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Inference of regulatory networks
through temporally sparse data

Mohammad Alali* and Mahdi Imani

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA,
United States

A major goal in genomics is to properly capture the complex dynamical
behaviors of gene regulatory networks (GRNs). This includes inferring the
complex interactions between genes, which can be used for a wide range of
genomics analyses, including diagnosis or prognosis of diseases and finding
effective treatments for chronic diseases such as cancer. Boolean networks
have emerged as a successful class of models for capturing the behavior of
GRNs. In most practical settings, inference of GRNs should be achieved through
limited and temporally sparse genomics data. A large number of genes in GRNs
leads to a large possible topology candidate space, which often cannot be
exhaustively searched due to the limitation in computational resources. This
paper develops a scalable and efficient topology inference for GRNs using
Bayesian optimization and kernel-based methods. Rather than an exhaustive
search over possible topologies, the proposed method constructs a Gaussian
Process (GP) with a topology-inspired kernel function to account for correlation
in the likelihood function. Then, using the posterior distribution of the GP
model, the Bayesian optimization efficiently searches for the topology with the
highest likelihood value by optimally balancing between exploration and
exploitation. The performance of the proposed method is demonstrated
through comprehensive numerical experiments using a well-known
mammalian cell-cycle network.

KEYWORDS

topology inference, maximum likelihood estimation, gene regulatory networks,
Boolean dynamical systems, Bayesian optimization

1 Introduction

Gene regulatory networks (GRNs) play an important role in the molecular
mechanism of underlying biological processes, such as stress response, DNA repair,
and other mechanisms involved in complex diseases such as cancer. The topology
inference of GRNs is critical in systems biology since it can generate valuable
hypotheses to promote further biological research. Furthermore, a deep understanding
of these biological processes is key in diagnosing and treating many chronic diseases.
Advances in high-throughput genomic and proteomic profiling technologies have
provided novel platforms for studying genomics. Meanwhile, single-cell gene-
expression measurements allow capturing multiple snapshots of these complex
biological processes. These advances offer an opportunity for seeking systematic
approaches to understand the structure of GRNS.
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In recent years, Boolean network models have been
successfully employed for modeling different biological
networks (Wynn et al., 2012; Saadatpour and Albert, 2013;
Abou-Jaoudé et al, 2016). More specifically, these Boolean
networks have been widely used for inferring GRNs from
their state (ie., gene) data (Pusnik et al, 2022). The state
value of genes in the Boolean network is represented by 1 and
0, representing the activation and inactivation of genes,
respectively. There are several Boolean network models,
including the deterministic Boolean network models, Boolean
network with perturbation, probabilistic Boolean network
models, and Boolean control networks (Lihdesmiki et al.,
2003; Shmulevich and Dougherty, 2010; Cheng and Zhao,
2011). Most of these models account for genes’ stochasticity
and can effectively capture the dynamics of GRNs through
relatively small times-series data.

Inference of Boolean network models consists of learning the
parameters of their models given all the available data. Several
advances have been made in the inference of Boolean network
models in recent years. These techniques aim to find models that
best fit the available time-series data. The fitness criteria are often
likelihood or posterior, leading to well-known maximum likelihood and
maximum aposteriori inference techniques (Shmulevich et al., 2002;
Lihdesmilki et al, 2003). Despite the optimality of these inference
techniques, lack of scalability has limited their applications to small
GRNs. Several heuristic methods have been developed to scale the
inference of Boolean network models; these include scale-free and
cluster-based approaches (Hashimoto et al, 2004; Barman and
Kwon, 2017), and methods built on evolutionary optimization
techniques (Tan et al,, 2020; Barman and Kwon, 2018). The former
methods aim to build a topology from known seed nodes according to
multiple heuristics, whereas the latter ones use evolutionary optimization
techniques such as genetic algorithms and particle swarm algorithms for
searching over the parameter space. Despite the scalability of these
approaches, their incapability to effectively consider the temporal
changes in data and efficiently search over possible network models
leads to their unreliability in the inference process.

