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QUANTITATIVE STABILITY OF REGULARIZED OPTIMAL

TRANSPORT AND CONVERGENCE OF SINKHORN’S

ALGORITHM\ast 

STEPHAN ECKSTEIN\dagger AND MARCEL NUTZ\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We study the stability of entropically regularized optimal transport with respect to
the marginals. Lipschitz continuity of the value and H\"older continuity of the optimal coupling in p-
Wasserstein distance are obtained under general conditions, including quadratic costs and unbounded
marginals. The results for the value extend to regularization by an arbitrary divergence. As an
application, we show convergence of Sinkhorn's algorithm in the Wasserstein sense, including for
quadratic cost. Two techniques are presented: the first compares an optimal coupling with its so-
called shadow, which is a coupling induced on other marginals by an explicit construction, and the
second transforms one set of marginals by a change of coordinates and thus reduces the comparison
of differing marginals to the comparison of differing cost functions under the same marginals.
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1. Introduction. Following advances allowing for computation in high dimen-
sions, applications of optimal transport are thriving in areas such as machine learning,
statistics, and image and language processing (see, e.g., [4, 15, 50, 3]). Regularization
plays a key role in enabling efficient algorithms with provable convergence; see [48] for
a recent monograph with numerous references. Popularized in this context by [20],
entropic regularization has become the method of choice, as it allows for Sinkhorn's
algorithm (the iterative proportional fitting procedure), which is analytically tractable
and can be implemented on a large scale using parallel computing. The entropically
regularized transport problem can be formulated as

(1.1) S\varepsilon 
ent(\mu 1, \mu 2, c) = inf

\pi \in \Pi (\mu 1,\mu 2)

\int 

c(x, y)\pi (dx, dy) + \varepsilon DKL(\pi , \mu 1 \otimes \mu 2).

Here \Pi (\mu 1, \mu 2) is the set of couplings of the given marginals \mu 1, \mu 2, andDKL(\cdot , \mu 1\otimes \mu 2)
is the Kullback--Leibler divergence relative to the product measure \mu 1\otimes \mu 2. Moreover,
\varepsilon > 0 is a regularization parameter, and c is a cost function; the most important
example is quadratic cost \| x  - y\| 2 on \BbbR 

d \times \BbbR 
d. The basic idea is to solve (1.1) for

small \varepsilon > 0 to obtain an approximation of the (unregularized) optimal transport
problem that corresponds to \varepsilon = 0. Starting with [16, 42, 43] and followed by [14, 37],
the convergence as \varepsilon \rightarrow 0 has been studied in detail and remains a very active area
of investigation; see, for instance, [2, 5, 6, 7, 17, 34, 45, 47, 53].

The entropic optimal transport problem (1.1) is also of independent interest.
On the one hand, it is equivalent to a static formulation of the Schr\"odinger bridge
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QUANTITATIVE STABILITY OF REGULARIZED TRANSPORT 5923

problem that has a long history in physics (see [27, 38] for surveys); the dynamic
Schr\"odinger bridge can be constructed by solving the static problem and combining
it with a Brownian bridge. On the other hand, applied researchers have started to
exploit numerous benefits resulting from entropic regularization, such as smoothness,
existence of a gradient for gradient descent, and improved sampling complexity (see,
e.g., [18, 21, 30, 31]), among many others. Thus, regularization is increasingly seen as
an advantage rather than an approximation error; notions such as Sinkhorn divergence
[32, 49] have become tools in their own right. We note that as long as \varepsilon > 0 is fixed,
we can assume without loss of generality that \varepsilon = 1, simply dividing (1.1) by \varepsilon and
using the cost function c/\varepsilon . Hence, we shall drop \varepsilon from the formulation in our results.

The main objective of the present study is to establish and quantify the stability
of the value Sent and its optimal coupling \pi \ast with respect to the input marginals \mu 1

and \mu 2 or, more generally, \mu 1, . . . , \mu N in the multimarginal setting. Distances will be
quantified by Wasserstein distance Wp, which thus allows for comparison of measures
with different supports, discrete and continuous measures, etc. We aim for results that
include unbounded marginals, where compactness is replaced by suitable integrabil-
ity conditions, such as the sub-Gaussian tails in [41]. Schr\"odinger bridges are one
application where unbounded supports are very natural, as the Brownian dynamics
produce unbounded intermediate marginals even if the boundary data are bounded.
In this context, costs are usually quadratic, so that unbounded and non-Lipschitz
cost functions are necessary. Even in applications with bounded costs, one may be
interested in estimates with constants that do not depend on \| c\| \infty , especially not
exponentially.

To the best of our knowledge, the first stability result for entropic optimal trans-
port is due to [12]. Here, costs are uniformly bounded, and all marginals are equivalent
to a common reference measure (e.g., Lebesgue), with densities uniformly bounded
above and below. Within these families, distances of measures can be quantified by
the Lp norm of the difference of their densities. The authors show that the Schr\"odinger
potentials (i.e., the dual entropic optimizers) are Lipschitz continuous relative to the
marginals in Lp for p = 2 and p = \infty . This result is obtained by a differential approach
establishing invertibility of the Schr\"odinger system. More recently, [33] obtained the
first result on stability in a general setting. Using a geometric approach called cyclical
invariance, continuity of optimizers was established in the sense of weak convergence.
The geometric method avoids integrability conditions almost entirely and indeed re-
mains valid even if the value of (1.1) is infinite. On the other hand, the method
relies on differentiation of measures which essentially forces the marginal spaces to
be finite-dimensional. More importantly, the continuity result is purely qualitative,
and that is the main difference in the present results. Most recently, and around
the same time as the present study, a beautiful result of [22] established the uniform
stability of Sinkhorn's algorithm with respect to the marginals, in a bounded setting.
As a consequence, the authors deduce Lipschitzianity in W1 of the optimal couplings
with respect to the marginals; the assumptions include bounded Lipschitz costs and
bounded spaces. The argument is based on the Hilbert--Birkhoff projective metric,
which has also been used successfully to show linear convergence of Sinkhorn's al-
gorithm [13, 29]. A crucial additional step accomplished in [22] was to pass from
this metric to a more standard norm on the potentials. The techniques involving the
projective metric are less probabilistic in nature, which may be one reason why it is
wide open how to relax the boundedness conditions. We remark that the initial result
of [12] also covered the multimarginal problem, which has recently become popular
due to its role in the Wasserstein barycenter problem [1, 11]. At least in the context
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5924 STEPHAN ECKSTEIN AND MARCEL NUTZ

of [10], it was observed that Hilbert--Birkhoff arguments may not be equally successful
beyond two marginals. Finally, we mention the follow-up [46] on the continuity of the
potentials in unbounded settings.

We apply our stability result to Sinkhorn's algorithm for N = 2 marginals. It is
well known that each iterate \pi n of the algorithm solves an entropic optimal transport
problem between its own marginals, and, moreover, these marginals converge to the
given marginals \mu i. Thus, the convergence can be seen as a particular instance of sta-
bility with respect to marginals, and our results apply. Sinkhorn's algorithm has been
studied for almost a century (see [48] for numerous references); the most general con-
vergence results in the literature are due to [51]. While they treat costs that are merely
measurable and show \pi n \rightarrow \pi \ast in total variation, they do not cover unbounded func-
tions, such as the quadratic cost, in most examples, especially when both marginals
have unbounded support. Applying stability results under regularity of c turns out
to be fruitful in this regard: we obtain not only the convergence to the optimal value
and \pi n \rightarrow \pi \ast in Wasserstein distance but also a rate of convergence. The conditions
are sufficiently general to cover quadratic cost with sub-Gaussian marginals.

1.1. Synopsis. Our first result, detailed in Theorem 3.7, is the continuity of the
value Sent with respect to the marginals in p-Wasserstein distance under generic con-
ditions. If the cost c is a product of suitably integrable Lipschitz functions, then Sent

is also Lipschitz. This includes quadratic costs on \BbbR 
d with possibly unbounded mar-

ginal supports. The proof is based on comparing the optimizer \pi \ast with the ``shadow""
coupling it induces on other marginals. The shadow is a particular projection that
we construct explicitly by gluing, controlling both the distance to \pi \ast and its diver-
gence. The construction is simple and flexible and thus potentially useful for other
purposes. For instance, Theorem 3.7 holds for a general class of optimal transport
problems regularized by a divergence Df as previously considered in [24]; Kullback--
Leibler divergence is a particular case. Other divergences, especially quadratic, are
being used in some applications where entropic regularization performs poorly, usually
because nonequivalent optimizers are desired or weak penalization (small \varepsilon ) causes
numerical instabilities; see [8, 25, 39]. So far, theoretical results are scarce, as these
regularizations are less tractable.

By way of strong convexity, the continuity of the value Sent in Theorem 3.7 leads
to the continuity of the optimizer \pi \ast with respect to the marginals. Theorem 3.11
states a nonasymptotic inequality bounding the distance of two entropic optimizers for
different marginals in terms of theWp distance of the marginals. It shows in particular
that the map (\mu 1, . . . , \mu N ) \mapsto \rightarrow \pi \ast is 1/(2p)-H\"older in Wp. Exploiting a Pythagorean-
type property of relative entropy to implement the strong convexity, we achieve an
unbounded setting requiring only a transport inequality, i.e., a control of Wasserstein
distance through entropy. This condition holds as soon as the marginals have a finite
exponential moment; in particular, the result covers quadratic costs when marginals
are \sigma 2-sub-Gaussian for some (arbitrarily small) \sigma . We remark that Theorem 3.7
is the first quantitative stability result for unbounded costs, and in settings without
differentiation of measures as assumed in [33], even the qualitative result alone would
be novel.

One noteworthy feature of Theorem 3.11 is that the constants grow only linearly
in c, which is particularly important for the regularized transport problem (1.1): here
the effective cost function is \~c := c/\varepsilon , and \varepsilon is usually small. Many results on entropic
optimal transport feature constants depending exponentially on the cost, typically
exp(\| \~c\| \infty ) or exp(\| \~c\| \infty +Lip \~c), including all previous results on stability that we are
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QUANTITATIVE STABILITY OF REGULARIZED TRANSPORT 5925

aware of. Even for well-behaved c on a fairly small domain, a choice like \varepsilon = .01 leads
to constants far exceeding e100, a potential concern in practical considerations.

Our second continuity result, Theorem 3.13, aims at improving the H\"older expo-
nent in Theorem 3.11 under the more restrictive condition that the cost c is bounded
(spaces may still be unbounded). For instance, we show 1/(p+1)-H\"older continuity in
Wp. More generally, Theorem 3.13 yields the H\"older exponent p/(p+1)q from Wp to
Wq; to wit, we can improve the exponent by measuring the distance of the marginals
in a stronger norm. In particular, p = \infty leads to a Lipschitz result in W1. This
choice also eliminates exponential dependence of the constant on the cost. In fact,
we prove that the Lipschitz constant is sharp in a nontrivial discrete example. This
may be surprising given that the idea of proof is somewhat circuitous and that many
estimates in this area are thought to be overly conservative.

Indeed, Theorem 3.13 is based on a novel approach that may be of independent
interest; the basic idea is to reduce the problem of differing marginals to one of differ-
ing cost functions (under the same marginals). In the latter problem, optimizers are
measure-theoretically equivalent and comparable in the sense of Kullback--Leibler di-
vergence. Our starting point is the observation that the regularization in our problem
depends only on the relative density but not on the geometry of the distributions. In
the simplest case, a Wp-optimal coupling of the differing marginals induces an invert-
ible transport map T that can be used as a change of coordinates to achieve identical
marginals. The cost is transformed at the same time, and we end up comparing c
with c \circ T . For this comparison, we can apply a separate result (Proposition 3.12)
based on an entropy calculation.

