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Abstract. In this note, we establish the dihedral rigidity phenomenon for a collection
of parabolic polyhedrons enclosed by horospheres in hyperbolic manifolds, extending Gro-
mov’s comparison theory to metrics with negative scalar curvature lower bounds. Our re-
sult is a localization of the positive mass theorem for asymptotically hyperbolic manifolds.
We also motivate and formulate some open questions concerning related rigidity phenomenon
and convergence of metrics with scalar curvature lower bounds.
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1 Introduction

In [14], Gromov proposed a geometric comparison theory for metrics with scalar curvature
lower bounds. He speculated that Riemannian polyhedrons should play the role of triangles
in Alexandrov’s comparison theory for sectional curvature [1]. As a first step, he obtained the
following theorem for metrics with nonnegative scalar curvature, where the comparison models
are Euclidean cubes:

Theorem 1.1 ([14]). Let M = [0, 1]n be a cube, g a smooth Riemannian metric. Then (M, g)
cannot simultaneously satisfy:

1) the scalar curvature R(g) ≥ 0;

2) each face of M is weakly strictly mean convex;1

3) the dihedral angles between adjacent faces are all acute.

Theorem 1.1 also has a rigidity statement: if n ≤ 7, and we assume all dihedral angles are
not larger than π/2 in condition (3), then (M, g) is isometric to an Euclidean rectangular solid
(see [22, 23]). This is called the dihedral rigidity phenomenon. In [14, 15], Gromov conjectured
that this property is satisfied for all convex polyhedrons in Rn:

This paper is a contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov
on his 75th Birthday. The full collection is available at https://www.emis.de/journals/SIGMA/Gromov.html

1In this paper, the mean curvature is taken with respect to outer unit normal vector. For instance, the standard
sphere Sn−1 in Rn has mean curvature n− 1.
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Conjecture 1.2 (the dihedral rigidity conjecture). Let M ⊂ Rn be a convex polyhedron and g0

be the Euclidean metric. Suppose g is a smooth Riemannian metric on M . Denote its faces
by Fi, the mean curvature of Fi by Hi, and the dihedral angle between two adjacent faces Fi, Fj
by ]ij (]ij(g) may be nonconstant). Assume:

1) R(g) ≥ 0 in M ;

2) Hi(g) ≥ 0 on each face Fi;

3) ]ij(g) ≤ ]ij(g0) on each pair of adjacent faces Fi, Fj.

Then (M, g) is isometric to a flat polyhedron in Rn.

Conjecture 1.2 and related problems have been studied and extended in recent years (see,
e.g., [16, 17, 18, 22, 23, 24, 25]), leading to a range of interesting new discoveries and questions
on manifolds with nonnegative scalar curvature. In this paper, we investigate the analogous
polyhedral comparison principle, together with the rigidity phenomenon, for metrics with nega-
tive scalar curvature lower bound.

By scaling, we assume R(g) ≥ −n(n−1). Our comparison model is a collection of polyhedrons
in the hyperbolic space, called parabolic prisms, which we define now. Let (Hn, gH) be the
hyperbolic space with sectional curvature −1. We choose the coordinate system {x1, . . . , xn},
xj ∈ R, such that gH takes the form

gH = dx2
1 + e2x1

(
dx2

2 + · · ·+ dx2
n

)
.

For any constant c, the coordinate hyperplane x1 = c is umbilical with constant mean curvature
n−1 with respect to ∂x1 . The induced metric on it is isometrically Euclidean. These hyperplanes
are called horospheres. For j ≥ 2, the coordinate hyperplanes xj = c are totally geodesic, and
they intersect each other and the horospheres orthogonally.

Denote x̂ = (x2, . . . , xn). Given a polyhedron P ⊂ Rn−1, we call the set {(x1, x̂) : 0 ≤
x1 ≤ 1, x̂ ∈ P} a parabolic prism in Hn. As a special case of the main theorem of this paper,
Theorem 2.4, we have the following

Theorem 1.3. Let n ≤ 7, M = [0, 1]n be a parabolic rectangle in Hn, gH be the hyperbolic
metric on M . Denote the face ∂M ∩{x1 = 1} by FT , the face ∂M ∩{x1 = 0} by FB. Assume g
is a Riemannian metric on M such that:

1) R(g) ≥ −n(n− 1) in M ;

2) H(g) ≥ n− 1 on FT , H(g) ≥ −(n− 1) on FB, and H(g) ≥ 0 on ∂M \ (FT ∪ FB);

3) the dihedral angles between adjacent faces of M are everywhere not larger than π/2.