This paper focuses on developing a systematic approach for
the inference of GRNs using Boolean network models. Two main
challenges in the inference of GRNs are:

o Large Topology Candidate Space: The modeling consists of
estimating a large number of interacting parameters, which
represent the connections between genes that govern their
dynamics. This requires searching over a large number of
topology candidates and picking the one with the highest
likelihood value given the available data. Most existing
inference methods for general nonlinear models are
developed to deal with continuous parameter spaces,
such as maximum likelihood (Johansen et al., 2008;
Kantas et al.,, 2015; Imani and Braga-Neto, 2017; Imani
et al, 2020), expectation maximization (Hiirzeler and
Kiinsch, 1998; Godsill et al., 2004; Schon et al., 2011;
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Wills et al., 2013), and multi-fidelity (Imani et al., 2019;
Imani and Ghoreishi, 2021) methods. However, these
methods cannot be applied for inference over large
discrete parameter spaces, such as the large topology
candidate space of GRNs. In this paper, we develop a
method that is scalable with respect to the number of
unknown interactions, and efficiently searches over the
large topology candidate space. More specifically, our
proposed method enables optimal inference in the
presence of a large number of unknown regulations for
GRNs with a relatively small number of genes.

o Expensive Likelihood Evaluation: The likelihood function,
which measures the probability that the available data
come from each topology candidate, is often expensive
to evaluate. The reasons for that are a large number of
genes in GRNSs, and the sparsity in the data, which require
propagation of the system stochasticity across time and
gene states. Given the limitation in the computational
resources, evaluation of the likelihood functions for all
of the topology candidates is impossible, and one needs to
find the topology with the highest likelihood value with a
few expensive likelihood evaluations.

This paper derives a scalable topology inference for GRNs
observed through temporally sparse data. The proposed
framework models the expensive-to-evaluate (log-)likelihood
function using a Gaussian Process (GP) regression with a
structurally-inspired kernel function. The proposed kernel
function exploits the structure of GRNSs to efficiently learn the
correlation over the topologies, and enables Bayesian prediction
of the log-likelihood function for all the topology candidates.
Then, a sample-efficient search over topology space is achieved
through a Bayesian optimization policy, which sequentially
selects topologies for likelihood evaluation according to the
posterior distribution of the GP model. The proposed method
optimally balances exploration and exploitation, and searches for
the global solution without getting trapped in the local solutions.
The accuracy and robustness of the proposed framework are
demonstrated through comprehensive numerical experiments
using a well-known mammalian cell-cycle network.

The remainder of this paper is organized as follows. Section 2
provides a detailed description of the GRN model and the topology
inference of GRNs. Further, the proposed topology optimization
framework is introduced in Section 3. Section 4 presents various
numerical results, and the main conclusions are discussed in Section 5.

2 Preliminaries

2.1 GRN model

This paper employs a Boolean network with perturbation
(BNp) model for capturing the dynamics of GRNs (Shmulevich
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FIGURE 1

The schematic representation of a regulatory network model.

The step functions map outputs to 1 if the input is positive, and 0,
otherwise.

and Dougherty, 2010; Imani et al., 2018; Hajiramezanali et al,,
2019). Previously, several works have successfully employed the
BNp model for different purposes such as inference (Dougherty
and Qian, 2013; Marshall et al., 2007) and classification
(Karbalayghareh et al., 2018). This model properly captures
the stochasticity in GRNs, coming from intrinsic uncertainty
or unmodeled parts of the systems. Consider a GRN consisting of
d genes. The state process can be expressed as {X;; k=0, 1, ...},
where X € {0,1}4 represents the activation/inactivation state of
the genes at time k. The gene state is updated at each discrete time
through the following Boolean signal model:

Xy = f(Xy-1) @ 1y, (1)

for k=1, 2, ..., where n; € {0,1} is Boolean transition noise at
time k, “®” indicates component-wise modulo-2 addition, and f
represents the network function.

The network function in Eq. 1 is expressed in component
form as f = (f}, ..., f;). Bach component f;: {0,1}¢ — {0, 1} is a
Boolean function given by:

d .
1, Zj:l C,']'X(_]) + b,’ >0,

d ) (2)
0, ijl C,']'X(]) + bi <0,

fix) =

for i = 1, ..., d, where c;; denotes the type of regulation from
component j to component 7 it takes +1 and —1 values if there is a
positive and negative regulations from component j to
component i respectively, and 0 if component j is not an
input to component i. b; is a tie-breaking parameter for

+1

component i it takes 5

negative inputs lead to state value +1 and reverse for 5. The

if an equal number of positive and

network function in Eq. 2 can also be expressed in matrix form as:
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f(Xi1) =CXgy +b, (3

where the threshold operator v maps the positive elements of vector
v to 1 and negative elements to 0, C is the connectivity matrix with
(O);j = ¢; in the ith row and jth column, and b = [by,...,b4]"
represents the bias vector. A schematic representation of the
regulatory network model is shown in Figure 1.

In Eq. 1, the noise process n; indicates the amount of
stochasticity in a Boolean state process. For example, n.(j) =
1, means that the jth gene’s state at time step k is flipped and does
not follow the Boolean function. Whereas, n(j) = 0 indicates that
this state is governed by the network function. We assume that all
the n; components are independent and have a Bernoulli
distribution with parameter (p), which 0 < p < 0.5 refers to
the amount of stochasticity in each state variable (i.e., gene).

