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Abstract— Accurate inference of biological systems,
such as gene regulatory networks and microbial commu-
nities, is a key to a deep understanding of their under-
lying mechanisms. Despite several advances in the infer-
ence of regulatory networks in recent years, the existing
techniques cannot incorporate expert knowledge into the
inference process. Expert knowledge contains valuable
biological information and is often reflected in available
biological data, such as interventions made by biologists
for treating diseases. Given the complexity of regulatory
networks and the limitation of biological data, ignoring
expert knowledge can lead to inaccuracy in the inference
process. This paper models the regulatory networks using
Boolean network with perturbation. We develop an expert-
enabled inference method for inferring the unknown pa-
rameters of the network model using expert-acquired data.
Given the availability of information about data-acquiring
objectives and expert confidence, the proposed method
optimally quantifies the expert knowledge along with the
temporal changes in the data for the inference process. The
numerical experiments investigate the performance of the
proposed method using the well-known p53-MDM2 gene
regulatory network.

Index Terms— Gene Regulatory Networks, Inference, In-
verse Reinforcement Learning, Boolean networks.

I. INTRODUCTION

Regulatory networks in systems biology are comprised of
a large number of interacting components, such as bacteria,
microbes, genes, and small molecules in gene regulatory
networks and microbial communities [1], [2]. The interactions
between elements of these regulatory networks control the
ecosystem functioning and various cellular processes, such as
stress response, DNA repair, and other mechanisms involved
in complex diseases such as cancer [3]–[5]. Experts play
critical roles in most practical analyses and decision-making of
these biological systems. Experts’ decisions are often reflected
in available biological data, such as data collected during
biological interventions for disease treatment and experiment
perturbation for hypothesis testing. The expert decisions reflect
the valuable expert perception of the complex biological
systems, which, if quantified, can significantly help a deep
understanding of their mechanism.

Several techniques have been developed in recent years for
the inference of regulatory networks [6]–[8]. These methods
aim to infer the unknown parameters of a regulatory network
model using the available biological data. These include
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methods developed based on maximum likelihood, maximum
aposteriori, or similar measures [9]–[11]. The complexity
of the regulatory networks and the limitation in biological
data (due to the huge cost associated with data acquiring)
often prevent accurate inference using the existing techniques.
Meanwhile, biological data are often collected so that their
temporal changes might not elicit the interactions between
components.

This paper investigates the incorporation of expert knowl-
edge embedded in expert-acquired data to overcome data
limitations and lack of excitation impacting the inference of
regulatory networks. We model the regulatory networks with
the Boolean network with perturbation [2], [12]. This model
is shown to be effective in capturing the complex dynamics of
regulatory networks, such as yeast and mammalian cell cycle
networks, and gut microbial communities [13], [14]. Unlike
the conventional inference techniques that aim to learn the
unknown parameters of regulatory networks by investigating
the temporal changes of data, we develop an expert-enabled in-
ference method that incorporates the expert knowledge, which
appears in terms of decisions/actions in available biological
data, in the inference process. The exact optimal expert-
enabled inference is achieved in domains with known expert
confidence and data-acquiring objectives.

In particular, we study the inference in regulatory networks
with missing interactions between the components, where the
possible network models can be represented by a finite set.
Without loss of generality, the maximum aposteriori (MAP)
criterion is considered for the inference process. We derive
the exact recursive and optimal expert-enabled MAP infer-
ence method, which consists of offline dynamic programming
methods that run in parallel, along with online quantification
of the expert knowledge and temporal changes in data upon
observing a new measurement. We investigate the impact of
expert confidence on the performance of the proposed method
analytically and empirically. The performance of the proposed
method in terms of accuracy is demonstrated through numeri-
cal experiments using the p53-MDM2 negative feedback loop
network.