Then (M, g) is isometric to a parabolic rectangle in Hn.

Theorem 1.3 addresses a question discussed during the workshop “Emerging Topics on Scalar
Curvature and Convergence” at IAS in October, 2018. See [17, Section 6].

We remark that Theorem 1.3 holds for any general Riemannian polyhedron (M, g) with
a proper polyhedral map to the parabolic cube of nonzero degree. It also holds for more general
polyhedral types, as long as the comparison model is a parabolic prism [0, 1]×P , and P ⊂ Rn−1

satisfies Conjecture 1.2. By [22, 23], P can be any 3-dimension simplices or n-dimensional
non-obtuse prisms. See Theorem 2.3.

It has been observed in [23, Section 5] that Conjecture 1.2 is a localization of the positive
mass theorem for asymptotically flat manifolds [27, 33]. Analogously, Theorem 1.3 localizes the
positive mass theorem for asymptotically hyperbolic manifolds (see, e.g., [10, 11, 32]), which,
in special cases, can be deduced from the following rigidity result of scalar curvature, due to
Min-Oo [26] on spin manifolds and to Andersson–Cai–Galloway [2] on all manifolds of dimension
at most 7 (see also [9, 21] for more recent developments):
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Theorem 1.4 ([2]; see also [26] for spin manifolds). Suppose (Sn, g), 2 ≤ n ≤ 7, has scalar
curvature R(g) ≥ −n(n − 1), and is isometric to Hn outside a compact set. Then (Sn, g) is
isometric to (Hn, gH).

Precisely, suppose Theorem 1.3 holds. Given (Sn, g) with R(g) ≥ −n(n− 1) such that (S, g)
is isometric to (Hn, gH) outside a compact set K, take a sufficiently large R such that the
boundary of the parabolic rectangle M = [−R,R]n isometrically embeds into S \ K. Denote
the region bounded by ∂M in S by M1. Then M1 has a degree one map to M , by sending K
to an interior point p ∈ M and M1 \K to M \ {p}. Thus Theorem 1.3 implies that (M1, g) is
isometric to (M, gH).

Given the connection between the positive mass theorem and the dihedral rigidity conjec-
ture, it would be interesting to see whether a similar comparison principle holds for metrics with
positive scalar curvature lower bound. The delicate issue is that the corresponding rigidity phe-
nomenon on a hemisphere is false, due to the counterexamples by Brendle–Marques–Neves [5].
This, together with other related open questions, will be discussed in Section 4.

2 Notations and the main theorem

The main objects in this paper are Riemannian polyhedrons, which we define as follows.

Definition 2.1. A compact Riemannian manifold (Mn, g) with boundary is called a Riemannian
polyhedron, if (M, g) can be isometrically embedded into RN for some N ≥ n, and at every
x ∈ M , there is a radius r > 0 and a diffeomorphism φx : Br

(
x ∈ RN

)
→ B1

(
0N
)
, such that

φx(Br ∩M) = P ∩B1

(
0N
)

for some Euclidean polyhedral cone P of dimension n, and Dφx|x is
an isometry. Further, we require that φx is C2,α for some α ∈ (0, 1) independent of x.

Specially, a compact domain M enclosed by piecewise C2,α hypersurfaces in a smooth Rie-
mannian manifold is a Riemannian polyhedron. Given x ∈ Mn, there is an integer k ∈ [0, n]
such that a neighborhood of x in M is diffeomorphic to Pn−k0 × Rk, and P0 is a polyhedral
cone in Rn−k without translation symmetry. We call the union of all such points the k-faces
of M . In particular, the n-face is the interior of M , the (n − 1)-faces are the union of smooth
components of ∂M (which we called “faces” in Theorem 1.3), and the (n − 2)-faces are the
interior of edges of M .

Definition 2.2. Let P ⊂ Rn be a flat Euclidean polyhedron, and (Mn, g) be a Riemannian
polyhedron. We say M is over-P -polyhedral, if M admits a proper polyhedral map φ onto P
(i.e., φ maps any k-face of M to a k-face of P ), such that φ is of nonzero degree.