2.2 Topology inference of regulatory
networks

In practice, the network function is unknown or partially
known, and the unknown parameters need to be inferred
through available data. The unknown information is often the
elements of the connectivity matrix or bias units. We assume that
L elements of the connectivity matrix {c', ..., ¢} are unknown.
Given that each element takes in values in space { + 1, 0, —1},
there will be 3" different possible models (i.e., connectivity
matrices) denoted by parameter vectors: © = {01, o BSL},
where & = [0 (1), ..., O(L)], and /(i) denotes the type of the
ith unknown interaction/parameter under the jth model. It is
evident that each parameter vector corresponds to one specific
topology/model; therefore, the phrases parameter vector and
topology/model are used interchangeably throughout this
paper. Further, C¥ the
associated with parameter vector @, while only one parameter

represents connectivity matrix
vector represents the true underlying system topology. Assuming
that D,.7 represents the available data, the inference process can
be formulated as:

0* = argmax P(D;.1 | 0),
0O

4

where P (D;.7|0) is the likelihood function for the topology
parameterized by 6. The solution to the optimization problem,
0* in Eq. 4, is known as the maximum likelihood solution. Note
that without loss of generality, the proposed method, which will
be described in the next section, can be applied to any arbitrary
point-based estimator, such as maximum aposteriori.

It should be noted that the unknown parameters could
include the bias units in the network model in Eq. 3.
Depending on the regulatory network, the bias units are often
= for the network in normal conditions, whereas a combination
of £ and 3! often represents the network in stress conditions.
Therefore, if the network condition is not known, the topology
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inference could aim to simultaneously estimate the parameters of
the connectivity matrix and bias units.

3 The proposed framework
3.1 Likelihood evaluation

Let {x},... ,xzd} be an arbitrary enumeration of the possible
Boolean state vectors (i.e,, a GRN with d components). The
available data in Dy.r can be represented using the vector Iy.; =
{L, ...,

state (0 if the state at time step k is missing). For instance, Dy ¢ =

I}, where I specifies the index associated with the kth

X, =x°, X5 = x3, X6 = x''} contains the information of time
steps 2, 3 and 6, and denotes that data at time steps 1,4 and 5 are
missing. In this case, the indicator vector is defined as I = {0, 9,
3,0,0, 11}

For any given model 0 € ©, we define the predictive posterior
distribution (l'IZ| 1) and posterior distribution (l'[,‘z‘ ) of the
states as:

), (i) = P(Xe =X | L. 51, 0),

Y, (i) = P(X¢ = X' | 1.1, 6), ®)

fori=1,..,2%ndk=1,2, ...
We define the transition matrix M? of size 2 x 2% associated with

a GRN model parameterized by 6, through the following notation:
(M%), =P(X, =x'| X, =%/, 0)

= P(n, =f'(x') @ xi)

_ p"m@th (1 _ p)d—\lc"xub@x‘lll, 6)
fori,j=1,..., 24 where the second and third lines in Eq. 6 are
obtained based on the GRN model in Eq. 1.

Let Iy (i) = P(Xo = x' | 0), for i = 1, .., 2¢ be the initial
state distribution. If no knowledge about this distribution is
available, this can be represented by I, (i) = 1/2%, for i = 1,
..., 2% and 0 € ©. The predictive posterior distribution can be
computed recursively as:

HZ\k—l = Menzfukfl‘ (7)

The posterior probability of states at time step k can be computed
according to predictive posterior and the available data at time
step k. If the data at time step k is missing, i.e. Iy = 0, the predictive
posterior becomes the posterior, as no data is available at time
step k. This can be written as:

Hz|k(j) = P(Xk :Xj | Il:kse) = P(Xk = Xj | Il:k*blk = 0)0)
=10, , (j), for j=1,...,2%
(®)

However, if the ith state is observed at time step k, i.e., I = 7, then
the posterior probability of state at time step k becomes 1 for state
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i, as full knowledge about X; = x’ is available. The posterior
probability in this case can be expressed as:
M, () = P(Xe =X [ I.k0, [k =0,0) = 1,

0 (. j . L, )
M, () =PXx=x/ | I.j1, I =4,0) =0, j#i.

