
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

A Near-Sensor Processing Accelerator for
Approximate Local Binary Pattern Networks

Shaahin Angizi, Senior Member, IEEE , Mehrdad Morsali, Sepehr Tabrizchi, Student Member, IEEE ,

and Arman Roohi, Senior Member, IEEE

AbstractÐIn this work, a high-speed and energy-efficient comparator-based Near-Sensor Local Binary Pattern accelerator

architecture (NS-LBP) is proposed to execute a novel local binary pattern deep neural network. First, inspired by recent LBP networks,

we design an approximate, hardware-oriented, and multiply-accumulate (MAC)-free network named Ap-LBP for efficient feature

extraction, further reducing the computation complexity. Then, we develop NS-LBP as a processing-in-SRAM unit and a parallel

in-memory LBP algorithm to process images near the sensor in a cache, remarkably reducing the power consumption of data

transmission to an off-chip processor. Our circuit-to-application co-simulation results on MNIST and SVHN datasets demonstrate minor

accuracy degradation compared to baseline CNN and LBP-network models, while NS-LBP achieves 1.25 GHz and an

energy-efficiency of 37.4 TOPS/W. NS-LBP reduces energy consumption by 2.2× and execution time by a factor of 4× compared to

the best recent LBP-based networks.

Index TermsÐProcessing-in-memory, accelerator, near-sensor processing, SRAM.

✦

1 INTRODUCTION

INTERNET of things’ (IoT) nodes consist of sensory sys-
tems, which enable massive data collection from the envi-

ronment and people to process with on-/off-chip processors
(1018 bytes/s or flops). In most cases, large portions of
the captured sensory data are redundant and unstructured.
Data conversion and transmission of large raw data to a
back-end processor imposes high energy consumption, high
latency, and low-speed feature extraction on the edge [1]. To
overcome these issues, computing architectures will need
to shift from a cloud-centric approach to a thing-centric
(data-centric) approach, where the IoT node processes the
sensed data. This paves the way for a new smart sensor
processing architecture [2], [3], in which the pixel’s digital
output is accelerated near the sensor leveraging an on-
chip processor. Unless a Processing-in-Memory (PIM) mech-
anism is exploited [4]±[6] in this method, the von-Neumann
computing model with separate memory and processing
blocks connecting via buses imposes long memory access
latency, limited memory bandwidth, and energy-hungry
data transfer restricting the edge device’s efficiency and
working hours [1]. The main idea of PIM is to incorporate
logic computation within memory units to process data
internally.

From the computation perspective, numerous artifi-
cial intelligence applications require intensive multiply-
accumulate (MAC) operations, which contribute to over
90% of various deep Convolutional Neural Networks
(CNN) operations [5], [7]. Various processing-in-SRAM plat-
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forms have been developed in recent literature [5], [8]±[10].
Compute cache [8] supports simple bit-parallel operations
(logical and copy) that do not require interaction between
bit-lines. Neural Cache [5] presents an 8T transposable
SRAM bit-cell and supports bit-serial in-cache MAC opera-
tion. Nevertheless, this design imposes a very slow clock fre-
quency and a large cell and Sense Amplifier (SA) area over-
head. In [11], a new approach to improve the performance
of the Neural Cache has been presented based on 6T SRAM,
enabling faster multiplication and addition with a large
SA overhead. While the presented designs show acceptable
performance over various image datasets by reducing the
number of operations, i.e., MACs, using shallower models,
quantization, pruning, etc., they are essentially developed
to execute the existing CNN algorithms that lead to a gap
between meets and needs. We believe such a discrepancy
can be avoided by co-developing an intrinsically-low computa-
tion network and an efficient PIM platform on the sensor side.
Regarding the model reduction of CNNs, Local Binary Pat-
tern (LBP)-based implementations have attained worldwide
attention for edge devices, resulting in a similar output
inference accuracy [12]±[14]. More interestingly, the amount
of convolution operations is drastically reduced owing to
the sparsity of kernels and conversion to simpler operations
such as addition/subtraction [15] and comparison [16].

In this work, inspired by recent LBP networks, (1) we
first develop a novel approximate, hardware-oriented, and
MAC-free neural network named Ap-LBP in Section 3 to
reduce computation complexity and memory access by dis-
regarding the least significant pixels to perform efficient
feature extraction. The Ap-LBP is leveraged on the sen-
sor side to simplify LBP layers before even mapping the
data into a near-sensor memory; (2) NS-LBP is designed
as a comparator-based processing-in-SRAM architecture, in
conjunction with the LBP parallel in-memory algorithm in
Section 4, which remarkably reduce the power consumption
as well as the latency of data transmission to a back-end
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processor; (3) In Section 5, we propose a correlated data par-
titioning and hardware mapping methodology to process
the network locally; and (4) We extensively evaluate NS-
LBP performance, energy efficiency, and inference accuracy
trade-off compared to recent designs with a bottom-up
evaluation framework in Section 6.

2 BACKGROUND & MOTIVATION

2.1 Near-Sensor & In-Sensor Processing

Systematic integration of computing and sensor arrays has
been widely studied to eliminate off-chip data transmis-
sion and reduce Analog-to-Digital Converters (ADC) band-
width by combining CMOS image sensor and processors
in one chip as known as Processing-Near-Sensor (PNS)
[2], [3], [17]±[19], or even integrating pixels and compu-
tation unit so-called Processing-In-Sensor (PIS) [20]±[26].
However, since enhancing the throughput and increasing
the computation load on the resource-limited IoT devices
is followed by a growth in the temperature and power
consumption as well as noises that lead to accuracy degra-
dation [20], [27], the computational capabilities of PNS/PIS
platforms have been limited to less complex applications [1],
[28]. This includes particular feature extraction tasks, e.g.,
Haar-like image filtering [28] and blurring [3].

