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Abstract. We study the stability of entropically regularized optimal transport with respect to
the marginals. Lipschitz continuity of the value and Holder continuity of the optimal coupling in p-
Wasserstein distance are obtained under general conditions, including quadratic costs and unbounded
marginals. The results for the value extend to regularization by an arbitrary divergence. As an
application, we show convergence of Sinkhorn’s algorithm in the Wasserstein sense, including for
quadratic cost. Two techniques are presented: the first compares an optimal coupling with its so-
called shadow, which is a coupling induced on other marginals by an explicit construction, and the
second transforms one set of marginals by a change of coordinates and thus reduces the comparison
of differing marginals to the comparison of differing cost functions under the same marginals.
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1. Introduction. Following advances allowing for computation in high dimen-
sions, applications of optimal transport are thriving in areas such as machine learning,
statistics, and image and language processing (see, e.g., [4, 15, 50, 3]). Regularization
plays a key role in enabling efficient algorithms with provable convergence; see [48] for
a recent monograph with numerous references. Popularized in this context by [20],
entropic regularization has become the method of choice, as it allows for Sinkhorn’s
algorithm (the iterative proportional fitting procedure), which is analytically tractable
and can be implemented on a large scale using parallel computing. The entropically
regularized transport problem can be formulated as

(1.1) Sene(p, 2, ¢) = inf /c(a@y) m(dz,dy) + eDky(m, 1 @ p2).
mell(p1,p2)

Here TI(p1, p2) is the set of couplings of the given marginals 1, o, and Dk (-, 1 @pua)
is the Kullback—Leibler divergence relative to the product measure pq ® 2. Moreover,
€ > 0 is a regularization parameter, and c is a cost function; the most important
example is quadratic cost ||z — y||? on R? x R%. The basic idea is to solve (1.1) for
small € > 0 to obtain an approximation of the (unregularized) optimal transport
problem that corresponds to € = 0. Starting with [16, 42, 43] and followed by [14, 37],
the convergence as ¢ — 0 has been studied in detail and remains a very active area
of investigation; see, for instance, [2, 5, 6, 7, 17, 34, 45, 47, 53].

The entropic optimal transport problem (1.1) is also of independent interest.
On the one hand, it is equivalent to a static formulation of the Schrodinger bridge
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problem that has a long history in physics (see [27, 38] for surveys); the dynamic
Schrédinger bridge can be constructed by solving the static problem and combining
it with a Brownian bridge. On the other hand, applied researchers have started to
exploit numerous benefits resulting from entropic regularization, such as smoothness,
existence of a gradient for gradient descent, and improved sampling complexity (see,
e.g., [18, 21, 30, 31]), among many others. Thus, regularization is increasingly seen as
an advantage rather than an approximation error; notions such as Sinkhorn divergence
[32, 49] have become tools in their own right. We note that as long as € > 0 is fixed,
we can assume without loss of generality that ¢ = 1, simply dividing (1.1) by ¢ and
using the cost function ¢/e. Hence, we shall drop ¢ from the formulation in our results.

The main objective of the present study is to establish and quantify the stability
of the value Sgyt and its optimal coupling 7#* with respect to the input marginals pq
and po or, more generally, uq, ..., uyn in the multimarginal setting. Distances will be
quantified by Wasserstein distance W,,, which thus allows for comparison of measures
with different supports, discrete and continuous measures, etc. We aim for results that
include unbounded marginals, where compactness is replaced by suitable integrabil-
ity conditions, such as the sub-Gaussian tails in [41]. Schrodinger bridges are one
application where unbounded supports are very natural, as the Brownian dynamics
produce unbounded intermediate marginals even if the boundary data are bounded.
In this context, costs are usually quadratic, so that unbounded and non-Lipschitz
cost functions are necessary. Even in applications with bounded costs, one may be
interested in estimates with constants that do not depend on ||c||s, especially not
exponentially.

To the best of our knowledge, the first stability result for entropic optimal trans-
port is due to [12]. Here, costs are uniformly bounded, and all marginals are equivalent
to a common reference measure (e.g., Lebesgue), with densities uniformly bounded
above and below. Within these families, distances of measures can be quantified by
the LP norm of the difference of their densities. The authors show that the Schrodinger
potentials (i.e., the dual entropic optimizers) are Lipschitz continuous relative to the
marginals in L? for p = 2 and p = co. This result is obtained by a differential approach
establishing invertibility of the Schrodinger system. More recently, [33] obtained the
first result on stability in a general setting. Using a geometric approach called cyclical
invariance, continuity of optimizers was established in the sense of weak convergence.
The geometric method avoids integrability conditions almost entirely and indeed re-
mains valid even if the value of (1.1) is infinite. On the other hand, the method
relies on differentiation of measures which essentially forces the marginal spaces to
be finite-dimensional. More importantly, the continuity result is purely qualitative,
and that is the main difference in the present results. Most recently, and around
the same time as the present study, a beautiful result of [22] established the uniform
stability of Sinkhorn’s algorithm with respect to the marginals, in a bounded setting.
As a consequence, the authors deduce Lipschitzianity in W, of the optimal couplings
with respect to the marginals; the assumptions include bounded Lipschitz costs and
bounded spaces. The argument is based on the Hilbert—Birkhoff projective metric,
which has also been used successfully to show linear convergence of Sinkhorn’s al-
gorithm [13, 29]. A crucial additional step accomplished in [22] was to pass from
this metric to a more standard norm on the potentials. The techniques involving the
projective metric are less probabilistic in nature, which may be one reason why it is
wide open how to relax the boundedness conditions. We remark that the initial result
of [12] also covered the multimarginal problem, which has recently become popular
due to its role in the Wasserstein barycenter problem [1, 11]. At least in the context
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of [10], it was observed that Hilbert-Birkhoff arguments may not be equally successful
beyond two marginals. Finally, we mention the follow-up [46] on the continuity of the
potentials in unbounded settings.

We apply our stability result to Sinkhorn’s algorithm for N = 2 marginals. It is
well known that each iterate 7™ of the algorithm solves an entropic optimal transport
problem between its own marginals, and, moreover, these marginals converge to the
given marginals p;. Thus, the convergence can be seen as a particular instance of sta-
bility with respect to marginals, and our results apply. Sinkhorn’s algorithm has been
studied for almost a century (see [48] for numerous references); the most general con-
vergence results in the literature are due to [51]. While they treat costs that are merely
measurable and show 7 — 7* in total variation, they do not cover unbounded func-
tions, such as the quadratic cost, in most examples, especially when both marginals
have unbounded support. Applying stability results under regularity of ¢ turns out
to be fruitful in this regard: we obtain not only the convergence to the optimal value
and 7" — 7* in Wasserstein distance but also a rate of convergence. The conditions
are sufficiently general to cover quadratic cost with sub-Gaussian marginals.

1.1. Synopsis. Our first result, detailed in Theorem 3.7, is the continuity of the
value Sepy with respect to the marginals in p-Wasserstein distance under generic con-
ditions. If the cost ¢ is a product of suitably integrable Lipschitz functions, then Seys
is also Lipschitz. This includes quadratic costs on R? with possibly unbounded mar-
ginal supports. The proof is based on comparing the optimizer 7* with the “shadow”
coupling it induces on other marginals. The shadow is a particular projection that
we construct explicitly by gluing, controlling both the distance to n* and its diver-
gence. The construction is simple and flexible and thus potentially useful for other
purposes. For instance, Theorem 3.7 holds for a general class of optimal transport
problems regularized by a divergence D; as previously considered in [24]; Kullback—
Leibler divergence is a particular case. Other divergences, especially quadratic, are
being used in some applications where entropic regularization performs poorly, usually
because nonequivalent optimizers are desired or weak penalization (small ) causes
numerical instabilities; see [8, 25, 39]. So far, theoretical results are scarce, as these
regularizations are less tractable.

By way of strong convexity, the continuity of the value Seyt in Theorem 3.7 leads
to the continuity of the optimizer n* with respect to the marginals. Theorem 3.11
states a nonasymptotic inequality bounding the distance of two entropic optimizers for
different marginals in terms of the W), distance of the marginals. It shows in particular
that the map (u1,...,un) — 7 is 1/(2p)-Holder in W,. Exploiting a Pythagorean-
type property of relative entropy to implement the strong convexity, we achieve an
unbounded setting requiring only a transport inequality, i.e., a control of Wasserstein
distance through entropy. This condition holds as soon as the marginals have a finite
exponential moment; in particular, the result covers quadratic costs when marginals
are o2-sub-Gaussian for some (arbitrarily small) 0. We remark that Theorem 3.7
is the first quantitative stability result for unbounded costs, and in settings without
differentiation of measures as assumed in [33], even the qualitative result alone would
be novel.