To summarize, the posterior portability of any state at time k, i.e.
X = x' can be derived through the following expression:

I, (i) if Ii=0,
I, (i) = § 1 if Ip=i, (10)
0 otherwise

fori=1,..,2%nd k=12, ...
The likelihood value in optimization problem in Eq. 4 can be
written in logarithmic format as:

L(8) =logP(Dy.1 | 6) = log P(I,. 7 | 0)

T
=Y logP(Ix | L1 0), (1)
k=1

where

ifI#0

. 12
otherwise (12)

0
P(Ii | 1151, 0) = {{Ik'k’l (I

The computation of the log-likelihood value for any given
topology can be huge due to the large size of the transition
matrices with 2> elements. The computational complexity of log-
likelihood evaluation is of order O (22T), where T is the time
horizon. This substantial computational burden (especially in
systems with a large number of components) is the motivation to
come up with more efficient ways to solve the problem presented
in Eq. 4.

3.2 Bayesian optimization for topology
optimization

This article proposes a Bayesian optimization approach for
scalable topology inference of regulatory networks observed
through temporally sparse data. Bayesian optimization (BO)
(Frazier, 2018) is a well-known approach that has been
extensively used in recent years for optimization problems in
domains with expensive to evaluate objective functions. BO has
shown great promise in increasing the automation and the
quality of the optimization tasks (Shahriari et al., 2016). In
this paper, we are dealing with an expensive-to-evaluate
likelihood function. A major issue in employing the
conventional BO is its ability of dealing with continuous
search spaces, whereas the search space in our problem is the
topology of regulatory networks, which takes

combinatorial space. Therefore, some key changes need to be

a large
applied to the original BO formulation so that it can be adapted

to our problem. The main concepts of this approach are
explained in detail in the following paragraphs.
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3.2.1 GP Model over the Log-Likelihood Function

The transition matrix (M%) in Eq. 7 makes the log-
likelihood Egs. 4, 11
computationally expensive, especially when dealing with

function  evaluation in
large scale regulatory networks. Therefore, it is vital to
come up with an efficient way of searching over the
topology space. In this article, the log-likelihood function L
(.) is modeled using the Gaussian Process (GP) regression.
The GP (Rasmussen and Williams, 2006) is mostly defined
over continuous spaces, primarily due to the possibility of
defining kernel functions that model the correlation over
continuous spaces. In our case, the parameters are discrete
interactions (i.e., parameters of the connectivity matrix that
take +1, 0, or —1), which prevent constructing the GP model
for representing the log-likelihood function over topology
space.

This paper takes advantage of the topology structure of
GRNs, encoded in connectivity matrix in (3), and defines the
following GP model:

L(0) =GP (u(0),k(6,0)), (13)

where y(.) shows the mean function, and k (.,.) indicates the
topology-inspired kernel function. The mean function, u(.), in
Eq. 13 represents the prior shape of the log-likelihood function
over all the topologies. One possible choice for the mean function
is the constant mean function. This mean function carries a
single hyperparameter, which can be learned along with the
kernel hyperparameters.

Knowing that each parameter vector @ corresponds to a
the

connectivity matrix C?, structurally-inspired  kernel

function is defined as:
Ic® - ¢
k(6,0") = o’? exp(—f ,

where ||[V||* is the sum of squares of elements of V, C’ and C”

(14)

represent the connectivity matrices related to topologies 6 and 6’
respectively, [ is the length-scale, and 0} is the scale factor
hyperparameters. These hyperparameters quantify how close
the topologies are to each other. The more similar two
are (i.e., less difference

topologies in the connectivity

matrices), the more they are correlated, and the kernel
function value will be higher for them. While, for more
distinct topologies, the kernel will have smaller values.

Figure 2 represents an example of a few possible topologies
for a GRN with two genes. These four possible topologies differ in
one or two interactions. If the log-likelihood value for topology 6"
is calculated, this information can be used for predicting log-

likelihood values for other topologies. The connectivity matrices

01
-1 0/

(15)

for these topologies can be expressed as:

0! 0 0 00 e |01 o
=g er[iafe= -]
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The all the
aforementioned topologies, @ = {6, 6*, 6*, 6"} are calculated

correlation between topology €' and
based on Eq. 14, and expressed through the following kernel

vector:

K (g o) = [k(6',0") k(6', 02) k(6" 03) k(6.6 |

2
~ Ly of af (16)

f exp (1) exp(4) exp(16)

where the length-scale hyperparameter is assumed to be 1. It
can be seen that topology 6" has the maximum correlation
with itself, and the correlation rate decreases when we move
from topology 6" to 8*. This can also be understood in terms
of the differences between the interacting parameters,
the 15.
Topology 6° is different from 6' in only missing

expressed in connectivity matrices in Eq.

