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Abstract. We show that if N is a closed manifold of dimension n = 4
(resp. n = 5) with π2(N) = 0 (resp. π2(N) = π3(N) = 0) that admits a

metric of positive scalar curvature, then a finite cover N̂ of N is homotopy
equivalent to Sn or connected sums of Sn−1 × S1. Our approach com-
bines recent advances in the study of positive scalar curvature with a novel
argument of Alpert–Balitskiy–Guth.

Additionally, we prove a more general mapping version of this result. In
particular, this implies that if N is a closed manifold of dimensions 4 or 5,
and N admits a map of nonzero degree to a closed aspherical manifold, then
N does not admit any Riemannian metric with positive scalar curvature.

Introduction

We are concerned here with the problem of classification of manifolds ad-
mitting positive scalar curvature (PSC). For closed (compact, no boundary)
2- and 3-manifolds this problem is completely resolved, namely the sphere and
projective plane are the only closed surfaces admitting positive scalar curva-
ture and a 3-manifold admits positive scalar curvature if and only if it has
no aspherical factors in its prime decomposition. In particular, a 3-manifold
admitting positive scalar curvature has a finite cover diffeomorphic to S3 or
to a connected sum of finitely many S2 × S1.

The main result of this paper is the following partial generalization of this
statement to dimensions n = 4, 5.

Theorem 1. Suppose that N is a closed smooth n-manifold admitting a metric
of positive scalar curvature and

• n = 4 and π2(N) = 0, or
• n = 5 and π2(N) = π3(N) = 0.

Then a finite cover N̂ of N is homotopy equivalent to Sn or connected sums
of Sn−1 × S1.

It was shown in [7, 17] that if a closed Nn is aspherical (i.e., πk(N) = 0 for
all k ≥ 2) and n = 4, 5 then there is no Riemannian metric of positive scalar
curvature on N . Theorem 1 can thus be seen as a refinement of this into a
positive result.
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Remark. By [12, Theorem 1.3] (see also [11, 26, 22]), we have that if n =

4 and N̂ is homotopy equivalent to S4 or S3 × S1, or if n = 5 (with no
further restriction on the homotopy type), then homotopy equivalence in the
conclusion to Theorem 1 can be upgraded to homeomorphism.

We also prove a more general “mapping” version of Theorem 1.

Theorem 2. Suppose that N is a closed smooth n-manifold with a metric of
positive scalar curvature and there exists a non-zero degree map f : N → X,
to a manifold X satisfying

• n = 4 and π2(X) = 0, or
• n = 5 and π2(X) = π3(X) = 0.

Then a finite cover X̂ of X is homotopy equivalent to Sn or connected sums
of Sn−1 × S1.

We note that the following result immediately follows from Theorem 2.

Corollary 3. Let n ∈ {4, 5}, X,N be closed oriented manifolds of dimension
n, X is aspherical. Suppose there exists a map f : N → X with deg f 6= 0.
Then N does not admit any Riemannian metric of positive scalar curvature.

Recall that it was previously shown in [7, 17] that closed aspherical (i.e.,
πk(N) = 0 for all k ≥ 2) n-manifolds do not admit PSC for n = 4, 5. In
[17] a related statement was proven for manifolds admitting proper distance
decreasing maps to uniformly contractible manifolds. In fact, Corollary 3
seems to have been asserted by Gromov in the May 2021 version of his four
lectures on scalar curvature [16, p. 144-5], but the (relatively simple) lifting
argument does not appear there.

0.1. Urysohn width bounds. Recall that a metric space (X, d) has Urysohn
q-width ≤ Λ if there is a q-dimensional simplicial complex K and a continuous
map X → K so that diam f−1(s) ≤ Λ for all s ∈ K. As such, having
finite Urysohn q-width implies that a manifold looks ≤ q-dimensional in some
macroscopic sense.

A well-known conjecture (cf. [16, p. 63]) of Gromov posits that an n-manifold
with scalar curvature ≥ 1 has finite Urysohn (n− 2)-width. Various forms of
this conjecture are proven for n = 3 [13, 21, 23, 24], while the conjecture is
largely open for n ≥ 4 (some progress has been achieved in [2, 3]).

A key component in the proof of Theorem 1 is the following result.

Theorem 4. For (Nn, g) satisfying the hypothesis of Theorem 1, the universal
cover (Ñ , g̃) has finite Urysohn 1-width.

This follows by combining Corollary 7 and Proposition 8 below. A simple
example where Theorem 1 applies is the product metric on S1 × S3 whose
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universal cover is R×S3, clearly of finite Urysohn 1-width. On the other hand,
we note that the higher connectivity hypothesis in Theorem 4 is necessary:
compare with T 2 × S2.

Remark. Consider a metric gR on S3 formed by capping off a cylinder [−R,R]×
S2(1) with hemispheres and smoothing out the resulting metric, so that the
scalar curvature is ≥ 1. The product metric (S1(1), gS) × (S3, gR) has scalar
curvature ≥ 1 but the universal cover has Urysohn 1-width ∼ R. As such, the
estimate in Theorem 4 cannot be made quantitative (essentially, the issue is
that the universal cover converges to R

2 × S2(1) which has nontrivial π2).

As we were finishing this paper, we discovered that in his recently updated
(May 2021) version of his four lectures on scalar curvature, Gromov has in-
dicated a proof of the classification of PSC 3-manifolds [16, p. 135] by using
finiteness of the 1-Ursyohn width of the universal cover. Our proof of Theorem
1 follows a similar strategy once Theorem 4 is proven.