One noteworthy feature of Theorem 3.11 is that the constants grow only linearly
in ¢, which is particularly important for the regularized transport problem (1.1): here
the effective cost function is é := ¢/e, and € is usually small. Many results on entropic
optimal transport feature constants depending exponentially on the cost, typically
exp(||€]|o) or exp(]|¢]|oo + Lip €), including all previous results on stability that we are
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aware of. Even for well-behaved c on a fairly small domain, a choice like € = .01 leads
to constants far exceeding e'%°, a potential concern in practical considerations.

Our second continuity result, Theorem 3.13, aims at improving the Holder expo-
nent in Theorem 3.11 under the more restrictive condition that the cost ¢ is bounded
(spaces may still be unbounded). For instance, we show 1/(p+1)-Holder continuity in
W,. More generally, Theorem 3.13 yields the Hélder exponent p/(p+ 1)g from W), to
Wy; to wit, we can improve the exponent by measuring the distance of the marginals
in a stronger norm. In particular, p = oo leads to a Lipschitz result in W;. This
choice also eliminates exponential dependence of the constant on the cost. In fact,
we prove that the Lipschitz constant is sharp in a nontrivial discrete example. This
may be surprising given that the idea of proof is somewhat circuitous and that many
estimates in this area are thought to be overly conservative.

Indeed, Theorem 3.13 is based on a novel approach that may be of independent
interest; the basic idea is to reduce the problem of differing marginals to one of differ-
ing cost functions (under the same marginals). In the latter problem, optimizers are
measure-theoretically equivalent and comparable in the sense of Kullback—Leibler di-
vergence. Our starting point is the observation that the regularization in our problem
depends only on the relative density but not on the geometry of the distributions. In
the simplest case, a Wy-optimal coupling of the differing marginals induces an invert-
ible transport map T that can be used as a change of coordinates to achieve identical
marginals. The cost is transformed at the same time, and we end up comparing c
with ¢ o T. For this comparison, we can apply a separate result (Proposition 3.12)
based on an entropy calculation.

The application to Sinkhorn’s algorithm is summarized in Theorem 3.15 which
states convergence of the entropic cost and of the Sinkhorn iterates 7" themselves.
The qualitative and quantitative results follow from Theorem 3.7 and Theorem 3.11.
In essence, the stability results turn a convergence rate for the Sinkhorn marginals
into a convergence rate for 7 — 7. We use the sublinear rate for the marginals as
obtained in [36]. As noted there, these rates are likely suboptimal—for bounded cost
functions, linear convergence of Sinkhorn’s algorithm is well known [10, 13, 29]—and
our focus at this stage is on having some quantitative control.

The organization of this paper is simple: section 2 details the setting, section 3
presents the main results, and section 4 contains the proofs.

2. Setting and notation. Let (Y, dy) be a Polish space, and let P(Y) be its
set of Borel probability measures. Given p € [1,00), we denote by P,(Y") the subset
of measures p with finite pth moment, i.e., [ dy (z,#)? p(dz) < oo for some (and then
all) z € Y. For p = oo, we define P (Y) as the measures with bounded support. The
p-Wasserstein distance W),(u, v) between p, v € Pp(Y) is defined via

W,(uv)? = inf / dy (@, y)? 7(dz, dy), pe [1,00),
mell(p,v)

Weo(p,v) = inf esssupdy(z,y),
mell(p,v) (z,y)~m

while ||p — v|lTv = sUpPscy Borel |14(A) — V(A)] is the total variation distance of u,v €
PY). -

Fix N € N, and let (X;,dx,), ¢ = 1,..., N, be Polish probability spaces with
measures u; € P(X;). We denote by X = Hfil X, the product space and write
x € X asax = (x1,...,2n5). When p € [1,00] is given, it will be convenient to use
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on X the particular product metric

1
dX (.’E y) = (Zivzl dXz (xlayl)p> /pv pe [1700),
P max;—1,... ~dx,(Ti,¥i), p = o0.

Unless otherwise noted, p-Wasserstein distances on X are understood with respect to
dx p. Similarly, the distance between two tuples of marginals will often be quantified
by

~ 1
(o Wi (i, f1i)P) v p € [1,00),

W(Mla"wﬂN;ﬂlw”?ﬂN):: -
? max;=1,... N Woo(lti, fli), p = o0.

Given a Lipschitz function ¢ : X — R, we denote by Lipp(c) its Lipschitz constant
with respect to dx p.

For a strictly convex, lower bounded function f : Ry — R with f(1) = 0 and
lim, o f(z)/z = oo, the f-divergence Dy(u,v) between probabilities p, v on the
same space is

d
Dy(p,v) :/f(d/:) dv for p<v

and Dyf(p,v) := oo for p & v. The main example of interest to us is the Kullback-
Leibler divergence (relative entropy) Dkr, (1, ) which corresponds to the choice f(z) :=
xzlogz. We always assume that (p,v) — Dy(p,v) is lower semicontinuous for weak
convergence. This holds for Dgp, and, more generally, whenever D¢ has a suitable
variational representation.

Given u; € P(X;) and a continuous, nonnegative! cost function ¢ € L' (yu; ® -+ ®
1), we can now introduce the regularized transport problem

(2.1) Sy ..y N, ) = inf /cdw+Df(7r,u1®--~®,uN),
eI (1, iN)

where ITI(p1, ..., un) C P(X) denotes the set of couplings of the marginals p;. Note

that S(p1,...,un,¢) < 0o by way of m:= 1 ® --- ® uny. A standard argument of

compactness and strict convexity then shows that (2.1) admits a unique optimizer

7 € I(u1,...,pun). When p € [1,00) is given, we always assume that ¢ has growth
of order p,
(2:2) le(z)] < C(L+dx p(z,2)P),

for some C' > 0 and & € X, whereas for p = co the meaning is that ¢ is bounded. For
marginals y; € P,(X;), this ensures in particular that ¢ € L' () for any coupling 7.

While some of our results below hold for general divergences, we use the notation
Sent in results specific to the entropic version, so that (2.1) becomes

(2.3) Sent (U1, -y 4N, C) = inf /cd7T+DKL(7T,M1®-~-®,uN).
mell(py,..., UN)

Remark 2.1. A variation of (2.3) uses entropy relative to a reference measure P
different from the product of the marginals,

(2.4) inf /cdw + Dy (m, P),

mEM(p1,...,uN)

I The lower bound is easily relaxed in view of the behavior of (2.1) under shifts of c.
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for instance, (normalized) Lebesgue measure for problems with absolutely continuous
marginals on R%. Of course, a compatibility condition between P and the marginals
is necessary to guarantee that (2.4) is finite. As long as P=P® --@Pyisa product
measure, a standard computation shows that the optimizer 7* of this problem is the
same as the one of (2.3). Therefore, our stability results for (2.3) carry over to (2.4).

3. Results.
3.1. Shadows and preliminaries. Given 7 € II(uy,...,un), we introduce a
coupling 7 € TI(f1,...,n) of different marginals through a gluing construction.

Intuitively, for N = 2, the transport 7 is obtained by concatenating three transports:
move fi; to pup using a Wy-optimal transport, then follow the transport 7 moving u;
to po, and finally move o to fip using a Wj-optimal transport. We think of 7 as
a coupling of fi1, fia that “shadows” m € II(uq1,p2) as closely as possible given the
differing marginals. The formal definition reads as follows.

DEFINITION 3.1 (shadow). Letp € [1,00], and let p;, fi; € Pp(X;), i =1,...,N.
Let k; € II(pi, 1) be a coupling attaining Wy(pi, fli), and let k; = pu; @ K; be a
disintegration. Given m € II(py, ..., un), its shadow 7 € I(f,. .., fin) is defined as
the second marginal of T@ K € P(X x X)), where the kernel K : X — P(X) is defined
as K(z) = K1(z1) ® -+ - @ Kn(zn).