interaction from gene 2 to gene 1. This results in a
correlation of k(6',60%) = eXPf(l) between these two
topologies. Further, in Eq. 15 we can see that the

interaction from gene 2 to gene 1 in model ' is
(-1), the
activating (+1) in model 6°.

suppressive whereas same interaction is

This leads to smaller

%
exp (@)
in comparison to the correlation between topologies ' and

correlation between topologies ' and 6°, k(6',6°) =

0. Finally, in Eq. 15, it can be seen that ' and 6* have two
opposite tyg)es of interactions, the
k(6',0") = exp(fl6), which is the correlation
between 0' and all the other topologies.

leading to

smallest

The GP model has the capability of providing the Bayesian
representation of the likelihood function across the topology
space. Let 6, = (6, ..., 6,) be the first t samples from the
parameter space (i.e., samples from the topology candidates) with
the associated log-likelihood values L. ; = [Ly, .. LT Ge, Ly =
L (0,) in Eq. 11). The posterior distribution of £(0) in Eq. 13 is
derived as:

‘C(e) | 01: t:let ~ N(%,Zg), (17)

where pf, and X are the mean and variance for a specific model 6
€ O respectively. These values can be obtained as:

,“o = p(0) + Kpg, :)K(el ) (L1 +—#(0:.0)), (18)

% = koo ~ Koo, 0K, ., ) Koo,
where p(0;.¢) = [u(61),... :H(Gt)]T’ and
k(6,,0]) ... k(6,,6))
K(@,@’) = N (19)
k(6,0]) ... k(6,6))
for ® = {6, ..., 6}, =1{6{,...,0/}. Using the

aforementioned formulation, the GP constructs the log-likelihood
function as a zero-mean Bayesian surrogate model with covariance k
(-.). Further, at iteration t, the log-likelihood function can be
computed by employing the already chosen and evaluated log-
likelihood values for topologies 6., i.e., L. The uncertainty of the
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FIGURE 2

An example of possible models (i.e, topologies) for a GRN
with two genes.

surrogate model will be reduced as we evaluate the likelihood
function for more topologies.

The which of the
hyperparameters of the topology-inspired kernel function and

GP  hyperparameters, consist
the mean function, can be learned by optimizing the marginal
likelihood function of the GP model at each iteration through:

(LI: t | 01: t) ~ N(.u(el t)aK(f)l:r,el:r))' (20)

3.2.2 Sequential Topology Optimization

The notion of efficient topology optimization is to come up
with an efficient way of searching over all the topology space so
that we utilize a minimum number of computationally expensive
likelihood evaluations and eventually find the optimal topology,
which yields the largest likelihood value.

As mentioned in Section 3.1, evaluation of the log-likelihood
function for each topology is a computationally expensive task.
Therefore, in here the sample-efficient and sequential topology
selection is achieved as:

0,., = argmax o (), (21)

0c®

where a,(0) represents the acquisition function in the Bayesian
optimization context, which is determined over the GP model
posterior at iteration ¢. Multiple acquisition functions exist in
the context of Bayesian optimization. For instance, probability
improvement (Shahriari et al, 2016) is one of the most
traditional acquisition functions, which makes selections to
increase the likelihood of improvement in each iteration of
BO. Other examples for acquisition functions include expected
improvement (Mockus et al., 1978; Jones et al., 1998; Brochu
et al., 2010), upper confidence bound (Auer, 2003), knowledge
gradient (Wu et al., 2017; Frazier, 2009), and predictive entropy
search (Henrédndez-Lobato et al., 2014). In this work, we use the
expected improvement acquisition function, which is the most
commonly used acquisition function. This acquisition function
balances the exploration and exploitation trade-off, and
furthermore has a closed form solution. The expected
improvement acquisition function is defined as (Mockus
et al., 1978; Jones et al., 1998):
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a(0) = (1 ~ L )®( (45 ~ L) [ V25 )
2o ((0y ~ L) [ V25 )

Where ¢(.) and @(.) refer to the probability density function and
cumulative density function of standard normal distribution, L =
max {Ly, ... L} is the maximum log-likelihood value until the latest

(22)

turn, and yfy and X are the mean and variance of the GP model at
iteration t as defined in Eq. 18.