0.2. Remarks on positive isotropic curvature. Theorem 1 has an inter-
esting relationship to well-known conjectures of Gromov [15, Section 3, (b)]
and Schoen [29] concerning the topology of closed n-manifolds admitting a
metric with positive isotropic curvature (PIC). Namely, they (respectively)
conjecture that if a closed manifold has a PIC metric then the fundamental
group is virtually free and a finite cover is diffeomorphic to either a sphere or
connect sums of finitely many S1 × Sn−1.

There have been distinct approaches to such a question, relying on either
minimal surface theory or Ricci flow. Using minimal surface theory, Micallef–
Moore have shown that if Mn is a closed PIC-manifold then πk(M) = 0
for k = 2, . . . , [n

2
] [25]. In particular, if M is simply connected, then it is

homeomorphic to a sphere. In a related work, Fraser has proven that an n-
manifold (n ≥ 5) with PIC does not contain a subgroup isomorphic to Z⊕ Z

[10].
On the other hand, using Ricci flow, Hamilton has classified 4-manifolds ad-

mitting PIC that do not contain nontrivial incompressible (n−1)-dimensional
space forms [18]. This was extended to prove the Gromov–Schoen conjectures
for n = 4 in [6]. In higher dimensions, Brendle–Schoen [5] and Nguyen [27]
proved the PIC condition is preserved under the Ricci flow; this is an impor-
tant ingredient in Brendle–Schoen’s proof of the differentiable sphere theorem.
Recently, Brendle has achieved a breakthrough in the study of the Ricci flow of
PIC-manifolds and has extended Hamilton’s result to dimensions n ≥ 12 [4];
as above, this result has been used to prove the Gromov–Schoen conjectures
for n ≥ 12 [20].

We note that since PIC implies PSC, combining [25] with Theorem 1 yields
an alternative proof of Gromov’s conjecture (the fundamental group is virtually



4 O. CHODOSH, C. LI, AND Y. LIOKUMOVICH

free) for n = 4 and proves a weak version of Schoen’s conjecture for n = 4 (i.e.,
with homotopy equivalence replacing diffeomorphism). Furthermore, Theorem
1 implies that a PIC 5-manifold with π3(M) = 0 satisfies Gromov’s conjecture
and the same weak version of Schoen’s conjecture. It is an interesting question
if a 5-manifold with PIC has π3(M) = 0 (note that π2(M) = 0 by [25]).

0.3. Organization of the paper. In Section 1 we revisit the filling radius
estimates from [7, 17]. In Section 2 we show that such estimates imply The-
orem 4. Then, we complete the proof of Theorem 1 in Section 3. Finally, in
Section 4 we prove Theorem 2.

Acknowledgements. O.C. was supported by a Sloan Fellowship, a Terman
Fellowship, and NSF grant DMS-2016403. C.L. was supported by NSF grant
DMS-2005287. Y.L. was supported by a NSERC Discovery grant and NSERC
Accelerator Award. We are grateful to Hannah Alpert, Larry Guth, Ciprian
Manolescu, Kasra Rafi, and Boyu Zhang for various discussions related to this
article. We would like to thank Georg Frenck for suggesting the statement of
Theorem 2 to us as well as an anonymous referee for several helpful suggestions.

1. Filling estimates

In [7, 17] it was shown that a closed aspherical n-manifold does not admit
positive scalar curvature for n = 4, 5 by combining a linking argument with
a filling radius inequality in the presence of positive scalar curvature. In this
section we observe that this filling radius inequality carries over to the setting
considered here.

We begin by summarizing the results contained in [7] that will be needed in
this paper.

Theorem 5. Consider (Nn, g) a closed Riemannian n-manifold with scalar

curvature R ≥ 1. Fix a Riemannian cover (N̂ , ĝ).

(1) Suppose that n = 4. There is a universal constant L0 > 0 with the fol-
lowing property. Consider a closed embedded 2-dimensional subman-
ifold Σ̂2 ⊂ N̂ with [Σ̂2] = 0 ∈ H2(N̂ ;Z). Then there is a 3-chain

Σ̂′
3 ⊂ BL0

(Σ̂2) and a closed embedded 2-dimensional submanifold Σ̂′
2

with

∂Σ̂′

3 = Σ̂2 − Σ̂′

2

as chains, such that for every connected component S of Σ̂′
2 the extrin-

sic diameter of S satisfies diam(S) ≤ L0.
(2) Suppose that n = 5. There is a universal constant L0 > 0 with the fol-

lowing property. Consider a closed embedded 3-dimensional subman-
ifold Σ̂3 ⊂ N̂ with [Σ̂3] = 0 ∈ H3(N̂ ;Z). Then there is a 4-chain
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Σ̂′
4 ⊂ BL0

(Σ̂3) and a closed embedded 3-dimensional submanifold Σ̂′
3

with

∂Σ′

4 = Σ3 − Σ′

3

as chains, as well as 3-chains Û1, . . . , Ûm with diam(Ûj) ≤ L0 and 2-

cycles {Γ̂l
j : j = 1, . . . ,m, l = 1, . . . , k(j)} with diam(Γ̂l

j) ≤ L0 and so
that

Σ̂3 =
m
∑

j=1

Ûj

and

∂Ûj =

k(j)
∑

l=1

Γ̂l
j,

for each j = 1, . . . ,m, where both equalities hold as chains (not just in
homology). Finally, there is an integer q and a function

u : {(j, l) : j = 1, . . . ,m, l = 1, . . . , k(j)} → {1, . . . , q}

so that for r ∈ {1, . . . , q}, we have

diam





⋃

(j,l)∈u−1(r)

Γ̂l
j



 ≤ L0

and moreover we have
∑

(j,l)∈u−1(r)

Γ̂l
j = 0

as 2-chains, for r ∈ {1, . . . , q}.