In general, the Wy-optimal kernel K; need not be unique, so that there can in
fact be more than one choice for the shadow. Any choice will do in what follows,
and we shall speak of “the” shadow despite the abuse of language. As detailed in
Remark 4.2, the shadow can also be understood as a particular choice of a W-
projection of 7 onto II(fi1, ..., fixn). The crucial additional property of the shadow is
that its divergence is controlled by the one of 7.

LEMMA 3.2. Let p € [1,00], and let p;, 1 € Pp(X;), i =1,...,N. Given w €
(g1, ..., un), its shadow 7 € I(fiq, ..., fin) satisfies

Wp(ﬂ-aﬁ-) :Wp(,ul,...,[LN;[Ll,...,ﬂN)’

To study the continuity properties of regularized optimal transport, we need to
compare the cost of two couplings 7,7 in the unregularized transport problem. If ¢
is L-Lipschitz, the following inequality holds for all probability measures 7, 7. We
formulate an abstract condition to cover more general cases, especially Example 3.4
below.

DEFINITION 3.3. Let p € [1,00], and let p;, fi; € Pp(X;), i =1,...,N. For a
constant L > 0, we say that c satisfies (Ar) if

(AL) ’/cd(ﬂ _ A < 1w, (m, )

for all m € (p1, ..., pun) and © € U(fix, ..., jin).2

The most important application is quadratic cost.

2In fact, (Az) will only ever be used when one coupling is the shadow of the other, but that
restriction does not seem to substantially enhance the applicability.
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Example 3.4. For p = 2 and cost c(ry,72) = ||z1 — 72]|> on Euclidean space
R? x R4, we have that (Ap) holds with

L= V2 [M(p1) + M(fir) + M(p2) + M(fi2)]
where M () := ([ ||||? u(dz))*/? for p € P(RY).

The example is a special case of the following observation.

LEMMA 3.5. Let p € [1,00). Let c(x) = f(x)g(x) where f,g are Lipschitz and
have growth of order at most p — 1. Then (Ar) holds with a constant L depending
only on the Lipschitz and growth constants of f,g and the pth moments of w;, fi;,
i=1,...,N. For p = oo, the analogue holds with dependence on the bounds of f,g
instead of moments.

This criterion generalizes to a product ¢(x) = ¢1(x) - - - ¢ () of m Lipschitz func-
tions satisfying a suitable growth condition; cf. Remark 4.3.
The next example shows that (Ay) also holds for the pth power as cost.

Ezample 3.6. For cost c(x1,x2) = ||x1 — 22]|? with p € (1, 00) on Euclidean space
R? x RY, we have that (Ay) holds with

L= Cy [My () + My (jin) + My(iz) + My (jiz)]” ",

where M, (1) := ([ ||z||P u(dz)) /P for u € P(R?) and C,, is a constant depending only
on p.

The proof, detailed in section 4, is similar to that of [52, Proposition 7.29] and
proceeds by estimating the derivative of a curve connecting the integrals in question.
The example generalizes to costs ¢(x1, x2) = &(x1,x2)P, with ¢ being Lipschitz.

3.2. Stability through shadows. We can now state our first result, establish-
ing the continuity of (2.1) with respect to the marginals. The qualitative part (i)
holds for general costs, and the quantitative part (ii) applies, in particular, to qua-
dratic costs under 2-Wasserstein distance.

THEOREM 3.7 (continuity of value). Let p € [1,00].

(i) Let ps, u € Pp(X;) satisfy lim, Wy(us, u) = 0 for i = 1,...,N. Then
Sty .. whe) = S(pi,...,un,c), and the associated optimal couplings
converge in W,

(ii) Let p, fti € Pp(X;) fori=1,...,N, and let ¢ satisfy (Ar). Then

|S(M1a"'7/’[’N7C)_S(ﬂl7"'7ﬂNaC)| SLW;D(M].W"’MN;[J/M"'7/]/]\7)-

This result will be proved by comparing the cost of a coupling with the cost of
its shadow. Using the same idea, we can show the convergence of the cost functionals
as follows.

Remark 3.8 (I-convergence). Define F : P,(X) — RU {oo} by

J‘_'(,n_): ICdﬂ-—i_Df(ﬂ-a,u/l@@MN) ifﬂGH(ul,...,MN),
o0 otherwise,

and similarly define F,, for the marginals . If lim, W,(u;, u) = 0, then F,, T-
converges to F; that is, given m € Pp(X),
(a) F(m) < liminf F,(m,) for any (m,),>1 C Pp(X) with W,(7,m,) — 0,
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(b) there exists a sequence (m)p>1 C Pp(X) with Wy(m,7,) — 0 and F(m) >
lim sup F, (7).
For the recovery sequence in (b), we can choose m, € II(u}, ..., u%) to be the shadow
of e M(uy,...,uN)-

Remark 3.9. Theorem 3.7 (i) and Remark 3.8 generalize to a sequence of cost
functions ¢, converging to c¢ as long as the convergence is strong enough to im-
ply [c¢pdm, — [cdr whenever m, € II(u?,..., %) converge in W, to some 7 €
(s ey pn)-

Our second aim is to bound the distance between the optimizers for different
marginals. The line of argument requires controlling Wasserstein distance through
entropy; hence it is natural to postulate a transport inequality. Given g € [1,00), we
say that p; € Py(X;), ¢ =1,..., N, satisfy (I,) with constant Cy if

(I,) W,(r,0) < CyDxp(0,7)% for all 7,0 € Iy, ..., pn)-

|

for all w,0 € (u1,...,un). The two inequalities serve a similar purpose, but (I;) is
implied by a weaker integrability condition. Indeed, when X is bounded, (I;) holds
as a simple consequence of Pinsker’s inequality. Using the weighted inequalities of
[9], (I,) and (I;) also hold under much weaker exponential moment conditions on y;
as detailed in Lemma 3.10 (ii) and (iii) below. In (i), we obtain a different relaxation
where all but one space X; are bounded. Thus for the standard case N = 2, if one
marginal is bounded, no condition at all is needed on the other marginal.

Similarly, they satisfy (I;) with constant C’; if

)
-o.""

() W,(m,0) < C, [DKL(G,W)é n (DKLf“))

LEmMA 3.10.
(i) Let X' := X5 x --- x X, and suppose that

diamy(X') := sup dxs 4(z,y) < co.
z,yeX’

Then (1) holds with Cy = 22 diamy(X') for all ji; € Py(X;).
(ii) If u; € P(X;) satisfy [exp(adx, (2, 2:)%?) pi(dz;) < oo for some a € (0, 00)
and T; € X;, then (1) holds with constant

N

_ : N 5 e )\20N . . "
Cy=2_ _inf (mZ(lﬂog / exp(ady, (&, 7;) )m(dm»)) .

=1

(ii) If i € P(X;) satisfy [ exp(adx, (&, 2:)?) pi(dz;) < oo for some a € (0, 00)
and &; € X;, then (I;) holds with constant

1

i=1

N
/ 1 3
— - 2 5 eV s (s
c,= 2@6;{15&0 (a E <2 —l—log/exp(adxi(xl,xl) ),ul(dxi))>

Noting the logarithm in the formulas for C;; and C'(;, we observe that these con-
stants are typically much smaller than the exponential moment itself. We also note
that the condition in (iii) covers sub-Gaussian marginals for ¢ = 2.
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We can now state a quantitative result for the stability of the optimizer of (2.3)
relative to the marginals. In view of the above, the assumptions cover quadratic cost
under 2-Wasserstein distance and sub-Gaussian marginals.

THEOREM 3.11 (stability of optimizers). Let p € [1,00] and g € [1,00) with
q < p, let pi,fi; € Pp(Xy), let pa,...,pun satisfy (I;) with constant Cy, and let ¢
satisfy (AL). Then the optimizers m*,7* of Sent(i1, .-, N, ¢) and Sene(fin, - .., AN, €)
satisfy

Wo(r*, 7)) < NG A+ Cy (LA, A= Wy(pia, .., i fits - fin)-

If pi, ..., un satisfy (I;) with constant C(; instead of (I;), then

Q=

W,(r*,7) < NG9 A+ C [(20A)T + (L A)ﬂ .
In particular, (p1,...,uN) — T i Q—;-Hé'lder continuous in Wy, when restricted to a
bounded set of marginals satisfying (Ar) and (I,) or (T},) with given constants.

This result will be derived by comparing the optimizer with its shadow and apply-
ing a strong convexity argument, more specifically, a Pythagorean relation for relative
entropy. In Theorem 3.11, only one set of marginals needs to satisfy (I;) or (I;) If
the assumption holds for both (p;) and (fi;), the proof shows that L can be replaced
by L/2 in the assertion.