In [22] and [23], Conjecture 1.2 was proved for a Riemannian polyhedrons that are over-P -
polyhedral, where

1) either n = 3, and P ⊂ R3 is an arbitrary simplex;

2) or 3 ≤ n ≤ 7, and P is the Cartesian product P 2
0 × [0, 1]n−2. Here P0 ⊂ R2 is a polygon

with non-obtuse dihedral angles.

Precisely, we have:

Theorem 2.3 ([22, 23]). Let P ⊂ Rn be as above, (Mn, g) be an over-P -polyhedral Riemannian
polyhedron, and φ : M → P be the polyhedral map of nonzero degree. Suppose:

1) R(g) ≥ 0 in M ;

2) H(g) ≥ 0 on each face of M ;
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3) ]ij(g)|x ≤ ]ij(g0)|φ(x) for every point x on the edges of M .

Then (M, g) is isometric to an Euclidean polyhedron.

We now state the main theorem of this paper.

Theorem 2.4. Let 2 ≤ n ≤ 7, P ⊂ Rn−1 be an Euclidean polyhedron such that Theorem 2.3
holds for P . Denote ([0, 1] × P, gH) the parabolic prism in the hyperbolic space with R(g) =
−n(n − 1). Suppose (Mn, g) is a Riemannian polyhedron that is over-[0, 1] × P -polyhedral,
and φ : Mn → [0, 1]× P be the polyhedral map of nonzero degree. Suppose:

1) R(g) ≥ −n(n− 1) in M ;

2) H(g) ≥ n−1 on φ−1({1}×P ), H(g) ≥ −(n−1) on φ−1({0}×P ), and H(g) ≥ 0 on other
faces of M ;

3) ]ij(g)|x ≤ ]ij(gH)|φ(x) for every point x on the edges of M .

Then (M, g) is isometric to a parabolic prism in the hyperbolic space.

Remark 2.5. The dimension restriction n ≤ 7 in Theorems 2.3 and 2.4 is due to regularity
of free boundary area minimizing surfaces and isoperimetric regions. In light of the recent
progress on positive mass theorem in higher dimensions [29], we speculate the singular analysis
may be applicable a non-rigid variance of Theorem 2.4, i.e., Theorem 1.1.

Remark 2.6. The condition that P = P0 × Rn−2, P0 is non-obtuse, is due to the boundary
regularity theory developed by Edelen and the author [13]. In general, one can guarantee that
free boundary area minimizing surfaces are C2,α regular in a non-obtuse polyhedral domain.
See [13, Section 9].

3 Proof of the main theorem

The proof of Theorem 2.4 is an adaptation of the proof of Theorem 2.3. We will be using lots
of techniques developed in [23]. Given a Riemannian polyhedron (Mn, g) as in Theorem 2.4,
denote the faces FT = φ−1({1} × P ) and FB = φ−1({0} × P ). If there exists a point x on the
edge of M such that ](g)|x < ](gH)|φ(x), we deform the metric g to g̃ as in [16, Section 11],
such that ](g̃)|x = ](gH)|φ(x) in a neighborhood of x and the mean curvature of the two faces
containing x increases. Thus, without loss of generality, we assume that ](g)|x = ](gH)|φ(x)

for all points x on the edge.
Consider the relative isoperimetric problem:

I = inf
{
Hn−1

(
∂ΩxM̊

)
− (n− 1)Hn(Ω): Ω ⊂M is a Caccioppoli set,

FB ⊂ Ω, FT ∩ Ω = ∅
}
. (3.1)

It follows from the standard compactness results that I is achieved by a Caccioppoli set Ω.
Denote Σ = spt

(
∂ΩxM̊

)
. Since FB, FT meet other faces orthogonally and H(g) ≥ n− 1 on FT ,

H(g) ≥ −(n − 1) on FB, by the strong maximum principle (see [23, Section 3.1]), either Σ is
disjoint from FT and FB, or Σ coincides with FT or FB. In any case, Σ is an isoperimetric
surface with free boundary on ∂M \ (FT ∪ FB).

We remark here that similar variational problems as (3.1) have been considered by Witten–
Yau [34] and by Andersson–Cai–Galloway [2], where it is called the BPS brane action.

We now study the regularity of Σ. Since n ≤ 7, the regularity of Σ in the interior and smooth
part of ∂M follows from the classical theory [20, 30]. For a point x ∈ Σ and a k-face of M with
k ≤ n − 2, we note that the tangent domain of M at x is given by W 2 × [0,∞)k−2 × Rn−k,
where W 2 is a wedge region in R2 with non-obtuse opening angle. Thus, we apply [13, Section 9]
and [23, Appendix B], and conclude:
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Proposition 3.1. Σ is C2,α graphical over its tangent plane everywhere.