II. MATHEMATICAL PRELIMINARIES

A. Regulatory Network Model

This paper employs the Boolean network with perturbation
(BNp) model [2], [12], [15] for capturing the dynamics of
regulatory networks. This model properly captures the stochas-
ticity in regulatory networks, coming from intrinsic uncertainty
or unmodeled parts of systems. Consider a system consisting
of d components. The state process can be expressed as
{xk; k = 0, 1, . . .}, where xk ∈ {0, 1}d representing the



activation/inactivation state of the components at time k. The
component’s state is updated at each discrete time through the
following Boolean signal model:

xk = f(xk−1) ⊕ uk−1 ⊕ nk , (1)

for k = 1, 2, . . ., where uk−1 ∈ U ⊂ {0, 1}d is an external
action (e.g., intervention, perturbation, etc.) at time step k−1,
nk ∈ {0, 1}d is a noise process at time k, “⊕” denotes
component-wise binary addition (the exclusive-or logic op-
eration), and f is the network function. The noise process
is modeled through d independent Bernoulli processes with
parameter p (i.e., 0 ≤ p ≤ 0.5) as: nk(i) ∼ Bernoulli(p), for
i = 1, ..., d. The small values of p represent less noisy Boolean
network models.

The network function f(.) can be expressed through a
Boolean logic or pathway diagram models [11], [12], [14].
Without loss of generality, we consider the pathway diagram
representation. According to this model, f = (f1, . . . , fd) is a
component form of Boolean function with the ith element as:

fi(x) =

{
1,

∑d
j=1 cijx(j) + bi > 0 ,

0,
∑d

j=1 cijx(j) + bi ≤ 0 ,
(2)

where cij takes in {−1, 0,+1} and represents the type of
interaction from component j to component i, and bi is a bias
unit for component i, which takes a value in {−1/2,+1/2}.
The cij = +1 represents a positive interaction, cij = −1
denotes a negative interaction, and cij = 0 corresponds
to no interaction case. Meanwhile, the bias units are tie-
breaking parameters that control the activation and inactivation
of components in case of an equal number of activation and
inactivation inputs.

It should be noted that the models denoted in (1) and (2)
are well-known models for regulatory networks and are used
here for the sake of illustration. Without loss of generality, the
rest of the paper holds for a general class of Boolean network
model of form f(xk−1,uk−1,nk).

B. Optimal Policy in Regulatory Networks

The regulatory network model in (1) can be represented by a
Markov decision process (MDP) with 5-tuple ⟨X ,U , T ,R, γ⟩,
where X = {0, 1}d is the state space, U is the action space,
T : X ×U×X is the state transition probability function such
that p(x′ | x,u) represents the probability of moving to state
x′ after taking action u in state x, R : X × U × X → R is
a bounded reward function such that R(x,u,x′) encodes the
reward earned when action u in taken in state x and system
moves to state x′, and 0 < γ < 1 is a discount factor.

More formally, a deterministic stationary policy π : X → U
for an MDP is a mapping from states to actions. The expected
discounted reward function at state x ∈ X after taking action
u ∈ U and the following policy π afterward is defined as:

Qπ(x,u)=E
[ ∞∑

t=0

γtR(xt,ut,xt+1) | x0 = x,

u0 = u,u1:∞ ∼ π

]
.

(3)

The optimal Q-function can be expressed as Q∗(x,u) :=
Qπ∗

(x,u), which indicates the expected discounted reward
after executing action u in state x and following optimal
policy π∗ afterward. An optimal (stationary) policy π∗ attains
the maximum expected return for all states as: π∗(x) =
argmaxu∈U Q∗(x,u), for x ∈ X .

III. PROPOSED FRAMEWORK

A. Problem Formulation

Let Dk = {(ũ0, x̃1), (ũ1, x̃2), ..., (ũk−1, x̃k)} be the
expert-acquired data up to time step k, where ũr−1 is the
taken action by an expert at time step r − 1, which has
led the system state to move from x̃r−1 to state x̃r. Let
R(., ., .) represent the expert reward function, which denotes
the reward associated with the main biological objectives. For
instance, if the actions are interventions for treating diseases,
the immediate reward measures the improvement achieved
at any given step during the intervention process. Assuming
Q∗(., .) to be the optimal Q-value for the expert reward
function, we model the expert decisions/actions according to
the following softmax policy [16]:

p(u | x) ∝ exp (η Q∗(x,u)) , (4)

for x ∈ X and u ∈ U ; where η > 0 represents the confidence
of expert. This softmax policy denotes that the expert might
not take the optimal action (i.e., argmaxu∈U Q∗(x,u)), as
its information about the system dynamics or reward might
be limited. Large values of η model more confident experts,
whereas smaller values model more imperfect experts. The
expert policy in (4) is widely used in the inverse reinforcement
learning context for modeling expert/human behavior [17]–
[19]. Another well-known policy to represent expert behavior
is the ϵ-greedy policy [17]. According to this model, the expert
policy at state x can be expressed as:

p(u | x) =


q + 1−q

|U| If u = argmax
u′∈U

Q∗(x,u′)

1−q
|U| If u ̸= argmax

u′∈U
Q∗(x,u′)

, for u ∈ U ,

(5)
where q represents the expert confidence, taking its value in
0 ≤ q ≤ 1; q = 1 and q = 0 represent an optimal and random
expert, respectively. The expert model in (4) benefits from
differentiability, whereas the expert model in (5) allows easier
quantification of the expert confidence through parameter q.
Without loss of generality, the rest of the paper considers the
expert model in (4).