Proof. When n = 4, one can solve Plateau’s problem to find Σ̂3 minimizing
area with ∂Σ̂3 = Σ̂2. Applying the “µ-bubble technique” (cf. [7, §3]), we can

find Σ̂′
2 ⊂ Σ̂3 with dΣ̂3

(Σ̂′
2, Σ̂2) ≤ L0 and so that Σ̂′

2 ⊂ Σ̂3 is a “stable µ-bubble”
in the sense of [7, Lemma 14]. By [7, Lemma 16], the intrinsic diameter of each
component is ≤ L0 (taking L0 larger if necessary). This proves the assertion
(since extrinsic distances are bounded by the intrinsic distances).

Similarly, when n = 5, we can solve Plateau’s problem to find Σ̂4 minimizing
area with ∂Σ̂4 = Σ̂3. As before, we can find a “stable µ-bubble” Σ̂′

3 with

dΣ̂4
(Σ̂′

3, Σ̂3) ≤ L0. Finally, the construction of the Ûj, Γ̂
k
j follows from the

“slice-and-dice” procedure from [7, §6.3-6.4].

Note that the last conclusion (i.e., that
∑

(j,l)∈u−1(r) Γ̂
l
j = 0) was stated

slightly differently in [7]. To be precise, it was proven that the cycles
∑

(j,l)∈u−1(r) Γ̂
l
j
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are disjoint for distinct r (cf. [7, §6.4]). Now, by using
∑q

r=1

∑

(j,l)∈u−1(r) Γ̂
l
j =

∂(
∑m

j=1 Uj) = 0, we find that each term in the sum must vanish. �

Û1

Û2

Û3

Û4

Û5

Û6

Û7

Σ̂
′

3

Γ̂
2

2 Γ̂
1

3

Γ̂
3

4 Γ̂
1

6

Figure 1. Cutting the 3-cycle Σ̂′
3 into small pieces.

Example 1. We illustrate the “slice-and-dice” procedure and its relevance
to the statements of Theorem 5 with figure 1, where Σ̂′

3 is diffeomorphic to

S2 × S1. We first cut (slice) Σ̂′
3 by an embedded S2 and view the result as

a 3-manifold with boundary, which we further cut (dice) into seven 3-chains

Û1, · · · , Û7, such that each Ûj satisfies diam Ûj ≤ L0 (of course, the number of
chains may vary in different examples). We label the boundary components

of Ûj, from left to right in the figure, by Γ̂l
j, l = 1, · · · , k(j). Note that in

this case, there are 4 such boundary components that are non-smooth, namely
Γ̂2
2, Γ̂

1
3, Γ̂

3
4, Γ̂

1
6. The function u groups different Γ̂l

j that glue together into a
2-cycle. For example, we have

u(2, 2) = u(3, 1) = u(4, 3) = u(6, 1),

and

u(1, 1) = u(2, 1), u(3, 2) = u(4, 1), u(4, 2) = u(5, 1), u(6, 2) = u(7, 1).

Moreover, the value of u on different groups of Γ̂l
j are different. (e.g. u(2, 2) 6=

u(1, 1).) Note here that
∑

(j,l)∈u−1(r) Γ̂
l
j = 0 for each r.

The following proposition will be used to replace [7, Proposition 10] in the
more general setting considered here.
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Proposition 6. Consider π : (N̂ , ĝ) → (N, g) a regular1 Riemannian cov-
ering map of n-dimensional manifolds, with (N, g) compact. Assume that

H`(N̂ ,Z) = 0. Then for r > 0 there is R = R(r) < ∞ so that for any x ∈ N̂ ,
H`(Br(x),Z) → H`(BR(x),Z) is the zero map.

Proof. We first fix x = x0. For any r > 0 there is r1 ∈ [r, 2r] with Br1(x0) a
compact manifold (with boundary). By Corollaries A.8 and A.9 in [19], the

homology groups of Br1(x0) are finitely generated. Assume that α1, . . . , αJ

generates H`(Br1(x0),Z). By assumption, each αi = ∂βi for some (` + 1)-
chains β1, . . . , βJ . Choose R1 = R1(r) so that βi ∈ BR1

(x0) for i = 1, . . . , J .

Then, we see that H`(Br1(x0),Z) → H`(BR1
(x0),Z) is the zero map, so in

particular
H`(Br(x0),Z) → H`(BR1

(x0),Z)

is the zero map.
Now, for any x ∈ N̂ , we can assume (using a deck transformation) that

d(x, x0) ≤ diamN . Thus,

Br(x) ⊂ Br+diamN(x0)

and
BR1(r+diamN)(x0) ⊂ BR1(r+diamN)+diamN(x)

Thus, we find that the assertion holds for R(r) = R1(r+diamN)+diamN . �

Putting these facts together, we thus obtain the following generalization of
the filling estimate obtained in [7, 17].

Corollary 7. Suppose that for n ∈ {4, 5}, (Nn, g) is a closed Riemannian
n-manifold with positive scalar curvature and π2(N) = · · · = πn−2(N) = 0.
Then there is L = L(N, g) > 0 with the following property. Consider Σn−2 an
closed embedded (n − 2)-submanifold in Ñ the universal cover. Then Σn−2 is
nullhomologous in BL(Σn−2).