The application to Sinkhorn's algorithm is summarized in Theorem 3.15 which
states convergence of the entropic cost and of the Sinkhorn iterates \pi n themselves.
The qualitative and quantitative results follow from Theorem 3.7 and Theorem 3.11.
In essence, the stability results turn a convergence rate for the Sinkhorn marginals
into a convergence rate for \pi n \rightarrow \pi \ast . We use the sublinear rate for the marginals as
obtained in [36]. As noted there, these rates are likely suboptimal---for bounded cost
functions, linear convergence of Sinkhorn's algorithm is well known [10, 13, 29]---and
our focus at this stage is on having some quantitative control.

The organization of this paper is simple: section 2 details the setting, section 3
presents the main results, and section 4 contains the proofs.

2. Setting and notation. Let (Y, dY ) be a Polish space, and let \scrP (Y ) be its
set of Borel probability measures. Given p \in [1,\infty ), we denote by \scrP p(Y ) the subset
of measures \mu with finite pth moment, i.e.,

\int 

dY (x, \^x)
p \mu (dx) <\infty for some (and then

all) \^x \in Y . For p = \infty , we define \scrP \infty (Y ) as the measures with bounded support. The
p-Wasserstein distance Wp(\mu , \nu ) between \mu , \nu \in \scrP p(Y ) is defined via

Wp(\mu , \nu )
p = inf

\pi \in \Pi (\mu ,\nu )

\int 

dY (x, y)
p \pi (dx, dy), p \in [1,\infty ),

W\infty (\mu , \nu ) = inf
\pi \in \Pi (\mu ,\nu )

ess sup
(x,y)\sim \pi 

dY (x, y),

while \| \mu  - \nu \| TV = supA\subseteq Y Borel | \mu (A) - \nu (A)| is the total variation distance of \mu , \nu \in 
\scrP (Y ).

Fix N \in \BbbN , and let (Xi, dXi
), i = 1, . . . , N, be Polish probability spaces with

measures \mu i \in \scrP (Xi). We denote by X =
\prod N

i=1Xi the product space and write
x \in X as x = (x1, . . . , xN ). When p \in [1,\infty ] is given, it will be convenient to use
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5926 STEPHAN ECKSTEIN AND MARCEL NUTZ

on X the particular product metric

dX,p(x, y) :=

\Biggl\{ 

\bigl( 
\sum N

i=1 dXi
(xi, yi)

p
\bigr) 1/p

, p \in [1,\infty ),

maxi=1,...,N dXi
(xi, yi), p = \infty .

Unless otherwise noted, p-Wasserstein distances on X are understood with respect to
dX,p. Similarly, the distance between two tuples of marginals will often be quantified
by

Wp(\mu 1, . . . , \mu N ; \~\mu 1, . . . , \~\mu N ) :=

\Biggl\{ 

\bigl( 
\sum N

i=1Wp(\mu i, \~\mu i)
p
\bigr) 1/p

, p \in [1,\infty ),

maxi=1,...,N W\infty (\mu i, \~\mu i), p = \infty .

Given a Lipschitz function c : X \rightarrow \BbbR , we denote by Lipp(c) its Lipschitz constant
with respect to dX,p.

For a strictly convex, lower bounded function f : \BbbR + \rightarrow \BbbR with f(1) = 0 and
limx\rightarrow \infty f(x)/x = \infty , the f -divergence Df (\mu , \nu ) between probabilities \mu , \nu on the
same space is

Df (\mu , \nu ) :=

\int 

f

\biggl( 

d\mu 

d\nu 

\biggr) 

d\nu for \mu \ll \nu 

and Df (\mu , \nu ) := \infty for \mu \not \ll \nu . The main example of interest to us is the Kullback--
Leibler divergence (relative entropy)DKL(\mu , \nu ) which corresponds to the choice f(x) :=
x log x. We always assume that (\mu , \nu ) \mapsto \rightarrow Df (\mu , \nu ) is lower semicontinuous for weak
convergence. This holds for DKL and, more generally, whenever Df has a suitable
variational representation.

Given \mu i \in \scrP (Xi) and a continuous, nonnegative1 cost function c \in L1(\mu 1\otimes \cdot \cdot \cdot \otimes 
\mu N ), we can now introduce the regularized transport problem

(2.1) S(\mu 1, . . . , \mu N , c) = inf
\pi \in \Pi (\mu 1,...,\mu N )

\int 

c d\pi +Df (\pi , \mu 1 \otimes \cdot \cdot \cdot \otimes \mu N ),

where \Pi (\mu 1, . . . , \mu N ) \subset \scrP (X) denotes the set of couplings of the marginals \mu i. Note
that S(\mu 1, . . . , \mu N , c) < \infty by way of \pi := \mu 1 \otimes \cdot \cdot \cdot \otimes \mu N . A standard argument of
compactness and strict convexity then shows that (2.1) admits a unique optimizer
\pi \ast \in \Pi (\mu 1, . . . , \mu N ). When p \in [1,\infty ) is given, we always assume that c has growth
of order p,

(2.2) | c(x)| \leq C(1 + dX,p(x, \^x)
p),

for some C > 0 and \^x \in X, whereas for p = \infty the meaning is that c is bounded. For
marginals \mu i \in \scrP p(Xi), this ensures in particular that c \in L1(\pi ) for any coupling \pi .

While some of our results below hold for general divergences, we use the notation
Sent in results specific to the entropic version, so that (2.1) becomes

(2.3) Sent(\mu 1, . . . , \mu N , c) = inf
\pi \in \Pi (\mu 1,...,\mu N )

\int 

c d\pi +DKL(\pi , \mu 1 \otimes \cdot \cdot \cdot \otimes \mu N ).

Remark 2.1. A variation of (2.3) uses entropy relative to a reference measure \^P
different from the product of the marginals,

(2.4) inf
\pi \in \Pi (\mu 1,...,\mu N )

\int 

c d\pi +DKL(\pi , \^P ),

1The lower bound is easily relaxed in view of the behavior of (2.1) under shifts of c.
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QUANTITATIVE STABILITY OF REGULARIZED TRANSPORT 5927

for instance, (normalized) Lebesgue measure for problems with absolutely continuous
marginals on \BbbR 

d. Of course, a compatibility condition between \^P and the marginals
is necessary to guarantee that (2.4) is finite. As long as \^P = \^P1\otimes \cdot \cdot \cdot \otimes \^PN is a product
measure, a standard computation shows that the optimizer \pi \ast of this problem is the
same as the one of (2.3). Therefore, our stability results for (2.3) carry over to (2.4).

3. Results.

3.1. Shadows and preliminaries. Given \pi \in \Pi (\mu 1, . . . , \mu N ), we introduce a
coupling \~\pi \in \Pi (\~\mu 1, . . . , \~\mu N ) of different marginals through a gluing construction.
Intuitively, for N = 2, the transport \~\pi is obtained by concatenating three transports:
move \~\mu 1 to \mu 1 using a Wp-optimal transport, then follow the transport \pi moving \mu 1

to \mu 2, and finally move \mu 2 to \~\mu 2 using a Wp-optimal transport. We think of \~\pi as
a coupling of \~\mu 1, \~\mu 2 that ``shadows"" \pi \in \Pi (\mu 1, \mu 2) as closely as possible given the
differing marginals. The formal definition reads as follows.

Definition 3.1 (shadow). Let p \in [1,\infty ], and let \mu i, \~\mu i \in \scrP p(Xi), i = 1, . . . , N .
Let \kappa i \in \Pi (\mu i, \~\mu i) be a coupling attaining Wp(\mu i, \~\mu i), and let \kappa i = \mu i \otimes Ki be a
disintegration. Given \pi \in \Pi (\mu 1, . . . , \mu N ), its shadow \~\pi \in \Pi (\~\mu 1, . . . , \~\mu N ) is defined as
the second marginal of \pi \otimes K \in \scrP (X\times X), where the kernel K : X \rightarrow \scrP (X) is defined
as K(x) = K1(x1)\otimes \cdot \cdot \cdot \otimes KN (xN ).

In general, the Wp-optimal kernel Ki need not be unique, so that there can in
fact be more than one choice for the shadow. Any choice will do in what follows,
and we shall speak of ``the"" shadow despite the abuse of language. As detailed in
Remark 4.2, the shadow can also be understood as a particular choice of a Wp-
projection of \pi onto \Pi (\~\mu 1, . . . , \~\mu N ). The crucial additional property of the shadow is
that its divergence is controlled by the one of \pi .

Lemma 3.2. Let p \in [1,\infty ], and let \mu i, \~\mu i \in \scrP p(Xi), i = 1, . . . , N . Given \pi \in 
\Pi (\mu 1, . . . , \mu N ), its shadow \~\pi \in \Pi (\~\mu 1, . . . , \~\mu N ) satisfies

Wp(\pi , \~\pi ) =Wp(\mu 1, . . . , \mu N ; \~\mu 1, . . . , \~\mu N ),

Df (\~\pi , \~\mu 1 \otimes \cdot \cdot \cdot \otimes \~\mu N ) \leq Df (\pi , \mu 1 \otimes \cdot \cdot \cdot \otimes \mu N ).

To study the continuity properties of regularized optimal transport, we need to
compare the cost of two couplings \pi , \~\pi in the unregularized transport problem. If c
is L-Lipschitz, the following inequality holds for all probability measures \pi , \~\pi . We
formulate an abstract condition to cover more general cases, especially Example 3.4
below.

Definition 3.3. Let p \in [1,\infty ], and let \mu i, \~\mu i \in \scrP p(Xi), i = 1, . . . , N . For a
constant L \geq 0, we say that c satisfies (AL) if

(AL)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\int 

c d(\pi  - \~\pi )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\leq LWp(\pi , \~\pi )

for all \pi \in \Pi (\mu 1, . . . , \mu N ) and \~\pi \in \Pi (\~\mu 1, . . . , \~\mu N ).2

The most important application is quadratic cost.

2In fact, (AL) will only ever be used when one coupling is the shadow of the other, but that
restriction does not seem to substantially enhance the applicability.
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5928 STEPHAN ECKSTEIN AND MARCEL NUTZ

Example 3.4. For p = 2 and cost c(x1, x2) = \| x1  - x2\| 2 on Euclidean space
\BbbR 

d \times \BbbR 
d, we have that (AL) holds with

L :=
\surd 
2 [M(\mu 1) +M(\~\mu 1) +M(\mu 2) +M(\~\mu 2)] ,

where M(\mu ) := (
\int 

\| x\| 2 \mu (dx))1/2 for \mu \in \scrP (\BbbR d).

The example is a special case of the following observation.

Lemma 3.5. Let p \in [1,\infty ). Let c(x) = f(x)g(x) where f, g are Lipschitz and
have growth of order at most p  - 1. Then (AL) holds with a constant L depending
only on the Lipschitz and growth constants of f, g and the pth moments of \mu i, \~\mu i,
i = 1, . . . , N . For p = \infty , the analogue holds with dependence on the bounds of f, g
instead of moments.

This criterion generalizes to a product c(x) = c1(x) \cdot \cdot \cdot cm(x) of m Lipschitz func-
tions satisfying a suitable growth condition; cf. Remark 4.3.

The next example shows that (AL) also holds for the pth power as cost.

Example 3.6. For cost c(x1, x2) = \| x1  - x2\| p with p \in (1,\infty ) on Euclidean space
\BbbR 

d \times \BbbR 
d, we have that (AL) holds with

L := Cp

\bigl[ 

Mp(\mu 1) +Mp(\~\mu 1) +Mp(\mu 2) +Mp(\~\mu 2)
\bigr] p - 1

,

whereMp(\mu ) := (
\int 

\| x\| p \mu (dx))1/p for \mu \in \scrP (\BbbR d) and Cp is a constant depending only
on p.

The proof, detailed in section 4, is similar to that of [52, Proposition 7.29] and
proceeds by estimating the derivative of a curve connecting the integrals in question.
The example generalizes to costs c(x1, x2) = \=c(x1, x2)

p, with \=c being Lipschitz.