The expert-enabled inference consists of estimating the
unknown parameters of the network model according to the
available expert-acquired data. The unknown parameters in
regulatory networks are often missing interactions between
different components. The discrete nature of these parameters
(i.e., cij or bi parameters in model (2)) leads to a finite set of
possible models for regulatory networks. For instance, given
that n1 regulatory interactions (i.e., cij) and n2 bias units (i.e.,
bi) are unknown, there are M = 3n1 × 2n2 different possible
models. These models are represented by Θ = {θ1, ..., θM},
which correspond to M different regulatory network models.



Without loss of generality, we consider the maximum apos-
teriori (MAP) criterion for the inference process. The expert-
enabled MAP inference given the expert-acquired data up to
time step k (i.e., Dk) can be formulated as:

θ̂
EE−MAP

k = argmax
θ∈Θ

logP (θ | Dk)

= argmax
θ∈Θ

[logP (θ) + logP (Dk | θ)] ,
(6)

where P (.) is a probability mass function, and P (θ) and
P (Dk | θ) denote the prior probability and the expert-
enabled likelihood value for model θ, respectively. The prior
probability for model θ takes in 0 ≤ P (θ) ≤ 1, with∑

θ∈Θ P (θ) = 1. If no prior information about the models is
available, the non-informative (i.e., uniform) prior distribution
can be considered, i.e., P (θ) = 1/M , for θ ∈ Θ.

The logarithm of expert-enabled likelihood function, i.e.,
logP (Dk | θ), can be expressed as:

LEE
k (θ) := logP (Dk | θ)

= log

k∏
r=1

P (x̃r, ũr−1 | x̃1:r−1, ũ0:r−2,θ)

=
k∑

r=1

logP (x̃r | x̃r−1, ũr−1,θ)︸ ︷︷ ︸
State-Transition Term

+
k∑

r=1

logP (ũr−1 | x̃r−1,θ)︸ ︷︷ ︸
Expert-Knowledge Term

.

(7)
The last line in (7) is obtained using the Markovian property
of the state transition in the Boolean network model in (1) and
the softmax policy representing the expert behavior in (4). The
existing inference techniques only consider the state-transition
term in (7) for the inference process and ignore the expert-
knowledge term. We will analyze the expert-knowledge term’s
impact on the inference performance in the next section and
empirically demonstrate the high performance of the proposed
expert-enabled inference method in the numerical experiments.

B. Recursive Formulation of Optimal Expert-Enabled
Inference

This section describes the recursive formulation of the
optimal expert-enabled MAP inference in (6). We start with
a recursive representation of the expert-enabled log-likelihood
function in (7) as:

LEE
k (θ) = LEE

k−1(θ)

+ logP (x̃k | x̃k−1, ũk−1,θ)︸ ︷︷ ︸
lDk (θ):=State-Transition Increment

+ logP (ũk−1 | x̃k−1,θ)︸ ︷︷ ︸
lEk (θ):=Expert-Knowledge Increment

,

(8)
where LEE

k−1(θ) is the previous expert-enabled log-likelihood
function given Dk−1, and the state-transition and the expert-
knowledge increments represent the addition to the likelihood
after observing the last expert-acquired data, i.e., (ũk−1, x̃k).

Therefore, the optimal recursive formulation of the expert-
enabled MAP inference in (6) can be expressed through:

θ̂
EE−MAP

k = argmax
θ∈Θ

[
logP (θ)+LEE

k−1(θ)+lDk (θ) + lEk (θ)

]
.

(9)

C. Exact Computation of State-Transition and
Expert-Knowledge Increments

This section describes the computation of state-transition
and expert-knowledge increments for the exact solution of the
recursive expert-enabled MAP inference in (9).