Various powerful processing-in-SRAM (in-cache com-
puting) accelerators have been developed in recent liter-
ature that can be employed as a PNS unit [5], [8]±[11],
[29]±[32]. XNOR-SRAM [10] accelerates ternary-XNOR-and-
accumulate operations in binary/ternary Deep Neural Net-
works (DNNs) without row-by-row data access. C3SRAM
[9] leverages capacitive-coupling computing to perform
XNOR-and-accumulate operations for binary DNNs. How-
ever, both XNOR-SRAM and C3SRAM impose huge over-
head over the traditional SRAM array by directly mod-
ifying the bit-cells. In [11], a new approach to improve
the performance of the Neural Cache has been presented
based on 6T SRAM, enabling faster multiplication and
addition with a large SA overhead. In the PIS domain, a
CMOS image sensor with dual-mode delta-sigma ADCs
is designed in [33] to process 1st-convolutional layer of
Binarized-Weight Neural Networks (BWNNs). RedEye [34]
executes the convolution operation using charge-sharing
tunable capacitors. This design reduces energy consumption
compared to a CPU/GPU by sacrificing accuracy. However,
to achieve high-accuracy computation, the required energy
per frame increases dramatically by 100×. The presented
in-SRAM computing macro in [35] has been fabricated in
28nm process technology and works based on approximate
arithmetic hardware that negatively affects CNN accuracy
(25.2% on CIFAR-10). To improve the accuracy, the authors
use approximation-aware training and a new number for-
mat called multi-bit XNOR. Macsen [20] processes the 1st-
convolutional layer of BWNNs with the correlated double
sampling procedure achieving 1000fps speed in compu-
tation mode. However, it suffers from humongous area-
overhead and power consumption.

There are three main bottlenecks in IoT imaging sys-
tems that this paper aims to solve: (1) The data access
and movement consume most of the power (> 90% [20],
[29]) in conventional image sensors; (2) the computation
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Figure 1: (a) Standard LBP encoding with 3 × 3 descriptor
size, (b) The structure of the Ap-LBP, with N Ap-LBP blocks.

imposes a large area-overhead and power consumption in
more recent PNS/PIS units and requires extra memory for
intermediate data storage; and (3) the system is hardwired
so their performance is intrinsically limited to one specific
type of algorithm or application domain, which means that
such accelerators cannot keep pace with rapidly evolving
software algorithms.

2.2 LBP-based Networks

An LBP kernel is a computationally efficient feature de-
scriptor that scans through the entire image like that of a
convolutional layer in a CNN. The LBP descriptor is formed
by comparing the intensity of surrounding pixels serially
with the central pixel, referred to as Pivot, in the selected
image patch. Neighbors with higher (/lower) intensities are
assigned with a binary value of ‘1’(/‘0’) and finally, the
bit stream is sequentially read and mapped to a decimal
number as the feature value assigned to the central pixel, as
shown in Fig. 1(a). The LBP encoding operation of central
pixel C(xc, yc) and its reformulated expression can be math-

ematically described as LBP (C) =
∑d−2

n=0 cmp(in, ic) × 2n

[12], where d is the dimension of the LBP, in and ic rep-
resent the intensity of nth neighboring- and central-pixel,
respectively; thus, cmp(in, ic) = 1 when in ≥ ic, otherwise
outputs 0. Simulating LBP is accomplished using a ReLU
layer and the difference between pixel values.

The Local Binary Pattern Network (LBPNet) [36] and
Local Binary Convolutional Neural Network (LBCNN) [15]
are two recent LBP networks where the convolutions are
approximated by local binary additions/subtractions and
local binary comparisons, respectively. It should be noted
that LBPNet and LBCNN are quite different, despite their
similarity in their names, as illustrated in Fig. 2. In the
LBCNN, batch norm layers are still heavily utilized, which
are completed in floating-point numbers for the linear trans-
form. Moreover, since the size and computation of 2D batch
norm layers are linear in the size of the feature maps,
model complexity increases dramatically. Therefore, the use
of LBCNNs for resource-constrained edge devices, such as
sensors, is still challenging and impractical. LBPNets, on
the other hand, learn directly about the sparse and discrete
LBP kernels, which are typically as small as a few KBs.
By using LBPNet, the computation of dot products and
sliding windows for convolution can be avoided. Rather,
the input is sampled, compared, and then the results of
the comparisons are stored in determined locations. A local
binary comparison and random projection are used instead
of conventional convolutions. An output channel is selected
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Figure 2: Different basic building blocks of a (a) residual
network, (b) LBCNN [15], and (c) LBPNet [36].

from intermediate channels using the random projection
layer as a dimension-reducing process. Therefore, in LBP-
Net, only trained patterns of sampling locations are held,
and no MAC operations (convolution-free) are performed,
making it a hardware-friendly and suitable model for edge
computing.

3 AP-LBP NETWORK

The Ap-LBP network is trained similarly to the LBPNet,
which learns a set of local binary patterns. The Ap-LBP
structure, visualized in Fig. 1(b), consists of multiple LBP
layers followed by an average pooling, two Multi-Layer
Perceptron blocks (MLP), and one batch normalization layer.
A standard convolutional layer is replaced with a layer
using LBPs, which means neither multiplication nor addi-
tion is required, and MAC operations are performed via
memory access and comparison. An LBP layer, including
an LBP Block and a Joint operation, is leveraged to extract
feature maps. Each LBP block consists of an LBP Encoding
step that can be readily implemented by a comparator1 to
generate new feature maps connected to an approximate
mapping and shifted-ReLU blocks to increase nonlinearity.
The output of the LBP blocks is cascaded with the input
feature maps (ifmaps) using joint blocks. Figure 3 illustrates
a portion of the LBP block’s operation. In the Ap-LBP, the
size of the output feature maps (ofmaps) remains identical
to the size of the ifmaps. To do so, the zero-padding ap-
proach might be utilized and the degree of zero insertions is
calculated by pad = [s× (out−1)− in+f ]/2, where s is the
stride window’s size, out and in are sizes of the ofmap and
the ifmap, respectively, and f is the size of the LBP kernel.
This expression works for square matrices. For example, as
shown in Fig. 3(a) with s=1, in= 5 and f = 3, to produce an
ofmap with out= 5, zero-padding approach with a degree of
one should be utilized.