3.2. Stability through shadows. We can now state our first result, establish-
ing the continuity of (2.1) with respect to the marginals. The qualitative part (i)
holds for general costs, and the quantitative part (ii) applies, in particular, to qua-
dratic costs under 2-Wasserstein distance.

Theorem 3.7 (continuity of value). Let p \in [1,\infty ].
(i) Let \mu i, \mu 

n
i \in \scrP p(Xi) satisfy limnWp(\mu i, \mu 

n
i ) = 0 for i = 1, . . . , N . Then

S(\mu n
1 , . . . , \mu 

n
N , c) \rightarrow S(\mu 1, . . . , \mu N , c), and the associated optimal couplings

converge in Wp.
(ii) Let \mu i, \~\mu i \in \scrP p(Xi) for i = 1, . . . , N, and let c satisfy (AL). Then

| S(\mu 1, . . . , \mu N , c) - S(\~\mu 1, . . . , \~\mu N , c)| \leq LWp(\mu 1, . . . , \mu N ; \~\mu 1, . . . , \~\mu N ).

This result will be proved by comparing the cost of a coupling with the cost of
its shadow. Using the same idea, we can show the convergence of the cost functionals
as follows.

Remark 3.8 (\Gamma -convergence). Define \scrF : \scrP p(X) \rightarrow \BbbR \cup \{ \infty \} by

\scrF (\pi ) =

\Biggl\{ 

\int 

c d\pi +Df (\pi , \mu 1 \otimes \cdot \cdot \cdot \otimes \mu N ) if \pi \in \Pi (\mu 1, . . . , \mu N ),

\infty otherwise,

and similarly define \scrF n for the marginals \mu n
i . If limnWp(\mu i, \mu 

n
i ) = 0, then \scrF n \Gamma -

converges to \scrF ; that is, given \pi \in \scrP p(X),
(a) \scrF (\pi ) \leq lim inf \scrF n(\pi n) for any (\pi n)n\geq 1 \subset \scrP p(X) with Wp(\pi , \pi n) \rightarrow 0,
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(b) there exists a sequence (\pi n)n\geq 1 \subset \scrP p(X) with Wp(\pi , \pi n) \rightarrow 0 and \scrF (\pi ) \geq 
lim sup\scrF n(\pi n).

For the recovery sequence in (b), we can choose \pi n \in \Pi (\mu n
1 , . . . , \mu 

n
N ) to be the shadow

of \pi \in \Pi (\mu 1, . . . , \mu N ).

Remark 3.9. Theorem 3.7 (i) and Remark 3.8 generalize to a sequence of cost
functions cn converging to c as long as the convergence is strong enough to im-
ply

\int 

cn d\pi n \rightarrow 
\int 

c d\pi whenever \pi n \in \Pi (\mu n
1 , . . . , \mu 

n
N ) converge in Wp to some \pi \in 

\Pi (\mu 1, . . . , \mu N ).

Our second aim is to bound the distance between the optimizers for different
marginals. The line of argument requires controlling Wasserstein distance through
entropy; hence it is natural to postulate a transport inequality. Given q \in [1,\infty ), we
say that \mu i \in \scrP q(Xi), i = 1, . . . , N, satisfy (Iq) with constant Cq if

(Iq) Wq(\pi , \theta ) \leq CqDKL(\theta , \pi )
1
2q for all \pi , \theta \in \Pi (\mu 1, . . . , \mu N ).

Similarly, they satisfy (I
\prime 

q) with constant C
\prime 

q if

Wq(\pi , \theta ) \leq C
\prime 

q

\Biggl[ 

DKL(\theta , \pi )
1
q +

\biggl( 

DKL(\theta , \pi )

2

\biggr) 
1
2q

\Biggr] 

(I
\prime 

q)

for all \pi , \theta \in \Pi (\mu 1, . . . , \mu N ). The two inequalities serve a similar purpose, but (I
\prime 

q) is
implied by a weaker integrability condition. Indeed, when X is bounded, (Iq) holds
as a simple consequence of Pinsker's inequality. Using the weighted inequalities of
[9], (Iq) and (I

\prime 

q) also hold under much weaker exponential moment conditions on \mu i

as detailed in Lemma 3.10 (ii) and (iii) below. In (i), we obtain a different relaxation
where all but one space Xi are bounded. Thus for the standard case N = 2, if one
marginal is bounded, no condition at all is needed on the other marginal.

Lemma 3.10.
(i) Let X \prime := X2 \times \cdot \cdot \cdot \times XN , and suppose that

diamq(X
\prime ) := sup

x,y\in X\prime 

dX\prime ,q(x, y) <\infty .

Then (Iq) holds with Cq = 2 - 
1
2q diamq(X

\prime ) for all \mu i \in \scrP q(Xi).
(ii) If \mu i \in \scrP (Xi) satisfy

\int 

exp(\alpha dXi
(\^xi, xi)

2q)\mu i(dxi) <\infty for some \alpha \in (0,\infty )
and \^xi \in Xi, then (Iq) holds with constant

Cq = 2 inf
\^x\in X,\alpha >0

\Biggl( 

N

2\alpha 

N
\sum 

i=1

\biggl( 

1 + log

\int 

exp(\alpha dXi
(\^xi, xi)

2q)\mu i(dxi)

\biggr) 

\Biggr) 

1
2q

.

(iii) If \mu i \in \scrP (Xi) satisfy
\int 

exp(\alpha dXi
(\^xi, xi)

q)\mu i(dxi) < \infty for some \alpha \in (0,\infty )

and \^xi \in Xi, then (I
\prime 

q) holds with constant

C
\prime 

q = 2 inf
\^x\in X,\alpha >0

\Biggl( 

1

\alpha 

N
\sum 

i=1

\biggl( 

3

2
+ log

\int 

exp(\alpha dXi
(\^xi, xi)

q)\mu i(dxi)

\biggr) 

\Biggr) 

1
q

.

Noting the logarithm in the formulas for Cq and C
\prime 

q, we observe that these con-
stants are typically much smaller than the exponential moment itself. We also note
that the condition in (iii) covers sub-Gaussian marginals for q = 2.
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We can now state a quantitative result for the stability of the optimizer of (2.3)
relative to the marginals. In view of the above, the assumptions cover quadratic cost
under 2-Wasserstein distance and sub-Gaussian marginals.

Theorem 3.11 (stability of optimizers). Let p \in [1,\infty ] and q \in [1,\infty ) with
q \leq p, let \mu i, \~\mu i \in \scrP p(Xi), let \mu 1, . . . , \mu N satisfy (Iq) with constant Cq, and let c
satisfy (AL). Then the optimizers \pi \ast , \~\pi \ast of Sent(\mu 1, . . . , \mu N , c) and Sent(\~\mu 1, . . . , \~\mu N , c)
satisfy

Wq(\pi 
\ast , \~\pi \ast ) \leq N ( 1

q
 - 1

p
) \Delta + Cq (2L\Delta )

1
2q , \Delta :=Wp(\mu 1, . . . , \mu N ; \~\mu 1, . . . , \~\mu N ).

If \mu 1, . . . , \mu N satisfy (I
\prime 

q) with constant C
\prime 

q instead of (Iq), then

Wq(\pi 
\ast , \~\pi \ast ) \leq N ( 1

q
 - 1

p
) \Delta + C

\prime 

q

\Bigl[ 

(2L\Delta )
1
q + (L\Delta )

1
2q

\Bigr] 

.

In particular, (\mu 1, . . . , \mu N ) \mapsto \rightarrow \pi \ast is 1
2p -H\"older continuous in Wp when restricted to a

bounded set of marginals satisfying (AL) and (Ip) or (T\prime 
p) with given constants.

This result will be derived by comparing the optimizer with its shadow and apply-
ing a strong convexity argument, more specifically, a Pythagorean relation for relative
entropy. In Theorem 3.11, only one set of marginals needs to satisfy (Iq) or (I

\prime 

q). If
the assumption holds for both (\mu i) and (\~\mu i), the proof shows that L can be replaced
by L/2 in the assertion.

3.3. Stability through transformation. Next, we improve the H\"older expo-
nent of Theorem 3.11 for the case of bounded cost. The general line of argument is to
reduce a difference in marginals to a difference in cost functions. Thus, we first state
a stability result for the cost function under fixed marginals; it may be of independent
interest.

Proposition 3.12 (stability with respect to cost). Let p \in [1,\infty ], let \mu i \in 
\scrP p(Xi), i = 1, . . . , N, and let P = \mu 1 \otimes \cdot \cdot \cdot \otimes \mu N . Let c, \~c : X \rightarrow \BbbR + be bounded
measurable; then the optimizers \pi \ast , \~\pi \ast of Sent(\mu 1, . . . , \mu N , c) and Sent(\mu 1, . . . , \mu N , \~c)
satisfy

\| \pi \ast  - \~\pi \ast \| TV \leq 1

2
a

1
p+1 \| c - \~c\| 

p

p+1

Lp(P ),

DKL(\pi 
\ast , \~\pi \ast ) +DKL(\~\pi 

\ast , \pi \ast ) \leq a
2

p+1 \| c - \~c\| 
2p

p+1

Lp(P ),

where a := exp(N\| c\| \infty ) + exp(N\| \~c\| \infty ). Let q \in [1,\infty ). If \mu 1, . . . , \mu N satisfy (Iq)
with constant Cq, then also

Wq(\pi 
\ast , \~\pi \ast ) \leq 2 - 

1
2qCq

\Bigl( 

a
1
p \| c - \~c\| Lp(P )

\Bigr) 

p

(p+1)q

,

whereas if \mu 1, . . . , \mu N satisfy (I
\prime 

q) with constant C
\prime 

q, then

Wq(\pi 
\ast , \~\pi \ast ) \leq C

\prime 

q

\biggl[ 

\Bigl( 

a
1
p \| c - \~c\| Lp(P )

\Bigr) 

2p
(p+1)q

+ 2 - 
1
2q

\Bigl( 

a
1
p \| c - \~c\| Lp(P )

\Bigr) 

p

(p+1)q

\biggr] 

.

(For p = \infty , the exponent p
(p+1)q should be read as 1

q .)
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Proposition 3.12 will be derived by comparing the optimizers in the sense of
relative entropy DKL(\pi 

\ast , \~\pi \ast ). Of course, this is not possible in the other results
where the marginals differ in a possibly singular way. We observe that the constant a

deteriorates exponentially in \| c\| \infty ; however, due to the a
1
p in the formula, this can

be counteracted by using a stronger Lp norm. In particular, for p = \infty , the direct
dependence on \| c\| \infty , \| \~c\| \infty disappears completely, and moreover we obtain a Lipschitz
estimate from L\infty to W1.

Those features are inherited by our final result on the stability with respect to
marginals; it improves the H\"older exponent of Theorem 3.11 in the case of bounded
costs. As above, the dependence of the constant on \| c\| \infty is avoided for p = \infty ; we
now obtain a Lipschitz result from W\infty into W1.

Theorem 3.13 (stability of optimizers for bounded cost). Let p \in [1,\infty ] and
q \in [1,\infty ) with q \leq p, let \mu i, \~\mu i \in \scrP p(Xi) satisfy (Iq) with constant Cq, and
let c be bounded Lipschitz. Then the optimizers \pi \ast , \~\pi \ast of Sent(\mu 1, . . . , \mu N , c) and
Sent(\~\mu 1, . . . , \~\mu N , c) satisfy

Wq(\pi 
\ast , \~\pi \ast ) \leq N ( 1

q
 - 1

p
) \Delta + 2 - 

1
2qCq

\Bigl( 

a
1
p Lipp(c)\Delta 

\Bigr) 

p

(p+1)q

,

where a := 2 exp(N\| c\| \infty ) and \Delta :=Wp(\mu 1, . . . , \mu N ; \~\mu 1, . . . , \~\mu N ). If \mu i, \~\mu i satisfy (I
\prime 

q)

with constant C
\prime 

q instead of (Iq), then

Wq(\pi 
\ast , \~\pi \ast ) \leq N ( 1

q
 - 1

p
) \Delta 

+ 2 - 
1
qC

\prime 

q

\biggl[ 

\Bigl( 

a
1
p Lipp(c)\Delta 

\Bigr) 

2p
(p+1)q

+ 2 - 
1
2q

\Bigl( 

a
1
p Lipp(c)\Delta 

\Bigr) 

p

(p+1)q

\biggr] 

.