Proof. Observe that universal cover Ñ has π1(Ñ) = · · · = πn−2(Ñ) = 0. By
the Hurewicz theorem, Hn−3(Ñ ,Z) = Hn−2(Ñ ,Z) = 0.

When n = 4 the assertion immediately follows from a combination of The-
orem 5 with Proposition 6. Indeed, Theorem 5 implies that Σ2 is homologous
to Σ′

2 in BL0
(Σ2) where diam(Σ′

2) ≤ L0. Proposition 6 implies that Σ′
2 can

be filled in a R(L0)-neighborhood. Thus, Σ2 can be filled in a (L0 + R(L0))-
neighborhood.

When n = 5 the proof is more complicated due to the nature of the “slice-
and-dice” decomposition in Theorem 5. Fix Σ̂′

3 ⊂ BL0
(Σ3) homologous to Σ3

1Recall that a cover is regular if the group of deck transformations acts transitively on
the fibers. In particular, the universal cover is a regular cover.
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and {Ûj} and {Γ̂l
j} with the properties described in Theorem 5. We can now

fill Σ̂′
3 in a bounded neighborhood following [7, §6.4], which we explain here.

Since diam(Γ̂l
j) ≤ L0, Proposition 6 implies that each Γ̂l

j = ∂Γ̃l
j for a 3-chain

with diam(Γ̃l
j) ≤ R(L0). Then, because diam(Ûj) ≤ L0,

Ûj −

k(j)
∑

l=1

Γ̃l
j

is a 3-cycle of diameter ≤ L0 + 2R(L0). Thus, by Proposition 6, there is a
4-chain Ũj with diam(Ũj) ≤ R(L0 + 2R(L0)) and

∂Ũj = Ûj −

k(j)
∑

l=1

Γ̃l
j.

On the other hand, as was proven in Theorem 5, there is u : {(j, l) : j =
1, . . . ,m, l = 1, . . . , k(j)} → {1, . . . , q} so that

diam





⋃

(j,l)∈u−1(r)

Γ̂l
j



 ≤ L0

and
∑

(j,l)∈u−1(r)

Γ̂l
j = 0

as 2-chains.
As such, for r ∈ {1, . . . , q},

∑

(j,l)∈u−1(r) Γ̃
l
j is a 3-cycle (of diameter bounded

by 2R(L0)+L0 and thus there is a 4-chain Ξ̂r with diam(Ξr) ≤ R(L0+2R(L0))
and

∂Ξr =
∑

(j,l)∈u−1(r)

Γ̃l
j.

This yields

Σ̂′

3 = ∂

[

q
∑

r=1

Ξq +
m
∑

j=1

Ũj

]

with
q

∑

r=1

Ξq +
m
∑

j=1

Ũj ⊂ BR(L0+2R(L0))(Σ̂
′

3).

Thus, Σ3 is null homologous in a (R(L0 + 2R(L0)) + R(L0))-neighborhood.
This completes the proof. �



SUFFICIENTLY CONNECTED PSC MANIFOLDS 9

Fill in each Γ̂
l
j with Γ̃

l
j

Obtain a 3-cycle

Fill in by Ξr

Γ̂
2

2
Γ̂
1

3

Γ̂
3

4
Γ̂
1

6

(shaded regions)

Figure 2. Fill in
{

Γ̂l
j : u(j, l) = r

}

.

Example 2. Continuing Example 1, we illustrate in Figure 2 how Corollary
7 works for Σ̂′

3 in Figure 1. Consider all 2-cycles Γ̂i
j with u(j, i) = r. Fill in

Γ̂l
j with a 3-chain Γ̃l

j. By construction, the sum of these Γ̃l
j forms a 3-cycle,

which can then be filled in by a 4-chain Ξr. By Proposition 6 and Corollary
7, the diameter of all these fill-ins are bounded by R(L0 + 2R(L0)).

2. Filling versus Urysohn width

The next result is inspired by the work of Hannah Alpert, Alexei Balitsky
and Larry Guth [1], which we learnt about from a talk by Hannah Alpert. The
strategy should be compared with [13, Corollary 10.11].

Proposition 8. Assume that (Nn, g) has the property that any closed em-
bedded (n − 2)-submanifold in the universal cover Σn−2 ⊂ Ñ can be filled in
BL(Σn−2). Then the universal cover (Ñ , g̃) satisfies:

for any point p ∈ Ñ , each connected component of

a level set of d(p, ·) has diameter ≤ 20L. (∗)

Note that Corollary 7 implies a manifold (N, g) in Theorem 1 satisfies the
assumptions of Proposition 8. By the argument in [14, Corollary 10.11], this
shows that the universal cover (Ñ , g̃) has Urysohn 1-width ≤ 20L. In partic-
ular, the macroscopic dimension of Ñ is 1.

Proof. Let p ∈ Ñ be a point and consider level sets of the distance function
f(x) = d(p, x).



10 O. CHODOSH, C. LI, AND Y. LIOKUMOVICH

For the sake of contradiction, suppose that there is a curve γ ⊂ f−1(t)
connecting points x, y with d(x, y) ≥ 20L. Fix a minimizing geodesic ηx from
p to x (and similarly for ηy) and consider the triangle T = ηx ∗ γ ∗ −ηy.
Fix 0 < ` < L so that ∂B4L+`(x) and ∂BL+`(ηx) are smooth hypersurfaces
intersecting transversely. Set Σn−2 := ∂B4L+`(x) ∩ ∂BL+`(ηx). Note that we
have not ruled out Σn−2 = ∅; in this case we will take d(Σn−2, ·) = ∞ below.
By construction,

d(Σn−2, ηx) > L.