1) Computation of State-Transition Increment: The evalua-
tion of this term requires computing the probability of moving
from state x̃k−1 to state x̃k given the expert action ũk−1 for
all models. For model θ ∈ Θ, this can be expressed as:

lDk (θ) = logP (x̃k | x̃k−1, ũk−1,θ)

=log

[
p||f

θ(x̃k−1)⊕ũk−1⊕x̃k||1(1−p)d−||fθ(x̃k−1)⊕ũk−1⊕x̃k||1
]

= ||fθ(x̃k−1) ⊕ ũk−1 ⊕ x̃k||1 log
p

1− p
+ d log(1−p),

(10)
where ||.||1 is the absolute L-1 norm of a vector, and p is the
parameter of the Bernoulli noise process in (1).

2) Computation of Expert-Knowledge Increment: Let
Q∗

θ(., .) be the optimal model-specific Q-function for the
network model parameterized by θ. Given that the softmax
policy in (4) represents the expert policy, the expert-knowledge
increment in (8) can be expressed as:

lEk (θ) = logP (ũk−1 | x̃k−1,θ)

= log

[
exp (η Q∗

θ(x̃k−1, ũk−1))∑
u∈U exp (η Q∗

θ(x̃k−1,u))

]
, for θ ∈ Θ.

(11)
Computation of the optimal model-specific Q-function for

models θ ∈ Θ can be achieved by running parallel dynamic
programming methods, such as value iteration and policy
iteration [20]. Let {x1, . . . ,x2d} be an arbitrary enumeration
of the possible Boolean state vectors. The expert reward
function R(., ., .) can be represented in a matrix-form as:

(R(u))ij = R
(
xj ,u,xi

)
, for i, j = 1, .., 2d,u ∈ U .

(12)
We also define the controlled transition matrix of size 2d×2d

associated with a Boolean network parameterized by θ as:

(Mθ(u))ij = P
(
xk = xi | xk−1 = xj ,uk−1 = u,θ

)
,

= p||f
θ(xj)⊕u⊕xi||1(1−p)d−||fθ(xj)⊕u⊕xi||1 ,

(13)
for i, j = 1, . . . , 2d.

The optimal state value function for any model θ ∈ Θ can
be expressed using the Bellman equation as [21], [22]:

V∗
θ(j) = max

u∈U

 2d∑
i=1

(Mθ(u))ij
[
R(xj ,u,xi) + γV∗

θ(i)
] ,

(14)
for j = 1, .., 2d. It is also shown in [21] that V∗

θ is the unique
fixed point solution of the Bellman operator defined as:

T [Vθ](j) = max
u∈U

 2d∑
i=1

(Mθ(u))ij
[
R(xj ,u,xi) + γVθ(i)

] ,

(15)



for j = 1, ..., 2d. The matrix form formulation of the Bellman
operator in (14) can be expressed as:

T [Vθ] = max
u∈U

[
(R(u)⊙Mθ(u))

T 12d×1 + γMT
θ (u)Vθ

]
,

(16)
where "max" is applied row-wise, 12d×1 is a vector of size
2d with all elements 1, and "⊙" denotes the component-wise
multiplication of two matrices. It is proven in [21] that for any
MDP (i.e., any model θ ∈ Θ), the Bellman operator is a γ-
contraction mapping, meaning that starting from any arbitrary
V0

θ and iteratively applying Vt+1
θ = T [Vt

θ] for t = 0, 1, ...
leads to a fixed solution of the Bellman equation. Any fixed-
point solution of Belman equation is an optimal solution for
the MDP. Thus, for any 0 < γ < 1 and any θ ∈ Θ, the
value iteration method will converge to the optimal state value
function (see [21], for more information).

Let V0
θ = [0, · · · , 0]T be the initial value vector for model

parameterized by θ. Sequentially performing the Bellman
operator in (16) leads to a fixed point solution for the op-
timal model-specific state value function. Thus, one needs
to repeat Vt+1

θ = T [Vt
θ] till the time that the maximum

difference between elements of value vectors in two consecu-
tive iterations falls below a small prespecified threshold, i.e.,
maxi∈{1,..,2d} |Vt−1

θ (i)−Vt
θ(i)| < ϵ.

Let V∗
θ be the fixed-point solution of (16) for model θ.