3.3. Stability through transformation. Next, we improve the Holder expo-
nent of Theorem 3.11 for the case of bounded cost. The general line of argument is to
reduce a difference in marginals to a difference in cost functions. Thus, we first state
a stability result for the cost function under fixed marginals; it may be of independent
interest.

PROPOSITION 3.12 (stability with respect to cost). Let p € [1,00], let p; €
Pp(Xi),i=1,...,N, and let P = 11 ® --- @ pun. Let ¢,¢ : X — Ry be bounded

measurable; then the optimizers w*, 7 of Sent(p1,.-., un,¢) and Sene(p1, ..., N, €)
satisfy
* ~ % 1 1 ~ #
|7 =7 |y < 5‘”“ e — CHLP(P)7
~ % ~ % * 2o
DKL(W*aﬂ— >+DKL(7T y T ) < artt H C||£:1p)»

where a = exp(N||c|loo) + exp(N||€]|0). Let g € [1,00). If p1,...,un satisfy (I;)
with constant Cy, then also

P
Wy(r*,7*) < 27i0q (a%Hc — E||Lp(p)) (e ,
whereas if ph1,..., un satisfy (I;) with constant C(;, then
r 1 . Tihd oL [ 1 _ (et
W, 7%) < € | (@b lle = lnegey ) 7" + 273 (ablle = Elaae)) *7 |

(For p = oo, the exponent should be read as %)

(p+1)q +1)
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Proposition 3.12 will be derived by comparing the optimizers in the sense of
relative entropy Dkp (7%, 7*). Of course, this is not possible in the other results
where the marginals differ in a possibly singular way. We observe that the constant a
deteriorates exponentially in ||¢||o; however, due to the a® in the formula, this can
be counteracted by using a stronger LP norm. In particular, for p = oo, the direct
dependence on ||¢|| s, [|€||cc disappears completely, and moreover we obtain a Lipschitz
estimate from L to W7j.

Those features are inherited by our final result on the stability with respect to
marginals; it improves the Holder exponent of Theorem 3.11 in the case of bounded
costs. As above, the dependence of the constant on ||c||« is avoided for p = oco; we
now obtain a Lipschitz result from W, into W7j.

THEOREM 3.13 (stability of optimizers for bounded cost). Let p € [1,00] and
q € [1,00) with ¢ < p, let p;, i € Pp(X;) satisfy (I;) with constant Cy, and
let ¢ be bounded Lipschitz. Then the optimizers *,7* of Sent(pi1,...,pun,c) and
Sent(:ﬂ’la v nﬁ/N? C) satisfy

D
(p+1)a

Wy (™, 7*) < NG A—|—27217Cq (a% Lip,(c) A) )

where a 1= 2exp(N||cl|oc) and A == Wy(p1, ..., 1N f, - AN). If pi, fi; satisfy (I'q)
with constant C’; instead of (I,), then

1 1

W,y (r*,7*) < NG—w) A
2p P
+27iC) [(aé Lip,(c) A) ESREND LS <a5 Lip, (c) A) (””q} .

In particular, (p1,...,uN) — T is pﬁ—Hé’lder continuous in W, when restricted to
a bounded set of marginals satisfying (1,) or (T,) with a given constant. For q =1
and p = 0o, we have the Lipschitz estimate

Wl(ﬂ-*;ﬁ-*) S gWOO(Ml?'"7MN;/]17"'711N)7

with constant £ := N + (C1/v/2) Lip,(c) independent of ||c||so. The constant { is
sharp.

As discussed in the introduction, this result is based on a transformation: instead
of dealing with two sets of marginals, we use a change of coordinates to transform
[i; into p;, at the expense of also transforming the cost function. For the resulting
problem, we can apply Proposition 3.12. The sharpness of the constant ¢ is discussed
in Example 4.10.

Remark 3.14. For simplicity, we have stated our results in the traditional setting
where W), is defined through a metric compatible with the underlying Polish space.
However, much of the above generalizes to any measurable metric. For instance, the
discrete metric can be used to see that for p = 1, our results include the total variation
distance (see also [46] for further results on continuity in total variation). The majority
of our arguments extend without change to the more general setting. In Definition 3.1,
it is no longer clear that there is a coupling attaining W, (u;, fi;). However, we can
use an e-optimal coupling to define an “approximate shadow” for which the first part
of Lemma 3.2 is replaced by Wy(7,7) < Wy(p1,...,un;fi1,--.,fin) + €, and then
we can argue the main results as before. The extension to measurable metrics also
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applies to Proposition 3.12. Theorem 3.13 extends with the caveat that one needs
to provide a substitute for the technical Lemma 4.9 (ii) in the specific metric under
consideration, as its proof uses separability of the metric.

3.4. Application to Sinkhorn’s algorithm. In this section we focuson N = 2
marginals i1, fio. Sinkhorn’s algorithm is initialized at 7° := P., where m(@ =
% is the Gibbs kernel associated with the cost ¢. The Sinkhorn iterates
7™ € P(X), n > 1, can then be defined recursively via

dm" ( ) dﬂl
xXr) =
dﬂ-n—l dﬁil_l
dn"™ d
dmn—1 (‘T) = dﬁszl (.’1,‘2) for n even,
2

(z1) for n odd,

where wf‘l is the ith marginal of 771, It follows that 77" = iy for n odd and 7% = o
for n even: for each iterate, one of the two marginals is the correct marginal. The
other marginal does not match p; but converges to it as n — co. Importantly, each
iterate 7™ is the solution of an entropic optimal transport problem between its own
marginals. As these marginals converge to (u,u2), the convergence of Sinkhorn’s
algorithm can be framed as a particular instance of stability with respect to the
marginals. As above, we denote by 7* the optimizer of Sens(p1, 2, ). Moreover, we
write

F(m) = /Cdﬂ‘i'DKL(W,Ml ® p2)

for the entropic cost of © € P(X) similarly to Remark 3.8 but without the penalty.
THEOREM 3.15 (Sinkhorn convergence). Let p € [1,00). Fori = 1,2, let p; €

P(X;) satisfy [exp(adx, (&, x:)P) pi(dz;) < oo for some o € (0,00) and &; € X;.
(i) Let ¢ be continuous with growth of order p. As n — oo, we have

F(x™) = F(x™), =t in W,

(ii) Let 1 < ¢ < p and c(x) = f(x)g(x) where f,g are Lipschitz with growth of
order p — 1. For alln > 2, with a constant ¢y detailed in the proof,

|F(r*) = F(n™)] < con” %, Wy (r*, ") < con” i,

Theorem 3.15 with p = ¢ = 2 implies W5-convergence for quadratic cost with sub-
Gaussian marginals. The form ¢(z) = f(z)g(z) can be extended as in Remark 4.3
or, more generally, to any condition guaranteeing (A ) uniformly over the marginals
produced by the algorithm. In particular, using Example 3.6, the assertion of the
theorem also holds for ¢(z) = ||x2 — 21||?. The more detailed estimate given in the
proof of the theorem shows that the constant ¢ is at the same scale as ¢; in particular,
it does not grow exponentially with c.

4. Proofs.

4.1. Shadows and preliminaries. For the convenience of the reader, we first
recall the data processing inequality for our setting. Let Y; and Y5 be Polish spaces.
If u € P(Y1) and K : Y7 — P(Y>) is a stochastic kernel, we

(4.1) denote by K € P(Yz2) the second marginal of p® K € P(Y; x Y3).
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LEMMA 4.1. Let p,v € P(Y7), and let K : Y7 — P(Y2) be a kernel. Then
D¢(pK,vK) < Df(p,v).

Proof. We may assume that p < v. For any kernels K1 < Ky : Y7 — P(Y3),

d(n ® K, du, dK
(4.2) M(m, ) = = —(z) dK;E ;(y) v ® Ks-a.s.
In particular, dE“g% (,y) = %(z), and thus
(13) Dy(av) = Dyl & K,v 9 K),

whereas in general, (4.2) and Jensen’s inequality for f yield

Dy kv ko) = [[ £ (5D 0) ) Kol dypoia)

(4.4 > [1 (@) vide) = s

Denote by p®@ K = (uK) ® Kiand v@ K = vK)® K> the “reverse” disintegrations
from the second marginal to the first. Applying (4.4) to (pK) ® K; and (vK) @ Ko,
we get

Di(p® K,v® K) = D;(uK) ® K1, (vK) ® K3) > Dy (uK,vK).