The learned sets of LBPs from the training step are
used in the encoding part to denote the sampling points
in ifmaps’ positions that are to be compared with a pivot.
After the training phase, pre-defined locations in encoding
matrices and bit arrays are determined and remain fixed
during the inference phase, e.g., LBP Kernels 1 and 2 in
Fig. 3(b). Since the given weights to the thresholded (com-
pared) values and mapping patterns are specified, a Partial
Approximate Computing method (PAC) is developed to further
improve the performance at the cost of lower accuracy. The
PAC includes two primary operations: (1) Skip comparison:

1. In the backward propagation, binary comparisons are replaced by
a modified hyperbolic tangent (tanh) function and shifted to become
differentiable.
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Figure 3: (a) Visualization of X and Xp0, zero padding; the
blue boxes is the sliding 3× 3 LBP kernel, (b) Approximate
mapping using comparison and memory access skipping
schemes on channels A and B to generate ofmap.

since in the LBP layer, the positions (weights) of LBP ker-
nels’ elements are already specified, pixel-to-pivot compari-
son operation related to the Least Significant Bits (LSB) can
be omitted, and ofmap is written by zero, step 1 shown in
Fig. 3(b). (2) Skip memory access: in the LBP channel fusion
step, a pre-defined mapping table, referred to as a projection
map, is fixed for all outputs within the same channel to
generate an output pixel passing through the shifted-ReLU
function. Accordingly, read (/write) operations from (/to)
the LSBs of the channel’s responses (output pixels) can
be skipped, as shown in step 2 shown in Fig. 3(b). By
leveraging the PAC, comparison operations and memory
accesses can be reduced as significant portions of Ap-LBP
computation in order to minimize energy consumption with
minimum accuracy loss. For example, in Fig 3(b), the origi-
nal LBPNet implementation requires 8 comparisons, 14 read
and 12 write operations; however, using Ap-LBP, the output
pixel can be generated by 6, 11, and 9 comparisons, read and
write operations, respectively, which shows a considerable
enhancement. In other words if the output pixel is n-bit,
for each output pixel, there will be n comparisons needed,
which is irrelevant to the LBP dimension and the number of
input channels. Random projection tables can be constructed
using more input channels with higher resolutions, resulting
in more combinations of representations. But the spatial
dimension of output pixels affects the final results. The total
number of operations required to produce output pixels
in the LBP blocks, utilizing LBPNet and Ap-LBP can be
computed by the following expressions:

OPLBPNet = [e× ch+m]
︸ ︷︷ ︸

#read

+ [(e− 1)× ch]
︸ ︷︷ ︸

#comparison

+ [(e− 1)× ch+m]
︸ ︷︷ ︸

#write

(1)

OPAp LBP = [(e− apx)× ch+m− apx]
︸ ︷︷ ︸

#read

+ [(e− apx− 1)× ch]
︸ ︷︷ ︸

#comparison

+ [(e− apx− 1)× ch+m− apx]
︸ ︷︷ ︸

#write

,

(2)

where e is the number of LBP kernels’ elements (number of
samplings), ch is the number of channels, m is the number
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Figure 4: Energy consumption vs. accuracy regarding the
number of approximated bits on MNIST dataset.

of mapping tables’ elements, and apx is the number of
approximated bits. Increasing apx results in higher speed
and energy efficiency at the cost of accuracy degradation.
Figure 4 illustrates the accuracy results for Ap-LBP on
MNIST with respect to the number of approximated bits and
energy consumption of the LBP layers. This figure shows
trade-offs between energy consumption and accuracy with
respect to the number of bits in our design. The results are
achieved based on the framework setup that will be intro-
duced in Section 6.1. The left axis (blue) contains hardware
implementation results for the Ap-LBP processing of the
MNIST dataset and the right axis (red) is achieved by our
software-layer analysis based on the Pytorch model. As can
be seen, the optimal condition occurs when 2 of 4 mapping
tables’ bits are approximated, which leads to relatively high
energy savings (42%) despite a small reduction in accuracy
(1.3%). In addition, the computational and memory costs
for the convolution layer of both conventional CNNs and
Ap-LBP networks are presented in Table 1. As shown, in the
convolutional layer, the dimension of filters (ifmaps) is 4-D,
K × ch× r × s (M × ch× h× w), where K and M are the
number of filters and ifmap, respectively, ch is the number
of channels, r×s is the spatial dimension of filters and h×w
is the dimension of 2-D ifmaps. So the generated ofmaps’
dimensions are M ×K × p× q, where p× q is ofmap’s 2-D
dimensions. To simplify matters, a single kernel (K = 1) and
a single ifmap (M = 1) are considered. Since the difference
between the number of samplings in an LBP pattern, e, and
the number of approximated bits, apx, is relatively smaller
than the spatial dimensions of kernels, that Ap-LBP, with
MAC-free LBP layers, significantly reduces the hardware
cost, both computation, and memory.

Table 1: Hardware cost analysis of CNN vs. Ap-LBP.

