
∫

ξF(x)dν(x)

� λε

∫
ξF(x)dν(x) + (y1 − y0)[ξF(x1 + ε) − ξF(x1)]

( )
+ (1−λε)ξ(0) −

∫
ξF(x)dν(x)

� (1−λε) ξF(0) −
∫

ξF(x)dν(x)
( )

+λε(y1 − y0)[ξF(x1 + ε) − ξF(x1)]

≥ (1−λε) ξF(0) −
∫

ξF(x)dν(x)
( )

+λε(y1 − y0)η:

Using limε→0+λε � 1, y1 − y0 > 0 and η > 0, we obtain that
∫
ξFdFε −

∫
ξFdF > 0 for ε sufficiently small, contradict-

ing the assumption that F is an equilibrium. Finally, if g is constant on (y0,y1], it is clear that ξF(x1) �
g(y1) � g(F(x1)). w

As g is increasing, each level set {g � c} is an interval. If the interval has positive length, we say that g has a flat
segment at level c. In all that follows, we denote by F−1(y) � inf {x : F(x) ≥ y} the left-continuous inverse (or quan-
tile function) of F.

Lemma 3. Suppose g has a flat segment at level c, so that y1 � inf {y ∈ [0, 1] : g(y) � c} and y2 � sup{y ∈ [0, 1] : g(y) � c}
satisfy y1 < y2. Suppose F ∈ F is a mean field equilibrium; define x+1 � F−1(y1+) and x2 � F−1(y2). Then we must have
x+1 � x2.Moreover, F(x+1−) � y1 and F(x+1 ) � y2.

Proof. Let ν be the measure associated with F and xε1 � F−1(y1 + ε). Suppose, on the contrary, that x2 > xε1 for
some ε ∈ (0,y2 − y1). Then y1 < F(xε1) < y2, and thus ξF(xε1) � c. Consider the measure

ζ :� ν |(xε
1
,x2) + (y2 − F(x2−))δx2

with total mass |ζ | � y2 − F(xε1) > 0. We distinguish two cases:
(i) Case y2 < 1: In this case, let β ∈ (y2, 1) and xβ :� F−1(β) ∈ [x2,∞). For some λ ∈ [0, 1] to be determined later,

define the measure

νλ � ν− ζ+ |ζ | (λδxε
1
+ (1−λ)δxβ):

In other words, νλ is obtained from ν by removing all mass on (xε1,x2), plus possibly an additional atom at x2,
so that the total removed mass is y2 − F(xε1) and then moving this mass to atoms at xε1 and xβ according to
weights λ and 1−λ. Clearly, νλ is a probability measure supported on R+, and we have

∫
hdνλ −

∫
hdν � −

∫
hdζ+ |ζ | (λh(xε1) + (1−λ)h(xβ))

� λ

∫
h(xε1) − h
[ ]

dζ+ (1−λ)
∫

h(xβ) − h
[ ]

dζ:

In view of
∫

h(xε1) − h
[ ]

dζ < 0 and
∫

h(xβ) − h
[ ]

dζ ≥ 0, we can choose λ ∈ [0, 1) so that
∫
hdνλ �

∫
hdν. We then

have νλ ∈ F by Lemma 1. Using the optimality of F and the fact that ξF(x) � c for all x ∈ [xε1,x2), we obtain

0 ≥
∫

ξFdνλ −
∫

ξFdν � λ

∫
ξF(xε1) − ξF
[ ]

dζ+ (1−λ)
∫

ξF(xβ) − ξF
[ ]

dζ

� λ(c− ξF(x2))ζ{x2} + (1−λ) ξF(xβ) − c
[ ]

ν(xε1,x2) + (1−λ)(ξF(xβ) − ξF(x2))ζ{x2}:

Lemma 2 rules out the possibility that F(x2−) < y2 < F(x2), so we must be in one of the following two subcases:
(a) Case F(x2−) � y2: In this case, ζ{x2} � 0, and

∫
ξFd(νλ − ν) � (1−λ) ξF(xβ) − c

[ ]
|ζ | :

Using |ζ | > 0 and ξF(xβ) ≥ g(β) > c and λ < 1, we obtain the contradiction that
∫
ξFd(νλ − ν) > 0.
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(b) Case F(x2−) < y2 � F(x2): In this case, Lemma 2 implies ξF(x2) � g(F(x2)) � g(F(x2−)+) � c, and we reach
the same contradiction:

∫
ξFd(νλ − ν) � (1−λ) ξF(xβ) − c

[ ]
ν(xε1,x2) + (1−λ)(ξF(xβ) − c)ζ{x2}

� (1−λ) ξF(xβ) − c
[ ]

|ζ | > 0:

(ii) Case y2 � 1: Then y1 > 0 as g is not a.e. constant. Let x1 :� F−1(y1) ≤ xε1. We note that ν[0,x1] ≥ y1 > 0 and con-
sider the measure

νλ � ν−λζ− (1−λ)ν | [0,x1] + λ |ζ | + (1−λ)ν[0,x1]{ }δxε
1
,

where λ ∈ [0, 1) is again chosen so that
∫
hdνλ �

∫
hdν. We have

0 ≥
∫

ξFdνλ −
∫

ξFdν � λ

∫
ξF(xε1) − ξF
[ ]

dζ+ (1−λ)
∫

ξF(xε1) − ξF
[ ]

dν | [0,x1]

� λ(c− ξF(x2))ζ{x2} + (1−λ)
∫

c− ξF
[ ]

dν | [0,x1]:

Similarly as in case (i), one can show that either ζ{x2} � 0 or ξF(x2) � c, both of which lead to

0 ≥ (1−λ)
∫

c− ξF
[ ]

dν | [0,x1] ≥ 0,

and thus
∫

c− ξF(x)
[ ]

dν | [0,x1] � 0: It follows that ξF(x) � c for ν-a.e. x ∈ [0,x1]. On the other hand, the definitions of

x1 and y1 imply that F(x) < y1 and ξF(x) < c for all x < x1. So it must hold that either x1 � 0 or ν[0,x1) � 0. Both

cases lead to F(x1−) � 0 and ν{x1} ≥ y1 > 0. But F(x1−) � 0 yields, by Lemma 2, that ξF(x1) � g(F(x1−)+)
� g(0+) < c, whereas ν{x1} > 0 implies ξF(x1) � c—a contradiction. This completes the proof that F−1(y1+) �
F−1(y2).

Finally, let x+1 :� F−1(y1+). Clearly, F(x+1 ) � F(F−1(y2)) ≥ y2. For any x < x+1 and ε > 0, we have x < xε1 and
F(x) < y1 + ε. Passing to the limit then yields F(x+1−) ≤ y1 < y2. As g is constant on (F(x+1−),F(x+1 )], we must have
F(x+1−) � y1 and F(x+1 ) � y2. w

Remark 4. If in Lemma 3 we also have g(y1) � c, then the proof goes through with xε1 replaced by x1 � F−1(y1)�0.
(The reason for using xε1 is to have ξF(xε1) � g(F(xε1)) � c.) As a result, we have x1 � x+1 � x2. In particular, if y1 � 0,
then F(0) � y2.

Remark 5. Lemmas 2 and 3 imply that for the existence of a mean field equilibrium, it is necessary that g be left
continuous at any level for which it contains a flat segment. In particular, if the reward function R is piecewise
constant, a mean field equilibrium can only exist if R is right continuous.

The feasibility constraint yields one equation to pin down the equilibrium. The best way to illustrate this is to
go through a particular case of Theorem 1 where the reward function is of the cutoff type. That is the purpose of
the next proposition—here, the feasibility constraint and the preceding results on atoms are already sufficient to
uniquely identify the equilibrium.

Proposition 1. Let R(r) � (1=α)1[0,α)(r) for some α ∈ (0, 1). Then the unique mean field equilibrium is given by the two-
point distribution να :� (1− α)δ0 +αδx1 , where x1 is the unique point in (x0,∞) with h(x1) � 1=α.

Proof. We first derive a necessary condition for F ∈ F to be an equilibrium. Let xα � F−1((1− α)+). By Lemma 3
and Remark 4, we have F(0) � 1−α, F(xα−) � 1− α and F(xα) � 1. That is, the measure associated with F must

take the form ν � (1−α)δ0 +αδxα . To determine xα, we first note that xα ≤ x1, for otherwise,
∫
hdν >

∫
hdνα � 1,

contradicting ν ∈ F . Suppose xα < x1 (which is only feasible if µ ≤ 0); then there exists β ∈ (α, 1) such that ν′ �
(1− β)δ0 + βδxα is feasible. In view of ξF(xα) � g(F(xα)) � g(1) > g(1− α) � ξF(0), the distribution ν′ is strictly pref-
erable to ν when the other players choose ν. As a result, xα � x1, which uniquely identifies F. To check that F is
indeed an equilibrium, we argue as in the beginning of Section 3. w

This proof does not generalize to piecewise constant reward functions with multiple jumps: although the feasi-
bility constraint still yields one equation, there are nowmultiple unknowns (the locations of the atoms). To deter-
mine mean field equilibria for general reward functions, it is necessary to analyze the effect of jumps in some
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detail. Let

J(g) :� {y ∈ (0, 1) : g(y−) < g(y+)}
be the set of interior jump points of g. The next lemma says that any jump of g—or, equivalently, of R—induces a
flat segment in any equilibrium distribution. (The reasoning in Remark 2 shows that this assertion fails at y � 0;
whence the definition of J(g) considers only interior jumps.)

Lemma 4. Let F be a mean field equilibrium. For each y ∈ J(g), the interval {x ≥ 0 : F(x) � y} has positive length.
Proof. Let y1 ∈ J(g); then x1 :� F−1(y1) ∈ [0,∞) as y1 ∈ (0, 1). Suppose, for contradiction, that {x ≥ 0 : F(x) � y1} has
zero length; then F(x) > y1 for all x > x1. Let ν be the measure associated with F. In the remainder of the proof we
construct a feasible distribution ν′ that is strictly better than ν. By Lemma 2, we have either F(x1−) � y1 or
F(x1−) < y1 � F(x1).