The optimal model-specific Q-function for model θ can be
obtained as:Q∗

θ(x
1,u)

...
Q∗

θ(x
2d ,u)

=(R(u)⊙Mθ(u))
T 12d×1 + γMT

θ (u)V∗
θ,

(17)
for u ∈ U . Replacing (17) into (11) leads to the exact
computation of the expert-knowledge increment.

3) Analysis of Complexity and Impact of Objective and Ex-
pert’s Confidence: The optimal recursive expert-enabled MAP
inference can be achieved through offline and online steps. The
offline process consists of running M parallel value iteration
methods, each tuned to one specific network model. The
computational complexity of the offline process is of order
O(22d × |U| × M × T ), where T is the stopping iteration
of the value iteration method. In the online process, the
computational complexity of the state transition and expert
knowledge increments are of order O(d×M) and O(|U|×M),
respectively. Therefore, aside from the offline computations,
which can be done before starting the online inference process,
the complexity of the online process grows linearly with
the number of components in the network, possible network
models, and the size of the action space.

The impact of the objective on the performance of the pro-
posed expert-enabled inference method is described through a
simple example. Consider a system with two possible network
models; Θ = {θ1,θ2}. The data-acquiring objective and
the network models impact the optimal model-specific Q-
functions in (17). Consider a simple case where two models
have the same optimal model-specific Q-functions at states re-
flected in expert-acquired data (i.e., Q∗

θ1(x̃r,u) = Q∗
θ2(x̃r,u)

for r = 1, ..., k and u ∈ U ); this represents a scenario where

the expert would take the same actions if its perception about
the model would be either θ1 or θ2. The expert-knowledge
terms for these two models will be the same, and the expert-
enabled inference becomes the same as the conventional
inference technique. If given the objective, the model-specific
policies are different at states reflected in expert-acquired data
(i.e., π∗

θ1(x̃r) ̸= π∗
θ2(x̃r), for any r ∈ {1, ..., k}), then the

expert actions would vary depending on its perception about
the system models. Thus, the model that is more likely to
create the actions reflected in expert-acquired data takes the
largest expert-knowledge term. For large values of η (i.e., more
confident experts), the expert-knowledge term becomes more
distinguishable for the true model among others. By contrast,
for small values of η, the expert-knowledge term becomes
similar for various models and less impactful during the
inference process. For a specific case of η = 0, representing
the least confident expert (i.e., random action selection), the
expert-knowledge term is equal for all models; thus, the
expert-enabled MAP inference becomes the same as regular
MAP inference.

IV. NUMERICAL EXPERIMENTS

In this section, the performance of the proposed framework
is assessed using the p53-MDM2 Boolean network [23]. All
results are averaged over 100 independent runs with random
initial states. The parameter settings throughout the numerical
experiments are: the process noise p = 0.05, the discount
factor γ = 0.95, and the value iteration threshold ϵ = 0.01.
Finally, the initial probability for all models is assumed to be
equal, i.e., P (θi) = 1/M , for i = 1, ...,M . The results are
represented in terms of the maximum posterior probability and
the average error of the inferred parameter, and comparisons
are made with the optimal MAP inference technique.

The p53-MDM2 negative feedback loop gene regulatory
network plays a critical role in various types of cancers, includ-
ing the ovarian, esophageal, larynx, and lung [23], [24]. This
network includes four genes and the stress input "dna_dsb",
which shows the presence of DNA double-strand breaks. The
state of four genes can be expressed through vector x = (ATM,
p53, Wip1, MDM2). The pathway diagram for the network
is shown in Fig. 1; the solid arrows demonstrate positive
interactions (i.e., cij = +1), and the blunt arrows demonstrate
negative interactions (i.e., cij = −1). This Boolean model in
(2) in stress response can be represented by: c11 = 0 c12 = 0 c13 = −1 c14 = 0
c21 = +1 c22 = 0 c23 = −1 c24 = −1
c31 = 0 c32 = +1 c33 = 0 c34 = 0
c41 = −1 c42 = +1 c43 = +1 c44 = 0

 ,

b1 = +1/2
b2 = −1/2
b3 = −1/2
b4 = −1/2

 .

(18)

Fig. 1: The pathway diagram for the p53-MDM2 Boolean network.