In view of (4.3), this yields the claim. O
We can now show the two fundamental properties of the shadow.

Proof of Lemma 3.2. Let u;@K; € II(u;, fi;) be a Wy-optimal coupling, and define
k=m1® K € P(X x X) where K(z) = K1(z1) ® --- ® Ky (zn), so that 7 := 7K is
the shadow of 7. In view of k € II(x, %), for p < oo,

Wy (m, 7)P < /dx’p(gc,y)p k(dz, dy)

N

/de z;,y:)P k(dz, dy) = pr(ﬂiaﬂi)p'

i=1
On the other hand, given an arbitrary coupling # € II(fi1,...,ix), any coupling
v € II(w, 7) induces couplings ~; € II(m;, 7;) = I (w;, ;) of the individual marginals,
and hence

W ? = f d 1y J d d
p(m®P = inf /Z x; (i, 9:)P (d, dy)
N
> f dx, (zi,y:)F vi(deg, dy;) = > Wy, fis)?.
Z%enmm,u / (@i yi)P vi(das, dyi) = > Wi (i, fii)

i=1

The argument for p = oo is similar, completing the proof of the first claim. To show
the bound on the divergence, we note that i1 ®- - -®finy = (1 ®- - -@un ) K. Therefore,
the data processing inequality (Lemma 4.1) yields

Dy(7 i1 @ @ fn) =Dp(rK, (11 @ - @ un)K) < Dy(m,pn @ -+ @ puy). O
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Remark 4.2. The preceding proof shows that the shadow is a W)-projection onto
H(fa, ..., in); that is, © € argming s, ) Wp(m,+). In general, the argmin may
have more than one element. A simple example on R x R is that pu; = po = &g
and i1 = fig = (6_1 + 91)/2; here any element of II(fi1, fi2) has the same distance
to the singleton IT(p1, u2) = {J(0,0)}. In this example, the shadow of m := §(g,0) is
unique. Clearly, not any projection is a shadow, and most projections fail to satisfy
the divergence bound in Lemma 3.2.

Next, we show the criteria for (Ap).

Proofs of Lemma 3.5 and Example 3.4. To show the lemma, let x € II(7, %) be a
coupling attaining W (m, 7). Then

/cd(w —7) = /c(m) — c(y) k(dz, dy)
(45 = / F(@)(g(x) — 9(v)) wlde, dy) + / o) (f () — F)) w(da, dy).

We estimate the first integral; the second is treated analogously. Hoélder’s inequality
with ¢ such that 1/p+1/q =1 yields

/lf(ff)(g(x) —9W)| rldz, dy) < |[fllLamllg(@) = gW)lle )

As |f(l‘)| < Cf[l—f—dxl (xl,a’sl)l—k tdxy (.’L‘N, i‘N)l] withl < p—1= p(l—l/p) = p/q
and hence lg < p, and as m has marginals p; € Pp(X;), we see that || f||ze(x) is finite
with a bound depending only on the pth moments of y;, i = 1,..., N. On the other
hand,

l9(2) = 9(W)ll Lo (x) < Lip,(9) Wy (7, 7)
due to the fact that x attains W (w, 7). The lemma follows. Example 3.4 follows from
the above estimate with f(x) = g(x) = |21 — z2]| in which case Lip,(f) = Lip,(g) =

va. 0

Remark 4.3. Lemma 3.5 can be generalized to a product of any finite number of
Lipschitz functions. Let ¢(x) = ¢1() - - - ¢, (2) where ¢; are Lipschitz, and decompose
c(x) — e(y) as in (4.5) with f(z) :=c1(x) -+ em-1(z) and g(x) := ¢p(z). Proceeding
inductively, we obtain that

c(x) = ely) = Y Ajx,y)(c;() — (),

Jj=1

where Aj;(z,y) is a product of m — 1 factors of the form ci(z) or ¢(y). If ¢;(x),
j=1,...,m,satisfy a growth condition suitably coordinated with a moment condition
on i, fis, then ||A;(z,y)||La(x) and [|A;(z,y)| L) can be bounded in terms of those
moments, and we deduce an analogue of Lemma 3.5.

Proof of Example 3.6. Let x be a Wy-optimal coupling of 7 and 7. Set ¢(x) :=
|z]|?, and define ¢ : [0,1] — R by

p(t)i= [ 901 = (w2 = 20) + tye = ) nldo, dy):
then ¢(z) = ¥ (x2 — x1), and the quantity to be estimated is

(46) ‘/cdﬂ—/cdﬁ

= [p(0) = (D).
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Using differentiation under the integral (justified by [26, Theorem 2.27]), we see that
 is differentiable and

9%

(0 = [ (T6((1 = ez~ 21) + o2 — ). (02 — 2 = 22+ 1)) (e, dy).

Noting ||V (v)|| = p|lv|[P~! and writing vy = (1 — ¢)(z2 — x1) + t(y2 — y1), the
inequalities of Cauchy-Schwarz and Hélder and (a + b)? < 2P71(a? + bP) yield

o) < 190002~ 22) + 1 ) o, )

< ([ 1wuto017 stas.an) v (/1002 =200+ (o1 = )P stz )

<c ( / ||vt|pn<dx,dy>) " W)
< Cp [ My (1) + My (fir) + My (1) + My(fi2)]" ™ Wy (m, ),

where Cj, Cz/7 are constants depending only on p. In view of (4.6), the claim follows. O
4.2. Stability through shadows. We can now show the continuity of the value.

Proof of Theorem 3.7. (i) Let 7*, 7} be the optimizers for S(u1,...,un,c) and
S(py, ..., 1k, c), respectively. For brevity, set P=p;®- - -®@uy and P, = pf®- - -@u’.
After passing to a subsequence, m, converges in W, to some 7 € II(u1,...,un) by
weak compactness. We have

limiIIf/Cd’]T;:-i-Df(’]T:”Pn) > /cd7r+Df(7r,P) > /cdw* + Dy (™, P)

n—oo

by lower semicontinuity of [ cd(-)+ Dy(-,-) and optimality of 7*. On the other hand,
let 70, € II(pf, . .., w%) be the shadow of 7*. Then Lemma 3.2 shows lim,, W, (7, 7*) =
0 and Dy (7y, P,) < Dy(n*, P), and hence

limsup/cdw: + Dy(m,, P) < limsup/cdﬁ'n + Dy (7p, Pp)

n— oo n—oo

< /cdw* + D¢ (™", P).

Altogether, lim,, [cdn} + Ds(r%, P,) = [ecdn* + Dy(7*,P), and 7 must be the

(unique) optimizer 7* of S(u1,...,un,c). In particular, the original sequence (7};)

converges to 7, as claimed.
(ii) Let 7* be the optimizer of S(u1,...,un,c), and let @ € (1, ..., an) be its
shadow. Using (Ar) and Lemma 3.2, we have

S(p1y.. N, c) = /cdw* +Ds(m", 1 @ - ® pn)

> /cdﬁ—LWp(w*,fr)Jer(fr,ﬁl®---®ﬂN)
2S(ﬁla'”?ﬂNvC)_LWP(/J’lv'~~7/1'N;/~1'17'~'aﬂN)'

The claim follows by symmetry. 0
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The proof of I'-convergence follows the same line of argument.

Proof of Remark 3.8. Similarly to the preceding proof, (a) follows from the lower
semicontinuity of [cd(-) + Dy(-,-). For (b), let m, be the shadow of m, and use
Lemma 3.2 to obtain [ c¢dm, — [ cdrand Dy(my,, pi®- - -Quly) < Dy(m, 1 ®- - -Qun),
again as in the preceding proof. 0

The criteria for the transport inequality (I;) are derived as follows.

Proof of Lemma 3.10. (i) For the convenience of the reader, we first recall the
standard argument for bounded X: combine dx 4(z,y)? < diamg(X)?1,, with the
transport representation of total variation distance [40, Lemma 2.20] and Pinsker’s
inequality [40, Theorem 2.16] to obtain

W 0) = int [ da(o,) (o, dy)

< di X)?  inf 1, dz,d
< diam, (X) ne%ﬂw,e)/ #y K(dz, dy)

. . 1 1/2
= diamy (X)?||7 — 0|7y < dlamq(X)q(ﬁDKL(G,ﬂ)) .