(i) Case F(x1−) � y1: In this case, x1 > 0, and F is nonconstant in any left neighborhood of x1. Fix γ ∈ (0,g(y1+) −
g(y1−)) and observe that

lim
ε→0+

ξF(x1 − 2ε) � g(y1−), lim
ε→0+

h(x1 − ε) − h(x1 − 2ε)
h(x1) − h(x1 − 2ε) � 1

2
:

We can thus find ε > 0 such that

ξF(x1 − 2ε) > g(y1−) − γ=2 (4)

and

h(x1 − ε) − h(x1 − 2ε)
h(x1) − h(x1 − 2ε) >

γ

g(y1+) − g(y1−) + γ
:

The measure ζ :� ν | (x1−ε,x1) has mass |ζ | > 0. Consider the probability measure

ν′ :� ν− ζ+ |ζ | λδx2 + (1−λ)δx1−2ε
( )

,

where x2 ∈ (x1,∞) is chosen to satisfy

h(x1 − ε) − h(x1 − 2ε)
h(x2) − h(x1 − 2ε) >

γ=2

g(y1+) − g(y1) + γ=2
(5)

and

λ :�
1
|ζ |

∫
hdζ− h(x1 − 2ε)

h(x2) − h(x1 − 2ε) ∈ h1(x1 − ε) − h(x1 − 2ε)
h(x2) − h(x1 − 2ε) , 1

( )
: (6)

It is easy to check that
∫
hd(ν′ − ν) � 0; hence ν′ ∈ F , by Lemma 1. To see that ν′ is strictly better than ν, we

use (4)–(6) and F(x2) > y1:∫
ξFd(ν′ − ν) � λ

∫
(ξF(x2) − ξF)dζ+ (1−λ)

∫
(ξF(x1 − 2ε) − ξF)dζ

≥ λ(g(y1+) − g(y1−)) |ζ | + (1−λ)(ξF(x1 − 2ε) − g(y1−)) |ζ |

> |ζ | λ[g(y1+) − g(y1−)] − (1−λ)γ
2

( )
� |ζ | λ[g(y1+) − g(y1−) + γ=2] − γ

2

( )
> 0:

(ii) Case F(x1−) < y1 � F(x1): In this case, {x ≥ 0 : F(x) � y1} having zero length implies that F is nonconstant in any
right neighborhood of x1. Moreover, Lemma 2 implies that g(y1−) � g(y1).
Fix γ ∈ (0, (y1 − F(x1−))(g(y1+) − g(y1))) and ε > 0 such that ξF(x1 + ε) < g(y1+) + γ. We define ζ :� ν | [x1,x1+ε) and

ν′ :� ν− ζ+ |ζ |δx2 ,
where x2 > x1 is to be determined. Because h is strictly increasing and ν(x1,x1 + ε) > 0, we see that
|ζ |h(x1) <

∫
hdζ < |ζ |h(x1 + ε), and consequently, there exists x2 ∈ (x1,x1 + ε) such that

∫
hd(ν′ − ν) � |ζ |h(x2) −

∫
hdζ � 0:
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For this choice of x2, we have ν′ ∈ F by Lemma 1. Moreover, ν′ is strictly better than ν:
∫

ξFd(ν′ − ν) � (y1 − F(x1−))[ξF(x2) − ξF(x1)] +
∫

(ξF(x2) − ξF)dν | (x1,x1+ε)

≥ (y1 − F(x1−))(g(y1+) − g(y1)) + (g(y1+) − ξF(x1 + ε))ν(x1,x1 + ε)
≥ (y1 − F(x1−))(g(y1+) − g(y1)) − γ > 0

by the choice of γ. w

3.2. Characterizing the Equilibrium
From now on, we shall work under the assumption that µ < µ̄∞ and R is right continuous with R(0) >
R(1−) � R(1).

The general idea of the uniqueness argument is to analyze a minimization problem: in equilibrium, the oppos-
ing players act such as to minimize the value function of a given representative player, subject to the constraint
that the opponents act symmetrically. This turns out to be substantially more involved than in the n-player case,
as a result of the possible presence of atoms in the equilibrium distribution and the noninvertibility of the func-
tion g.

Let uF be the value function of a representative player if the other players use F ∈ F . Dynamic programming
and optimal stopping theory yield

uF(x0) � sup
τ<∞

E[ξF(Xτ)] � (ξF ◦ h−1)conc(1) ≤ (g ◦ F ◦ h−1)conc(1),

where h is the scale function (2) with normalization h(x0) � 1, and “conc” denotes the concave envelope on R+.
The last inequality is due to a possible breaking of ties (see (1)). Lemma 2 shows that the inequality must be an
equality if F is a mean field equilibrium, even if ties do occur. On the other hand, if F∗ is an equilibrium, we must
have

R̄ � uF
∗ (x0) �min

F∈F
uF(x0): (7)

Indeed, given arbitrary F ∈ F , a representative player can achieve R̄ by also choosing F, and in equilibrium, this
is the best possible performance, by symmetry. Combining the two arguments, any mean field equilibrium F∗

must satisfy

(g ◦ F∗ ◦ h−1)conc(1) � uF
∗ (x0) �min

F∈F
uF(x0) ≤min

F∈F
(g ◦ F ◦ h−1)conc(1):

That is,

F∗ ∈ arg min
F∈F

Φ(F)conc(1), where Φ(F) :� g ◦ F ◦ h−1:

We also write Φ−1(φ) :� g−1 ◦φ ◦ h. We recall that g−1 denotes the right-continuous inverse of g; in particular,
g−1(g(y)) ≥ y and g( g−1(z)) ≤ z. Similarly, Φ−1(Φ(F)) ≥ F and Φ(Φ−1(φ)) ≤ φ. Finally, we define

w̄F :� inf {w ∈ [0,h(∞)] :Φ(F)(w) � g(1)} ≤ h(∞),
ȳ :� inf {y ∈ [0, 1] : g(y) � g(1)},

F
′
:� {F ∈ F : w̄F > 1, and w̄F < h(∞) in the case ȳ < 1}:

Lemma 5. If F is a mean field equilibrium, then F ∈ F ′ and w̄F � inf {w ∈ [0,h(∞)] : F ◦ h−1(w) � 1}. In particular,
F ◦ h−1(w̄F) � 1.

Proof. We first show F ∈ F ′. Suppose w̄F ≤ 1. Then

Φ(F)conc(1) ≥Φ(F)conc(w̄F) � Φ(F)conc(w̄F+) � g(1):
Consider the distribution G(x) � λ1[0,x0+ε)(x) + 1[x0+ε,∞)(x), where ε > 0 and λ ∈ (0, ȳ) are chosen so that

∫
hdG �

(1−λ)h(x0 + ε) � 1. We have Φ(G) � g(λ)1[0,h(x0+ε)) + g(1)1[h(x0+ε),∞). The concave hull of this function is readily
determined, and in view of g(λ) < g(1), we arrive at Φ(G)conc(1) < g(1) ≤Φ(F)conc(1), contradicting the optimality
of F.

Suppose ȳ < 1 and w̄F � h(∞). Then for all x <∞, we have h(x) < h(∞) � w̄F, which implies g(1) >Φ(F)(h(x))
� g(F(x)). But then F(x) ≤ ȳ < 1 for all x ∈ R, contradicting that F is the cdf of a probability measure on R.
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We next show F ◦ h−1(w̄F) � 1. This is trivial if w̄F � h(∞), so we may assume that w̄F < h(∞). For any w > w̄F,
we have g(F ◦ h−1(w)) � Φ(F)(w) � g(1), which implies the following:

(i) If ȳ � 1, then F ◦ h−1(w) � 1. Becausew > w̄F is arbitrary, F ◦ h−1(w̄F) � 1 by right continuity.
(ii) If ȳ < 1 and g(ȳ) < g(1), then F ◦ h−1(w) > ȳ. In this case, h−1(w) ≥ F−1(ȳ+) for all w > w̄F, which further yields

h−1(w̄F) ≥ F−1(ȳ+). By Lemma 3, F jumps from ȳ to 1 at F−1(ȳ+). It follows that F ◦ h−1(w̄F) ≥ F(F−1(ȳ+)) � 1.
(iii) If ȳ < 1 and g(ȳ) � g(1), then F ◦ h−1(w) ≥ ȳ. In this case, we use Remark 4 to obtain h−1(w) ≥ F−1(ȳ) � F−1(ȳ+),

and thus h−1(w̄F) ≥ F−1(ȳ+). We obtain the same conclusion as in (ii).
Finally, for w < w̄F,Φ(F)(w) < g(1) implies F ◦ h−1(w) < 1. w

Lemma 6. Let F ∈ F ′. Suppose there exists an increasing concave function φ ≥Φ(F) on [0,h(∞)] satisfying φ(1) ≤
Φ(F)conc(1) and ∫ h(∞)

0

(1− g−1 ◦φ(w))dw < 1:

Then there exists F′ ∈ F such that Φ(F′)conc(1) <Φ(F)conc(1), and consequently, F cannot be a mean field equilibrium.

Proof. Let φ be as stated. Note that w̄F > 1 implies Φ(F)(1+) < g(1), which further yields Φ(F)conc(1) < g(1)
� Φ(F)(w̄F+) ≤ φ(w̄F+) � φ(w̄F). Let w̄φ :� inf {w ≥ 0 : φ(w) � g(1)}. Because φ(1) < g(1) and φ(w̄F+) � g(1), we
know 1 < w̄φ ≤ w̄F. Consider four cases.