The network in healthy conditions spends most of its time
at state "0000", meaning that all 4 genes stay inactivated
(see [25], for more information). This is, however, not the case
for the network in cancerous conditions. The stress often leads
to unnecessary activation of various genes and, consequently,
uncontrolled cell proliferation. Therefore, for our experiments,
we assume experts/biologists aim to keep the network at state
"0000" through intervention. The intervention is achieved by
experts through selecting one of the following control inputs
at a time: U = {u1 = [0, 0, 0, 0],u2 = [1, 0, 0, 0],u3 =
[0, 1, 0, 0],u4 = [0, 0, 1, 0],u5 = [0, 0, 0, 1]}. Note that u1

to u5 flip the value of none or a single gene at a time. This
biological intervention can be expressed through the following
expert reward function:

R(x,u,x′)=
1

4

[
− ||x′||1 − 0.5||u||1

]
,

where the cost of any gene activation is −1/4, and the control
input altering the gene state has the reward of −1/8. The
negative reward value for the control represents the expert’s
desire to take minimum controls due to their potential side
effects.

We assume the expert-acquired data are collected using the
true network model in (18). We consider the following five
interacting parameters to be unknown: c21, c32, c42, c13 and
c43. Since each interaction can take in {−1, 0,+1}, there will
be M = 35 = 243 possible network models.

In the first set of experiments, we consider data are acquired
by confident experts with η = 10. The average number
of value iteration steps for all models is 61. The average
maximum posterior probability and the average connectivity
error with respect to the number of expert-acquired data are
shown in Fig. 2 and Fig. 3, respectively. The solid black lines
correspond to the proposed expert-enabled MAP inference
method, and the dashed red lines are associated with the
regular MAP inference method. The shaded areas represent
68% confidence intervals for both methods. From Fig. 2, one
can see that the proposed method achieves a much higher
maximum posterior probability than regular MAP inference.
This comes from incorporating the expert knowledge, which
has helped to better distinguish between different possible
network models. A similar trend can be seen in terms of the
RMSE; a much smaller RMSE is obtained by the proposed
method compared to the regular MAP inference method, which
again demonstrates the importance of incorporating expert
knowledge in the inference process.

Assigning an exact value to represent the expert confidence
using parameter η in Boltzmann policy is challenging; since,
according to (4), setting this value depends on the reward
function and discount factor γ. This part of the experiment
examines the impact of expert confidence on the performance
of the proposed expert-enabled inference method. The average
maximum posterior probability and error with respect to the
number of data and expert confidence rate are shown in
Fig. 4. Smaller average error and higher average maximum
posterior probability are obtained by the proposed method
under data acquired by more confident experts. The results
of the proposed method become close to the conventional

Fig. 2: The average maximum posterior probability for the p53-
MDM2 network with 5 unknown regulatory interactions.

Fig. 3: The average error for the p53-MDM2 network with 5
unknown regulatory interactions.

MAP inference method as η approaches zero (i.e., the expert
becomes random). The subplots in Fig. 4 represent the average
results with respect to the expert confidence rate obtained
according to 50 expert-acquired data. One can see a sudden
change in the results as the value of η increases; for η values
smaller than 10, a high average error is obtained, whereas for
values of η larger than 10, the performance becomes better but
stays almost similar across large η values. This demonstrates
that having general knowledge about expert confidence (i.e.,
low or high confident expert) is often sufficient for setting the
expert confidence rate.

V. CONCLUSION

This paper introduced an optimal expert-enabled maximum
aposteriori (MAP) inference method for regulatory networks.
Boolean network with perturbation is used for modeling
regulatory networks. Unlike the existing inference techniques
that only rely on temporal changes in data, the proposed
method enables the optimal incorporation of expert knowledge
reflected in available data for the inference process. The
proposed method consists of offline and online steps: in the
offline step, parallel dynamic programming methods tuned to
possible network models are employed; in the online step, the
outcomes of the offline step combined with the softmax policy
(representing imperfect experts) are integrated for recursive
and efficient expert-enabled inference. Through numerical ex-
periments, we showed that the proposed framework increases
the accuracy of the inference process more visibly in domains
with more confident experts.



Fig. 4: The average error and maximum posterior probability with respect to the number of data and expert confidence rate using the
p53-MDM2 network with 5 unknown regulatory interactions.

The future work examines the expert-enabled inference
in domains with partially observable states, domains with
unknown expert confidence or reward functions, as well as
domains with complex state, action, and parameter spaces.
We will also study the convergence of the expert-enabled
inference methods in terms of the objective, network structure,
and unknown parameters and compare them with conventional
inference techniques.
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