Moreover, since Σ is homologous to FB, we conclude that at least one connected component

(which we still denote by Σ) has a nonzero degree map to P , given by Σ ' FB
φ−→ {0} × P .

Since Ω is a minimizer for (3.1), Σ has constant mean curvature (n− 1) with respect to the
outer unit normal ν of Ω, and stability implies that

Q(ϕ) :=

∫
Σ
|∇ϕ|2 − 1

2

(
RM −RΣ + n(n− 1) + |Å|2

)
ϕ2dHn−1

−
∫
∂Σ

II(ν, ν)ϕ2dHn−2 ≥ 0, (3.2)

for all C1 function ϕ. Here RΣ, Å are the scalar curvature of the induced metric and the traceless
second fundamental of Σ, respectively, and II is the second fundamental form of ∂M .

Let ϕ > 0 be the principal eigenfunction associated with the quadratic form Q. Then ϕ
solves the equation

∆Σϕ+
1

2

(
RM −RΣ + n(n− 1) + |Å|2

)
ϕ = −λ1ϕ ,

∂ϕ

∂η
= II(ν, ν)ϕ .

(3.3)

Here η is the outer conormal vector field of Σ, and λ1 is the principal eigenvalue associated

with Q. It follows from [23, Lemma 4.1] that ϕ ∈ C2,α(Σ). Denote g̃ = ϕ
2

n−2 g on Σ. By the
very same calculations as in [23, equations (4.6) and (4.7)], we have

R(g̃) = ϕ−
n
n−2

((
RM + n(n− 1) + |Å|2 + λ1

)
ϕ+

n− 1

n− 2

|∇ϕ|2

ϕ

)
≥ 0,

and H∂Σ(g̃) = ϕ−
1

n−2 (H∂Σ(g) + II(ν, ν) = ϕ−
1

n−2H∂M (g) ≥ 0.
Moreover, since Σ meets ∂M orthogonally and g̃ is conformal to g, the dihedral angles of (Σ, g̃)

is everywhere equal to that of P . Thus, by Theorem 2.3, (P, g̃) is isometric to an Euclidean
polyhedron. Tracing equality, we have

RM = 0, Å = 0, λ1 = 0, ∇ϕ = 0 on Σ.

Therefore ϕ is a constant function, and hence RicM (ν, ν) = −(n − 1) on Σ and II(ν, ν) = 0
on ∂Σ. It follows that Σ is totally umbilical and infinitesimally rigid.

Next, we adapt the ideas in [7, 8] to study rigidity. Let M− be the region enclosed by Σ
and FB. We follow the same argument as in [23, Section 4]: by constructing the very same
deformed metrics {g(t)}t∈[0,ε), solving the relative isoperimetric problem (3.1) and taking con-
vergence as t→ 0, we obtain another free-boundary isoperimetric hypersurface Σ′ in (M, g) lying
between Σ and FB. Moreover, Σ′ is also isometrically Euclidean, and is umbilical and infinitesi-
mally rigid. By repeating this argument, we obtain a dense collection of such hypersurfaces {Σρ}
in M .

Fix Σρ, its outer unit normal ν, and x0 ∈ Σρ. For ρj sufficiently close to ρ, Σρj can be writ-
ten as a normal graph of function uj over Σρ. By standard curvature, the function uj/uj(x0)
converges in C2,α(Σρ) to a nonzero function u. The Gauss–Codazzi equation implies that, for any
tangential vector X,Y on Σρ,(

∇2
Σρu
)
(X,Y ) +RmM (ν,X, Y, ν)u+AΣρ(X,Y )u = 0.