The acquisition function in Eq. 22 holds a closed-form
solution and requires the mean and variance of the GP model
for any given topology. To solve Eq. 21 for large regulatory
networks with a large number of unknown interactions, we can
implement some heuristic optimization methods including
particle swarm optimization technique (Kennedy and
Eberhart, 1995), genetic algorithm (Anderson and Ferris,
1994; Whitley, 1994), or the breadth-first local search (BFLS)
(Atabakhsh, 1991) to obtain the model with the largest
acquisition value. After the model with maximum acquisition
value (0,,,) is chosen, the next log-likelihood evaluation is carried
for topology 0., to derive the log-likelihood value L;,;. The GP
model is then updated based on all the new information, defined
as 011 = (01 0:11) and Ly 11 = [Ly: t)Lt+1]T-

The proposed Bayesian topology optimization continues its
sequential process over all the topology space of the regulatory
networks for a fixed number of turns, or until no significant
change in the maximum log-likelihood value in consecutive
iterations is spotted. When the optimization ends, the topology
with the largest evaluated likelihood value is selected as the system

topology, meaning that:

0* := 0;-, where* = argmax L;. (23)

The inference process consists of three main components.
Figure 3 represents the schematic diagram of the proposed
method. The GP model predicts the log-likelihood values
over the possible topology candidates, denoted by the black
dots in Figure 3. The red dots denote the evaluated log-
likelihood values for the selected topologies up to the
current iteration. Using the posterior distribution of the GP
model, the next topology with the highest acquisition function
is selected, followed by the log-likelihood evaluation for the
selected topology. The GP is then updated based on the
selected topology and the evaluated log-likelihood, and
this sequential process continues until a stopping criterion
is met.

The detailed steps of the proposed inference method are described
in Algorithm 1. ® denotes the topology space, and D,.r represents the
available data. Line 3 to line 8 of the algorithm creates the state index
associated with the data D;.;. The sequential topology optimization
process is then carried out from line 10 to line 19, where in each loop,
the log-likelihood value for a topology selected by the proposed
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. Initialization: [ = (jle

. Arbitrary enumeration of the possible Boolean state vectors: X = [Xl7 e

. Topology space ©; data Dy.p; initialize the hyperparameters of the Gaussian process GP(u(.), k(., .)),
t=0.

d
X7

4 fork=1,2,...,Tdo
s fori=1,...,2%do
; I = {z %f Dy, %s not missing and Dy, = X;
0 if Dy is missing
7: end for
s: end for
9: repeat
Sequential Topology Selection
10:

Log-Likelihood Computation

1

0:+1

kk—

(k)

Pick the topology with maximum acquisition value: 81 = argmaxgcg o(0) — Eq. 21

(i) = P(onxi | 9t+1),fori: L...,2% Ly =0.

M "f“HZi*ﬁk_l-

1(z) if I, =0,
if =1,
otherwise

if I, #0
otherwise

11 Initialization: Hg‘tg !
12: fork=1,2,...,T do
13: Predictive Posterior Distribution: Hzlt;i
11
14: Posterior Distribution: Hzlt;rl(i) =<1
0
15: Log-Likelihood Update: L;+1 = Ley1+log P(I | I1k—1, O1+1),
H91+1
where P(Ik | [1:k—170t+1) = klk—1
16: end for
Update the GP Model

t=1+1

. until the stopping criterion is met

Update the hyperparameters of the GP according to (61:¢+1, L1:¢+1)-

20: The Inferred Topology: 6% := 0;«, where i* = argmax;_; _; L;.

Algorithm 1. The Proposed method for inference of regulatory networks through temporally-sparse data.

Bayesian optimization technique is computed, followed by the
GP posterior update and the next topology selection. Finally,
upon the termination of the inference process, the topology
with the maximum log-likelihood is chosen in line 20 as the
inferred topology. The computation of the log-likelihood
determines the complexity of the algorithm at each step of
our proposed method, which is of order O (22T). This means
that the complexity at each step of the proposed method is the
same as one log-likelihood evaluation. The log-likelihood
iteration is used

evaluation at each to update our

knowledge (posterior), and to help choose the best

candidate for future iterations.
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4 Numerical experiments

The code repository for replicating the numerical experiments of
this paper is included in the data availability statement at the end of
this paper. The well-known mammalian cell-cycle network (Fauré
et al,, 2006) is used to evaluate the performance of our proposed
method. Figure 4 presents the pathway diagram of this network. The
state vector for this network is assumed as the following x =(CycD,
Rb, p27, E2F, CycE, CycA, Cdc20, Cdhl, UbcH10, CycB). The
division of mammalian cells depends on the overall organism growth,
controlled using signals that activate cyclin D (CycD) in the cell. As
can be seen in the state vector, the mammalian cell-cycle network
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Update the GP Model

Compute the Log-Likelihood Select the Next Topology
L(6141) 0,41 = argmaxaz(e)

FIGURE 3
Schematic diagram of the proposed topology inference in
GRNS.

contains 10 genes (d = 10). The settings used for our experiments are
as follows: data length of 100 (k = 100), process noise of 0.1 (p = 0.1),
and missing data percentage (sparsity) of 50%. Furthermore,
10 regulations of the connectivity matrix are assumed to be
unknown (L = 10), and a maximum of 100 likelihood evaluations
are used for the inference process. All the parameters used throughout
the numerical experiments are expressed in Table 1.