Computational cost Memory
cost

Network
Mul±O(N2) Add/Sub/Cmp±O(N) cost

CNN p · q · ch · r · s p · q · ch · r · s p · q · r · s
Ap-LBP - ch · p · q · (e− apx) p · q · (e− apx) + (m− apx)

Ap− LBP

CNN
0

(e− apx)

r · s

(e− apx)

r · s
+

(m− apx)

p · q · r · s

4 PROPOSED NS-LBP

4.1 Architecture

We propose NS-LBP as a cache-based near-sensor architec-
ture to accelerate the Ap-LBP network with a parallel in-
memory LBP algorithm. NS-LBP is mainly developed to
process Ap-LBP’s key operations. LBP layers are accelerated

through an efficient comparison implemented with data-
parallel X(N)OR bit-wise operations and the MLP layers are
executed near-sensor through data-parallel AND-bit count
operations as explained below. However, NS-LBP can be
used to accelerate 2- and 3-input bulk bit-wise operations
in various applications such as data encryption, graph pro-
cessing, etc. NS-LBP’s geometry of a single 2.5MB cache
connected to an image sensor is shown in Fig. 5(a). A
rolling-shutter CMOS image sensor is composed of m×n
photodiode-based pixels, which utilize the Correlated Dou-
ble Sampling (CDS) mechanism [20]. CDS measures the
photodiode’s voltage drop before and after an image light
exposure and utilizes an ADC to convert it to a digital
value. However, a significant amount of power is consumed
by ADC conversion of raw images and high-throughput
transmission [1], [3], [20].

To reduce the power consumption imposed by ADC
and data transmission to the memory, we first modify
the sensor controller and peripheral circuitry so that Ap-
LBP’s approximation can be applied on the sensor side by
simply avoiding pixel conversion for less significant bits.
This is explained in Section 3. By using this mechanism,
the NS-LBP is assured of receiving only compute pixels and
pivots. Cache slices within NS-LBPs are designed to have
80 memory banks, of 32KB each organized in 20 distinct
ways. Each bank contains two 16KB memory matrices-mat
(see Fig. 5(a)). The centralized control unit (Ctrl) manages
the internal memory data transfer, intra-bank computation,
and a digital processing unit (DPU) common to all memory
banks. The main computational cores of NS-LBP are 8KB
computational sub-arrays as depicted in Fig. 5(b)-(c).

According to our observations of existing sub-array-
level processing-in-SRAM platforms, they face various chal-
lenges, such as multi-cycle in-memory operations, word-line
underdrives, high-latency, read disturbances, etc. [11], [30],
[32], when it comes to comparison and addition operations
required by the proposed Ap-LBP. The proposed NS-LBP’s
sub-array (Fig. 5(c)) leverages the voltage discharging pro-
file of the read-write-decoupled 8T SRAM cell (Fig. 5(d)) on
Read-BL (RBL) used for the standard read operation and
elevates it to implement Boolean logic between operands
located in different memory rows in a single SRAM read
cycle. In this way, we develop a processing-in-SRAM sub-
array through a three-row activation mechanism by modi-
fying the memory row decoder, SA, and Ctrl. It is impor-
tant to note that the key idea comes from the observation
that certain discharge rates on the precharged RBL can be
expected based on selected memory bits. For instance, by
activating three memory rows via Read Word-Lines (RWL),
e.g., RWL0-RWL2 shown in Fig. 5(c), if S0,0, S1,0, and S2,0

memory cells hold binary ª1º, then the read access transis-
tors (T8 in Fig. 5(d)) remain OFF, and the RBL precharged
voltage doesn’t degrade. However, if all cells hold binary
ª0º, the RBL voltage is rapidly discharged through T8s.
Accordingly, we propose a new reconfigurable SA as shown
in Fig. 5(e) consisting of three sub-SAs, each dedicated to
computing a particular function.

With a proper selection of a reference voltage (R1 <
R2 < R3), each sub-SA performs a neat voltage comparison
with RBL voltage and generates (N)OR3, (MAJ)MIN, and
(N)AND3 logic functions simultaneously. The XOR-based
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Figure 5: (a) The NS-LBP’s geometry of a single 2.5MB cache slice connected to a sensor, (b) Computational matrix, (c) An
8KB SRAM computational sub-array, (d) 8T SRAM cell, (e) Proposed single-cycle SA design for LBP extraction, (f) Inside
SA unit, (g) Capacitive majority function generator circuit.

Table 2: NS-LBP ISA.
Opcode Src1 Src2 Src3 Dest Size Description

NS-LBP copy r1 - - r2 n r2[i] = r1[i]

NS-LBP ini r1 -
a[i] = all ’0’
b[i] = all ’1’

- n r1[i] = a[i] or r1[i] = b[i]

NS-LBP cmp (xor2) r1 r2 a[i] = all ’0’ r3 n r3[i] = r1[i] ⊕ r2[i]
NS-LBP search r1 k - r3 n r3[i]= (r1[i] == k)
NS-LBP nand3 r1 r2 r3 r4 n r4[i]= !(r1[i] & r2[i] & r3[i])
NS-LBP nor3 r1 r2 r3 r4 n r4[i] = !(r1[i] ∥r2[i]∥r3[i])

NS-LBP carry (maj3) r1 r2 r3 r4 n r4[i] = maj(r1[i], r2[i], r3[i])
NS-LBP sum (xor3) r1 r2 r3 r4 n r4[i] = r1[i] ⊕ r2[i] ⊕ r3[i]

r1-r4: addresses k:address ∀i, i ∈ [1, n], X = [64/128/256]

comparison is then achieved through an observation in
which the three input majority function of OR3, MIN, and
AND3 is able to generate XOR3 logic. The Boolean logic
of in-memory XOR3 can be given as XOR3(/Sum) =
MAJ((A + B + C) + (AB +AC +BC) + (ABC)). This
unit is implemented with a low overhead capacitive voltage
divider as shown in Fig. 5(g). The implementation of 2-input
bit-wise operations is straightforward by initializing one
row to ª0º/ª1º. We choose an 8T SRAM cell as a fast and
compact design considering that the proposed in-memory
computing mechanism operates based on BL discharging.
Nevertheless, the mechanism presented here can be applied
to various read-write decouple SRAM designs.