In particular, (\mu 1, . . . , \mu N ) \mapsto \rightarrow \pi \ast is 1
p+1 -H\"older continuous in Wp when restricted to

a bounded set of marginals satisfying (Ip) or (T\prime 
p) with a given constant. For q = 1

and p = \infty , we have the Lipschitz estimate

W1(\pi 
\ast , \~\pi \ast ) \leq \ell W\infty (\mu 1, . . . , \mu N ; \~\mu 1, . . . , \~\mu N ),

with constant \ell := N + (C1/
\surd 
2) Lip\infty (c) independent of \| c\| \infty . The constant \ell is

sharp.

As discussed in the introduction, this result is based on a transformation: instead
of dealing with two sets of marginals, we use a change of coordinates to transform
\~\mu i into \mu i, at the expense of also transforming the cost function. For the resulting
problem, we can apply Proposition 3.12. The sharpness of the constant \ell is discussed
in Example 4.10.

Remark 3.14. For simplicity, we have stated our results in the traditional setting
where Wp is defined through a metric compatible with the underlying Polish space.
However, much of the above generalizes to any measurable metric. For instance, the
discrete metric can be used to see that for p = 1, our results include the total variation
distance (see also [46] for further results on continuity in total variation). The majority
of our arguments extend without change to the more general setting. In Definition 3.1,
it is no longer clear that there is a coupling attaining Wp(\mu i, \~\mu i). However, we can
use an \epsilon -optimal coupling to define an ``approximate shadow"" for which the first part
of Lemma 3.2 is replaced by Wp(\pi , \~\pi ) \leq Wp(\mu 1, . . . , \mu N ; \~\mu 1, . . . , \~\mu N ) + \epsilon , and then
we can argue the main results as before. The extension to measurable metrics also
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applies to Proposition 3.12. Theorem 3.13 extends with the caveat that one needs
to provide a substitute for the technical Lemma 4.9 (ii) in the specific metric under
consideration, as its proof uses separability of the metric.

3.4. Application to Sinkhorn’s algorithm. In this section we focus on N = 2
marginals \mu 1, \mu 2. Sinkhorn's algorithm is initialized at \pi 0 := Pc, where

dPc

d(\mu 1\otimes \mu 2)
(x) =

exp( - c(x))\int 
exp( - c) d(\mu 1\otimes \mu 2)

is the Gibbs kernel associated with the cost c. The Sinkhorn iterates

\pi n \in \scrP (X), n \geq 1, can then be defined recursively via

d\pi n

d\pi n - 1
(x) :=

d\mu 1

d\pi n - 1
1

(x1) for n odd,

d\pi n

d\pi n - 1
(x) :=

d\mu 2

d\pi n - 1
2

(x2) for n even,

where \pi n - 1
i is the ith marginal of \pi n - 1. It follows that \pi n

1 = \mu 1 for n odd and \pi n
2 = \mu 2

for n even: for each iterate, one of the two marginals is the correct marginal. The
other marginal does not match \mu i but converges to it as n \rightarrow \infty . Importantly, each
iterate \pi n is the solution of an entropic optimal transport problem between its own
marginals. As these marginals converge to (\mu 1, \mu 2), the convergence of Sinkhorn's
algorithm can be framed as a particular instance of stability with respect to the
marginals. As above, we denote by \pi \ast the optimizer of Sent(\mu 1, \mu 2, c). Moreover, we
write

\scrF (\pi ) :=

\int 

c d\pi +DKL(\pi , \mu 1 \otimes \mu 2)

for the entropic cost of \pi \in \scrP (X) similarly to Remark 3.8 but without the penalty.

Theorem 3.15 (Sinkhorn convergence). Let p \in [1,\infty ). For i = 1, 2, let \mu i \in 
\scrP (Xi) satisfy

\int 

exp(\alpha dXi
(\^xi, xi)

p)\mu i(dxi) <\infty for some \alpha \in (0,\infty ) and \^xi \in Xi.
(i) Let c be continuous with growth of order p. As n\rightarrow \infty , we have

\scrF (\pi n) \rightarrow \scrF (\pi \ast ), \pi n \rightarrow \pi \ast in Wp.

(ii) Let 1 \leq q \leq p and c(x) = f(x)g(x) where f, g are Lipschitz with growth of
order p - 1. For all n \geq 2, with a constant c0 detailed in the proof,

| \scrF (\pi \ast ) - \scrF (\pi n)| \leq c0n
 - 1

2p , Wq(\pi 
\ast , \pi n) \leq c0n

 - 1
4pq .

Theorem 3.15 with p = q = 2 impliesW2-convergence for quadratic cost with sub-
Gaussian marginals. The form c(x) = f(x)g(x) can be extended as in Remark 4.3
or, more generally, to any condition guaranteeing (AL) uniformly over the marginals
produced by the algorithm. In particular, using Example 3.6, the assertion of the
theorem also holds for c(x) = \| x2  - x1\| p. The more detailed estimate given in the
proof of the theorem shows that the constant c0 is at the same scale as c; in particular,
it does not grow exponentially with c.

4. Proofs.

4.1. Shadows and preliminaries. For the convenience of the reader, we first
recall the data processing inequality for our setting. Let Y1 and Y2 be Polish spaces.
If \mu \in \scrP (Y1) and K : Y1 \rightarrow \scrP (Y2) is a stochastic kernel, we

(4.1) denote by \mu K \in \scrP (Y2) the second marginal of \mu \otimes K \in \scrP (Y1 \times Y2).
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Lemma 4.1. Let \mu , \nu \in \scrP (Y1), and let K : Y1 \rightarrow \scrP (Y2) be a kernel. Then

Df (\mu K, \nu K) \leq Df (\mu , \nu ).

Proof. We may assume that \mu \ll \nu . For any kernels K1 \ll K2 : Y1 \rightarrow \scrP (Y2),

(4.2)
d(\mu \otimes K1)

d(\nu \otimes K2)
(x, y) =

d\mu 

d\nu 
(x)

dK1(x)

dK2(x)
(y) \nu \otimes K2-a.s.

In particular, d(\mu \otimes K)
d(\nu \otimes K) (x, y) =

d\mu 
d\nu (x), and thus

(4.3) Df (\mu , \nu ) = Df (\mu \otimes K, \nu \otimes K),

whereas in general, (4.2) and Jensen's inequality for f yield

Df (\mu \otimes K1, \nu \otimes K2) =

\int \int 

f

\biggl( 

d\mu 

d\nu 
(x)

dK1(x)

dK2(x)
(y)

\biggr) 

K2(x, dy)\nu (dx)

\geq 
\int 

f

\biggl( 

d\mu 

d\nu 
(x)

\biggr) 

\nu (dx) = Df (\mu , \nu ).(4.4)

Denote by \mu \otimes K = (\mu K)\otimes \~K1 and \nu \otimes K = (\nu K)\otimes \~K2 the ``reverse"" disintegrations
from the second marginal to the first. Applying (4.4) to (\mu K)\otimes \~K1 and (\nu K)\otimes \~K2,
we get

Df (\mu \otimes K, \nu \otimes K) = Df ((\mu K)\otimes \~K1, (\nu K)\otimes \~K2) \geq Df (\mu K, \nu K).

In view of (4.3), this yields the claim.

We can now show the two fundamental properties of the shadow.

Proof of Lemma 3.2. Let \mu i\otimes Ki \in \Pi (\mu i, \~\mu i) be aWp-optimal coupling, and define
\kappa = \pi \otimes K \in \scrP (X \times X) where K(x) = K1(x1) \otimes \cdot \cdot \cdot \otimes KN (xN ), so that \~\pi := \pi K is
the shadow of \pi . In view of \kappa \in \Pi (\pi , \~\pi ), for p <\infty ,

Wp(\pi , \~\pi )
p \leq 

\int 

dX,p(x, y)
p \kappa (dx, dy)

=

\int N
\sum 

i=1

dXi
(xi, yi)

p \kappa (dx, dy) =

N
\sum 

i=1

Wp(\mu i, \~\mu i)
p.

On the other hand, given an arbitrary coupling \~\pi \in \Pi (\~\mu 1, . . . , \~\mu N ), any coupling
\gamma \in \Pi (\pi , \~\pi ) induces couplings \gamma i \in \Pi (\pi i, \~\pi i) = \Pi (\mu i, \~\mu i) of the individual marginals,
and hence

Wp(\pi , \~\pi )
p = inf

\gamma \in \Pi (\pi ,\~\pi )

\int N
\sum 

i=1

dXi
(xi, yi)

p \gamma (dx, dy)

\geq 
N
\sum 

i=1

inf
\gamma i\in \Pi (\mu i,\~\mu i)

\int 

dXi
(xi, yi)

p \gamma i(dxi, dyi) =
N
\sum 

i=1

Wp(\mu i, \~\mu i)
p.

The argument for p = \infty is similar, completing the proof of the first claim. To show
the bound on the divergence, we note that \~\mu 1\otimes \cdot \cdot \cdot \otimes \~\mu N = (\mu 1\otimes \cdot \cdot \cdot \otimes \mu N )K. Therefore,
the data processing inequality (Lemma 4.1) yields

Df (\~\pi , \~\mu 1 \otimes \cdot \cdot \cdot \otimes \~\mu N ) = Df (\pi K, (\mu 1 \otimes \cdot \cdot \cdot \otimes \mu N )K) \leq Df (\pi , \mu 1 \otimes \cdot \cdot \cdot \otimes \mu N ).
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Remark 4.2. The preceding proof shows that the shadow is a Wp-projection onto
\Pi (\~\mu 1, . . . , \~\mu N ); that is, \~\pi \in argmin\Pi (\~\mu 1,...,\~\mu N )Wp(\pi , \cdot ). In general, the argmin may
have more than one element. A simple example on \BbbR \times \BbbR is that \mu 1 = \mu 2 = \delta 0
and \~\mu 1 = \~\mu 2 = (\delta  - 1 + \delta 1)/2; here any element of \Pi (\~\mu 1, \~\mu 2) has the same distance
to the singleton \Pi (\mu 1, \mu 2) = \{ \delta (0,0)\} . In this example, the shadow of \pi := \delta (0,0) is
unique. Clearly, not any projection is a shadow, and most projections fail to satisfy
the divergence bound in Lemma 3.2.

Next, we show the criteria for (AL).

Proofs of Lemma 3.5 and Example 3.4. To show the lemma, let \kappa \in \Pi (\pi , \~\pi ) be a
coupling attaining Wp(\pi , \~\pi ). Then

\int 

c d(\pi  - \~\pi ) =

\int 

c(x) - c(y)\kappa (dx, dy)

=

\int 

f(x)(g(x) - g(y))\kappa (dx, dy) +

\int 

g(y)(f(x) - f(y))\kappa (dx, dy).(4.5)

We estimate the first integral; the second is treated analogously. H\"older's inequality
with q such that 1/p+ 1/q = 1 yields

\int 

| f(x)(g(x) - g(y))| \kappa (dx, dy) \leq \| f\| Lq(\pi )\| g(x) - g(y)\| Lp(\kappa ).