Set Σ′
n−1 := ∂B4L+`(x) ∩ BL+`(ηx) and note that ∂Σ′

n−1 = Σn−2. Observe
that since ηx is a minimizing geodesic between p and x and Σ′

n−1 is a subset
of ∂B4L+`(x), it must hold that ηx intersects Σ′

n−1 exactly once and does
so orthogonally (and thus transversally). We will return to this observation
below.

Lemma 9. d(Σn−2, γ) ≥ d(Σ′
n−1, γ) > L.

Proof. We first prove that d(Σ′
n−1, γ) > L. Choose s ∈ Σ′

n−1 with d(s, γ) =
d(Σ′

n−1, γ). There is e ∈ ηx so that d(s, e) ≤ L+ `. We have

d(x, e) ≥ d(x, s)− d(s, e) ≥ 4L+ `− (L+ `) = 3L.

Since ηx is minimizing (and has length t), we have d(p, e) ≤ t− 3L. Thus,

d(p, s) ≤ d(p, e) + d(e, s) ≤ t− 3L+ L+ ` = t− 2L+ `.

Thus,
d(s, γ) ≥ d(p, γ)− d(p, s) ≥ t− (t− 2L+ `) = 2L− `.

This completes the proof of d(Σ′
n−1, γ) > L. Since Σn−2 ⊂ Σ′

n−1 it clearly
holds that d(Σn−2, γ) ≥ d(Σ′

n−1, γ).
�

Lemma 10. Σ′
n−1 ∩ ηy = ∅.

Proof. Suppose the contrary. Consider s ∈ Σ′
n−1∩ηy. Note that d(s, x) = 4L+`

and there is e ∈ ηx with d(s, e) ≤ L+ `. We have

d(x, e) ≤ d(x, s) + d(e, s) ≤ 5L+ 2`.

As such,
d(p, e) ≥ t− 5L− 2`,

so
d(p, s) ≥ d(p, e)− d(e, s) ≥ t− 5L− 2`− L− ` = t− 6L− 3`.

Thus,
d(s, y) ≤ 6L+ 3`.

However, this contradicts

20L ≤ d(x, y) ≤ d(x, s) + d(s, y) ≤ 4L+ `+ 6L+ 3` = 10L+ 4`.
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This completes the proof. �

Lemma 11. d(Σn−2, ηy) > L.

Proof. The proof is similar to the previous argument. Suppose we have s ∈
Σn−2 and ey ∈ ηy with d(s, ey) ≤ L. There is ex ∈ ηx with d(s, ex) = L + `.
Note that d(s, x) = 4L+ `. Thus,

d(p, ex) = t− d(x, ex) ≥ t− d(x, s)− d(s, ex) ≥ t− 5L− 2`.

Thus,

d(p, ey) ≥ d(p, ex)− d(ex, ey) ≥ d(p, ex)− d(ex, s)− d(s, ey) = t− 7L− 3`.

This implies that

d(y, ey) ≤ 7L+ 3`.

However, this contradicts

20L ≤ d(x, y) ≤ d(x, s) + d(s, ey) + d(ey, y) ≤ 12L+ 4`.

This completes the proof. �

We can now complete the proof of Proposition 8. Perturb the triangle T
to be a smooth embedded curve T ′ still intersecting Σ′

n−1 transversely. As
long as the perturbation is small, T ′ ∩ Σ′

n−1 will consist of a single point
(thanks to Lemmas 9 and 10, along with the observation that ηx intersects
Σ′

n−1 transversely in exactly one point). Assume first that Σn−2 6= ∅. By
assumption, there is Σn−1 ⊂ BL(Σn−2) with ∂Σn−1 = Σn−2. Using Lemmas 9
and 11 as well as d(Σn−2, ηx) = L + ` we find that Σn−1 ∩ T ′ = ∅. As such,
T ′ has nontrivial algebraic intersection with the cycle Σ′

n−1 − Σn−1. This is a

contradiction since Ñ is simply connected.
If Σn−2 = ∅, then the argument is similar but simpler. In this case, we

note that Σ′
n−1 is a cycle and combining Lemmas 9 and 10 with the fact that

Σ′
n−1 intersects ηx transversely exactly once, we see that Σ′

n−1 is a cycle with
nontrivial algebraic intersection with T ′, a contradiction as before. �

3. Fundamental group and homotopy type

In this section, we prove Theorem 1. We first prove (see Corollary 14 be-
low) that a manifold (Nn, g) whose universal cover satisfies the conclusion of
Proposition 8 has virtually free fundamental group. (Recall that a group is
virtually free if it processes a free subgroup of finite index.) This fact seems
to be well-known among certain experts (in particular, see p. 135 in the May
2021 version of Gromov’s four lectures on scalar curvature [16]). We give a
proof here, roughly following the strategy used in [28]. The argument is based
on notion of the number of ends of a group.
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Definition 12. Given a group G, its number of ends, e(G), is defined as the
number of topological ends of K̃, where K̃ → K is a regular covering of finite
simplicial complexes K, K̃, and G is the group of deck transformations.