From a programmer’s perspective, NS-LBP is interfaced
as a bus-facing accelerator that can be connected directly
to the memory bus or through PCI-Express lanes rather
than a memory unit. Therefore, a virtual machine and ISA
for general-purpose parallel thread execution need to be
defined. We designed instruction sets that could optimally
leverage highly parallel NS-LBP’s operations discussed and
developed a compilation framework on top of that. Accord-
ingly, the programs will be translated at install time to the
NS-LBP’s hardware ISA tabulated in Table 2.

4.2 In-memory LBP Algorithm

By converting a conventional software-based sequential
comparison operation into a parallel bit-wise XOR opera-
tion, we propose an NS-LBP hardware-oriented LBP algo-
rithm that fully utilizes the sub-array parallelism of the NS-
LBP. A key objective in developing such an algorithm is

to enable a parallel bit-position-aware comparison between
pivot (C) and surrounding pixels (P) and generate an LBP
bit-stream in fewer cycles, eliminating unnecessary power-
hungry bulk bit-wise operations. For every LBP kernel,
starting from the Most Significant Bit (MSB), Algorithm 1
issues the NS-LBP’s comparison command (NS-LBP XOR)
in a loop to pivot and pixels in parallel and update the Re-
sult array (line-7). The result of ith bit comparison (Ci⊕Pj,i)
is leveraged as a determining factor for NS-LBP to take
the next step. As indicated in the algorithm, when the
XOR result is ª1º, i.e., two unequal bits are identified (line-
8), Ci is read (NS-LBP Mem). Now, if Ci equals ª0º, the
corresponding LBP array position is set by ª1º, indicating
Ci < Pj and vice versa (lines-9-12). However, if equality
is noticed, the next less significant bit in pixels and pivot
is selected for comparison, and this process stops when the
XOR result is ª1º (inequality). Such a parallel comparison
operation could rapidly detect the mismatch between all
pixels and pivot from MSB to LSB. Our algorithm has a
constant search time that is determined by the bit length
of numbers. As shown, NS-LBP XOR is iteratively used
in a nested ªforº loop in the algorithm, and the NS-LBP
architecture is mainly designed to accelerate this operation.

5 CORRELATED HARDWARE MAPPING

5.1 LBP Layer

To maximize Ap-LBP computation throughput and fully
leverage NS-LBP’s parallelism, we propose partitioning
data as shown in Fig. 6. Given an LBP layer, the accessed
memory region of pixels and pivots could be easily pre-
dicted, and the LBP bit-stream could be locally computed
if we could store such correlated regions into the same
memory sub-array. Thus, we propose a novel, correlated
data partitioning, and mapping methodology as shown
in Fig. 6(a) to locally store correlated regions of pixel
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Algorithm 1 Parallel Bit-wise In-memory LBP Algorithm

1: Input: Pixel 2D-Array (P[][]) with M=8 elements (P7 to P0),
where each element contains N=8 bits. Pivot 1D-Array (C[]),
LBP array=0.

2: Output: Returning the LBP bit stream value in the given
array (LBP array).

3: procedure NS-LBP(P[][],C[],LBP_ARRAY)
4: Result array← 0
5: for i← N − 1 to 0 do
6: for j ← N − 1 to 0 do
7: Result array← NS-LBP_XOR(Ci,Pj,i) ▷

Bit-position compare from MSB to LSB.
8: if Result arrayj==1 then
9: if NS-LBP_Mem(Ci) == 0 then

10: LBP arrayj ← 1 ▷ C < Pj

11: else
12: LBP arrayj ← 0 ▷ C > Pj

13: else
14: break ▷ Continue with the lower SB compare
15: return LBP array
16: end procedure

and pivot vectors in the same memory sub-array and en-
able entirely local computation (i.e., NS-LBP XOR and NS-
LBP Mem completely within the same sub-array without
inter-bank/chip communication). The NS-LBP’s compute
sub-array (256 rows×256 columns) is split into five key
regions, i.e., Pixel-P (64 rows), Pivot-C (64 rows), Reserved
(64 rows), Weight-W (32 rows), and Input-I (32 rows). We
use P-, C-, and Resv. regions to process the LBP layer.

The selected input pixels in Ap-LBP are initially trans-
posed in the NS-LBP’s buffer and mapped into the P-region.
In addition, we propose to store Pi+1 transposed copy of the
pivot as reference vectors in the C-region. The C-region is
specially designed to enable fully parallel bit-wise position-
aware comparison operation. Three rows in the Resv. re-
gion are dedicated to Result array, LBP array, and all-zero.
Figure 6(b) gives an intuitive example of LBP-layer com-
putation with the in-memory LBP algorithm, where four
pixels (P3 to P0) are selected. After data mapping, NS-LBP’s
Ctrl activates three RWLs simultaneously, corresponding
to pixels’ and pivot’s MSB and all-zero row. The NS-LBP
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Figure 6: (a) The NS-LBP’s correlated data partitioning and
mapping scheme, (b) Parallel LBP computation in NS-LBP.