As | f(x)| \leq Cf [1+dX1
(x1, \=x1)

l+\cdot \cdot \cdot +dXN
(xN , \=xN )l] with l \leq p - 1 = p(1 - 1/p) = p/q

and hence lq \leq p, and as \pi has marginals \mu i \in \scrP p(Xi), we see that \| f\| Lq(\pi ) is finite
with a bound depending only on the pth moments of \mu i, i = 1, . . . , N . On the other
hand,

\| g(x) - g(y)\| Lp(\kappa ) \leq Lipp(g)Wp(\pi , \~\pi )

due to the fact that \kappa attainsWp(\pi , \~\pi ). The lemma follows. Example 3.4 follows from
the above estimate with f(x) = g(x) = \| x1  - x2\| in which case Lip2(f) = Lip2(g) =\surd 
2.

Remark 4.3. Lemma 3.5 can be generalized to a product of any finite number of
Lipschitz functions. Let c(x) = c1(x) \cdot \cdot \cdot cm(x) where cj are Lipschitz, and decompose
c(x) - c(y) as in (4.5) with f(x) := c1(x) \cdot \cdot \cdot cm - 1(x) and g(x) := cm(x). Proceeding
inductively, we obtain that

c(x) - c(y) =

m
\sum 

j=1

Aj(x, y)(cj(x) - cj(y)),

where Aj(x, y) is a product of m  - 1 factors of the form ck(x) or cl(y). If cj(x),
j = 1, . . . ,m, satisfy a growth condition suitably coordinated with a moment condition
on \mu i, \~\mu i, then \| Aj(x, y)\| Lq(\pi ) and \| Aj(x, y)\| Lq(\~\pi ) can be bounded in terms of those
moments, and we deduce an analogue of Lemma 3.5.

Proof of Example 3.6. Let \kappa be a Wp-optimal coupling of \pi and \~\pi . Set \psi (x) :=
\| x\| p, and define \varphi : [0, 1] \rightarrow \BbbR by

\varphi (t) :=

\int 

\psi ((1 - t)(x2  - x1) + t(y2  - y1))\kappa (dx, dy);

then c(x) = \psi (x2  - x1), and the quantity to be estimated is

(4.6)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\int 

c d\pi  - 
\int 

c d\~\pi 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

= | \varphi (0) - \varphi (1)| .
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Using differentiation under the integral (justified by [26, Theorem 2.27]), we see that
\varphi is differentiable and

\partial \varphi 

\partial t
(t) =

\int 

\bigl\langle 

\nabla \psi ((1 - t)(x2  - x1) + t(y2  - y1)), (y2  - y1  - x2 + x1)
\bigr\rangle 

\kappa (dx, dy).

Noting \| \nabla \psi (v)\| = p\| v\| p - 1 and writing vt = (1  - t)(x2  - x1) + t(y2  - y1), the
inequalities of Cauchy--Schwarz and H\"older and (a+ b)p \leq 2p - 1(ap + bp) yield

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\partial \varphi 

\partial t
(t)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\leq 
\int 

\| \nabla \psi (vt)\| \| (y2  - x2) + (x1  - y1)\| \kappa (dx, dy)

\leq 
\biggl( 
\int 

\| \nabla \psi (vt)\| 
p

p - 1 \kappa (dx, dy)

\biggr) 

p - 1
p
\biggl( 
\int 

\| (y2  - x2) + (x1  - y1)\| p \kappa (dx, dy)
\biggr) 

1
p

\leq C \prime 
p

\biggl( 
\int 

\| vt\| p \kappa (dx, dy)
\biggr) 

p - 1
p

Wp(\pi , \~\pi )

\leq Cp

\bigl[ 

Mp(\mu 1) +Mp(\~\mu 1) +Mp(\mu 2) +Mp(\~\mu 2)
\bigr] p - 1

Wp(\pi , \~\pi ),

where Cp, C
\prime 
p are constants depending only on p. In view of (4.6), the claim follows.

4.2. Stability through shadows. We can now show the continuity of the value.

Proof of Theorem 3.7. (i) Let \pi \ast , \pi \ast 
n be the optimizers for S(\mu 1, . . . , \mu N , c) and

S(\mu n
1 , . . . , \mu 

n
N , c), respectively. For brevity, set P =\mu 1\otimes \cdot \cdot \cdot \otimes \mu N and Pn = \mu n

1\otimes \cdot \cdot \cdot \otimes \mu n
N .

After passing to a subsequence, \pi n converges in Wp to some \pi \in \Pi (\mu 1, . . . , \mu N ) by
weak compactness. We have

lim inf
n\rightarrow \infty 

\int 

c d\pi \ast 
n +Df (\pi 

\ast 
n, Pn) \geq 

\int 

c d\pi +Df (\pi , P ) \geq 
\int 

c d\pi \ast +Df (\pi 
\ast , P )

by lower semicontinuity of
\int 

c d(\cdot )+Df (\cdot , \cdot ) and optimality of \pi \ast . On the other hand,
let \~\pi n \in \Pi (\mu n

1 , . . . , \mu 
n
N ) be the shadow of \pi \ast . Then Lemma 3.2 shows limnWp(\~\pi n, \pi 

\ast ) =
0 and Df (\~\pi n, Pn) \leq Df (\pi 

\ast , P ), and hence

lim sup
n\rightarrow \infty 

\int 

c d\pi \ast 
n +Df (\pi 

\ast 
n, Pn) \leq lim sup

n\rightarrow \infty 

\int 

c d\~\pi n +Df (\~\pi n, Pn)

\leq 
\int 

c d\pi \ast +Df (\pi 
\ast , P ).

Altogether, limn

\int 

c d\pi \ast 
n + Df (\pi 

\ast 
n, Pn) =

\int 

c d\pi \ast + Df (\pi 
\ast , P ), and \pi must be the

(unique) optimizer \pi \ast of S(\mu 1, . . . , \mu N , c). In particular, the original sequence (\pi \ast 
n)

converges to \pi \ast , as claimed.
(ii) Let \pi \ast be the optimizer of S(\mu 1, . . . , \mu N , c), and let \~\pi \in \Pi (\~\mu 1, . . . , \~\mu N ) be its

shadow. Using (AL) and Lemma 3.2, we have

S(\mu 1, . . . , \mu N , c) =

\int 

c d\pi \ast +Df (\pi 
\ast , \mu 1 \otimes \cdot \cdot \cdot \otimes \mu N )

\geq 
\int 

c d\~\pi  - LWp(\pi 
\ast , \~\pi ) +Df (\~\pi , \~\mu 1 \otimes \cdot \cdot \cdot \otimes \~\mu N )

\geq S(\~\mu 1, . . . , \~\mu N , c) - LWp(\mu 1, . . . , \mu N ; \~\mu 1, . . . , \~\mu N ).

The claim follows by symmetry.
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The proof of \Gamma -convergence follows the same line of argument.

Proof of Remark 3.8. Similarly to the preceding proof, (a) follows from the lower
semicontinuity of

\int 

c d(\cdot ) + Df (\cdot , \cdot ). For (b), let \pi n be the shadow of \pi , and use
Lemma 3.2 to obtain

\int 

c d\pi n\rightarrow 
\int 

c d\pi andDf (\pi n, \mu 
n
1\otimes \cdot \cdot \cdot \otimes \mu n

N ) \leq Df (\pi , \mu 1\otimes \cdot \cdot \cdot \otimes \mu N ),
again as in the preceding proof.

The criteria for the transport inequality (Iq) are derived as follows.

Proof of Lemma 3.10. (i) For the convenience of the reader, we first recall the
standard argument for bounded X: combine dX,q(x, y)

q \leq diamq(X)q 1x \not =y with the
transport representation of total variation distance [40, Lemma 2.20] and Pinsker's
inequality [40, Theorem 2.16] to obtain

Wq(\pi , \theta )
q = inf

\kappa \in \Pi (\pi ,\theta )

\int 

dX,q(x, y)
q \kappa (dx, dy)

\leq diamq(X)q inf
\kappa \in \Pi (\pi ,\theta )

\int 

1x \not =y \kappa (dx, dy)

= diamq(X)q\| \pi  - \theta \| TV \leq diamq(X)q
\Bigl( 1

2
DKL(\theta , \pi )

\Bigr) 1/2

.

The above holds for arbitrary probabilities \pi , \theta . To prove the stronger estimate
claimed in the lemma, we improve the above by exploiting that \pi , \theta \in \Pi (\mu 1, . . . , \mu N ).
Indeed, let \Pi 1(\pi , \theta ) \subset \Pi (\pi , \theta ) denote the set of couplings \kappa \in \Pi (\pi , \theta ) not moving
mass in the X1-direction; i.e.,

\kappa \{ (x1, . . . , xN , y1, . . . , yN ) : x1 = y1\} = 1.

Note that \Pi 1(\pi , \theta ) \not = \emptyset due to the fact that \pi and \theta have the same marginal \mu 1 on X1.
Clearly,

Wq(\pi , \theta )
q = inf

\kappa \in \Pi (\pi ,\theta )

\int 

dX,q(x, y)
q \kappa (dx, dy)

\leq inf
\kappa \in \Pi 1

\int 

dX,q(x, y)
q \kappa (dx, dy)

\leq Mq inf
\kappa \in \Pi 1(\pi ,\theta )

\int 

1x \not =y \kappa (dx, dy), M := diamq(X2 \times \cdot \cdot \cdot \times XN ).

On the other hand, we claim that \pi , \theta having the same marginal implies

inf
\kappa \in \Pi 1(\pi ,\theta )

\int 

1x \not =y \kappa (dx, dy) \leq \| \pi  - \theta \| TV ;(4.7)

in words, where mass needs to be moved, one might as well move only in the directions
X2, . . . , XN . Granted (4.7) holds, we can proceed as in the beginning and conclude
the assertion of the lemma,

Wq(\pi , \theta )
q \leq Mq\| \pi  - \theta \| TV \leq Mq

\Bigl( 1

2
DKL(\theta , \pi )

\Bigr) 1/2

.

To show (4.7), consider the mutually singular measures \~\pi =\pi  - (\pi \wedge \theta ) and \~\theta =\theta  - (\pi \wedge \theta ),
where \pi \wedge \theta is defined as usual via d(\pi \wedge \theta )/d(\pi + \theta ) = min\{ d\pi /d(\pi + \theta ), d\theta /d(\pi + \theta )\} .
These measures again share a common first marginal, so that \Pi 1(\~\pi , \~\theta ) \not = \emptyset . Let
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\~\kappa \in \Pi 1(\~\pi , \~\theta ) be arbitrary, and let \kappa \in \Pi (\pi , \theta ) be the coupling given by \kappa = \~\kappa + i
where i is the identical coupling of \pi \wedge \theta with itself. Then

\| \pi  - \theta \| TV \leq 
\int 

1x \not =y \kappa (dx, dy) =

\int 

1x \not =y \~\kappa (dx, dy) = \| \~\pi  - \~\theta \| TV ,

where the last equality follows from mutual singularity. As \| \~\pi  - \~\theta \| TV = \| \pi  - \theta \| TV ,
all expressions are equal and (4.7) follows.

(ii) It is shown in [9, Corollary 2.4] that the inequality (Iq) holds for a given
measure \pi \in \scrP (X) and all \theta \in \scrP (X) whenever

(4.8)

\int 

exp(\~\alpha dX,q(x, \^x)
2q)\pi (dx) <\infty 

for some \~\alpha > 0 and \^x \in X, with constant

(4.9) C\pi ,q = 2 inf
\^x\in X,\~\alpha >0

\biggl( 

1

2\~\alpha 

\Bigl( 

1 + log

\int 

exp(\~\alpha dX,q(\^x, x)
2q)\pi (dx)

\Bigr) 

\biggr) 
1
2q

.

To obtain the claim for a coupling \pi (and general \theta \in \scrP (X)), note that

dX,q(\^x, x)
2q \leq N

N
\sum 

i=1

dX,i(\^xi, xi)
2q =

1

N

N
\sum 

i=1

N2dX,i(\^xi, xi)
2q

and that the functional f \mapsto \rightarrow log
\int 

exp(\~\alpha f(x))\pi (dx) is convex (as can be seen from a
variational representation; see, e.g., [28, Example 4.34, p. 201]). Hence,

log

\int 

exp(\~\alpha dX,q(\^x, x)
2q)\pi (dx) \leq 1

N

N
\sum 

i=1

log

\int 

exp(\~\alpha N2dXi
(\^xi, xi)

2q)\mu i(dxi).