It follows from [9] that a finitely generated group can have 0, 1, 2 or infinitely
many ends. Our main result here is as follows:

Proposition 13. Suppose (N, g) is a closed Riemannian manifold satisfying
conclusions of Proposition 8. Then any finitely generated subgroup G of π1(N)
cannot have one end.

We will prove this below, but first we note that it yields the desired state-
ment:

Corollary 14. Suppose (N, g) is a closed Riemannian manifold satisfying
conclusions of Proposition 8. Then, π1(N) is virtually free.

Proof. We follow the proof of [28, Theorem 2.5]. Indeed, by combining the
main result of [8] (cf. [30, §7]) with Proposition 13, π1(N) is the fundamental
group of a finite graph of groups with finite edge and vertex groups. The
assertion now follows from Proposition 11 in Chapter II, Section 2.6 of [31] (or
e.g., [30, Theorem 7.3]). �

Moreover, we observe that given these results, we can finish the proof of
Theorem 1.

Proof of Theorem 1. By Corollary 7, Proposition 8, and Corollary 14, π1(N) is
virtually free. Let G ⊂ π1(N) be a finite index subgroup which is a free group.

Consider the finite covering N̂
p̂
−→ N such that the image of p̂# is G. Then

π1(N̂) is a finitely generated free group. Since π2(N̂) = · · · = πn−2(N̂) = 0,

[12, Section 2 and Section 3] implies that N̂ is homotopy equivalent to Sn or
connected sums of Sn−1 × S1. �

We now give the proof of Proposition 13:

Proof of Proposition 13. Suppose there is a finitely generated subgroup G of
π1(N) with one end. We will show that this leads to a contradiction.

We divide the proof into several steps. Take a cover N0
p
−→ N such that

p#(π1(N0)) = G. Because p# : π1(N0) → π1(N) is injective this ensures that
π1(N0) = G. If G is finite then e(G) = 0, so we can assume G is infinite.
Since G is finitely generated, we can find K ⊂ N0 a compact submanifold

with boundary containing representatives of all of the generators of G. Write
i : K → N0 for the inclusion map and note that i# : π1(K) → π1(N0) = G is

surjective. Let H = ker i# so G = π1(K)/H. Choose j : K̃ → K the cover

(with K̃ path connected) of K so that j#(π1(K̃)) = H. Since H is a normal
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subgroup of π1(K), the covering j : K̃ → K is regular, and the group of deck
transformations of j is isomorphic to π1(K)/H = G. Thus K̃ is noncompact.
Note that j# ◦ i# : π1(K̃) → π1(N0) is the zero map, so we can lift i to

ĩ : K̃ → Ñ , where Ñ is the universal cover of N . (We emphasize that K̃ is
not necessarily the universal cover of K.)

As such, we have the following diagram of spaces:

K̃
ĩ

//

j

��

Ñ

p̃

��

K
i

// N0

p

��

N

The maps i, ĩ are inclusions of codimension zero submanifolds with boundary;
indeed:

Lemma 15. ĩ is a proper embedding

Proof. We first show that ĩ is injective. Suppose that ĩ(ã) = ĩ(b̃). Connect
a, b by a curve η̃ in K̃. By assumption, ĩ(η̃) is a loop in Ñ so η = j(η̃) has
[η] = e ∈ π1(N0) = G. Thus, [η] ∈ H ⊂ π1(K). This implies that η̃ is a loop,
i.e., a = b. It is straightforward to check that ĩ is a closed map, using the fact
that K is compact and p̃ is a covering map. Therefore ĩ is proper. �

Note that N is equipped with a Riemannian metric g so that for any p ∈ Ñ ,
each connected component of a level set of fp(x) = dg̃(x, p) has diameter ≤ C,

where C = 20L as given in Proposition 8. The embeddings i, ĩ induce metric
structures on K, K̃, respectively.

Lemma 16. For each r > 0, there exists R(r) > 0 such that for any a, b ∈ K̃
with dÑ(a, b) ≤ r, we have dK̃(a, b) ≤ R(r).

Proof. Fix x ∈ K̃. By applying a deck transformation, we can assume that
dÑ(a, x) ≤ c0 (here c0 only depends onK), so dÑ(b, x) ≤ r+c0. Since K̃ is con-
nected (and ĩ is proper), there exists R = R(r+c0) so that dK̃(a, x), dK̃(b, x) ≤
R. The assertion follows from the triangle inequality. �

In the following lemma, we will call a curve γ̃ : R → K̃ a line if it minimizes
length on compact subintervals relative to competitors in K̃. Note that such a
curve is a geodesic in the sense of metric geometry, but not necessarily in the
sense of Riemannian geometry, since it could stick to ∂K̃ in places. Similarly,
we will call σ′ : [0,∞) → K̃ an minimizing ray if it minimizes length in the
same sense.
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Lemma 17. There exists a line γ̃ in K̃.

Proof. Fix p ∈ K̃, and choose pj ∈ K̃ diverging. Let σj denote a curve that

minimizes length in K̃ between p and pj. We assume that σj is parametrized
by unit speed. In particular, σj is a 1-Lipschitz map from an interval to

K̃. Consider an exhaustion of K̃ by nested compact sets containing p. Ap-
plying Arezelà–Ascoli in each compact set and taking a diagonal sequence
we obtain that, after passing to a subsequence, σi converges to a minimiz-
ing ray σ′ : [0,∞) → K̃. Since G is the group of deck transformations of
K̃ → K acting transitively on K̃ and K is compact, we can choose ti → ∞
and deck transformations Φi so that dg̃(p,Φi(σ

′(ti))) is uniformly bounded.
Then σ′

i(t) = Φi(σ
′(t+ ti)) subsequentially converges to a geodesic line σ (us-

ing Arzelà–Ascoli again). �

Parametrize the curve γ̃ so that dK̃(γ̃(a), γ̃(b)) = |a−b| (note that dÑ(γ̃(a), γ̃(b))
might be smaller than |a − b|). Let γ = ĩ ◦ γ̃. Note that γ̃ is automatically
proper in K̃, and thus Lemma 15 implies that γ is proper in Ñ .