0

1
0
0

(1) data mapping

I =

0  0  0

0  0  1

0  1  1

0  1  0

W =

0  0  1

1  0  1

0  0  1

1  0  0

C0(I)C1(I)C2(I)

M-bit N-bit

C0(W)C1(W)C2(W)

C2(I)0

1
0
1

0

1
0
0

I W = 16

100
110

0

0
0
1

1
0

C1(I)

W

I

C2(W)

C0(W)
C1(W)

1 5 1 4

0

1

3

2

=

1

5

1

4

=

C0(I)

0 1 3 2

In-memory adder

2 Shifter
2+1

1  0

1  0

        1  0  0

+ 1  0  0  0

1  0  0  0  0

In-memory adder

1(2) NS-LBP_AND

(3) bitcount/shift/sum

000
000
010

0
1
0

000

C2(W). C2(I) 0001

0

0

C2(I)0

1

0

0

100
110

0

1

1
0 C0(I)

C1(I)

W

I

C2(W)



Figure 7: Parallel MLP computation in NS-LBP.

sub-array then performs the parallel XOR2 operation in a
single cycle based on the mechanism discussed in Section
4, and the result ª1001º is stored in the Result array row
(step 1 ). Now, the Ctrl readily recognizes the potential
mismatch in P3 and P0 and accordingly updates LBP array
in step 2 (ª1xx1º) with respect to C7=0 value. As there
are two matches (P2,7-C7 and P1,7-C7), the Ctrl selects the
next MSBs in pixels and pivot to find the next potential
mismatch. The final LBP array value (ª1001º) is returned in
step 4 for the next step. It is worth pointing out that other
configurations of SRAM-based cache memory can be readily
adopted and used. The only constraint is to assure the
converted sensor data can be properly stored to support the
NS-LBP correlated data partitioning and mapping scheme.

5.2 MLP Layer

Besides the LBP layer, there are MLP layers in Ap-LBP
as shown in Fig. 1(b) that can be accelerated close to the
sensor without sending the activated LBP feature maps to
an off-chip processor. Note that MLP can be equivalently
implemented by convolution operations using 1× 1 kernels
[37]. W- and I- regions in every NS-LBP sub-array (Fig.
6(a)) are dedicated to performing such an operation locally.
Figure 7 gives an overview of the MLP bit-wise acceleration
steps. In the first step, the processed input activation from
NS-LBP’s LBP layers is quantized by DPU and mapped
into I-region, where the MLP layer weights are located. In
the second step, parallel computational sub-arrays perform
bulk bit-wise operations between tensors and generate the
output. Then, the output is activated by DPU’s Activation
unit and saved back into the Resv. region. From a com-
putation perspective, every MLP layer can be equivalently
implemented by exploiting NS-LBP AND, bitcount, and
bitshift as parallelizable operations [37].

Assume I is a sequence of M -bit input integers, e.g., 3-
bit in Fig. 7 located in ifmap covered by a sliding kernel
of W , such that Ii ∈ I is an M -bit vector representing a
fixed-point integer. We index the bits of each Ii element
from LSB to MSB with m = [0,M − 1], such that m = 0
and m = M − 1 are corresponding to LSB and MSB,
respectively. Accordingly, we represent a second sequence
denoted as Cm(I) including the combination of mth bit of
all Ii elements (shown by colored elliptic). For instance,
C0(I) vector consists of LSBs of all Ii elements ª0110º.
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Figure 8: Evaluation framework developed for NS-LBP ac-
celerator.

Considering W as a sequence of N -bit weight integers (3-
bit, herein) located in a sliding kernel with an index of
n = [0, N − 1]. The second sequence can be similarly
generated as Cn(W ). Considering the set of all mth value se-

quences, the I can be represented like I =
∑M−1

m=0 2mcm(I).
Likewise, W is represented like W =

∑N−1
n=0 2ncn(W ).

Thus, the convolution between I and W is defined as∑M−1
m=0

∑N−1
n=0 2m+nbitcount(and(Cn(W ), Cm(I))) [37]. In

the data mapping step of Fig. 7, C2(W )-C0(W ) and C2(I)−
C0(I) are consequently mapped into an NS-LBP’s sub-array.
Now, a parallel bit-wise AND operation (NS-LBP AND) of
Cn(W ) and Cm(I) is performed. The results will be then
processed using a bit-counter counting the number of ª1ºs
in each vector and then a shifter unit, e.g., here left-shifted
by 3-bit (×22+1) to ª1000º. Eventually, the shifter unit’s
outputs are added up to produce ofmaps for every layer.

6 EVALUATION RESULTS

6.1 Setup

To estimate the performance of NS-LBP along with Ap-LBP,
a bottom-up evaluation framework is developed as shown
in Fig. 8. At the circuit level, NS-LBP is fully implemented
with TSMC 65nm-GP with a supply voltage of 0.9V-1.1V in
Cadence, and the post-layout results are reported. However,
NS-LBP is not taped out. The NS-LBP platform can be
readily implemented in lower technology nodes to achieve
lower power consumption and higher TOPS/W. At the
architecture level, we fully implemented NS-LBP’s ISA using
gem5 [38]. The compiler is then developed on top of the
PIMSim’s full-system mode [39] taking array parameters
(latency and energy consumption for individual operations)
and the binary of the application as input and exporting
the memory statistics and performance evaluation results.
The results are then fed into a behavioral NS-LBP’s in-house
optimizer tool, also taking the circuit-level data to model the
timing, energy, and area. This tool will offer the same flex-
ibility in memory configuration regarding bank/mat/sub-
array organization and peripheral circuitry design as Cacti
[40] while supporting SRAM-level configurations. The ar-
chitecture simulator can alter the configuration files with
different array organizations. At the application level, we
trained a PyTorch implementation of Ap-LBP inspired by
LBPNet, with the difference that our design approximates
pre-trained LBP kernel parameters. The Ap-LBP’s statistics
are then leveraged in the behavioral NS-LBP model to com-
pute the latency and energy of the whole system. Besides,
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Figure 9: Transient simulation results of an NS-LBP sub-
array executing comparison (based on XOR3) operation.

to model the data loading time for all layers, we followed
the approach in [5] by developing a micro-benchmark that
sequentially accesses the sets in a way that requires data
loading. In fact, the Ap-LBP network is the result of two sets
of experiments. First, a software (PyTorch) implementation
was accomplished to analyze the final network accuracy
with various approximation methods including the PAC
method. This experiment clearly showed us the expected
accuracy degradation. Second, the Ap-LBP is fully imple-
mented in our digital in-memory accelerator to achieve the
expected accuracy.