(i) µ ≤ 0 and ȳ � 1: In this case, h(∞) � ∞ and g−1 is continuous at g(1). Choose ε ∈ (0, 1) such that φ(ε) < φ(1).
Such an ε exists: as φ is increasing and concave, it must be strictly increasing before reaching g(1). Let

φε(w) :� φ(εw). Then φε is concave on R+ and satisfies φε(1) < φ(1). Next, define Fλ :� Φ−1(λφ+ (1−λ)φε). One

can check that Fλ is right continuous and satisfies Fλ(∞) � 1. We also have that for λ ∈ [0, 1), Φ(Fλ)conc(1)
≤ λφ+ (1−λ)φε

( )conc(1) � λφ(1) + (1−λ)φε(1) < φ(1) ≤ Φ(F)conc(1), showing that Fλ is strictly better than F. To

reach the desired contradiction, it remains to show the feasibility of Fλ for λ sufficiently close to 1. We have
∫

hdFλ �
∫ ∞

0

(1− Fλ ◦ h−1)(w)dw �
∫ ∞

0

(1− g−1 ◦ (λφ+ (1−λ)φε))(w)dw:

As g−1 is monotone, it has at most countably many points of discontinuity, and ȳ � 1 implies that g(1) is not
one of them. For any z < g(1), the set {w ≥ 0 : φ(w) � z} has zero Lebesgue measure because φ is strictly increas-

ing before reaching g(1). It follows that as λ→ 1, the integrand converges a.e. to 1− g−1 ◦φ. Using 0 ≤
1− g−1 ◦ (λφ+ (1−λ)φε) ≤ 1− g−1 ◦φε ≤ 1− g−1 ◦Φ(F)(ε · id) ≤ 1− F ◦ h−1(ε · id) and

∫ ∞
0
(1− F ◦ h−1(εw))dw � ε−1

∫
hdF

<∞, dominated convergence yields that

lim
λ→1

∫
hdFλ �

∫ ∞

0

(1− g−1 ◦φ)(w)dw < 1:

By Lemma 1, this shows that Fλ is feasible for λ sufficiently close to 1.
(ii) µ ≤ 0 and ȳ < 1: In this case, 1 < w̄φ ≤ w̄F < h(∞) � ∞. Choose ε > 0 such that w̄φ + ε < h(∞) and

∫ w̄φ

0
(1− g−1 ◦φ)(w)dw+ (1− ȳ)ε < 1. Let φ′

ε denote the line connecting (0,φ(0)) and (w̄φ + ε,g(1)) and capped at

level g(1):

φ′
ε(w) � φ(0) + g(1) −φ(0)

w̄φ + ε
w

( )
�g(1):

Then φ′
ε is concave on R+ and satisfies φ′

ε(1) < φ(1). As in the previous case, we define F′λ :� Φ−1(λφ+
(1−λ)φ′

ε). Then F′λ is a cdf supported on R+, which satisfies Φ(F′λ)
conc(1) <Φ(F)conc(1) for all λ ∈ [0, 1). To check

the feasibility of F′λ for λ close to 1, we write
∫

hdF′λ �
∫ w̄φ

0

(1− g−1(λφ(w) + (1−λ)φε(w)))dw+
∫ w̄φ+ε

w̄φ

(1− g−1(λg(1) + (1−λ)φε(w)))dw:
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Using that φ is strictly increasing on [0, w̄φ], we obtain by bounded convergence that limλ→1

∫
hdF′λ �

∫ w̄φ

0
(1− g−1 ◦φ)(w)dw+ (1− ȳ)ε < 1:

(iii) 0 < µ < µ̄∞ and ȳ � 1: In this case, w̄φ ≤ h(∞) <∞, and g−1 is continuous at g(1). Let ℓ be the line segment con-
necting (0,g(0)) and (h(∞),g(1)). We have

∫
hdΦ−1(ℓ) �

∫ h(∞)

0

(1−Φ−1(ℓ) ◦ h−1(w))dw �
∫ h(∞)

0

(1− g−1 ◦ ℓ(w))dw

� h(∞)
g(1) − g(0)

∫ g(1)

g(0)
(1− g−1(y))dy � h(∞)

g(1) − g(0)

∫ 1

0

g(y)dy− g(0)
( )

� h(∞)
h(x̄) > 1:

Because φ(0) ≥ g(0) � ℓ(0) and φ(h(∞)) � g(1) � ℓ(h(∞)), by concavity, either φ > ℓ on (0,h(∞)) or φ � ℓ. The lat-
ter case is impossible, as F ≤Φ−1(Φ(F)) ≤Φ−1(φ) �Φ−1(ℓ) would imply F ∉ F . Set F′′λ :�Φ−1(λφ+ (1−λ)ℓ). We
again have Φ(F′′λ )

conc(1) ≤ λφ(1) + (1−λ)ℓ(1) < φ(1) ≤Φ(F)conc(1) if λ ∈ [0, 1). Let

I(λ) :�
∫

hdF′′λ �
∫ h(∞)

0

(1− g−1(λφ(w) + (1−λ)ℓ(w)))dw:

Using the continuity of g−1 at g(1), the strict monotonicity of λφ+ (1−λ)ℓ before reaching g(1), and the

bounded convergence theorem, we deduce that I(·) is continuous on (0, 1), satisfying I(1−) �
∫ h(∞)
0

(1− g−1◦
φ(w))dw < 1 and

I(0+) �
∫ h(∞)

0

(1− g−1 ◦ ℓ)(w)dw �
∫ h(∞)

0

(1−Φ−1(ℓ) ◦ h−1)(w)dw �
∫

hdΦ−1(ℓ) > 1:

We may thus choose λ0 ∈ (0, 1) such that I(λ0) � 1. Then F′′λ0
∈ F , and the contradiction is complete.

(iv) 0 < µ < µ̄∞ and ȳ < 1: In this case, w̄φ < h(∞) <∞. Let φ′
ε and F′λ be constructed as in case (ii) with ε satisfying

w̄φ + 2ε < h(∞). Define

G(x) :� γF′λ(x) x < h−1(w̄φ + 2ε),
1 x ≥ h−1(w̄φ + 2ε),

{

for some γ ∈ (0, 1) to be determined. We have F′λ(h−1(w̄φ + 2ε)−) ≥ F′λ(h−1(w̄φ + ε)) � g−1(λφ(w̄φ + ε) + (1−
λ)φ′

ε(w̄φ + ε)) � 1 and
∫

hdG � γ

∫
hdF′λ + (1− γ)(w̄φ + 2ε):

In view of
∫
hdF′λ < 1 and w̄φ + 2ε > 1, we can find γ ∈ (0, 1) such that

∫
hdG � 1, and then G is feasible. We arrive

at the desired contradiction after noting that Φ(G)conc(1) ≤Φ(F′λ)
conc(1) <Φ(F)conc(1). w

Lemma 7. Let F be a mean field equilibrium. Define

A �
⋃
y∉J(g)

Ay, where Ay � {w ∈ [0, h(∞)] ∩ R : F ◦ h−1(w) � y},

as well as wy � infAy. Then wy < w̄F for all y ∈ J(g). Moreover, there exists a strictly increasing affine function ℓ1 ≥Φ(F)
satisfying ℓ1(1) �Φ(F)conc(1) and

(i) ℓ1(w̄F) � g(1),
(ii)Φ(F) � ℓ1�g(1) on A, and
(iii)Φ(F)(wy) � ℓ1(wy) for all y ∈ J(g).

Proof. Let F be an equilibrium; then F ∈ F ′ by Lemma 5. Define φ :�Φ(F)conc and ψ :� ℓ1�g(1), where ℓ1 is an
affine function passing through (1,φ(1)) whose slope lies in the superdifferential of φ at w � 1. We have ℓ1 ≥ ψ ≥
φ ≥ Φ(F), g−1 ◦ψ ≥ g−1 ◦Φ(F) ≥ F ◦ h−1 and ψ(1) ≤ ℓ1(1) � φ(1) � Φ(F)conc(1). By Lemma 5, Φ(F)(1+) < g(1) �
Φ(F)(w̄F +) ≤ φ(w̄F) ≤ g(1), which implies that φ(1) < g(1) � φ(w̄F). As φ is increasing and concave, it must be
strictly increasing before reaching level g(1). Consequently, ℓ1 has positive slope. For any y ∈ J(g), Ay has positive
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length by Lemma 4. Because F ◦ h−1 � y < 1 on Ay, we must have Ay ⊆ [0, w̄F) and wy < w̄F. It remains to show
properties (i)–(iii). Specifically, we show in what follows that if one of these properties does not hold, then
∫ h(∞)
0

(1− g−1 ◦ψ(w))dw < 1. Applying Lemma 6 with ψ being the increasing concave function, this contradicts

that F is an equilibrium.
(i) Let w̄1 :� ℓ

−1
1 (g(1)). Because ℓ1 ≥ Φ(F), we necessarily have w̄1 ≤ w̄F. Suppose w̄1 < w̄F; then F ◦ h−1 < 1 in a

right neighborhood of w̄1. Together with g−1 ◦ψ ≥ F ◦ h−1, we obtain
∫ h(∞)

0

(1− g−1 ◦ψ(w))dw �
∫ w̄1

0

(1− g−1 ◦ψ(w))dw

≤
∫ w̄1

0

(1− F ◦ h−1(w))dw <

∫ h(∞)

0

(1− F ◦ h−1(w))dw �
∫

hdF ≤ 1:

(ii) Suppose Φ(F)(w0) < ψ(w0) for some w0 ∈ A. As F ◦ h−1(w0) ∉ J(g), we have F ◦ h−1(w0) ≤ g−1(Φ(F)(w0))
< g−1(ψ(w0)). By the right continuity of F ◦ h−1 and g−1 ◦ψ, it follows that F ◦ h−1 < g−1 ◦ψ in a right neighborhood
ofw0. Thus

∫ h(∞)

0

(1− g−1 ◦ψ(w))dw <

∫ h(∞)

0

(1− F ◦ h−1(w))dw �
∫

hdF ≤ 1:

(iii) Let y ∈ J(g). Suppose Φ(F)(wy) < ℓ1(wy). Let w′
y :� ℓ

−1
1 (Φ(F)(wy)). We have w′

y < ℓ
−1
1 (ℓ1(wy)) � wy < w̄F and

ℓ1(w′
y) �Φ(F)(wy) � g(y) < g(y+) ≤ g(1). Define

F1(x) :�
F(x), if x < h−1(w′

y) or x ≥ h−1(wy),
F(h−1(wy)) � y, if h−1(w′

y) ≤ x < h−1(wy):

{

Clearly, F1 ≥ F. For x ∈ [h−1(w′
y),h−1(wy)), we have h(x) ∈ [w′

y,wy) and F(x) � F ◦ h−1(h(x)) < y � F1(x) by the defini-

tion of wy. It follows that
∫
hdF1 <

∫
hdF ≤ 1. Now, observe that

ψ(w) ≥ Φ(F1)(w) �
Φ(F)(w) if w < w′

y or w ≥ wy,

g(y) if w′
y ≤ w < wy:

{

This implies
∫ h(∞)

0

(1 − g−1 ◦ ψ(w))dw ≤
∫ h(∞)

0

(1 − g−1 ◦ Φ(F1)(w))dw ≤
∫ h(∞)

0

(1 − F1 ◦ h−1(w))dw �
∫

hdF1 < 1: w

Remark 6. When g is continuous, A � [0,h(∞)] ∩ R, and Lemma 7 states that Φ(F) is affine before reaching level
g(1).