The above holds for arbitrary probabilities 7,0. To prove the stronger estimate
claimed in the lemma, we improve the above by exploiting that 7,60 € II(p1, ..., uN).
Indeed, let I (w,0) C I(m,0) denote the set of couplings x € II(w,#) not moving
mass in the X;-direction; i.e.,

’{{(xla"'va7y1u"'7yN):xl :yl}: 1.

Note that Iy (7, 8) # @ due to the fact that 7 and 6 have the same marginal p; on X;.
Clearly,

Wm0y = _inf [ dxe.0)? n(do,dy)

< inf / dx o (,y)" (dz, dy)
rell;

< M? inf /113@ k(dx,dy), M :=diamg(Xs x --- x Xp).
KEI (7,0)

On the other hand, we claim that 7, # having the same marginal implies

(4.7 it [ty sl dy) < 5= 0l

in words, where mass needs to be moved, one might as well move only in the directions
Xo,...,Xn. Granted (4.7) holds, we can proceed as in the beginning and conclude
the assertion of the lemma,

1 1/2
W, (m,0)7 < M9||w — 0|7y < Mq(ipKL(e,ﬂ)) .

To show (4.7), consider the mutually singular measures 7 =m—(7wAf) and §=60—(7Af),
where m A is defined as usual via d(7 A0)/d(7+6) = min{dnr/d(7+0),d0/d(7 +0)}.
These measures again share a common first marginal, so that II;(7,6) # 0. Let
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i € I, (7,0) be arbitrary, and let x € II(r,0) be the coupling given by x = & + i
where 7 is the identical coupling of m A § with itself. Then

Im=Ollrv < [ Lugy e dy) = [ Loy il dy) = |17 = By,

where the last equality follows from mutual singularity. As ||7 — 0||7y = |7 — 0|7y,
all expressions are equal and (4.7) follows.

(i) It is shown in [9, Corollary 2.4] that the inequality (I,) holds for a given
measure m € P(X) and all § € P(X) whenever

(4.8) /exp(& dx.q(z,#)%?) 7(dz) < o0

for some & > 0 and z € X, with constant
1 ) ) 2
(4.9) Cryg= 2x€§(n£>0 (2 (1 + log/exp(adx,q(x,x)Qq)W(dx))> .

To obtain the claim for a coupling m (and general § € P(X)), note that

N N
dx q(#,2)% < N> dx (i, 1) ZN dix i (@i, )%

i=1

and that the functional f — log [ exp(@f(z)) w(dz) is convex (as can be seen from a
variational representation; see, e.g., [28, Example 4.34, p.201]). Hence,

N
1
log / exp(adx o(&,x)29) 7(dz) < v > log / exp(aN2dy, (&, 2:)%7) pi (da;).
=1

To obtain the claim for C,, we plug this inequality into (4.9) and set & = «/N2.
Similarly, the integrability condition in the lemma implies (4.8).

(iii) The proof is similar to (ii) but refers to a different result of [9]. Indeed, by [9,
Corollary 2.3], it suffices to bound

zeX,a>0

: 1/3 q
Crq=2 inf ( (2+log/exp(ddx,q(a?,x)q)ﬂ(dx))> .

Here the term inside the exponential already factorizes and we can directly apply the
convexity of f + log [ exp(af(z))m(dz), which yields the claim after the substitution
& =«a/N. |

As a preparation for the proof of Theorem 3.11, we recall a Pythagorean relation
for the entropic optimal transport problem. We denote

F(m) = /Cd7T+DKL(7T,7T1 Q- Q7N),

where 71,..., 7y are the marginals of .

LEMMA 4.4. If 7* € W(uy, ..., uN) is the optimizer of S(p1, ..., uN,cC),

Dxi(m,7*) < F(m) = F(r*) forall weI(u,...,unN).
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Proof. Set P = p; @ -+ ® uy, and define P, € P(X) by dP. = a~te ¢dP,
where « is the normalizing constant. Then

(4.10) F(m) = Dky(m, P.) —loga,

so that the entropic optimal transport problem (2.3) is equivalent to minimizing
D1 (v, Pe). In particular, 7* = argming,, ,..)Dki(, P), and the Pythagorean
theorem for relative entropy [19, Theorem 2.2] yields

DKL(ﬂ',PC)EDKL(T{'*,PC)+DKL(7T,7T*) for all WGH(Ml,...,MN).

In view of (4.10), the claim follows. (In the case under consideration, the assertion
holds even with equality. We do not need that fact here.) ]

We can now show the stability of optimizers with respect to the marginals.

Proof of Theorem 3.11. We detail the proof for (I,); the argument for (I;) is
identical. For notational convenience, we treat the case where fi; (rather than u,)
satisfy (I,). Consider the optimizers 7* € II(u1,...,un) and 7 € II(f1, ..., fin).
Let ©# € II(ji1,...,fin) be the shadow of 7* for the p-Wasserstein distance. Using
Lemma 3.2 and (Ay) as in the proof of Theorem 3.7 (ii), we get

We also have F(n*) — F(7*) < LA by Theorem 3.7 (ii), and adding the inequalities
yields
F(7) — F(7") < 2LA.

(If both marginals satisfy (I,) with constant L, we can assume by symmetry that
F(m*) — F(7*) < 0 and obtain the estimate with L instead of 2L.) By Lemma 4.4, it
follows that Dxp, (7, 7*) < 2LA, and now (I,) implies

W,y (7,7*) < Cq(2LA)% .

Recalling that W, on X was defined relative to the distance dx ., Jensen’s inequality
implies Wy (-,-) < N(%fi)Wp(y). In view of Lemma 3.2, we deduce Wy (7*,7) <

1 1

1\7(575)Wp(7r*7 7) < NG=#)A. We conclude the proof via the triangle inequality,

W, (m*, 7%) < Wy(n*, 7) + Wy(7,7%) < NG9 A + 0y (2LA) % | O

4.3. Stability with respect to cost. Throughout this section, we fix p €
[1,00], u; € Pp(X;) for i = 1,...,N, and ¢,¢ : X — [0,00) satisfying the growth
condition (2.2). The following observation is the starting point for the stability with
respect to the cost function. We recall that P := 1 ® - - ® pn.

LEMMA 4.5. Let ©*,7* be the respective optimizers of Sens(pi1,-..,pn,c) and
Sent (p1,5 -+, N, ¢). Then

D (%) + Dyu (75, 7%) < /(c _ o) d(F — ).
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Proof. Lemma 4.4 yields
DKL(’IT*,ﬁ'*) -I—DKL(’]?*,’/T*) < /Cd’ﬁ'* +DKL(7~T*,P) + cdr™ + DKL(’]T*7P)
—/cdw* —DKL(’]T*7P) —

:/(C—E)d(fr* . 0

éd#* — D (7", P)

Lemma 4.5 clearly implies a Lipschitz estimate with respect to ||c — ¢||s by using
Pinsker’s inequality on the left-hand side. The following proof is a variation on that
observation.

Proof of Proposition 3.12. Combining

d * d"’*
/(é—c)d(w*—ir*)</|&—c| -
with Holder’s inequality as well as (in case p # 1), for ¢ := p’%l,
do*  di* |1 _|[dx*  dEt |0 |det di*
dP ~ dP| ~|[dP " dP | w(p | AP dP
yields
dn*  di*||”
~ * ~ % ~ * ~ % -1 0 ™ P
@) [@-gdm - ) <le= el @l - 7 )7 |55 -

Next, we show

dr*  di*
dP ~ dP

< a:=exp(N||c|o) + exp(N||E]oo)-

oo

(4.12) ‘

Recall that by duality (see, e.g., [23, 44]), for certain “potentials” ¢; : X; — R,

dm*
dP

(4.13) () = exp (—c+ @igi) ,

where (®;p;)(z) := Ziil o(z;), and moreover,
(414) /@z@z dP = Sent(,ufla”'?/J’ch) > 07

where the inequality is due to ¢ > 0. To estimate the right-hand side of (4.13), recall
that (4.13) and the fact that 7* is a coupling imply a conjugacy relation between the
potentials (see, e.g., [23, 44, 45]), namely,

i) = —1og [ expl—c(e) + @p103(2)) Pl

IN

lelloo — / ©joitps P,
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where x_; := (z1,...,Ti—1,Tit1,...,2n) and P_; := ®,x;p;. Thus by (4.14),
@pi(2) < Nell = (V= 1) [ @15 4P < Nl