To obtain the claim for Cq, we plug this inequality into (4.9) and set \~\alpha = \alpha /N2.
Similarly, the integrability condition in the lemma implies (4.8).

(iii) The proof is similar to (ii) but refers to a different result of [9]. Indeed, by [9,
Corollary 2.3], it suffices to bound

C
\prime 

\pi ,q = 2 inf
\^x\in X,\~\alpha >0

\biggl( 

1

\~\alpha 

\Bigl( 3

2
+ log

\int 

exp(\~\alpha dX,q(\^x, x)
q)\pi (dx)

\Bigr) 

\biggr) 
1
q

.

Here the term inside the exponential already factorizes and we can directly apply the
convexity of f \mapsto \rightarrow log

\int 

exp(\~\alpha f(x))\pi (dx), which yields the claim after the substitution
\~\alpha = \alpha /N .

As a preparation for the proof of Theorem 3.11, we recall a Pythagorean relation
for the entropic optimal transport problem. We denote

\scrF (\pi ) =

\int 

c d\pi +DKL(\pi , \pi 1 \otimes \cdot \cdot \cdot \otimes \pi N ),

where \pi 1, . . . , \pi N are the marginals of \pi .

Lemma 4.4. If \pi \ast \in \Pi (\mu 1, . . . , \mu N ) is the optimizer of S(\mu 1, . . . , \mu N , c),

DKL(\pi , \pi 
\ast ) \leq \scrF (\pi ) - \scrF (\pi \ast ) for all \pi \in \Pi (\mu 1, . . . , \mu N ).
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Proof. Set P = \mu 1 \otimes \cdot \cdot \cdot \otimes \mu N , and define Pc \in \scrP (X) by dPc = \alpha  - 1e - c dP ,
where \alpha is the normalizing constant. Then

(4.10) \scrF (\pi ) = DKL(\pi , Pc) - log\alpha ,

so that the entropic optimal transport problem (2.3) is equivalent to minimizing
DKL(\cdot , Pc). In particular, \pi \ast = argmin\Pi (\mu 1,...,\mu N )DKL(\cdot , Pc), and the Pythagorean
theorem for relative entropy [19, Theorem 2.2] yields

DKL(\pi , Pc) \geq DKL(\pi 
\ast , Pc) +DKL(\pi , \pi 

\ast ) for all \pi \in \Pi (\mu 1, . . . , \mu N ).

In view of (4.10), the claim follows. (In the case under consideration, the assertion
holds even with equality. We do not need that fact here.)

We can now show the stability of optimizers with respect to the marginals.

Proof of Theorem 3.11. We detail the proof for (Iq); the argument for (I
\prime 

q) is
identical. For notational convenience, we treat the case where \~\mu i (rather than \mu i)
satisfy (Iq). Consider the optimizers \pi \ast \in \Pi (\mu 1, . . . , \mu N ) and \~\pi \ast \in \Pi (\~\mu 1, . . . , \~\mu N ).
Let \~\pi \in \Pi (\~\mu 1, . . . , \~\mu N ) be the shadow of \pi \ast for the p-Wasserstein distance. Using
Lemma 3.2 and (AL) as in the proof of Theorem 3.7 (ii), we get

\scrF (\~\pi ) - \scrF (\pi \ast ) \leq 
\int 

c d(\~\pi  - \pi \ast ) \leq LWp(\~\pi , \pi 
\ast ) \leq L\Delta .

We also have \scrF (\pi \ast )  - \scrF (\~\pi \ast ) \leq L\Delta by Theorem 3.7 (ii), and adding the inequalities
yields

\scrF (\~\pi ) - \scrF (\~\pi \ast ) \leq 2L\Delta .

(If both marginals satisfy (Iq) with constant L, we can assume by symmetry that
\scrF (\pi \ast ) - \scrF (\~\pi \ast ) \leq 0 and obtain the estimate with L instead of 2L.) By Lemma 4.4, it
follows that DKL(\~\pi , \~\pi 

\ast ) \leq 2L\Delta , and now (Iq) implies

Wq(\~\pi , \~\pi 
\ast ) \leq Cq(2L\Delta )

1
2q .

Recalling that Wr on X was defined relative to the distance dX,r, Jensen's inequality

implies Wq(\cdot , \cdot ) \leq N ( 1
q
 - 1

p
)Wp(\cdot , \cdot ). In view of Lemma 3.2, we deduce Wq(\pi 

\ast , \~\pi ) \leq 
N ( 1

q
 - 1

p
)Wp(\pi 

\ast , \~\pi ) \leq N ( 1
q
 - 1

p
)\Delta . We conclude the proof via the triangle inequality,

Wq(\pi 
\ast , \~\pi \ast ) \leq Wq(\pi 

\ast , \~\pi ) +Wq(\~\pi , \~\pi 
\ast ) \leq N ( 1

q
 - 1

p
)\Delta + Cq (2L\Delta )

1
2q .

4.3. Stability with respect to cost. Throughout this section, we fix p \in 
[1,\infty ], \mu i \in \scrP p(Xi) for i = 1, . . . , N , and c, \~c : X \rightarrow [0,\infty ) satisfying the growth
condition (2.2). The following observation is the starting point for the stability with
respect to the cost function. We recall that P := \mu 1 \otimes \cdot \cdot \cdot \otimes \mu N .

Lemma 4.5. Let \pi \ast , \~\pi \ast be the respective optimizers of Sent(\mu 1, . . . , \mu N , c) and
Sent(\mu 1, . . . , \mu N , \~c). Then

DKL(\pi 
\ast , \~\pi \ast ) +DKL(\~\pi 

\ast , \pi \ast ) \leq 
\int 

(c - \~c) d(\~\pi \ast  - \pi \ast ).D
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Proof. Lemma 4.4 yields

DKL(\pi 
\ast , \~\pi \ast ) +DKL(\~\pi 

\ast , \pi \ast ) \leq 
\int 

c d\~\pi \ast +DKL(\~\pi 
\ast , P ) +

\int 

\~c d\pi \ast +DKL(\pi 
\ast , P )

 - 
\int 

c d\pi \ast  - DKL(\pi 
\ast , P ) - 

\int 

\~c d\~\pi \ast  - DKL(\~\pi 
\ast , P )

=

\int 

(c - \~c) d(\~\pi \ast  - \pi \ast ).

Lemma 4.5 clearly implies a Lipschitz estimate with respect to \| c - \~c\| \infty by using
Pinsker's inequality on the left-hand side. The following proof is a variation on that
observation.

Proof of Proposition 3.12. Combining

\int 

(\~c - c) d(\pi \ast  - \~\pi \ast ) \leq 
\int 

| \~c - c| 
\bigm| 

\bigm| 

\bigm| 

\bigm| 

d\pi \ast 

dP
 - d\~\pi \ast 

dP

\bigm| 

\bigm| 

\bigm| 

\bigm| 

dP

with H\"older's inequality as well as (in case p \not = 1), for q := p
p - 1 ,

\bigm| 

\bigm| 

\bigm| 

\bigm| 

d\pi \ast 

dP
 - d\~\pi \ast 

dP

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

\leq 
\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

d\pi \ast 

dP
 - d\~\pi \ast 

dP

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

q - 1

L\infty (P )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

d\pi \ast 

dP
 - d\~\pi \ast 

dP

\bigm| 

\bigm| 

\bigm| 

\bigm| 

yields

(4.11)

\int 

(\~c - c) d(\pi \ast  - \~\pi \ast ) \leq \| \~c - c\| Lp(P )(2\| \pi \ast  - \~\pi \ast \| TV )
1 - 1

p

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

d\pi \ast 

dP
 - d\~\pi \ast 

dP

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

1
p

\infty 

.

Next, we show

(4.12)

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

d\pi \ast 

dP
 - d\~\pi \ast 

dP

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\infty 

\leq a := exp(N\| c\| \infty ) + exp(N\| \~c\| \infty ).

Recall that by duality (see, e.g., [23, 44]), for certain ``potentials"" \varphi i : Xi \rightarrow \BbbR ,

(4.13)
d\pi \ast 

dP
(x) = exp ( - c+\oplus i\varphi i) ,

where (\oplus i\varphi i)(x) :=
\sum N

i=1 \varphi (xi), and moreover,

(4.14)

\int 

\oplus i\varphi i dP = Sent(\mu 1, . . . , \mu N , c) \geq 0,

where the inequality is due to c \geq 0. To estimate the right-hand side of (4.13), recall
that (4.13) and the fact that \pi \ast is a coupling imply a conjugacy relation between the
potentials (see, e.g., [23, 44, 45]), namely,

\varphi i(xi) =  - log

\int 

exp( - c(x) +\oplus j \not =i\varphi j(xj))P - i(dx - i)

\leq \| c\| \infty  - 
\int 

\oplus j \not =i\varphi j dP - i,
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where x - i := (x1, . . . , xi - 1, xi+1, . . . , xN ) and P - i := \otimes j \not =i\mu j . Thus by (4.14),

\oplus i\varphi i(x) \leq N\| c\| \infty  - (N  - 1)

\int 

\oplus N
j=1\varphi j dP \leq N\| c\| \infty .

Using this in (4.13), we conclude that

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

d\pi \ast 

dP

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

\infty 

\leq exp(N\| c\| \infty ).

The analogue holds for \~\pi \ast ; hence
\bigm\| 

\bigm\| 

\bigm\| 

d\pi \ast 

dP  - d\~\pi \ast 

dP

\bigm\| 

\bigm\| 

\bigm\| 

\infty 
\leq 
\bigm\| 

\bigm\| 

\bigm\| 

d\pi \ast 

dP

\bigm\| 

\bigm\| 

\bigm\| 

\infty 
+
\bigm\| 

\bigm\| 

\bigm\| 

d\~\pi \ast 

dP

\bigm\| 

\bigm\| 

\bigm\| 

\infty 
\leq a as claimed

in (4.12).
Pinsker's inequality, Lemma 4.5, (4.11), and (4.12) imply

4\| \pi \ast  - \~\pi \ast \| 2TV \leq DKL(\pi 
\ast , \~\pi \ast ) +DKL(\~\pi 

\ast , \pi \ast )

\leq 
\int 

(c - \~c) d(\~\pi \ast  - \pi \ast ) \leq a
1
p (2\| \pi \ast  - \~\pi \ast \| TV )

1 - 1
p \| \~c - c\| Lp(P ).

Dividing by 4\| \pi \ast  - \~\pi \ast \| 1 - 
1
p

TV yields

(4.15) \| \pi \ast  - \~\pi \ast \| 1+
1
p

TV \leq 
\Bigl( 1

2

\Bigr) 1+ 1
p

a
1
p \| \~c - c\| Lp(P ),

which is the first claim of the proposition. On the other hand, using Lemma 4.5 and
(4.11) together with (4.15) yields

(4.16) DKL(\pi 
\ast , \~\pi \ast ) +DKL(\~\pi 

\ast , \pi \ast ) \leq a
1
p \| \~c - c\| Lp(P )

\Bigl( 

a
1
p \| \~c - c\| Lp(P )

\Bigr) 

p - 1
p+1

.

As (Iq) implies 2C - 2q
q Wq(\pi 

\ast , \~\pi \ast )2q \leq DKL(\pi 
\ast , \~\pi \ast ) + DKL(\~\pi 

\ast , \pi \ast ), this proves the
second claim of the proposition. For the last claim, we drop the nonnegative term
DKL(\~\pi 

\ast , \pi \ast ) on the left-hand side of (4.16) and use (I
\prime 

q) with the remaining
inequality.