6.2 Functionality Analysis

Figure 9 shows the post-layout transient simulation re-
sults of an NS-LBP sub-array. To verify the functionality
of all possible input combinations (ª000º, ª001º, ª011º,
and ª111º), three WWLs are activated consecutively (first
waveform) and by assigning proper voltages to WBL and
WBLB, the SRAM cells are loaded with the operands.
In the computation mode, we simultaneously activate the
corresponding RWL of three cells to discharge RBL from
the precharged voltage (1.1V) w.r.t. the memory value. To
compromise three-row activation stability by lowering the
RWL voltage that leads to read latency, we reduced the RWL
voltage to 790mV to achieve the industry standard 6-sigma
margin. For the evaluation, by activating the Sense Am-
plifier Enable (SAE) signal, a voltage comparison between
the RBL voltage and references is made. As shown in Fig.
9, VR1=360mV, VR2=550mV, and VR3=850mV are set as the
reference voltages.

In the case of ª000º, T8s (see Fig. 5(d)) of all three cells
are ON pulling down the RBL voltage from 1.1V to 280mV.
This can be easily detected by SA generating ª0º as the
XOR3 output (VR3 > VR2 > VR1 >280mV). The total
processing time from enabling the SA to get the result is
∼400ps in the same range given by the standard foundry
memory compiler. In the case of ª001º, T8s of two out of
three cells are ON pulling down the RBL voltage from 1.1V
to 495mV. This can be easily detected by SA generating ª1º
as the XOR3 output (VR3 > VR2 >495mV> VR1). With
ª011º, T8 of only one cell is ON pulling down the RBL
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voltage from 1.1V to 735mV generating ª0º as the XOR3
output (VR3 >735mV> VR2 > VR1). Eventually, with ª111º
as inputs, all T8s are OFF taking the RBL voltage at 950mV
outputting ª1º (950mV> VR3 > VR2 > VR1).

For the SA reference voltage (VR) analysis, the RBL
sense margins are first tested through post-layout Monte
Carlo simulations in Cadence Spectre, as shown in Fig.
10, where the sensing margin is reported considering both
process (inter-die) and mismatch variations (intra-die) for
core VDD (1.1 V) at 1.25 GHz. To conduct the VR variation
analysis, we tested all 256 bit-lines within each NS-LBP’s
sub-array, 200 times, for all possible bit value combina-
tions in memory. It is found that at lower voltages the
maximum operating frequency is limited by the reduction
of VR ranges. A higher VDD also yields a larger sensing
margin. As we observe there is ∼92mV margin (the smallest
voltage margin observed between ª111º and ª011º cases)
between every two combinations bringing high in-memory
computing reliability for the NS-LBP design.
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Figure 10: Monte-Carlo simulation of RBL and SA reference
voltage.

6.3 Energy Consumption & Performance

Figure 11(a) shows the energy consumption breakdown
of NS-LBP running Ap-LBP and LBPNet compared to a
baseline 8-bit quantized CNN and LBCNN implemented
by [30] running SVHN dataset. We meticulously report the
energy consumed by MAC and CMP operations in various
networks. We observe that (i) the NS-LBP running Ap-LBP
demonstrates up to ∼2.2× and 5.2× higher energy efficiency
compared to the LBPNet and CNN counterparts, respec-
tively. Converting power-hungry MAC to bit-wise compari-
son operation in an approximate fashion has yielded such a
striking improvement; (ii) leveraging Ap-LBP can bring up
to ∼4× energy-efficiency when compared with the LBCNN.
It is worth mentioning that LBCNN still relies on power-
hungry MAC operations. Figure 11(b) compares inference
delay per input image in four under-test designs. We ob-
serve that the NS-LBP leveraging Ap-LBP achieves ∼4× and
2.3× speed-up compared to LBPNet and LBCNN designs,
respectively. Besides, it can be seen that ∼6.2× speed-up
is achieved when compared with the CNN baseline. Fig-
ure 11(c) further clarifies that Ap-LBP doesn’t remarkably
reduce the memory storage relative to LBP-Net; however,
it requires ∼3.4× smaller memory to store the parameters
than LBCNN.

6.4 Comparison

Since several processing-in-SRAM platforms have been de-
veloped to accelerate various deep neural networks in litera-
ture, performing a fair comparison is a difficult task. Never-
theless, Table 3 lists seven recent designs for a comparison.
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Figure 11: (a) Energy consumption, (b) Execution time, and
(c) Memory storage comparison.

We compared our digital approximate LBP accelerator with
conventional analog/digital MAC-based neural network
accelerators supporting bit-truncation (/quantization) as a
well-known method in neural network approximation. As
can be seen, various designs are implemented with different
bit-cell structures and SA designs. Here we report our main
observations. (1) The NS-LBP and the designs in [30], [31]
are the only in-SRAM platforms that can support XOR-
based LBP computation. We observe that NS-LBP shows a
fairly smaller SA area overhead (3.4×) compared to these
designs to support in-memory computation. (2) It can be
seen that the designs presented in [11], [31] show the highest
frequency at 1V, where NS-LBP stands as the third-fastest
design. (3) The NS-LBP achieves 37.4 TOPS/W standing as
the fourth most efficient design compared to all counter-
parts, whereas the design in [9] with 671 TOPS/W stands as
the most efficient design. To assess the impact of the tech-
nology node on the overall performance, we implemented
the NS-LBP with 22nm Predictive Technology Model (PTM)
library [42] and extracted the pre-layout results. Based on
our observations, a higher performance (87.3 TOPS/W) and
lower power consumption can be achieved.

Overall, NS-LBP offers 1) A dual-mode computational
SRAM platform with no sacrifice of memory capacity that
directly processes data within the memory array to elim-
inate off-chip data communication; 2) A complete set of
Boolean operations (both 2- and 3-input), majority, and
full adder in only one single memory cycle, demonstrating
one of the most efficient PNS systems to date; 3) Highly
parallel low-bit-width convolution operation; and 4) Light
modification of existing memory cell to achieve low in-
memory logic area overhead.