For each R > 0, consider the open geodesic ball BR(γ(0)) ⊂ Ñ . Define
parameters

t−(R) = max{t : γ(−∞, t) ∩ BR(γ(0)) = ∅}

t+(R) = min{t : γ(t,∞) ∩ BR(γ0) = ∅}.

Note that t±(R) → ±∞ as R → ∞.
Since e(K̃) = 1, γ(t±(R)) can be connected in K̃ \ BR(γ(0)). Because Ñ

is simply connected, this implies that γ(t±(R)) lie in the same component of
∂BR(γ(0)) ⊂ Ñ and thus

dÑ(γ(t−(R)), γ(t+(R))) ≤ C.

On the other hand, we have

dK̃(γ(t−(R)), γ(t+(R))) = |t−(R)− t+(R)| → ∞.

This contradicts Lemma 16. This completes the proof of Proposition 13. �

4. Generalization to the mapping problem

In this section we prove Theorem 2. The proof here is partly motivated
by [17, Section 5], where nonexistence of PSC metrics on certain noncompact
manifold admitting a proper, distance decreasing map to a uniformly con-
tractible manifold is established. We first observe that we may assume, without
loss of generality, that π1(X) is infinite. Indeed, if π1(X) is finite, then the uni-
versal cover X̃ is compact and satisfies that π1(X̃) = · · · = πn−2(X̃) = 0. By
the Hurewicz theorem, we have that H1(X̃) = · · · = Hn−2(X̃) = 0. Poincaré



SUFFICIENTLY CONNECTED PSC MANIFOLDS 15

duality further implies that H1(X̃) = · · · = Hn−1(X̃) = 0, and hence X̃ is
homeomorphic to Sn.

We begin with the following general lemma. Note that it is tempting to
try to lift a map of non-zero degree to the universal covers, but this map
may not be proper (and hence the degree will not be well-defined). We note
that the construction of the appropriate cover is somewhat analogous to the
construction of K̃ in Section 3.

Lemma 18. Suppose that X,N are closed oriented manifolds and f : N → X
has nonzero degree. Letting X̃ denote the universal cover of X, there exists
a connected cover N̂ → N and a lift f̂ : N̂ → X̃ so that f̂ is proper and
deg f̂ = deg f .

Proof. Choose a regular value x ∈ X and set f−1(x) = {z1, . . . , zk}. Consider

H := ker f# : π1(N, z1) → π1(X, x). Choose a covering space p : N̂ → N so

that image p# : π1(N̂ , ẑ1) → π1(N, z1) is H. Below we will show that the map

f lifts to f̂ : N̂ → X̃, and that f̂ satisfies the assertions made above.
Non-compactness of N̂ : We claim that N̂ is non-compact. We first show

that the image of f# is a subgroup of π1(X, x) with finite index. Let G =
f#(π1(N, z1)) and π̄ : (X̄, x̄) → (X, x) be a covering map so that image (π̄)# :
π1(X̄, x̄) → π1(X, x) is G. The map f lifts to a map f̄ : (N, z1) → (X̄, x̄)
such that f = π̄ ◦ f̄ . Since N is compact and f is surjective, we see that X̄
is compact. Hence we have deg f = deg π̄ · deg f̄ . It follows that deg π̄ is an
integer factor of deg f , and thus G is a subgroup of π1(X, x) of finite index.

The number of sheets of the covering map p is the index ofH = p#(π1(N̂ , ẑ1))
in π1(N, z1). Since H is a normal subgroup, this is equal to the number of
elements of the group π1(N, z1)/H, which is isomomorphic to G and thus of

infinite order. This implies that N̂ is non-compact as claimed.
Lifting the map f : Consider f ◦ p : N̂ → X. Note that (f ◦ p)# : π1(N̂) →

π1(X) is the zero map. Thus, we can lift f ◦ p to the universal cover of X:

(N̂ , ẑ1)
f̂

//

p

��

(X̃, x̃)

π

��

(N, z1)
f

// (X, x)

Clearly, a loop in N lifts to a loop in N̂ if and only if it is in H (recall that H
is normal).

Counting lifts of pre-images: We now claim that #(f̂−1(x̃) ∩ p−1(zj)) = 1.

To this end, suppose that a, b ∈ f̂−1(x̃) ∩ p−1(zj). Choose a path γ̂ in N̂
connecting the two points. Then γ = p ◦ γ̂ is a loop in N based at zj. On the
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other hand, γ̃ := f̂ ◦ γ̂ is a loop in X̃ based at x̃. Since e = π#[γ̃] = f#[γ], we
thus see that [γ] ∈ H. This is a contradiction since this would imply that γ
lifts to a loop (as remarked above).