4.4. Stability through transformation. Let p \in [1,\infty ], \mu i, \~\mu i \in \scrP p(Xi) for
i = 1, . . . , N, and let c : X \rightarrow [0,\infty ) satisfy the growth condition (2.2). We begin with
preliminary results, connecting stability with respect to the marginals and stability
with respect to the cost function. As in Definition 3.1, K denotes the kernel K(x) =
K1(x1) \otimes \cdot \cdot \cdot \otimes KN (xN ), where \mu i \otimes Ki \in \Pi (\mu i, \~\mu i) is an optimal coupling attaining
Wp(\mu i, \~\mu i). We use the notation Kc(x) :=

\int 

c(y)K(x, dy) for the integral of c with
respect to the kernel.

Lemma 4.6. Let p \in [1,\infty ], and let c be Lipp(c)-Lipschitz. Then

\| c - Kc\| Lp(\pi ) \leq Lipp(c)Wp(\mu 1, . . . , \mu N ; \~\mu 1, . . . , \~\mu N ), \pi \in \Pi (\mu 1, . . . , \mu N ).D
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Proof. We only detail the calculation for p <\infty ,

\| c - Kc\| pLp(\pi ) =

\int 

\bigm| 

\bigm| 

\bigm| 
c(x) - 

\int 

c(y)K(x, dy)
\bigm| 

\bigm| 

\bigm| 

p

\pi (dx)

\leq 
\int \int 

| c(x) - c(y)| pK(x, dy)\pi (dx)

\leq Lipp(c)
p

\int \int N
\sum 

i=1

dX,i(xi, yi)
pK(x, dy)\pi (dx)

= Lipp(c)
p

N
\sum 

i=1

Wp(\mu i, \~\mu i)
p.

Next, consider the kernel \~K defined like K but with the marginals reversed;
that is, \~K(x) = \~K1(x1) \otimes \cdot \cdot \cdot \otimes \~KN (xN ), where \~\mu i \otimes \~Ki \in \Pi (\~\mu i, \mu i) is an optimal
coupling attaining Wp(\~\mu i, \mu i). The double integral \~KKc := \~K(Kc) thus corresponds
to a round-trip between the marginals. In general, this round-trip leads to a positive
gap R in value, as shown in the next result. The result will not be used in the
subsequent proofs, but it may be useful in understanding the steps below, where we
look for situations where the gap is zero.

Lemma 4.7. Let p \in [1,\infty ]. We have

S(\~\mu 1, . . . , \~\mu N , c) \leq S(\mu 1, . . . , \mu N ,Kc) \leq S(\~\mu 1, . . . , \~\mu N , c) +R,

where R :=
\int 

( \~KKc  - c) d\~\pi \ast , and \~\pi \ast is the optimizer of S(\~\mu 1, . . . , \~\mu N , c). Moreover,
R \leq 2Lipp(c)Wp(\mu 1, . . . , \mu N ; \~\mu 1, . . . , \~\mu N ).

Proof. Set \~P = \~\mu 1 \otimes \cdot \cdot \cdot \otimes \~\mu N and recall (4.1). Using Lemma 4.1 twice, we get

S(\~\mu 1, . . . , \~\mu N , c) = inf
\~\pi \in \Pi (\~\mu 1,...,\~\mu N )

\int 

c d\~\pi +Df (\~\pi , \~P )

\leq inf
\pi \in \Pi (\mu 1,...,\mu N )

\int 

c d(\pi K) +Df (\pi K,PK)

\leq inf
\pi \in \Pi (\mu 1,...,\mu N )

\int 

Kcd\pi +Df (\pi , P )

= S(\mu 1, . . . , \mu N ,Kc)

\leq 
\int 

Kcd(\~\pi \ast \~K) +Df (\~\pi 
\ast \~K, \~P \~K)

\leq 
\int 

\~KKcd\~\pi \ast +Df (\~\pi 
\ast , \~P ) = S(\~\mu 1, . . . , \~\mu N , c) +R.

The bound for R is similar to the proof of Lemma 4.6.

In Lemma 4.7, there is a gap between the values of S(\~\mu 1, . . . , \~\mu N , c) and
S(\mu 1, . . . , \mu N ,Kc). If, however, the kernels K, \~K are given by maps inverse to one
another (as will be the case in the proof of Lemma 4.9 below), the gap is zero, and the
problems S(\~\mu 1, . . . , \~\mu N , c) and S(\mu 1, . . . , \mu N ,Kc) become equivalent in the following
sense. We write T\sharp for the pushforward under T .

Lemma 4.8. For i = 1, . . . , N , let Ti : Xi \rightarrow Xi satisfy \~\mu i = (Ti)\sharp \mu i and admit
a (measurable) a.s. inverse T - 1

i : Xi \rightarrow Xi; that is, T - 1
i \circ Ti = id \mu i-a.s. and
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5942 STEPHAN ECKSTEIN AND MARCEL NUTZ

Ti \circ T - 1
i = id \~\mu i-a.s. Define

T (x) = (T1(x1), . . . , TN (xN )), T - 1(x) = (T - 1
1 (x1), . . . , T

 - 1
N (xN )).

Then S(\~\mu 1, . . . , \~\mu N , c) = S(\mu 1, . . . , \mu N , c \circ T ), and the optimizers \~\pi \ast , \pi \ast of the two
problems are related by \~\pi \ast = T\sharp \pi 

\ast and \pi \ast = T - 1
\sharp \~\pi \ast .

Proof. Set P = \mu 1 \otimes \cdot \cdot \cdot \otimes \mu N and \~P = \~\mu 1 \otimes \cdot \cdot \cdot \otimes \~\mu N . We have

\int 

c \circ T d\pi +Df (\pi , P ) =

\int 

c \circ T d(T - 1
\sharp (T\sharp \pi )) +Df (T

 - 1
\sharp (T\sharp \pi ), T

 - 1
\sharp 

\~P )

=

\int 

c d(T\sharp \pi ) +Df (T\sharp \pi , \~P )

for any \pi \in \Pi (\mu 1, . . . , \mu N ), and hence taking infimum over \pi \in \Pi (\mu 1, . . . , \mu N ) yields
S(\mu 1, . . . , \mu N , c \circ T ) \geq S(\~\mu 1, . . . , \~\mu N , c). Symmetric results hold starting from \~\pi \in 
\Pi (\~\mu 1, . . . , \~\mu N ). Thus S(\~\mu 1, . . . , \~\mu N , c) = S(\mu 1, . . . , \mu N , c \circ T ), and now the formulas
for the optimizers follow as well.

In the simplest case, the optimal couplings for Wp(\mu i, \~\mu i) are given by invertible
maps, and then we can apply Lemma 4.8 directly to prove Theorem 3.13. In general,
we approximate the marginals with measures having that property as detailed next,
passing to an augmented space to guarantee that the setting is sufficiently rich. We
write \delta x for the Dirac measure at x.

Lemma 4.9. Let p \in [1,\infty ]. Let \=Xi = Xi \times ( - 1, 1), and embed the marginals

as \nu i := \mu i \otimes \delta 0 and \~\nu i := \~\mu i \otimes \delta 0 for i = 1, . . . , N . Set \=X =
\prod N

i=1
\=Xi, and define

\=c : \=X \rightarrow \BbbR by \=c(x, u) := c(x) for x \in X and u \in ( - 1, 1)N .
(i) We have S(\mu 1, . . . , \mu N , c) = S(\nu 1, . . . , \nu N , \=c), and the corresponding optimiz-

ers \pi , \theta are related by \theta = \pi \otimes \delta N0 .
If \~\pi , \~\theta are the optimizers for S(\~\mu 1, . . . , \~\mu N , c) and S(\~\nu i, . . . , \~\nu N , \=c), then

Wp(\pi , \~\pi ) =Wp(\theta , \~\theta ).

(ii) Given 0 < \epsilon < 1 and i = 1, . . . , N , there exist \nu \epsilon i , \~\nu 
\epsilon 
i \in \scrP ( \=Xi) with

(4.17) Wp(\nu i, \nu 
\epsilon 
i ) \leq \epsilon , Wp(\~\nu i, \~\nu 

\epsilon 
i ) \leq \epsilon 

and an a.s. invertible map T \epsilon 
i : \=Xi \rightarrow \=Xi such that \~\nu \epsilon i = (T \epsilon 

i )\sharp \nu 
\epsilon 
i and the

corresponding coupling attains Wp(\nu 
\epsilon 
i , \~\nu 

\epsilon 
i ).

Proof. (i) follows immediately from the definitions; we prove (ii). The case p <\infty 
is standard: for n large enough, there exist \rho i, \~\rho i \in \scrP ( \=Xi) of the form

\rho i =
1

n

n
\sum 

k=1

\delta (xk,0), \~\rho i =
1

n

n
\sum 

k=1

\delta (\~xk,0)

such that Wp(\nu i, \rho i) \leq \epsilon 
2 and Wp(\~\nu i, \~\rho i) \leq \epsilon 

2 ; for instance, one can use suitable
realizations of independent and identically distributed (i.i.d.) samples (see, e.g., [35,
Corollary 1.1]). Next, choose distinct u1, . . . , un \in (0, 1) small enough such that the
measures

\nu \epsilon i =
1

n

n
\sum 

k=1

\delta (xk,uk), \~\nu \epsilon i =
1

n

n
\sum 

k=1

\delta (\~xk,uk)
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satisfyWp(\rho i, \nu 
\epsilon 
i ) \leq \epsilon 

2 andWp(\~\rho i, \~\nu 
\epsilon 
i ) \leq \epsilon 

2 . Then (4.17) holds, and \nu \epsilon i , \~\nu 
\epsilon 
i are empirical

measures on n distinct points due to the choice of u1, . . . , un. As a result, there is an
optimal transport map that is one-to-one on the supports.

Let p = \infty . Here a different argument is necessary. (The following also gives an
alternate proof for p < \infty .) As X is Polish, we can find a dense sequence (qk) \subset X
and a countable measurable partition (Qk) of X with qk \in Qk and diamQk \leq \epsilon 

4 .
Consider the approximations

\rho i :=

\infty 
\sum 

k=1

\nu i(Qk) \delta qk \otimes \delta 0, \~\rho i :=

\infty 
\sum 

k=1

\~\nu i(Qk) \delta qk \otimes \delta 0,

which clearly satisfy W\infty (\rho i, \nu i) <
\epsilon 
2 and W\infty (\~\rho i, \~\nu i) <

\epsilon 
2 but may have atoms of

unequal mass. Let \rho i \otimes Ui \in \Pi (\rho i, \~\rho i) be a W\infty -optimal coupling; then Ui : \=Xi \rightarrow 
\scrP ( \=Xi) is a stochastic kernel such that for each k,

Ui((qk, 0)) =

\infty 
\sum 

j=1

wj,k \delta qj \otimes \delta 0

for some weights wj,k \geq 0 with
\sum \infty 

j=1 wj,k = 1. Let \epsilon 0 > 0, pick disjoint numbers
uj,k \in (0, \epsilon 0), define

\nu \epsilon i :=

\infty 
\sum 

j,k=1

\nu i(Qk)wj,k\delta qk \otimes \delta uj,k
, \~\nu \epsilon i :=

\infty 
\sum 

j,k=1

\nu i(Qk)wj,k \delta qj \otimes \delta uj,k
,

and observe that W\infty (\nu \epsilon i , \rho i) <
\epsilon 
2 and W\infty (\~\nu \epsilon i , \~\rho i) <

\epsilon 
2 for \epsilon 0 sufficiently small (note

that uj,k := 0 would lead to \nu \epsilon i = \rho i and \~\nu \epsilon i = \nu \epsilon iUi = \~\rho i). Now (4.17) holds by the
triangle inequality. Define

T \epsilon 
i : \{ qk : k \in \BbbN \} \times \{ uj,k : j, k \in \BbbN \} \rightarrow \{ qk : k \in \BbbN \} \times \{ uj,k : j, k \in \BbbN \} ,

T \epsilon 
i (qk, uj,k) := (qj , uj,k),

which is one-to-one as the uj,k are distinct. Moreover, \rho i \otimes Ui \in \Pi (\rho i, \~\rho i) implies
\~\nu \epsilon i = (T \epsilon 

i )\sharp \nu 
\epsilon 
i , and since \rho i\otimes Ui attainsW\infty (\rho i, \~\rho i) =W\infty (\nu \epsilon i , \~\nu 

\epsilon 
i ), the coupling induced

by T \epsilon 
i attains W\infty (\nu \epsilon i , \~\nu 

\epsilon 
i ).