We can now complete the uniqueness argument.

Proof of Theorem 1—Uniqueness. Let F be any equilibrium. By Lemma 2, Φ(F)(0) � g(F(0)) � g(0+) � g(0). Let ℓ1
be the strictly increasing affine function given by Lemma 7. In particular, we have ℓ1(1) � Φ(F)conc(1) and
ℓ1(w̄F) � g(1), and Φ(F)(w) � ℓ1(w)�g(1) whenever F ◦ h−1(w) ∉ J(g) or w � wy � inf {w ∈ [0,h(∞)] ∩ R : F ◦ h−1(w) �
y} < w̄F for some y ∈ J(g).

We first find a formula for ℓ1. Observe that either F ◦ h−1(0) � F(0) ∉ J(g) or F(0) ∈ J(g) and wF(0) � 0. In both
cases, ℓ1(0) �Φ(F)(0) � g(0) < g(1). We also have ℓ1(1) �Φ(F)conc(1) � uF(x0) � R̄, by symmetry. This completely
determines the shape of ℓ1; namely,

ℓ1(w) � g(0) + (R̄ − g(0))w:
Next, recall A,Ay,wy as defined in Lemma 7. We decompose [0,h(∞)] ∩ R into three disjoint parts: A1, A\A1, and⋃

y∈J(g)Ay. Note that A1 � [w̄F,h(∞)] ∩ R � [ℓ−11 (g(1)),h(∞)] ∩ R by Lemma 5 and Lemma 7(i), and note that each
Ay with y ∈ J(g) has positive length by Lemma 4.

(i) On A1, we have F ◦ h−1 ≡ 1.
(ii) On A\A1, we have g(F ◦ h−1) �Φ(F) � ℓ1 �g(1) � ℓ1 by Lemma 7(ii). The strict monotonicity of ℓ1 implies that

F ◦ h−1 is strictly increasing on A\A1. Thus, Ay is a singleton for all y ∉ J(g)⋃{1}. The relation g(F ◦ h−1) � ℓ1 also
implies F ◦ h−1 ≤ g−1 ◦ g(F ◦ h−1) � g−1(ℓ1). In view of Lemma 3, the inequality is, in fact, an equality. Indeed, any
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flat segment of g induces a gap in the range of F, which precisely excludes those points y for which g−1(g(y)) ≠ y,
except possibly at the left endpoint of the flat segment—say, y1. The exception only happens if F contains a flat seg-
ment at height y1, which is equivalent to Ay1 having positive length. Thus, F ◦ h−1 � y1 is also ruled out on A\A1.

(iii) On eachAywith y ∈ J(g), we use Lemma7(iii) to obtain g(y) �Φ(F)(wy) � ℓ1(wy), which uniquely determineswy.
In summary, we can decompose [0,h(∞)] ∩ R into (a) countably many intervals on which F ◦ h−1 is flat at

some level y ∈ J(g)⋃ 1{ } and (b) the complementary set A\A1 on which F ◦ h−1 � g−1(ℓ1). Each flat segment at level
y ∈ J(g) has the left endpoint wy � ℓ

−1
1 (g(y)). To uniquely determine the right-continuous function F ◦ h−1, it only

remains to specify, for each y ∈ J(g), the right endpoint
w̃y :� sup {w ∈ [0,h(∞)] ∩ R : F ◦ h−1(w) � y} ≤ w̄F

of the flat segment. To this end, let y ∈ J(g) and y′ :� sup {z ∈ [0, 1] : g(z) � g(y+)}. We distinguish two cases:
Case 1: If y′ � y, then g is nonconstant in any right neighborhood of y, which implies that F ◦ h−1(w̃y) � y. (If

F ◦ h−1(w̃y) > y, then F would have an atom at h−1(w̃y), and by Lemma 2, g(F ◦ h−1(w̃y)) � g(y+), contradicting the
assumption that y′ � y.) Let w(m) > w̃y be a sequence such that w(m) → w̃y, and let ym :� F ◦ h−1(w(m)). By right con-
tinuity and the definition of w̃y, we have ym → y and ym > y. For large m, we may assume ym < 1. Observe that
w(m) ≥ wym > w̃y, which implies wym → w̃y. If ym ∉ J(g), then w(m) � wym ∈ A\A1 and g(ym) � ℓ1(w(m)) � ℓ1(wym) by (ii)
in the proof of Theorem 1—Uniqueness. If ym ∈ J(g), then g(ym) � ℓ1(wyn ) by (iii) in the same proof. Combining the
two cases and passing to the limit, we obtain g(y+) � ℓ1(w̃y).

Case 2: If y′ > y, then by Lemma 3, F jumps from y to y′ at F−1(y+) � h−1(w̃y). Hence, F ◦ h−1(w̃y) � y′ and
Φ(F)(w̃y) � g(y′) � g(y+). We have either y′ ∉ J(g) or y′ ∈ J(g) with w̃y � wy′ , and both lead to
ℓ1(w̃y) �Φ(F)(w̃y) � g(y+).

In both cases, we have ℓ1(w̃y) � g(y+), which uniquely determines w̃y.
Putting everything together and taking into account the right continuity of F ◦ h−1,

F ◦ h−1(w) �
y if y ∈ J(g) and w ∈ [ℓ−11 (g(y)),ℓ−11 (g(y+))),
1 if w ≥ ℓ

−1
1 (g(1)),

g−1(ℓ1(w)) otherwise:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

In summary, F ◦ h−1(w) � g−1(ℓ1(w)�g(1)), or F(x) � F∗(x) after substituting w � h(x). w

4. Optimal Reward Design
Consider a principal who may choose a normalized reward R (i.e., satisfying R(0) � 0 and R̄ � 1) and whose goal
is to maximize the performance of the top α ∈ (0, 1) fraction of players. More precisely, the aim is to maximize the
lowest stopping position of all players in the ranks [0,α),

xα :� F−1((1− α)+) � F−1+ (1− α),
where F is the equilibrium resulting from R and F−1+ is the right-continuous inverse of F. See Remark 7 for the
technical importance of using F−1+ or, equivalently, of using the open interval [0,α) when defining the top ranks.
Note that the constant µ̄∞ � µ̄∞(R) in Theorem 1 depends on R. For the following result, we assume µ ≤ 0 to ensure

that µ < µ̄∞(R) holds for any reward R. Alternatively, one may relax this condition to µ < −[σ2=(2x0)]log 1−α( ) and
restrict the principal to rewards R satisfying µ < µ̄∞(R).
Theorem 2. Let α ∈ (0, 1). Then

R∗(r) � 1

α
1[0,α)(r)

is the unique normalized reward maximizing the performance xα. The corresponding value is x∗α � h−1 1=α( ), and the equili-
brium distribution is

F∗ � (1− α)1[0,x∗α) + 1[x∗α,∞):

Proof. Let R be an arbitrary normalized reward, and let g(y) � R(1− y). By Theorem 1, the corresponding mean
field equilibrium F is unique, and

F(x) � g−1 h(x)�g(1)
( )

� 1� inf {y : g(y) > h(x)�g(1)}:
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We have F(x) > 1−α if and only if g(1− α+ ε) ≤ h(x)�g(1) for some ε � ε(x) > 0; hence

F−1+ (1− α) � inf {x ≥ 0 : g(1− α+ ε) ≤ h(x)�g(1) for some ε > 0}
� h−1(g((1− α)+)):

As h−1 is strictly increasing, maximizing this quantity is equivalent to maximizing g((1−α)+). Recalling that g is

monotone and left continuous and that
∫ 1

0
g(y)dy � 1, the unique maximizer is given by g∗(y) :� R∗(1− y), and the

corresponding maximum value is h−1 1=α( ). By Theorem 1 (or Proposition 1), the corresponding equilibrium is
F∗. w

Comparing with the results cited in the introduction (and recalled in more detail in Section 5.3), Theorem 2
gives a clear-cut answer to a question that remained partially open in the n-player setting. On the other hand, the
result illustrates that the mean field analysis alone could easily lead to an oversimplified picture: the optimal
design in the n-player game is not given by the cutoff reward at the target rank in most cases. See also Section 5
for further comparison of mean field and n-player games.

Remark 7. The principal’s goal is to maximize F−1+ (1− α) rather than the quantile F−1(1− α). Indeed, the worst
performance among the top α-fraction of players need not be the same as the best performance among the bot-
tom (1−α)-fraction. The equilibrium F∗ of Theorem 2 has an atom of size α at x∗α and an atom of size 1−α at the
origin. Thus, (F∗)−1+ (1−α) � x∗α, but (F∗)

−1(1−α) � 0.
It is crucial to formulate the principal’s problem in the form stated in the preceding: if instead we aim to maxi-

mize the best performance in the quantile F−1(1− α), the optimization fails to admit a solution. To see this, note

that for each m ≥ 1, the cutoff reward R(m)(r) :� (α+ 1=m)−11[0,α+1=m)(r) gives rise to the equilibrium F(m) � (1− α

−1=m)1[0,xm) + 1[xm,∞), where xm � h−1(1=(α+ 1=m)). Moreover, (F(m))−1(1− α) � xm increases to h−1(1=α) as m→∞.