Using this in (4.13), we conclude that

dm*
< exp(Nlc/[oo)-
The analogue holds for 7*; hence ‘ % — ‘27? < ‘ % ’ —i—‘ ‘ZLPH < qa as claimed
o0 o0 o0

in (4.12).
Pinsker’s inequality, Lemma 4.5, (4.11), and (4.12) imply

A7 = 7|7y < D (n”, %) + Dxu(7*, 7°)

~ ~ * 1 o~ -
< [(e-gd —n) < adQln -7 1v)' e el

1
Dividing by 4[7* — #* ||y vields

* ~ % 1+4 1 1+5 1
(4.15) I =7l < (5) aFle - cloe),

which is the first claim of the proposition. On the other hand, using Lemma 4.5 and
(4.11) together with (4.15) yields

-

p—

(4.16)  Dxp(n"*,7) + Dxp (7, 7%) < a7 ||& — ¢|l 1oy (a% (= c||Lp(P)) =

As (I,) implies QCq_Qqu(W*,fT*)Qq < Dgp(n*,7*) + Dky(7*,7*), this proves the
second claim of the proposition. For the last claim, we drop the nonnegative term
Dy (7*,7*) on the left-hand side of (4.16) and use (I;) with the remaining
inequality. 0

4.4. Stability through transformation. Let p € [1,00], w;, fi; € Pp(X;) for
1=1,...,N,and let ¢: X — [0, 00) satisfy the growth condition (2.2). We begin with
preliminary results, connecting stability with respect to the marginals and stability
with respect to the cost function. As in Definition 3.1, K denotes the kernel K (x) =
Ki(z1) ® - ® Kn(xn), where pu; ® K; € T(u;, f1;) is an optimal coupling attaining
Wy (14, f1i). We use the notation Ke(z) := [ ¢(y) K(z,dy) for the integral of ¢ with
respect to the kernel.

LEMMA 4.6. Let p € [1,00], and let c be Lip,,(c)-Lipschitz. Then

lc = Kc|lprry < Lip,(e)Wy(p, - - s finy - fin), ™ € T(p, .., ).
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Proof. We only detail the calculation for p < oo,
P
o= Kellfpiry = [ |et0) = [ ctw) K o, n(ao)
< [[1ete) - )P Kz dyyn(a)

N
< Lipy (07 [[ Y- dalan i Ko dpyn(a)
N =1
= Lip,(c)” Z W (i, f1)". 0
=1

Next, consider the kernel K defined like K but with the marginals reversed;
that is, K(z) = Ki(x1) ® -+ ® Kn(zn), where fi; ® K; € I(fi;, j1;) is an optimal
coupling attaining W), (ji;, st;). The double integral K K¢ := K (K¢) thus corresponds
to a round-trip between the marginals. In general, this round-trip leads to a positive
gap R in value, as shown in the next result. The result will not be used in the
subsequent proofs, but it may be useful in understanding the steps below, where we
look for situations where the gap is zero.

LEMMA 4.7. Let p € [1,00]. We have
S(ﬂ17~~'aﬂN’c) SS(Mla“'vﬂNch) Ss(ﬂl""7ﬁNaC)+Rv

where R := f(fi'Kc —¢)dr*, and T is the optimizer of S(fi1,. .., [in,c). Moreover,
R < 2Lipp(C)Wp(:u’1a e nuN;ﬁla s 7/-LN)
Proof. Set P =[i1 ® - -- ® iy and recall (4.1). Using Lemma 4.1 twice, we get
S(i1, ..., fin,c) = inf /cdfr—i—D 7, P
(/~L1 HN ) TEIL(fi1, - AN) f( )

< inf /cd(TrK)+Df(7TK,PK)
w1, N )

< inf /ch7r+Df(7r,P)
BN)

- S(N’lv"'aﬂNaKc)

< / Ked(#K) + D;(#" K, PK)

< /K’chﬁ* + Dy (7*, P) = S(fi1, - -, fin,c) + R.

The bound for R is similar to the proof of Lemma 4.6. ]
In Lemma 4.7, there is a gap between the values of S(jiy,...,Mn,c) and
S(p1y .-, pun, Ke). If, however, the kernels K, K are given by maps inverse to one

another (as will be the case in the proof of Lemma 4.9 below), the gap is zero, and the
problems S(fi1, ..., N, c) and S(u1,. .., un, Kc) become equivalent in the following
sense. We write T} for the pushforward under T'.

LEMMA 4.8. Fori=1,...,N, let T; : X; — X, satisfy ft, = (T;)ypi and admit
a (measurable) a.s. inverse Ti_1 : X; — X;; that is, Ti_1 oT; = id p;-a.s. and
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T, 0T, =id fi;-a.s. Define

T(z) = (Ti(z1),..., Tn(zn)), T 'z)= (T7 (21),..., T (zN))-

Then S(fi1,y...,fin,c) = S(p1,...,pun,coT), and the optimizers 7*, m* of the two
problems are related by 7* = Tym* and 7 = Tﬁflﬁ'*.

Proof. Set P =11 ® -+ @ uy and P = iy @ -+ ® jiy. We have
/COTd7r+Df(7r,P) = /con(Tu_l(Tuw)) + Dy (T; N (Tym), T, P)
:/Cd(Tﬂﬂ')Jer(Tﬁ?T,p)

for any m € I(p1, ..., pun), and hence taking infimum over w € I(u1,. .., uy) yields
S(p1y. - spun,coT) > S(fi1, ..., in,c). Symmetric results hold starting from 7 €
II(f1, ..., fin). Thus S(f1,...,An,c) = S(p1,...,un,coT), and now the formulas
for the optimizers follow as well. 0

In the simplest case, the optimal couplings for W, (u;, fi;) are given by invertible
maps, and then we can apply Lemma 4.8 directly to prove Theorem 3.13. In general,
we approximate the marginals with measures having that property as detailed next,
passing to an augmented space to guarantee that the setting is sufficiently rich. We
write ¢, for the Dirac measure at z.

LEMMA 4.9. Let p € [1,00]. Let X; = X; x (—1,1), and embed the marginals
as v; = p; ® 0g and U := ji; @ 8 fori=1,...,N. Set X = HililXi, and define
¢: X >R byc(z,u):=c(z) forx € X and u € (—1,1)V.

(i) We have S(u1,...,un,c) = S(v1,...,vN,C), and the corresponding optimiz-

ers m,0 are related by 0 = w ® 6 .
If 7,0 are the optimizers for S(fi1, ..., an,c) and S(¥;,...,UN,C), then

W, (m, %) = W, (6,8).

(i) Given0<e<1andi=1,...,N, there exist v, 5 € P(X;) with

(4.17) Wy (vi, v§) <, Wy (0, 75) <€

and an a.s. invertible map Tf : X; — X; such that of = (Tf)yv§ and the
corresponding coupling attains W, (v, f).
Proof. (i) follows immediately from the definitions; we prove (ii). The case p < 00

is standard: for n large enough, there exist p;, p; € P(X;) of the form

1 o1y
pPi = Ezg(a&k,o)’ Pi = gZ‘;(ik»O)
k=1 k=1

such that W, (v, p;) < § and W,(74,p;) < §; for instance, one can use suitable
realizations of independent and identically distributed (i.i.d.) samples (see, e.g., [35,
Corollary 1.1]). Next, choose distinct uq, ..., u, € (0,1) small enough such that the

measures

1 - 1
vy = n Zé(ibkyuk)’ vi = n Zé(ik’uk)
k=1 k=1

n n
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satisfy Wy, (pi, v) < § and Wy (ps, 75) < 5. Then (4.17) holds, and vf, 7§ are empirical
measures on n distinct points due to the ch01ce of uq,.. . As a result, there is an
optimal transport map that is one-to-one on the supports.