After these preparations, we are ready to prove Theorem 3.13.

Proof of Theorem 3.13. We detail the proof for (Iq); the argument for (I
\prime 

q) is iden-
tical. We shall apply Proposition 3.12 though the equivalence outlined in Lemma 4.8.
To this end, we extend the spaces Xi by the interval ( - 1, 1) and introduce \nu i, \~\nu i, \=c as
in Lemma 4.9. In view of Lemma 4.9 (i), it suffices to prove the claim for these data
instead of \mu i, \~\mu i, c.

Let \epsilon > 0, choose \nu \epsilon i , \~\nu 
\epsilon 
i , T

\epsilon as in Lemma 4.9 (ii), and denote by \theta \epsilon , \~\theta \epsilon , \^\theta \epsilon the respec-
tive optimizers of Sent(\nu 

\epsilon 
1, . . . , \nu 

\epsilon 
N , \=c) and Sent(\~\nu 

\epsilon 
1, . . . , \~\nu 

\epsilon 
N , \=c) and Sent(\nu 

\epsilon 
1, . . . , \nu 

\epsilon 
N , \=c \circ 

T \epsilon ), respectively. Noting that Lipp(\=c) = Lipp(c) and setting \Delta (\epsilon ) := Wp(\nu 
\epsilon 
1, . . . , \nu 

\epsilon 
N ;

\~\nu \epsilon 1, . . . , \nu 
\epsilon 
N ), Lemma 4.6 yields

\| \=c - \=c \circ T \epsilon \| Lp(P ) \leq Lipp(c)\Delta (\epsilon ),

and thus Proposition 3.12 shows that

Wq(\^\theta 
\epsilon , \theta \epsilon ) \leq Cq

\biggl( 

1

2

\biggr) 
1
2q \Bigl( 

a
1
p Lipp(c)\Delta (\epsilon )

\Bigr) 

p

(p+1)q

.(4.18)
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As \~\theta \epsilon = T \epsilon 
\sharp 
\^\theta \epsilon by Lemma 4.8 and T \epsilon 

i attains Wp(\nu 
\epsilon 
i , \~\nu 

\epsilon 
i ), it follows by the same

calculation as in the proof of Theorem 3.11 that

Wq(\~\theta 
\epsilon , \^\theta \epsilon ) \leq N ( 1

q
 - 1

p
)Wp(\~\theta 

\epsilon , \^\theta \epsilon ) \leq N ( 1
q
 - 1

p
)\Delta (\epsilon ).

Combining the two estimates, we find that

Wq(\theta 
\epsilon , \~\theta \epsilon ) \leq Wq(\theta 

\epsilon , \^\theta \epsilon ) +Wq(\^\theta 
\epsilon , \~\theta \epsilon )

\leq N ( 1
q
 - 1

p
)\Delta (\epsilon ) + Cq

\biggl( 

1

2

\biggr) 
1
2q \Bigl( 

a
1
p Lipp(c)\Delta (\epsilon )

\Bigr) 

p

(p+1)q

.

Letting \epsilon \rightarrow 0, the left-hand side converges to Wq(\pi 
\ast , \~\pi \ast ) by Theorem 3.11 and

Lemma 4.9 (ii), while \Delta (\epsilon ) \rightarrow \Delta by construction. The claim on sharpness is discussed
in Example 4.10 below.

Finally, we exhibit a family of examples for which the constant \ell of Theorem 3.13
is optimal.

Example 4.10 (sharpness of \ell in Theorem 3.13). On X = [ - 1, 1]2, let

\mu 1 = \mu 2 =
1

2
(\delta  - 1 + \delta 1) , \~\mu 1 = \~\mu 2 =

1

2
(\delta  - 1+\varepsilon + \delta 1 - \varepsilon ) ,

where \varepsilon \in (0, 1/2) is a parameter. We define the cost function c = c(\varepsilon ) by

c( - 1, - 1) = c(1, 1) = c( - 1 + \varepsilon , 1 - \varepsilon ) = c(1 - \varepsilon , - 1 + \varepsilon ) = 0,

c(1, - 1) = c( - 1, 1) = c( - 1 + \varepsilon , - 1 + \varepsilon ) = c(1 - \varepsilon , 1 - \varepsilon ) = \varepsilon ,

and then c is Lipschitz with constant Lip\infty (c) = 1. Setting \alpha (\varepsilon ) := exp(\varepsilon )
1+exp(\varepsilon ) , we

calculate the optimizers \pi \ast , \~\pi \ast of Sent(\mu 1, \mu 2, c) and Sent(\~\mu 1, \~\mu 2, c) to be

\pi \ast =
\alpha (\epsilon )

2

\bigl( 

\delta ( - 1, - 1) + \delta (1,1)
\bigr) 

+
1 - \alpha (\epsilon )

2

\bigl( 

\delta ( - 1,1) + \delta (1, - 1)

\bigr) 

,

\~\pi \ast =
1 - \alpha (\epsilon )

2

\bigl( 

\delta ( - 1+\varepsilon , - 1+\varepsilon ) + \delta (1 - \varepsilon ,1 - \varepsilon )

\bigr) 

+
\alpha (\epsilon )

2

\bigl( 

\delta (1 - \varepsilon , - 1+\varepsilon ) + \delta ( - 1+\varepsilon ,1 - \varepsilon )

\bigr) 

.

Next, we find
W1(\pi 

\ast , \~\pi \ast ) = 2(1 - \alpha (\varepsilon ))2\varepsilon + (2\alpha (\varepsilon ) - 1)2

by observing that an optimal coupling \kappa \in \Pi (\pi \ast , \~\pi \ast ) is to move a total mass of
2(1 - \alpha (\varepsilon )) over a dX,1-distance of 2\varepsilon , and mass 2\alpha (\varepsilon ) - 1 over distance (2 - \varepsilon )+\varepsilon = 2.
In view of \alpha (\varepsilon ) = 1

2 + \varepsilon 
4 +\scrO (\varepsilon 3) as \varepsilon \rightarrow 0, we deduce

W1(\pi 
\ast , \~\pi \ast ) = 3\varepsilon +\scrO (\varepsilon 2).

On the other hand, clearly

W\infty (\mu 1, \mu 2; \~\mu 1, \~\mu 2) = \varepsilon .

In summary, any constant \ell such that W1(\pi 
\ast , \~\pi \ast ) \leq \ell W\infty (\mu 1, \mu 2; \~\mu 1, \~\mu 2) holds in the

above example for all \varepsilon has to satisfy \ell \geq 3.
It remains to see that we attain \ell = 3 in the last assertion of Theorem 3.13. For

q = 1, Lemma 3.10 (i) with diam1(X2) = diam([ - 1, 1]) = 2 shows that (Iq) is satisfied
with C1 =

\surd 
2. Hence, the formula in Theorem 3.13 reads

\ell = N + (C1/
\surd 
2) Lip\infty (c) = 2 + 1 = 3

as desired.
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We remark that this example can be extended to more general parameters. Re-
placing c by Lc for some L > 0 leads to a different Lipschitz constant in the definition
of l. Replacing \alpha (\varepsilon ) by \alpha (L\varepsilon ) in the formula for W1(\pi 

\ast , \~\pi \ast ), one finds that the con-
stant l is again sharp. Similarly, replacing [ - 1, 1] by [ - K,K] for some K > 0 and
replacing 1 by K in the definition of the marginals, we find that only the constant
C1 changes in the definition of l, while for W1(\pi 

\ast , \~\pi \ast ) one replaces the final 2 by 2K.
Again, the constant l remains sharp.

4.5. Application to Sinkhorn’s algorithm.

Proof of Theorem 3.15. We first observe that \pi n is the optimizer of the problem
Sent(\pi 

n
1 , \pi 

n
2 , c),

\pi n = argmin
\pi \in \Pi (\pi n

1 ,\pi n
2 )

DKL(\pi , \pi 
0)

= argmin
\pi \in \Pi (\pi n

1 ,\pi n
2 )

\int 

c d\pi +DKL(\pi , \mu 1 \otimes \mu 2)

= argmin
\pi \in \Pi (\pi n

1 ,\pi n
2 )

\int 

c d\pi +DKL(\pi , \pi 
n
1 \otimes \pi n

2 ),

where the last step uses Remark 2.1. (The first identity is well known; e.g., it follows
from the fact that by construction, d\pi n/d\pi 0 admits a factorization a(x1)b(x2).) To
apply our stability results, we require the convergence of the marginals inWp. Indeed,
DKL(\pi 

n
i , \mu i) \rightarrow 0 holds by a standard entropy calculation; see, for instance, [51]. More

precisely, we have

(4.19) DKL(\pi 
n
i , \mu i) \leq 2

DKL(\pi 
\ast , Pc)

n

according to [36, Corollary 1]. By the exponential moment condition on \mu i and [9,
Corollary 2.3], (4.19) yields

Wp(\pi 
n
i , \mu i) \leq C0C\mu i

(n - 1
p + n - 1

2p ), where

C0 := max
\Bigl\{ 

(2DKL(\pi 
\ast , Pc))

1
p , (2DKL(\pi 

\ast , Pc))
1
2p

\Bigr\} 

,

C\mu i
:= 2 inf

x0\in Xi,\alpha >0

\biggl( 

1

\alpha 

\Bigl( 3

2
+ log

\int 

exp(\alpha dXi
(x0, xi))\mu i(dxi)

\Bigr) 

\biggr) 
1
p

.

As a result,

(4.20) \Delta := max
i=1,2

Wp(\pi 
n
i , \mu i) \leq C0 max\{ C\mu 1

, C\mu 2
\} (k - 1

p + k - 
1
2p ).

We remark that \Delta = Wp(\pi 
n
1 , \pi 

n
2 ;\mu 1, \mu 2) as Wp(\pi 

n
1 , \mu 1) = 0 or Wp(\pi 

n
2 , \mu 2) = 0 for

each n, consistent with our previous notation. By (4.20), \pi n
i has a finite pth moment.

Noting also that

(4.21) DKL(\pi 
n, \mu 1 \otimes \mu 2) = DKL(\pi 

n, \pi n
1 \otimes \pi n

2 ) +

2
\sum 

i=1

DKL(\pi 
n
i , \mu i),

assertion (i) thus follows directly from Theorem 3.7 (i).
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Regarding (ii), note that the pth moments of \pi n
i are bounded uniformly in n

due to (4.20). In view of Lemma 3.5, the cost function c thus satisfies (AL) with a
uniform constant L for the marginals (\pi n

1 , \pi 
n
2 )n as well as (\mu 1, \mu 2). Using also (4.19)

and (4.21), Theorem 3.7 (ii) yields

| \scrF (\pi \ast ) - \scrF (\pi n)| \leq L\Delta + 2DKL(\pi 
\ast , Pc)n

 - 1.

In view of (4.20), the claimed rate for | \scrF (\pi \ast )  - \scrF (\pi n)| follows. Finally, (I
\prime 

q) holds

with constant C
\prime 

q by Lemma 3.10 (iii), and thus Theorem 3.11 yields

Wq(\pi 
\ast , \pi n) \leq 2(

1
q
 - 1

p
) \Delta + C

\prime 

q(2L)
1/q \Delta 

1
q + C

\prime 

qL
1
2q \Delta 

1
2q ,

so that the claimed rate for Wq(\pi 
\ast , \pi n) follows via (4.20).
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