However, there exists no equilibrium distribution F achieving F−1(1− α) � h−1(1=α). Indeed, by Theorem 2, such

Fwould have to coincide with F∗, but (F∗)−1(1−α) � 0 < h−1(1=α).
Remark 8. In analogy to the “price of anarchy,”we can compare the principal’s optimization over equilibria with
a different problem where the planner can dictate the players’ stopping strategy (regardless of equilibrium con-
siderations). This problem can be stated as

max
F∈F

F−1+ (1 − α):

Using Lemma 1, we can check that the unique solution is F � F∗, the equilibrium distribution of Theorem 2. In
particular, the “welfare” of the second-best principal who can only choose the reward function is equal to that of
a planner who can dictate strategies. This fact extends to other objectives for the principal: from the explicit for-
mula of the mean field equilibrium in Theorem 1, we see that any distribution F ∈ F with compact support can
be attained in equilibrium under the normalized reward R(r) � g(1− r) with

g−1(y) :� F(h−1(y)):
As a result, finding an optimal reward is equivalent to finding an optimal target distribution. This explains why
the first-best and the second-best solution coincide.

This consideration also shows a different avenue to Theorem 2: if one is only interested in this specific question
rather than mean field equilibria for general reward functions, one can first argue that arg maxF∈FF−1+ (1− α) � F∗

and then, as in Proposition 1, that F∗ is the unique equilibrium for R∗.

5. Convergence to the Mean Field
To formulate the n-player game associated with our mean field contest, fix a decreasing, nonconstant reward vector,
(R1, : : : ,Rn). Here, R1 is interpreted as the reward for the best rank, whereas Rn is the worst. As in the mean field
game, the players are ranked according to their level of stopping, and ties are split uniformly at random. The set F
of feasible stopping distributions remains the same, and the definition of equilibrium is analogous. It is shown in
Nutz and Zhang [42] that the n-player game admits a unique equilibrium F∗n ∈ F as soon as the drift µ satisfies

µ < µ̄n :�
σ2

2x0
log

R1 −Rn

R1 − R̄n

( )
, where R̄n :�

1

n

∑n

k�1
Rk:
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The equilibrium distribution has compact support [0, x̄n] and cdf

F∗n(x) � g−1n (u∗n(x)), where x̄n � h−1
R1 −Rn

R̄ −Rn

( )
and

gn(y) �
∑n

k�1
Rk

n− 1
k− 1

( )
yn−k(1− y)k−1, and u∗n(x) � Rn + R̄n −Rn

( )
h(x)

[ ]
�R1

is the equilibrium value function. In contrast to the mean field setting, F∗n is always atomless. Moreover, gn is
strictly increasing and smooth—hence so is its (true) inverse g−1n .

5.1. Convergence of the n-Player Equilibrium
The next result shows that if the reward vector is induced by a reward function for the mean field game, the n-
player equilibrium distributions F∗n and value functions u∗n converge to their mean field counterparts F∗ and u∗, as
described in Theorem 1.

Theorem 3. Let R : [0, 1] → R+ be a reward function, µ < µ̄∞, and define Rk :� R(k=n) for k � 1, : : : ,n. Then as n→∞,
using (R1, : : : ,Rn) as the reward for the n-player game and R for the mean field game, the associated unique equilibrium dis-
tributions converge weakly, and the equilibrium value functions converge uniformly.

Suppose, in addition, that g(y) � R(1− y) is piecewise α-Hölder continuous and that its right-continuous inverse is piece-
wise β-Hölder continuous, where α,β ∈ (0, 1].4 With W1 denoting the 1-Wasserstein metric, we have the convergence rates

||u∗n − u∗||∞ �O(n−α), W1(F∗n,F∗) �O(n−α′=2 + n−αβ) ∀α′ ∈ (0,α] ∩ (0, 1):5

Remark 9. If we consider a generalized reward function R with R(1−) < R(1), as discussed in Remark 2, the limit
of the n-player equilibria selects a particular equilibrium among the infinitely many mean field equilibria—
namely, the one detailed in Theorem 1. This follows from the fact that the proof of Theorem 3 does not use the
condition R(1−) � R(1).

Before proceeding with the proof, we state a formula that will be used in later arguments as well. Consider the
empirical cdf of i.i.d. uniform random variables {Ui}i�1,: : : ,n−1 on [0, 1],

F̂n−1(y) �
1

n− 1
# i :Ui ≤ y
{ }

:

Let 0 ≤ y1 ≤ y2 ≤ 1. Among the n – 1 random variables {Ui}, there are In−1 � (n− 1)(1− F̂n−1(y2)) with values above
y2, Jn−1 � (n− 1)F̂n−1(y1) below y1, and Kn−1 � (n− 1)(F̂n−1(y2) − F̂n−1(y1)) in between y1 and y2. Thus, we have the
following formula for any function φ(i, j,k):

∑
i; j;k≥0

i+ j+k�n−1

φ(i, j, k)
n− 1

i, j,k

( )
(1− y2)iyj1(y2 − y1)k

�
∑
i; j; k≥0

i+ j+ k�n−1

φ(i, j,k)P(In−1 � i, Jn−1 � j,Kn−1 � k)

� E φ (n− 1)(1− F̂n−1(y2)), (n− 1)F̂n−1(y1), (n− 1)(F̂n−1(y2) − F̂n−1(y1))
( )[ ]

: (8)

Proof of Theorem 3. We have Rn � R(1) and R1 � R(1=n) → R(0) by the right continuity of R. Moreover, the Rie-

mann sum (1=n)∑n
k�1Rk →

∫ 1

0
R(r)dr � R̄. It follows that µ̄n → µ̄∞ and x̄n → x̄, so that µ < µ̄∞ ensures µ < µ̄n for

all n sufficiently large, and the equilibria are uniquely defined and compactly supported on [0, x̄n] ⊆ [0, x̄ + 1].
The pointwise convergence of u∗n to u∗ is clear from their respective formulas. As these functions are increasing
and u∗ is continuous, the pointwise convergence is uniform on [0, x̄ + 1] (see, e.g., Resnick [44, proposition 2.1]).
Outside the compact set [0, x̄ + 1], we have limn |u∗n − u∗ | � limn |R1 −R(0) | � 0.

To show the weak convergence of the equilibrium distributions, we prove F∗n(x) → F∗(x) whenever x is a point
of continuity of F∗. We first argue that

gn → g at at every point of continuity of g: (9)
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Taking y1 � y2 � y and φ(i, j,k) � Ri+1 � R((i+ 1)=n) in (8), we obtain

gn(y) � E R
(n− 1)(1− F̂n−1(y)) + 1

n

( )[ ]
� E g

n− 1

n
F̂n−1(y)

( )[ ]
: (10)

By the strong law of large numbers, F̂n−1(y) → y a.s. for each y. If y is a point of continuity of g, it follows that

g((1− 1=n)F̂n−1(y)) → g(y) a.s., and the bounded convergence theorem yields gn(y) → g(y) as claimed.
We have F∗n(x) � g−1n (zn) for zn :� u∗n(x) and, similarly, F∗(x) � g−1(z) for z :� u∗(x). By the preceding, zn → z for

all x, and therefore we need to show that g−1n (zn) → g−1(z) whenever z ∈ C, where C is the set of continuity points
of g−1. Up to normalization, we may think of gn,g as a cdf of weakly converging distributions. It is then known
that the inverses g−1n converge to g−1 on the set where the left- and right-continuous inverses of g coincide and
hence on C (see the proof of theorem 3.2.2 in Durrett [19]). We have g−1n (z6ε) → g−1(z6ε) for z ∈ C and ε > 0
with z6ε ∈ C. Using the fact that g−1n ,g−1 are monotone, we deduce that g−1n (zn) → g−1(z) whenever zn → z and
z ∈ C, as desired.

Next, we derive the convergence rate under the additional piecewise Hölder condition. Let 0 � r0 < r1 <⋯<

rm � 1 be a finite partition of [0, 1] such that R is α-Hölder continuous on each interval (ri−1, ri). Write
R̄

n
:� 1=n( )∑n

k�1Rk. We have |R1 −R(0) | � |R(1=n) −R(0) | �O(n−α) and

| R̄n − R̄ | ≤
∫ 1

0

|R(⌈rn⌉=n) −R(r) |dr ≤
∑m

i�1

∫ ri−1=n

ri−1+1=n

C

nα
dr+ 2m(R(0) −R(1))

n
�O(n−α):

Throughout the proof, the constant C may vary from line to line. Using the above-mentioned convergence rates
of R1 and R̄

n
, as well as the Lipschitz continuity of h−1 and (x,y) ⊢→ (x−R(1))=(y−R(1)) when y >

(R̄ +R(1))=2 > R(1), one can easily show that

| x̄n − x̄ | �O(n−α): (11)

Similarly, we use the convergence rates of R1 and R̄
n
, and the Lipschitz continuity of (x,y) ⊢→ [R(1) + (y−

R(1))h]�x uniformly in h ∈ [0,h(x̄ + 1)], to obtain

‖u∗n − u∗‖∞ �max sup
0≤x≤x̄+1

|u∗n(x) − u∗(x) | , |R1 −R(0) |
{ }

�O(n−α): (12)

To show the convergence rate of the equilibrium distributions, note that

W1(Fn,F) �
∫

R

|F∗n(x) − F∗(x) |dx �
∫ x̄n � x̄

0

|F∗n(x) − F∗(x) |dx ≤ I + J + | x̄n − x̄ | , (13)

where

I :�
∫ x̄n � x̄

0

|g−1n (u∗n(x)) − g−1(u∗n(x)) |dx, J :�
∫ x̄n � x̄

0

|g−1(u∗n(x)) − g−1(u∗(x)) |dx:

We deal with the two terms separately. Observe that u∗n is invertible on [0, x̄n]. A change of variable leads to

I �
∫ u∗n(x̄n � x̄)

Rn

|g−1n (z) − g−1(z) | (h−1)′ z−Rn

R̄
n −Rn

( )
dz

R̄
n −Rn

:

Set g−1n (z) :� 1 for z > R1. Because h
−1 ∈ C1[0,h(x̄ + 1)], we have for large n that

I ≤ C

∫ R(0)

R(1)
|g−1n (z) − g−1(z) |dz � C

∫ 1

0

|gn(y) − g(y) |dy:

Let yi :� 1− ri so that g is α-Hölder continuous on each interval (yi−1,yi). Fix α′ ∈ (0,α] ∩ (0, 1)
and y ∈ In,i :� (yi−1 + 2(n− 1)−α′=2,yi − 2(n− 1)−α′=2); it is easy to show that if | F̂n−1(y) − y | ≤ (n− 1)−α′=2, then
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(1− 1=n)F̂n−1(y) ∈ (yi−1,yi) for n sufficiently large (independently of y). In this case, by (10), the α-Hölder continu-

ity of g on (yi−1,yi), Jensen’s inequality, and the Dvoretzky–Kiefer–Wolfowitz inequality, we have that

gn(y) − g(y) � E g
n− 1

n
F̂n−1(y)

( )
− g(y)

[ ]

≤ E C | F̂n−1(y) − y | + 1

n

( )α[ ]
+CP sup

y∈[0,1]
| F̂n−1(y) − y | > (n− 1)−α′=2

( )

≤ C E sup
y∈[0,1]

| F̂n−1(y) − y |
[ ]

+ 1

n

( )α
+Ce−2(n−1)

1−α′

≤ C

∫ ∞

0

2e−2(n−1)z
2

dz+ 1

n

( )α
+Ce−2(n−1)

1−α′

�O(n−α=2) +O(e−2(n−1)1−α
′
) �O(n−α=2), uniformly in y ∈ In,i:

Consequently,

I ≤ C

∫
⋃

i In,i
|gn(y) − g(y) |dy + C

∫

(
⋃

i In,i)
c
|gn(y) − g(y) |dy

≤ O(n−α=2) + 4C(n − 1)−α′=2m(R(0) − R(1)) � O(n−α′=2):

(14)

For the convergence of J, let R(1) � z0 < z1 <⋯< zℓ � R(0) be a finite partition of [R(1),R(0)] such that g−1 is
β-Hölder continuous on each interval (zi−1, zi). Note that u∗ is invertible on [0, x̄]. For any z ∈ [R(0),R(1)],

|u∗n((u∗)
−1(z)) − z | � |u∗n((u∗)

−1(z)) − u∗((u∗)−1(z)) | ≤ ||u∗n − u∗ ||∞ ≤ Cn−α

by (12). It follows that

J ≤
∫ R(0)

R(1)
|g−1(u∗n ◦ (u∗)

−1(z)) − g−1(z) | [(u∗)−1]′(z)dz

≤
∑
i

∫ zi−Cn−α

zi−1+Cn−α
C |u∗n ◦ (u∗)

−1(z) − z |βdz+ 2Cn−αℓ

≤ Cn−αβ(R(0) −R(1)) + 2Cn−αℓ �O(n−αβ):

(15)

Combining (11), (13), (14) and (15), we obtainW1(Fn,F) �O(n−α′=2 + n−αβ). w

Remark 10. A discussion related to Theorem 3 can be found in the work of Fang and Noe [21] on n-player
capacity-constrained contests, which can be related to the present game via Skorokhod embedding. (Some results
of the preprint by Fang and Noe [21] were later published as Fang et al. [22].) Namely, Fang and Noe [21, propo-
sition 9] study the effect of scaling the n-player contest by multiplying the number of participants while dividing
the reward at each rank. This basically corresponds to taking limnF

∗
n, if only for the particular case where R is a

step function. An infinite player game is not considered so that the limiting distribution F∗ cannot be recognized
as a mean field object. Instead, the authors derive an involved algorithm (Fang and Noe [21, remark A-1]) to con-
struct F∗ � limnF

∗
n. The limit is a step function in this particular case, and the algorithm determines the n – 1 jump

locations and magnitudes. It seems that the simple representation (3), or the game-theoretic meaning of F∗, was
not identified.

5.2. «-Nash Equilibrium Property of the Mean Field Strategy
Recall that ξF(x) denotes the payoff for stopping at x if all other players in the mean field game use F (see (1)).
Analogously, we can define the expected payoff ξFn(x) in the n-player game. We say that F∗ ∈ F is an ε-Nash equili-
brium of the n-player game if

∫
ξF

∗

n dF
∗ ≥

∫
ξF

∗

n dF− ε for all F ∈ F :
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That is, a player deviating unilaterally from F∗ can improve her expected payoff by at most ε. Correspondingly,
F∗ is an o(1)-Nash equilibrium as n→∞ if for any ε > 0, the preceding holds for all large n, or equivalently,

lim
n→∞

sup
F∈F

∫
ξF

∗

n dF−
∫

ξF
∗

n dF
∗

( )
� 0:

We can now state the main result of this subsection.

Theorem 4. Let R be a reward function, µ < µ̄∞, and let F∗ be the associated mean field equilibrium. Define Rk :�
R(k=n), k � 1, : : : ,n as reward for the n-player game. Then F∗ is an o(1)-Nash equilibrium of the n-player game as n→∞ if
and only if R is continuous.

The positive result in Theorem 4 is consistent with a large body of literature (see the Introduction). That the
continuity condition is sharp may be surprising. Indeed, we will show that if R has a jump and ε > 0 is small
enough, then F∗ is not an ε-Nash equilibrium for all large n. This is not related to atoms in the equilibrium but
rather to the gap in the support of F∗ caused by the jump R(x) −R(x−) in reward and a stochastic knife-edge phe-
nomenon. The idea of the proof is that a player can improve by suitably shifting some mass of the stopping dis-
tribution into the gap. A level of stopping inside the gap would imply the reward R(x) in the mean field game, but
in the n-player game, the result depends on the sample—the reward is approximately R(x) in roughly half the
samples, but the higher reward is R(x−) in the other half. By shifting more mass from below the gap than from
above (all while maintaining feasibility), the player can increase the payoff relative to F∗.

The proof of Theorem 4 occupies the remainder of this subsection. Throughout the proof, the rewards and F∗

are defined as in Theorem 4. As a first step, we derive a convenient formula for ξFn(x). The probability that among
players 2, : : : ,n there are exactly i players stopping above x, j players below x, and k players at x is given by

n− 1
i, j,k

( )
(1− F(x))iF(x−)j(F(x) − F(x−))k:

Such a configuration leads to an average payoff (Ri+1+⋯ +Ri+k+1)=(k+ 1) for player 1 as ties are broken ran-
domly. It follows that

ξFn(x) �
∑
i; j; k≥0

i+ j+ k�n−1

Ri+1+⋯ +Rn−j
k+ 1

n− 1
i, j,k

( )
(1− F(x))iF(x−)j(F(x) − F(x−))k:

This reduces to gn(F(x)) if F(x) � F(x−). Taking φ(i, j,k) � (Ri+1+⋯ +Ri+k+1)=(k+ 1) in (8), we have the alternative
representation:

ξFn(x) � E

∑n−(n−1)F̂n−1(F(x−))
ℓ�(n−1)(1−F̂n−1(F(x)))+1

Rℓ

(n− 1)(F̂n−1(F(x)) − F̂n−1(F(x−))) + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (16)

Lemma 8. Let F ∈ F have an atom at x. Then limnξ
F
n(x) � ξF(x).

Proof. Let F have an atom at x. Write y1 � F(x−) and y2 � F(x). By (16),

ξFn(x) � E

∑n−(n−1)F̂n−1(y1)
ℓ�n−(n−1)F̂n−1(y2)

g
n− ℓ

n

( )

(n− 1)(F̂n−1(y2) − F̂n−1(y1)) + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� E
n

(n− 1)(F̂n−1(y2) − F̂n−1(y1)) + 1

∑(n−1)F̂n−1(y2)

ℓ�(n−1)F̂n−1(y1)
g
ℓ

n

( )
1

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦:

Using the a.s. convergence of F̂n−1(y) to y, we deduce that

ξFn(x) →
1

y2 − y1

∫ y2

y1

g(y)dy � ξF(x): w

Lemma 9. Let R be continuous. Then ξF
∗

n (·) converges to ξF
∗(·) uniformly.

Proof. We first show that ξF
∗

n converges to ξF
∗
pointwise. The convergence at points of discontinuity of F∗ holds

by Lemma 8. At points of continuity, we have ξF
∗

n � gn ◦ F∗ and ξF
∗ � g ◦ F∗. The pointwise convergence then fol-

lows from (9) and the assumed continuity of g.
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By Theorem 1, F∗ has compact support [0, x̄]. For x > x̄, it is clear that |ξF∗n (x) − ξF
∗ (x) | � |gn(1) − g(1) |

� |R(1=n) −R(0) | → 0. To see that the convergence is also uniform on [0, x̄], we note that ξF
∗

n is an increasing func-
tion for each n. Moreover, the pointwise limit ξF

∗
is continuous: as g is continuous, we have g( g−1(z)) � z, and

then ξF
∗ (x) � g(F∗(x)) � [R(1) + (R̄ −R(1))h(x)]�R(0) is continuous as well (see Lemma 2 and Theorem 1). A stand-

ard argument for monotone functions then yields that the pointwise convergence is uniform. w

Lemma 10. If g has a jump at y ∈ (0, 1), then limngn(y) � [g(y) + g(y+)]=2.
Proof. Let ε > 0. Using (10), we have

gn(y) � E g
n− 1

n
F̂n−1(y)

( )[ ]

≥ g(y− ε)P y− ε <
n− 1

n
F̂n−1(y) ≤ y

( )
+ g(y+)P n− 1

n
F̂n−1(y) > y

( )

� g(y− ε)P n− 1

n
F̂n−1(y) > y− ε

( )
+ g(y+) − g(y− ε)

( )
P
n− 1

n
F̂n−1(y) > y

( )
:

The strong law of large numbers implies F̂n−1(y) → y a.s., and hence

P
n− 1

n
F̂n−1(y) > y− ε

( )
→ 1:

By the central limit theorem,
&&&&&&&
n− 1

√
(F̂n−1(y) − y)=

&&&&&&&&&&
y(1− y)

√
converges to N (0, 1) in distribution. It follows that for

any fixed γ > 0 and n ≥ 1+ y=[(1− y)γ2],

P
n− 1

n
F̂n−1(y) > y

( )
� P

&&&&&&&
n− 1

√
(F̂n−1(y) − y)&&&&&&&&&&
y(1− y)