Taking trace, we have that ∆Σρu = 0. Also, since Σρj meets ∂M orthogonally and II(ν, ν) = 0
on ∂Σρj , ∂u

∂η = 0. Thus u is a constant function, and hence RmM (ν,X, Y, ν) = −〈X,Y 〉. This
proves that M has constant sectional curvature −1. Theorem 2.4 is proved.
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4 Discussions and related questions

4.1 Metrics with positive scalar curvature lower bounds

It is tempting to conjecture that a suitable extension of Theorems 2.3 and 2.4 holds for metrics
with positive scalar curvature lower bounds, where the model space is Sn with a round metric.
Although the precise formulation is unclear, such an extension will likely to localize certain
scalar curvature rigidity phenomenon for spheres. Recall the following theorem by Brendle and
Marques [4]:

Theorem 4.1 ([4]). Let Ω = B(δ) ⊂ Sn be a closed geodesic ball of radius δ with cos δ ≥ 2√
n+3

,

and g be the standard metric on Sn. Suppose g is another metric on Ω such that:

1) R(g) ≥ R(g) in Ω;

2) H(g) ≥ H(g) on ∂Ω;

3) g and g induce the same metric on ∂Ω.

If g − g is sufficiently small in the C2-norm, then g is isometric to g.

The lower bound 3√
n+3

for δ was improved in a subsequent paper by Cox, Miao and Tam [12].

However, it is known that the analogous statement for δ = π
2 does not hold, due to the coun-

terexample by Brendle, Marques and Neves [5].
The original proof of Theorem 1.1 by Gromov uses the fact that a cube is the fundamen-

tal domain of Zn action on Rn: assuming a counterexample for Theorem 1.1 exists, through
a sequence of doubling and smoothing, one obtains a smooth metric on Tn with positive scalar
curvature, contradicting [19] and [28].

Take the standard embedding Sn+ ⊂ Rn+1. The hemisphere Sn+ = Sn ∩ {xn+1 ≥ 0} can be
obtained by consecutive doublings of the spherical simplex

Ωn := Sn ∩ {xj ≥ 0, j = 1, . . . , n+ 1}.

We make the following conjecture concerning dihedral rigidity of Ωn.

Conjecture 4.2. Let (Mn, g) be a Riemannian polyhedron which is diffeomorphic to a simplex
of dimension n. Suppose

1) R(g) ≥ n(n− 1) in M ;

2) ∂M is piecewise totally geodesic;

3) ]ij(g) ≤ π
2 on the edges of M ;

4) moreover, each face of M is globally isometric to the standard spherical simplex Ωn−1.

Then (Mn, g) is isometric to Ωn.

When n = 2, Conjecture 4.2 holds by doubling M twice across its boundary, and using
a theorem due to Toponogov [31]. On the other hand, the construction in [5] does not seem to
give a counterexample to Conjecture 4.2.

4.2 Weak notions of R ≥ κ

One of Gromov’s motivations of studying Conjecture 1.2 is to define the notion of “R ≥ 0”
in the weak sense. The crucial observation is that, the conditions (2), (3) concern C0 properties
of the metric g, and are stable under C0 convergence of metrics (see [14]). Thus, we may define

“R(g) ≥ 0”⇔ there exists no cube M

with mean convex faces and everywhere acute dihedral angle.
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And more generally for κ < 0,

“R(g) ≥ κ”⇔ there exists no cube M in the product with S2
−κ

with mean convex faces and everywhere acute dihedral angle. (4.1)

Here S2
−κ is the space form with scalar curvature −κ.

Using this observation, Gromov proved the following theorem on the convergence of metrics
with scalar curvature lower bounds:

Theorem 4.3 ([14], see also [3]). Let Mn be a smooth manifold, g, gk, k ≥ 1, be smooth
Riemannian metrics on M , and gk → g in C0 as tensors. Suppose R(gk) ≥ κ on M . Then
R(g) ≥ κ as well.

Based on Theorem 2.4, we may define R ≥ κ for a negative constant κ:

“R(g) ≥ −κ”⇔ there exists no cube M with acute dihedral angles

and faces {Fj}, such that H > −(n− 1) on F1,

H > 0 on other faces, and H > (n− 1) on the opposite face of F1. (4.2)

(4.1) and (4.2) should be equivalent on smooth metrics, but we think that (4.2) is sightly more
natural conceptually, as it also satisfies the dihedral rigidity phenomenon.

Recently, Burkhardt-Guim [6] proposed a different possible notion of “R > κ” using Ricci
flow. See [6, Definition 1.2]. These definitions all share some good properties as a weak notion.
For instance, they all agree to R(g) > κ in the classical sense for a C2 metric g, and they can
be localized in a neighborhood of any point on the manifold. The natural question is:

Question 4.4. Given a smooth manifold M and a C0 metric g on it. Do the definitions (4.2)
and [6, Definition 1.2] agree on g?
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