6.5 Accuracy

To perform a fair comparison between Ap-LBP and five
other neural network models, CNN (as a baseline) [43],
Binarized Neural Network (BNN) [44], BinaryConnect [45],
LBCNN [15], and LBPNet [36], with identical hyper-
parameters such as number of basic blocks, number of
hidden neurons, etc. are selected. We conduct experiments
on five datasets, i.e., MNIST, FashionMNIST, SVHN, CIFAR-
10, and CIFAR-100 to evaluate the performance of both
algorithm accuracy and hardware implementation. PyTorch
implementation of Ap-LBP inspired by LBPNet, with the
difference that our design approximates pre-trained LBP
kernel parameters, is developed. The number of basic blocks
for MNIST and SVHN is set to 5 (3 LBP layers and 2
FC layers) and 10 (8 LBP layers and 2 FC layers) layers,
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Table 3: Comparison with previous processing-in-SRAM accelerators.

Reference NS-LBP Symp. VLSI [41] DAC’20 [11] JSCC’20 [9] JSSC’19 [30] DAC’19 [31] ISSCC’19 [32] ISSCC’22 [35]
Technology 65nm 65nm 28nm 65nm 28nm 28nm 28nm 28nm

Bitcell Density 8T 10T1C 6T 8T-1C 8T Transposable 6T/local group 8T 8T
SA compute Area Overhead 3.4× - 4.94× - 5.52× 5.05× >15× -

LBP-comparison Support Yes No No No Yes Yes No No
MAC Support Yes (digital CNN) Yes (analog BWNN) Yes (digital CNN) Yes (analog BWNN) Yes (digital CNN) No Yes (analog BWNN) Yes (digital BNN)

Supply 0.9V-1.1V 0.68-1.2V 0.6V-1.1V 0.6V-1V 0.6V±1.1V 0.6V ±1.1V 0.6-0.9V 0.45-1.1
Max Frequency 1.25GHz (1.1V) 100MHz 2.25GHz (1V) 50MHz 475MHz (1.1V) 2.2GHz (1.0V) 400MHz 250MHz

TOPS/W 37.4 658 8.09 (0.6V, 372MHz) 671.5 5.27 (0.6V, 114MHz) - 5.83 154-248

Array size 4×256× 256 - 4×128× 128 4×128× 128 4×128×256 256×64
4*I: 28x28x4x6x8/
4*W: 28x28x4x2

256× 64

respectively, with 512 hidden neurons. As for CIFAR-10
and CIFAR-100 datasets, the number of basic blocks is
respectively set to 7 (5 LBP layers and 2 FC layers) and 17
(14 LBP layers and 3 FC layers) layers, respectively, with
512 hidden neurons. The simulation is performed with two
GPUs (Nvidia RTX 3090) configurations. The comparison
of classification accuracy is summarized in Table 4. We ex-

amined two Ap-LBP variations, Ap-LBP (1) and Ap-LBP (2)

with one and two approximated bits, respectively. Based on
the obtained results, the Ap-LBP shows a minor accuracy
degradation compared to counterpart networks while pro-
viding significant energy-product-delay reduction as dis-

cussed earlier. As can be seen Ap-LBP (2) achieves an accu-
racy of 90.3% on the SVHN dataset, while the LBCNN and
LBPNet show 94.50% and 92.90% accuracy, respectively. In

addition, Ap-LBP (1) and Ap-LBP (2) achieve an accuracy
of 75.3% and 73.2% on the CIFAR-10 dataset, while the
LBCNN and LBPNet show 92.99% and 74.1% accuracy,
respectively. For the largest under-test dataset, i.e., CIFAR-

100, Ap-LBP (1) and Ap-LBP (2) achieve respectively 60.41%
and 58.5% accuracy, while the baseline accuracy is 69.55%.
We acknowledge the accuracy degradation of Ap-LBP com-
pared to other discussed models in some data-sets and the
fact that it can vary across applications. Instances, where this
might be acceptable, include predictive maintenance (e.g.,
predict failures), environmental monitoring (e.g., weather
monitoring), smart home systems (e.g., smart thermostats
or lighting systems), and agricultural AI applications (e.g.,
crop health monitoring systems). In these cases, the benefits,
such as reduced latency, and cost savings as discussed in
Section 3 can offset lower accuracy.

Table 4: Inference accuracy (%) of LBP networks vs. CNN.
Model MNSIT FashionMNIST SVHN CIFAR-10 CIFAR-100
Baseline [43] 99.48 94.44 95.21 92.95 69.55
BNN [44] 98.60 91.86 97.49 89.85 -
BinaryConnect [45] 98.99 - 97.85 91.73 62.3
LBCNN [15] 99.51 - 94.50 92.99 71.12
LBPNet [36] 99.50 90.61 92.90 74.1 -

Ap-LBP(1) 99.21 89.99 91.67 75.3 60.41

Ap-LBP(2) 97.98 86.93 90.3 73.2 58.5

7 CONCLUSION

This paper first presented an approximate and
multiply±accumulate-free deep neural network model
named Ap-LBP for efficient feature extraction. We then
developed a comparator-based near-sensor processing
local binary pattern accelerator (NS-LBP) and a parallel
in-memory LBP algorithm to process images near the
sensor based on the Ap-LBP. The results on MNIST and
SVHN datasets demonstrate minor accuracy degradation
compared to baseline CNN and LBP-network models,
while NS-LBP achieves 1.25-GHz and an energy-efficiency
of 37.4 TOPS/W. NS-LBP reduces energy consumption and
execution time by a factor of 2.2× and 4× compared to a
recent LBP-based network.
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