Properness: We now show that f̂ is proper. Assume that r̂i → ∞ in N̂ but
f̂(r̂i) → q in X̃. Since N is compact, we can pass to a subsequence so that
p(r̂i) → r ∈ N . Then π(q) = f(r).
Choose a contractible neighborhood U ⊂ N with r ∈ U . By shrinking U we

can assume that f(U) is contained in a contractible open set W ⊂ X. Then

π−1(W ) consists of disjoint copies of W . We can assume that f̂(r̂i) are all
contained in the copy containing q.
Assume that p(r̂i) ∈ U for all i. Fix paths ηi from p(r̂i) to r in U and paths

γ̂i from r̂1 to r̂i in N̂ . Then,

αi := (ηi) ∗ (p ◦ γ̂i) ∗ (−η1)

is a loop from r to r. Lift αi to α̂i a path in N̂ that agrees with γ̂i on that
portion of α̂i. Note that α̂i cannot be a loop for i large, since the r̂i are
diverging.

We now consider α̃i := f̂ ◦ α̂i a path in X̃. By construction, α̃i is a loop in
X̃. This is a contradiction as before.

Degree: Finally, we check that deg f̂ = deg f . The lift x̃ is a regular point
for f̂ and we have seen that each element of f−1(x) lifts to a unique element

of f̂−1(x̃). But the local degree of f̂ at each preimage ẑi is the same as the
degree of f at the corresponding point p(ẑi) (since p is a covering map).
This completes the proof. �

Remark. With some trivial modifications in the proof, a similar result holds
for possibly nonorientable X,N with a map f : N → X of nonzero mod 2
degree.

Using the lifted map f̂ we can now follow [17, Section 5] to show that the
conclusion of Corollary 7 holds in the setting of Theorem 2.

Lemma 19. Let X,N be oriented Riemannian manifolds, f : (N, g) →
(X, gX) with f distance decreasing and deg f 6= 0. Assume that N admits
a metric of positive scalar curvature and that either: n = 4 and π2(X) = 0 or
n = 5 and π2(X) = π3(X) = 0.
Then, there exists L > 0 with the following property. If Σn−2 is an (n− 2)-

dimensional null-homologous cycle in the universal cover X̃ of X, then the
cycle deg(f)Σn−2 can be filled inside BL(Σn−2).

Proof. We consider n = 5 since the n = 4 case is similar (but simpler). By
scaling we can assume that (N, g) has scalar curvature R ≥ 1. As in Corollary
7, H2(X̃,Z) = H3(X̃,Z) = 0.
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By assumption, Σ3 = ∂Σ4 in X̃ for some chain Σ4. Up to a small pertur-
bation, we can assume that f̂ is transversal to Σ3 and Σ4. Set Σ̂4 := f̂−1(Σ4)

and similarly Σ̂3 = ∂Σ̂4. Note that Σ̂3 is null-homologous in N̂ (by construc-

tion). Using Theorem 5 we can find Σ̂′
3 ⊂ BL0

(Σ̂3) homologous to Σ̂3 as well as

3-chains Û1, . . . , Ûm with diam(Uj) ≤ L0 and 2-cycles {Γ̂l
j : j = 1, . . . ,m, l =

1, . . . , k(j)} with diam(Γ̂l
j) ≤ L0 and so that

Σ̂′

3 =
m
∑

j=1

Ûj

and

∂Ûj =

k(j)
∑

l=1

Γ̂l
j,

for each j = 1, . . . ,m, where both equalities hold as chains (not just in homol-
ogy). Finally, there is an integer q and a function

u : {(j, l) : j = 1, . . . ,m, l = 1, . . . , k(j)} → {1, . . . , q}

so that for r ∈ {1, . . . , q}, we have

diam
(

∪(j, l) ∈ u−1(r)Γ̂l
j

)

≤ L0

and
∑

(j,l)∈u−1(r)

Γ̂l
j = 0

as 2-cycles for r ∈ {1, . . . , q}.

Denote by Σ′
3 the 3-cycle in X̃ obtained by pushing Σ̂′

3 forward by the map

f̂ and similarly for Uj and Γl
j.

Since f̂ is transversal to M3, it is easy to check that deg f̂ |M3
= deg f̂ .

Hence, f̂#([Σ̂
′
3]) = (deg f̂)[Σ3]. Moreover, since f (and thus f̂) was assumed

to be distance decreasing, we see that d(X̃,g
X̃
)(Σ3,Σ

′
3) ≤ L0. As such, it suffices

to bound Σ′
3 in a controlled neighborhood.

To do so, we follow the argument used in Corollary 7. Because diam(Γ̂l
j) ≤

L0, we can use Proposition 6 to find a 3-chain Γ̃j
l with diam(Γ̃l

j) ≤ R(L0) and

∂Γ̃j
l = Γj

l and then a 4-chain Ũj with

∂Ũj = Uj −

k(j)
∑

l=1

Γ̃l
j
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and diam(Ũj) ≤ R(L0 + 2R(L0)). Thus,

Σ′

3 =
m
∑

j=1

∂Ũj +

q
∑

r=1

∑

(j,l)∈u−1(r)

Γ̃l
j.

and

diam





∑

(j,l)∈u−1(r)

Γ̃l
j



 ≤ 2R(L0) + L0.

We can thus complete the proof as in Corollary 7.
�

Granted Lemma 19, Theorem 2 follows. Indeed, in order to prove the
Urysohn width estimate Proposition 8 it is enough to assume that the fill-
ing radius estimate holds for a multiple deg(f)Σn−2 of every cycle Σn−2. The
rest of the proof of Theorem 2 proceeds exactly as the proof of Theorem 1.
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