√ >
1&&&&&&&
n− 1

√
&&&&&&&
y

1− y

√( )

≥ P

&&&&&&&
n− 1

√
(F̂n−1(y) − y)&&&&&&&&&&
y(1− y)

√ > γ

( )
→ 1−N(γ),

where N(·) is the standard normal cdf. Combining the two limits, we obtain

lim inf
n

gn(y) ≥ g(y− ε) + (g(y+) − g(y− ε))(1−N(γ)) � g(y− ε)N(γ) + g(y+)(1−N(γ)):

Similarly, we can show

limsup
n

gn(y) ≤ g(y) − g(y + ε)
( )

lim inf
n

P
n − 1

n
F̂n−1(y) ≤ y

( )

+ g(y + ε) lim sup
n

P
n − 1

n
F̂n−1(y) < y + ε

( )

+ g(1) lim sup
n

P
n − 1

n
F̂n−1(y) ≥ y + ε

( )

≤ g(y) − g(y + ε)
( )

N(γ) + g(y + ε):
Finally, we send γ,ε→ 0 and use the left continuity of g. w

Proof of Theorem 4. We prove the theorem in two parts.
• Part 1: Sufficiency. Let R be continuous, and let ε > 0. Lemma 9 shows the existence of nε such that ||ξF∗n − ξF

∗ ||∞ <

ε=2 whenever n ≥ nε. Let F ∈ F . For n ≥ nε, noting that
∫
ξF

∗
dF−

∫
ξF

∗
dF∗ ≤ 0 by the equilibrium property of F∗,

∫
ξF

∗

n dF−
∫

ξF
∗

n dF
∗

�
∫

ξF
∗

n dF−
∫

ξF
∗
dF+

∫
ξF

∗
dF−

∫
ξF

∗
dF∗ +

∫
ξF

∗
dF∗ −

∫
ξF

∗

n dF
∗

≤
∫

ξF
∗

n − ξF
∗∣∣ ∣∣dF+

∫
ξF

∗

n − ξF
∗∣∣ ∣∣dF∗ < ε:

This proves the o(1)-Nash property of F∗.
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• Part 2:Necessity. Let g(y) � R(1− y) have a jump at y0 ∈ (0, 1). We show the stronger statement

sup
F∈F

lim inf
n

∫
ξF

∗

n dF−
∫

ξF
∗

n dF
∗

( )
> 0: (17)

Let

a � h−1
g(y0) − R(1)
R̄ − R(1)

( )
and b � h−1

g(y0+) − R(1)
R̄ − R(1)

( )
:

By Theorem 1, the associated mean field equilibrium F∗ is flat on [a,b) and F∗(a− η) < F∗(a) � y0 < F∗(b+ η) for any
η > 0. Suppose players 2, : : : ,n all use F∗ with associated measure ν∗, and player 1 considers an alternative strat-
egy of the form

ν � ν∗ − ζ+ |ζ |δa′
for some a′ ∈ (a,b) and a subprobability ζ ≤ ν∗ with density dζ=dν∗ � f . To ensure the feasibility of ν, we require∫
hdν �

∫
hdν∗, which translates to

∫
h(a′) − h( )fdν∗ � 0: (18)

Our goal is to obtain a lower bound for the payoff difference

∫
ξF

∗

n dν −
∫

ξF
∗

n dν
∗ � |ζ |ξF∗n (a′) −

∫
ξF

∗

n fdν
∗ (19)

that is independent of n for n large. Because F∗ is continuous at a′, we have ξF
∗

n (a′) � gn(F∗(a′)) � gn(y0). By
Lemma 10,

lim inf
n

ξF
∗

n (a′) � liminf
n

gn(y0) �
g(y0) + g(y0+)

2
: (20)

Let x ≥ 0. If F∗ is continuous at x, we use (9) to get limsupnξ
F∗

n (x) � limsupngn(F∗(x)) ≤ g(F∗(x)+), whereas if F∗ has

a jump at x, we use Lemma 8 to get ξF
∗

n (x) → ξF
∗ (x) � g(F∗(x)):

Reverse Fatou’s lemma then implies

lim sup
n

∫
ξF

∗

n fdν
∗ ≤

∫
g(F∗(·)+)fdν∗ |R+\{a} + g(F∗(a))f (a)ν∗{a}: (21)

Substituting (20) and (21) into (19), we obtain

lim inf
n

∫
ξF

∗

n dν −
∫

ξF
∗

n dν
∗

( )

≥ g(y0) + g(y0+)
2

∫
f dν∗ −

∫
g(F∗(·)+)fdν∗ |R+\{a} − g(y0)f (a)ν∗ a{ }

� g(y0+) − g(y0)
2

f (a)ν∗ a{ } +
∫

g(y0) + g(y0+)
2

− g(F∗(·)+)
( )

fdν∗ | [0,a)

−
∫

g(F∗(·)+) − g(y0) + g(y0+)
2

( )
fdν∗ | [b,∞):

As F∗(x) < y0 for x < a, and thus g(F∗(x)+) ≤ g(y0) � a, we can further bound the aforementioned expression from
below by

Cf :�
g(y0+) − g(y0)

2

∫
f dν∗ | [0,a] −

∫
R(0) − g(y0) + g(y0+)

2

( )
fdν∗ | [b,∞):

It remains to show that by choosing a suitable Radon–Nikodym derivative f, the lower bound Cf for the expected
improvement can be made strictly positive. To this end, we pick

f (x) � 1(a−η,a](x) + λ1[b,∞)(x)

for some constants λ ∈ [0, 1] and η > 0 to be determined. With this form of f, we always have 0 ≤ ζ ≤ ν∗, and the

Nutz and Zhang: Mean Field Contest with Singularity
1114 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 1095–1118, © 2022 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
2
8
.5

9
.2

2
2
.1

0
7
] 

o
n
 0

1
 J

u
ly

 2
0
2
3
, 
at

 0
6
:3

6
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



feasibility condition (18) becomes

λ �

∫
h(a′) − h( )dν∗ | (a−η,a]

∫
h− h(a′)( )dν∗ | [b,∞)

∈ 0,
h(a′) − h((a− η)�0)

h(b) − h(a′) · ν
∗(a− η,a]
ν∗[b,∞)

( ]
:

We use this equality as the definition for λ. Then

Cf �
g(y0+) − g(y0)

2
ν∗(a − η, a] − λ R(0) − g(y0) + g(y0+)

2

( )
ν∗[b,∞)

≥ ν∗(a − η, a] g(y0+) − g(y0)
2

− R(0) − g(y0) + g(y0+)
2

( )
h(a′) − h((a − η)� 0)

h(b) − h(a′)

( )
,

where the inequality is derived by replacing λ by its upper bound. Choose a′ − a and η sufficiently small so that

h(a′) − h((a− η)�0)
h(b) − h(a′) <min ν∗[b,∞), g(y0+) − g(y0)

2R(0) − g(y0) − g(y0+)

( )
:

Then λ ∈ (0, 1) and Cf > 0. w

Remark 11. In Theorem 4, if R is α-Hölder continuous and has finitely many flat segments, the accuracy of the
mean field approximation can be strengthened to O(n−α=2).

Indeed, by the sufficiency proof of Theorem 4, showing that F∗ is an O(n−α=2)-Nash equilibrium amounts to

showing ‖ξF∗n − ξF
∗‖∞ �O(n−α=2). If x is a point of continuity of F∗, then |ξF∗n (x) − ξF

∗(x) | � |gn(F∗(x)) − g(F∗(x)) | �
O(n−α=2) uniformly in x by (10) and the uniform O(n−1=2)-convergence of E supy∈[0,1] | (1− 1=n)F̂n−1(y) − y |

[ ]
.

Whereas if F∗ has an atom at x, we write y1 � F(x−), y2 � F(x) and zi � (1− 1=n)F̂n−1(yi). Again, using E |zi − yi | �
O(n−1=2) and the Hölder condition on g, we can strengthen Lemma 8 to

|ξF∗n (x) − ξF
∗ (x) | � E

1

z2 − z1

∑nz2
ℓ�nz1

g
ℓ

n

( )
1

n

[ ]
− 1

y2 − y1

∫ y2

y1

g(y)dy
∣∣∣∣∣

∣∣∣∣∣

� E
1

z2 − z1

∫ z2+1=n

z1

g
⌈ny⌉
n

( )
dy− 1

y2 − y1

∫ y2

y1

g(y)dy
∣∣∣∣∣

∣∣∣∣∣

≤ E
1

z2 − z1
− 1

y2 − y1

∣∣∣∣
∣∣∣∣R(0)(z2 − z1 + 1=n)

[ ]

+ 1

y2 − y1

∫ y2

y1

g
⌈ny⌉
n

( )
− g(y)

∣∣∣∣
∣∣∣∣dy+E( |z1 − y1 | + |z2 − y2 + 1=n | )R(0)

�O(n−1=2) +O(n−α) +O(n−1=2) ≤O(n−α=2):
Because R has finitely many flat segments, F∗ has finitely many atoms by Lemma 2. As a result, the
O(n−α=2)-convergence is uniform in x.

Remark 12. When R is discontinuous, one can show that when all other players use the mean field equilibrium
F∗ in an n-player game, no alternative strategy F can generate an asymptotic gain exceeding half the maximum
jump size of R. That is,

limsup
n

∫
ξF

∗

n dF−
∫

ξF
∗

n dF
∗ ≤ 1

2
sup

k

[g(yk+) − g(yk)]≕ ε for all F ∈ F , (22)

where {yk} ⊂ (0, 1) are the jump points of g. The proof uses
∫

ξF
∗

n dF−
∫

ξF
∗

n dF
∗ ≤

∫
(ξF∗n − ξF

∗)(dF− dF∗)

together with Lemmas 9 and 10. Note that the convergence in (22) is not necessarily uniform in F, so that (22) is
weaker than the ε-Nash equilibrium property.