The connectivity matrix and bias vector in Eq. 3 for the

mammalian cell-cycle network can be written as:

r+1 0 0 0 0 0 O O O 017
-1 0 +1 0 -1 -1 0 0 O -1
-1 0 +1 0 -1 -1 0 0 O -1
0 -1+1 0 0 -1 0 0 0 -1

C- 0 -1+41+1-1-1 0 0 0 O
0 -1 0 41 0 +1 -1 -1 -1 07 (24)
0O 0 0 0 0 0 -1 0 0 +1
0 0 +1 0 0 -1+41 0 0 -1
0 0 0 0 0 +1 +1 -1 +1 +1
0 0000 0 -1-10 0.
1

o
Il
—
!
!
L
!
!
!
!
!
L
!
I
L
X
—
=

In this section, we are assuming that the connectivity
matrix is not fully known. This network has 10 genes, and
there is a total of 2'° = 1, 024 possible states for this network.
Consequently, the transition matrix size is 2'° x 2'°, which
causes the likelihood evaluation to be computationally
expensive for any possible topology. Using our proposed
method, we show that the optimal topology with the largest
log-likelihood value can be inferred with few likelihood
evaluations; hence, we offer an efficient search over all
possible topologies.

In all of the experiments, 10 unknown interactions (c;;) were

considered. Each of the unknown interactions can take their
values in the set { + 1, 0, =1}, which leads to 3'° = 59, 049 different
{01, RN 03 }. The 10 randomly
chosen unknown regulations, which are elements of the

possible system models, i.e., ® =

connectivity matrix in Eq. 24, are:
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FIGURE 4
Pathway diagram for the cell-cycle network.

TABLE 1 Parameter values of mammalian cell-cycle network
experiments.

Parameter Value
Trajectory Length, k 100
Number of Likelihood Evaluations 100
Number of Genes, d 10
Number of Unknown Regulations, L 10
Process Noise, p 0.1
Missing Data Percentage 50%
1 =-1, cs=-1, co=-1, c=-1, cs4=+1
7 ==L, Ceo=-1, cg3=+1, co6=+l, co5=-1.
(25)

We also considered a uniform prior distribution for the
21(,forallﬂe@andz—l 2,
Furthermore, all the experiments are repeated for

initial states, i.e., ng (i) =
2'°.
10 independent runs, and the average results along the
confidence bounds are reported in all the figures. Note that
the randomness of early results come from the process noise (p),
and the way the sequential topology optimization is being
performed in each run.

For the first set of experiments, the performance of the proposed
method is shown using two plots in Figure 5. The left plot represents
the progress of the log-likelihood value of the inferred model with
respect to the number of likelihood evaluations, meaning that it
shows the maximum log-likelihood value obtained during the
optimization process. Larger log-likelihood values mean that the
chosen model can better represent the true model (i.e., the available
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FIGURE 6

Performance of the proposed method with respect to
percentage of missing data.

data is more likely to come from models with larger likelihood
values). As a comparison, we also repeated the same experiment
using Genetic Algorithm (GA) (Anderson and Ferris, 1994; Whitley,
1994), which is a powerful and well-known solver for non-
continuous problems. By looking at the left plot in Figure 5, we
can see that the inference by the proposed method, indicated by the
solid blue line, is better than the GA method (dashed red line). This
superiority can be seen in terms of the mean and confidence
intervals in Figure 5. As we evaluate more likelihoods for
different models, the likelihood of the proposed method’s
inferred model gets closer to the optimal log-likelihood value,
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Performance of the proposed method in presence of
different Bernoulli noise.

indicated by the dotted red line. Hence, our proposed method is
capable of reaching a better log-likelihood with less number of
likelihood evaluations and has a more efficient way of searching over
all the possible models. Furthermore, the 95% confidence interval is
illustrated in the same plot for both methods during this experiment.
We can observe that the proposed method’s confidence interval
keeps getting smaller, and roughly after 70 evaluations, the
confidence interval tends to go zero. This indicates the
robustness of the proposed method, where after roughly
70 iterations, the log-likelihood gets to its optimal value at
different independent runs. By contrast, the results from the GA
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still show a large confidence interval even after 100 evaluations, and
its average is far less than the optimal log-likelihood value.