Let p = oco. Here a different argument is necessary. (The following also gives an
alternate proof for p < 00.) As X is Polish, we can find a dense sequence (g;) C X
and a countable measurable partition (Q) of X with ¢, € Q¢ and diam @, < §.
Consider the approximations

pii= vi(Qr) g, @0, pi= D 7(Qr)dq ® o,
k=1 k=1

€

which clearly satisfy Woo(ps,v:) < § and Weo(ps, 7)) < § but may have atoms of
unequal mass. Let p; ® U; € I(p;, p;) be a W-optimal coupling; then U; : X; —

P(X;) is a stochastic kernel such that for each k,

Uz((QkaO)) = ij7k 5(13' ® 50

Jj=1

for some weights w;; > 0 with Ejoil wjr = 1. Let ¢ > 0, pick disjoint numbers
uj i € (0,€p), define

Vi(Qk)wj,k 6q;' ® 5uj,k7
1

oo
E v; Qk wj,kéqk (X)(SuJ o Df =
J,k=1 J

%TM8

and observe that W, (vf, p;) < § and W ( U5, pi) < § for € sufficiently small (note
that ;5 := 0 would lead to v§ = p; and o§ = v{U; = p;). Now (4.17) holds by the
triangle inequality. Define

TF:{qr ke N} x{ujp:j,k € N} — {qn : k € N} x {u;: j,k € N},

T (qr wjn) = (g5, ujk),
which is one-to-one as the wu;j are distinct. Moreover, p; @ U; € II(p;, p;) implies
v§ = (If)4v§, and since p; ®U; attains Weo (p;, p;) = Woo (1/1 , U§), the coupling induced
by T¢ attains W (v§, D5). d

17 ’L

After these preparations, we are ready to prove Theorem 3.13.

Proof of Theorem 3.13. We detail the proof for (I,); the argument for (I;) is iden-
tical. We shall apply Proposition 3.12 though the equivalence outlined in Lemma 4.8.
To this end, we extend the spaces X; by the interval (—1,1) and introduce v;, 7;, € as
in Lemma 4.9. In view of Lemma 4.9 (i), it suffices to prove the claim for these data
instead of p;, fi;, .

Let € > 0, choose v§, §, T as in Lemma 4.9 (ii), and denote by 6°, 6¢, 6¢ the respec-
tive optimizers of Sent(Vf,...,V5,¢) and Sen (75, ..., 0%, ¢) and Sent(V5, ..., V5, ¢ 0
T), respectively. Noting that Lip,(¢) = Lip,(c) and setting A(e) := Wy (v, ..., vj;
U5, ...,vy), Lemma 4.6 yields

e =coT|trpy < Lipp(c) Ale),

and thus Proposition 3.12 shows that

(4.18) W, (6%, 6°) < C, (;) g (a5 Lip, (0 A(e))ﬁ .
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As 6¢ = T¢0¢ by Lemma 4.8 and TF attains W,(vf, ), it follows by the same
calculation as in the proof of Theorem 3.11 that

W, (6°,6°) < NG5 W, (6,69 < NG5 Ae).
Combining the two estimates, we find that

W, (0°,0°) < W, (0°,6°) + W, (6°, 6°)

1

11 1Y) 2¢ 1 [eEayr
< NG=HA(e) + C, (2) (az Lipp(C)A(e)>(+) :

Letting € — 0, the left-hand side converges to W,(n*,7*) by Theorem 3.11 and
Lemma 4.9 (ii), while A(e) — A by construction. The claim on sharpness is discussed
in Example 4.10 below. O
Finally, we exhibit a family of examples for which the constant ¢ of Theorem 3.13
is optimal.
Ezample 4.10 (sharpness of £ in Theorem 3.13). On X = [—1,1]?, let

1

. . 1
p1 = p2 = 5(5—1 +01), M1 = p2 = 5(5—1+s+51—s)a

where € € (0,1/2) is a parameter. We define the cost function ¢ = ¢(¢) by

e(—-1,-1) = c(l,1) = c(—1+¢el—¢) = c¢(l—g—-1+¢) =0,

e(l,-1) = ¢e-1,1) = e(-1+e-1+¢) = c(l—g,1—¢) =g¢,
and then c is Lipschitz with constant Lip, (c) = 1. Setting a(e) := 1i’;§§()€), we
calculate the optimizers 7*, ©* of Sent (11, 2, ¢) and Sent(fi1, fiz, ¢) to be

. ofe 1—a(e

= ;)(5<—1,—1>+5<1,1>) T D (5am + ).

. l—o(e afe

7= T()((s(flJrs,flJre) +0(1—c,1-2)) + #(5(1%,71%) + 0(—14e1-c))-
Next, we find

Wy (r*, 7%) = 2(1 — a(e))2e + (2a(e) — 1)2

by observing that an optimal coupling x € II(7*,7*) is to move a total mass of

2(1—a(e)) over a dx 1-distance of 2¢, and mass 2a(e) — 1 over distance (2—e)+e = 2.
1

In view of a(e) = 4 + 5 4+ O(e?) as e — 0, we deduce
Wy (%, %) = 3¢ + O(£?).
On the other hand, clearly

Weo (pe1, pr2; fin, fiz) = €.

In summary, any constant £ such that Wi (7*, 7*) < €W (1, p2; fi1, fiz) holds in the
above example for all € has to satisfy £ > 3.

It remains to see that we attain ¢ = 3 in the last assertion of Theorem 3.13. For
¢ =1, Lemma 3.10 (i) with diam; (X») = diam([—1, 1]) = 2 shows that (I,) is satisfied
with C; = v/2. Hence, the formula in Theorem 3.13 reads

(=N+(C1/V2)Lip(c) =2+1=3

as desired.
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We remark that this example can be extended to more general parameters. Re-
placing ¢ by Lc for some L > 0 leads to a different Lipschitz constant in the definition
of I. Replacing a(e) by a(Le) in the formula for Wi (7*, 7*), one finds that the con-
stant ! is again sharp. Similarly, replacing [—1,1] by [—K, K| for some K > 0 and
replacing 1 by K in the definition of the marginals, we find that only the constant
(' changes in the definition of I, while for Wy (7*, 7*) one replaces the final 2 by 2K.
Again, the constant [ remains sharp.

4.5. Application to Sinkhorn’s algorithm.
Proof of Theorem 3.15. We first observe that 7" is the optimizer of the problem

Sent (7‘(?7 ﬂga C) 9

7™ = argmin Dgp (7, %)
mell(n},7h)

= argmin /cdﬂ'—l—DKL(w,ul ® p2)

rEI(n} m3)

= argmin /cdﬂ'—l—DKL(w,ﬂ'{L@ﬂg),
)

rell(nm] w2

where the last step uses Remark 2.1. (The first identity is well known; e.g., it follows
from the fact that by construction, dr"/dn® admits a factorization a(z1)b(zz2).) To
apply our stability results, we require the convergence of the marginals in W),,. Indeed,
Dxr (77, 11;) — 0 holds by a standard entropy calculation; see, for instance, [51]. More
precisely, we have

Dy, (7*, P,)

(419) DKL(TF?,MZ') S 2 n

according to [36, Corollary 1]. By the exponential moment condition on u; and 9,
Corollary 2.3], (4.19) yields

Wy(mi, i) < CoCl, (nfi + nfﬁ), where

Cy := max {(QDKL(W*,PC))% ,(2Dx (7, Pc))ﬁ} ,
C, =2 inf l(§+1 (adx, (w0, 2:)) i dz:) ) ’
i T $06%7a>0 a\2 0g [ expladx,;(Zo,Li)) il GT;

As a result,

(4.20) A = max W (nf', u;) < Comax{Cj,, Co} (k™% + k%),

=1,

We remark that A = Wy(n}, 755 1, po) as Wy(n, p1) = 0 or Wy(ng, ue) = 0 for
each n, consistent with our previous notation. By (4.20), 7} has a finite pth moment.
Noting also that

2
(421) DKL(T‘-nhu’l b2y ﬂQ) = DKL(ﬂ-nﬂT? ®7Tg) + ZDKL(W?MUZ')7
1=1

assertion (i) thus follows directly from Theorem 3.7 (i).
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Regarding (ii), note that the pth moments of 7] are bounded uniformly in n
due to (4.20). In view of Lemma 3.5, the cost function ¢ thus satisfies (Ar) with a
uniform constant L for the marginals (77", 75 ), as well as (u1, p2). Using also (4.19)
and (4.21), Theorem 3.7 (ii) yields

|F(r*) = F(r™)| < LA 4 2Dk (7%, P)n™t.

In view of (4.20), the claimed rate for |F(n*) — F(n™)| follows. Finally, (I;) holds
with constant C’; by Lemma 3.10 (iii), and thus Theorem 3.11 yields

W, (r*, 7)< 2675 A+ C,(20)Y1 AT + C, L2 A%,

so that the claimed rate for W (7*, 7") follows via (4.20). |
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