5.3. Convergence of the Optimal Reward Design
We have seen in Theorem 2 that the optimal design to maximize performance at a given target rank α is the cut-
off reward at that same rank. As mentioned in the introduction, the best design in the prelimit is more
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complicated: for the n-player game with zero drift, the cutoff at a certain rank k∗n is optimal for the expected per-
formance at target rank k. A formula (recalled in the next paragraph) for k∗n was found in Nutz and Zhang [42],
and it is also noted that k∗n ≥ k, with k∗n > k unless k or k/n are small. For drift µ > 0, a cutoff is again optimal, but
the exact location of the cutoff is not known, whereas for µ < 0, the optimal shape can look smoother than the
sharp cutoff. In this section, we numerically compare the n-player game with the mean field limit for large n,
focusing on µ � 0 in order to have an exact result available for finite n.

We recall from Nutz and Zhang [42, proposition 3.11] that the optimal normalized reward for the expected kth
rank performance in the n-player game with µ � 0 is the cutoff at k∗n (i.e., Ri � 1=k∗n for i ≤ k∗n and Ri � 0 for i > k∗n),
where k∗n is determined as

k∗n �max j ≥ k : φ(k, j) ≥ 1

j− 1

∑j−1

l�1
φ(k, l)

{ }
, φ(k, l) :� (2n− k− l)!(k+ l− 2)!

(n− l)!(l− 1)! :

The corresponding expected kth rank performance is

nx0
n!

(2n − 1)!
n − 1
k − 1

( )
1

k∗n

∑k∗n
l�1

φ(k, l): (23)

If we scale k proportionally to n by fixing k=n ≈ α ∈ (0, 1), we can compare the optimal cutoff ratio k∗n=n with the
mean field optimal cutoff α. In the numerical example, we consider the median performance (i.e., α � 0:5). A sim-
ilar behavior can be observed for other choices of α.

Figure 1 shows that k∗n=n converges to α as n→∞. The convergence is rather slow; for example, for n � 1,024,
the optimal cutoff rank is still more than 9% larger than the mean-field optimum. This already suggests
that using the mean field optimal design as a proxy for the n-player design may be problematic at least for
moderate n.

Next, we consider the quality of the mean field proxy from the point of view of the principal: we fix the opti-
mal design R∗ from the mean field setting (Theorem 2) and compare the resulting expected performance in the n-
player game with the performance (23) of the exact optimizer given by k∗n. For comparison, we mention that the
analogous question was considered in the Poissonian model of Nutz and Zhang [41] for the same performance
functional of the principal, and there, the mean field proxy was shown to be O(1=n)-optimal for the n-player
design problem.

Figure 2(a) shows not only that the performance of the proxy may be significantly inferior for finite n but,
indeed, also that the performances diverge as n→∞, with the exact solution performing twice as well. The per-
formance of the exact solution converges to the optimal performance in the mean field model as stated in Theo-
rem 2, x∗α � h−1(1=α) � 2x0, but the performance of the proxy does not.

Figure 1. (Color online) (a) Convergence of the optimal cutoff ratio k∗n=n to α; (b) log-log plot of the difference k∗n=n− α, illustrat-
ing that k∗n=n converges to α at a rate of approximately O(n−r) for a fractional power r. Increments of n in all plots are chosen
such as to avoid rounding effects related to the fact that k∗n must be integer. On a finer scale for n, there are oscillations (see Nutz
and Zhang [42, figure 3]) that, however, disappear in the large n limit.
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Figure 2(b) plots the same data points for some values of n, together with curves showing the performance of
any cutoff strategy as a function of the cutoff location. For larger n, the curves are increasingly steep in a left
neighborhood of the maximum: the vertical distance between the data points increases even though the horizon-
tal distance decreases. In other words, the performance of R∗ is increasingly inferior despite the cutoff location
approximating the optimal location.

The reason lies in the lack of smoothness of the mean field game. Indeed, we know that the equilibrium distri-
bution F∗n induced by R∗ in the n-player game converges weakly to the mean field equilibrium , which is a two-
point distribution (Theorems 2 and 3). Although F∗n is increasingly concentrated on the location of the limiting
atoms at 0 and x∗α for large n, the distribution is still smooth with connected support for finite n, so that the
(1− α)-quantile stretches far beyond x∗α, causing the inferior performance.

We emphasize that the reason for the poor quality of the proxy observed here is very different from the knife-
edge phenomenon leading to the negative result in Theorem 4 and quite possibly more relevant to applications.

Endnotes
1
“Increase” and “decrease” are understood in the nonstrict sense in this paper.

2 We use the same symbol for the distribution and its cdf when there is no danger of confusion. Note that if F has an atom at x, many players
may share the same rank.
3 See Obłój [43, section 9] for general background and a derivation. The extension to the present case with an absorbing boundary is immediate.
4 A function f : [a,b] → R is said to be piecewise α-Hölder continuous if [a,b] is the union of finitely many intervals on which f is α-Hölder
continuous.
5 When R is globally Lipschitz continuous, the assertion also holds with α � α′ � 1.
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[3] Bayraktar E, Cvitanić J, Zhang Y (2019) Large tournament games. Ann. Appl. Probab. 29(6):3695–3744.
[4] Bensoussan A, Frehse J, Yam SCP (2013) Mean Field Games and Mean Field Type Control Theory (Springer, New York).
[5] Campi L, Fischer M (2018) N-player games and mean-field games with absorption. Ann. Appl. Probab. 28(4):2188–2242.
[6] Cardaliaguet P, Delarue F, Lasry JM, Lions PL (2019) The Master Equation and the Convergence Problem in Mean Field Games (Princeton Uni-

versity Press, Princeton, NJ).
[7] Carmona R, Delarue F (2013) Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51(4):2705–2734.
[8] Carmona R, Delarue F (2017) Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs, Control, and Games (Springer,

Cham, Switzerland).
[9] Carmona R, Delarue F (2017) Probabilistic Theory of Mean Field Games with Applications II: Mean Field Games with Common Noise and Master

Equations (Springer, Cham, Switzerland).

Figure 2. (Color online) (a) Performance of the mean field proxy diverges from the optimal design given by k∗n; (b) median play-
er’s performance for all cutoff schemes when n � 24, 26, 28, 210. Red circles correspond to the mean field proxy (cutoff at rank αn
or ratio α), and stars correspond to the exact n-player optimizer (cutoff at rank k∗n or ratio k∗n=n). As n increases, the blue and red
points converge in the horizontal direction but nevertheless diverge in the vertical direction. Here, α � 0:5 and x0 � 1.

2 4 6 8 10 12 14 16 18 20

log
2
n

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

P
e

rf
o

rm
a

n
c
e

(a)

Using the optimal cut-off k *
n

Using the mean field cut-off

0 0.2 0.4 0.6 0.8 1

cut-off ratio

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
e

rf
o

rm
a

n
c
e

(b)

n=24

n=26

n=28

n=210

Nutz and Zhang: Mean Field Contest with Singularity
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 1095–1118, © 2022 INFORMS 1117

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
2
8
.5

9
.2

2
2
.1

0
7
] 

o
n
 0

1
 J

u
ly

 2
0
2
3
, 
at

 0
6
:3

6
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



[10] Carmona R, Lacker D (2015) A probabilistic weak formulation of mean field games and applications. Ann. Appl. Probab. 25(3):1189–1231.
[11] Carmona R, Wang P (2021) Finite-state contract theory with a principal and a field of agents. Management Sci. 67(8):4725–4741.
[12] Carmona R, Delarue F, Lacker D (2017) Mean field games of timing and models for bank runs. Appl. Math. Optim. 76(1):217–260.
[13] Cecchin A, Fischer M (2020) Probabilistic approach to finite state mean field games. Appl. Math. Optim. 81(2):253–300.
[14] Cecchin A, Pra PD, Fischer M, Pelino G (2019) On the convergence problem in mean field games: A two state model without uniqueness.

SIAM J. Control Optim. 57(4):2443–2466.
[15] Delarue F, Tchuendom RF (2020) Selection of equilibria in a linear quadratic mean-field game. Stochastic Processes Appl. 130(2):1000–1040.
[16] Demski JS, Sappington D (1984) Optimal incentive contracts with multiple agents. J. Econom. Theory 33(1):152–171.
[17] Djete M (2020) Mean field games of controls: On the convergence of Nash equilibria. Preprint, submitted June 19, https://doi.org/10.

48550/arXiv.2006.12993.
[18] Djete M (2021) Large population games with interactions through controls and common noise: Convergence results and equivalence

between open-loop and closed-loop controls. Preprint, submitted August 6, https://doi.org/10.48550/arXiv.2108.02992.
[19] Durrett R (2010) Probability: Theory and Examples, 4th ed. (Cambridge University Press, Cambridge, UK).
[20] Elie R, Mastrolia T, Possamaï D (2019) A tale of a principal and many, many agents. Math. Oper. Res. 44(2):440–467.
[21] Fang D, Noe T (2016) Skewing the odds: Taking risks for rank-based rewards. Preprint, submitted March 15, http://dx.doi.org/10.2139/

ssrn.2747496.
[22] Fang D, Noe T, Strack P (2020) Turning up the heat: The discouraging effect of competition in contests. J. Political Econom. 128(5):1940–

1975.
[23] Feng H, Hobson D (2015) Gambling in contests modelled with diffusions. Decisions Econom. Finance 38(1):21–37.
[24] Feng H, Hobson D (2016) Gambling in contests with random initial law. Ann. Appl. Probab. 26(1):186–215.
[25] Feng H, Hobson D (2016) Gambling in contests with regret. Math. Finance 26(3):674–695.
[26] Fischer M (2017) On the connection between symmetric N-player games and mean field games. Ann. Appl. Probab. 27(2):757–810.
[27] Green JR, Stokey NL (1983) A comparison of tournaments and contracts. J. Political Econom. 91(3):349–364.
[28] Hall WJ (1969) Embedding submartingales in Wiener processes with drift, with applications to sequential analysis. J. Appl. Probab. 6(3):

612–632.
[29] Harris M, Kriebel CH, Raviv A (1982) Asymmetric information, incentives and intrafirm resource allocation. Management Sci. 28(6):604–

620.
[30] Holmstrom B (1982) Moral hazard in teams. Bell J. Econom. 13(2):324–340.
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