The right plot of Figure 5 shows the progress of the connectivity
error during the optimization process (i.e., number of likelihood
evaluations) obtained by the proposed method. Let C* be the
vectorized true connectivity matrix indicated in Eq. 24, and C’ be
the vectorized inferred connectivity matrix at tth likelihood
evaluation. The connectivity error at iteration f is defined as
[C* — C';. Evidently, we will have a better estimate of the true
model as this error gets closer to zero. In the right plot, we can see
that the connectivity error decreases as we do more evaluations, and
after about 75 likelihood evaluations, the error gets to zero, meaning
that we successfully inferred the true connectivity matrix. Also, as
expected, we can see that the 95% confidence interval gets smaller as
we do more evaluations and eventually gets close to zero after about
75 evaluations.

In the second set of experiments, we aim to investigate the effect
of missing data percentage on the performance of the proposed
method. It is expected that with more missing data, it would be more
difficult to infer the relationship between different components of the
system; hence the connectivity error for the inferred model would be
larger. For these experiments, we changed the missing data
percentage from 0% to 90% and used Bernoulli noise value 0.2.
Other parameters are fixed based on Table 1. The mean of the
inferred models’ connectivity error obtained from these experiments,
along with their 68% confidence interval are presented as bar plots in
Figure 6. As expected, these results demonstrate that the mean of
connectivity error increases as the missing data percentage gets larger.

The final set of experiments focuses on how the Bernoulli
noise affects the performance of the proposed method. In all
these experiments, we consider 50% missing data percentage,
and we change the Bernoulli noise from 0.01 to 0.4. For
performance comparison, the mean of the inferred models’
connectivity error derived from these experiments is shown
using bar plots in Figure 7. In this bar plot, we can observe that
the connectivity error is large for the Bernoulli noise of 0.01.
As the noise increases to 0.05 and 0.1, the connectivity error
keeps decreasing. However, increasing the noise to 0.2, 0.3,
and finally 0.4 results in a continuous increase in the
These the
relationship between network stochasticity and data

connectivity  error. results ~demonstrate
informativity needed for the inference process. For a small
process noise (p = 0.01), the network is typically trapped in
attractor states, which precludes the observation of the entire state
space. This leads to the issue of statistical non-identifiability,
which refers to the situation where multiple models are not
clearly distinguishable using the available data. Once the noise
value is slightly increased (p = 0.05, p = 0.1), the network gets
out of its attractor states more often, which enhances the
performance of the inference process. Finally, for too large
process noise values (p = 0.2, p = 03, p = 04), the state
transitions become more chaotic, making it more difficult to

infer the true relations between the components.
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5 Conclusion

This paper presents a highly scalable topology inference method
for gene regulatory networks (GRNs) observed through temporally
sparse data. The Boolean network model is used for capturing the
dynamics of the GRNs. The inference process consists of inferring
the interactions between genes or equivalently selecting a topology
for the system among all the possible topologies that have the highest
likelihood value. Evaluating the likelihood function for any given
topology is expensive, preventing exhaustive search over the large
possible topology space. The proposed method models the log-
likelihood function by a Gaussian Process (GP) model with a
structurally-inspired kernel function. This GP model captures the
correlation between different possible topologies and provides the
Bayesian representation of the log-likelihood function. Using the
posterior distribution of the GP model, Bayesian optimization is
used to efficiently search over the topology space.

The high performance of our proposed method is shown
using multiple experiments on the well-known mammalian cell-
cycle network. We have also repeated all the experiments multiple
times to obtain a confidence interval and further demonstrate the
accuracy and robustness of the solutions obtained by our method.
In the first experiment, we considered the topology inference of the
mammalian cell-cycle network with 10 unknown interactions and
50% missing data. From comparing the results of topology
inference using our proposed method and genetic algorithm,
we observed that our method is more efficient in searching
over the topology space and reaches an optimal model with
fewer likelihood evaluations. Meanwhile, the small confidence
interval of our method justified the robustness of the solutions.
The second experiment investigated the effect of missing data on the
performance of the proposed inference method. From the results, we
understand that as expected, with more missing data, the method’s
accuracy reduces, and the inference error becomes larger. Finally, in
the third experiment, we studied the performance of our method in
the presence of different Bernoulli noise (i.e., stochasticity in the state
process). The results show that for small stochasticity, the accuracy
of the inference is low, as the system spends most of its time in a few
states (i.e., attractors) and the interactions between different
components of the system are not distinguishable. As the
stochasticity increases, the accuracy of the proposed method
increases (as the error decreases) until a certain point, and after
that again, the accuracy starts decreasing. This is because too much
stochasticity turns the system into a more chaotic form, making the
inference of the true model more challenging.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
ImaniLab/Frontiers-2022.
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