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Abstract

We prove an Allard-type regularity theorem for free-boundary minimal surfaces
in Lipschitz domains locally modeled on convex polyhedra. We show that if such
a minimal surface is sufficiently close to an appropriate free-boundary plane,
then the surface is C 1'% graphical over this plane. We apply our theorem to
prove partial regularity results for free-boundary minimizing hypersurfaces, and
relative isoperimetric regions. © 2022 Wiley Periodicals LLC.
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1 Introduction

We are interested in the regularity of free-boundary minimal hypersurfaces M
inside piecewise-smooth domains €2. These surfaces M arise variationally as crit-
ical points of area or capillary-type functions among surfaces in €2 whose bound-
aries lie in 02 but are otherwise free to vary. The existence and regularity of free-
boundary minimal surfaces has been extensively studied by Courant [6], Lewy
[2526], Hildebrandt [17]], Nitsche [18,31]], Gruter [13|] and Jost [15]], Taylor
[38L[39], and Struwe [37]], among others.

When 9 is at least C2, Gruter-Jost [[15] proved an Allard-type regularity the-
orem that says that if M is sufficiently varifold close to a free-boundary plane (or,
equivalently in this case, when the density ratio of M near a boundary point is suf-
ficiently close to 1/2), then nearby M is a C 1** graph over this plane. Gruter [13]]
used this regularity theorem to prove that the (optimal) dimension of the singular
set at the free-boundary for area-minimizing hypersurfaces satisfies the same codi-
mension 7 bound as in the interior (contrast this with Hardt-Simon’s [16] result
that showed every area-minimizing hypersurface is entirely regular near its Dirich-
let boundary).

In this paper we prove an Allard-type regularity for M when €2 is locally mod-
eled on any convex polyhedral cone, and hence is only piecewise C 2. The archetype
of such a domain is a C? perturbation of a convex wedge (i.e., intersection of
two half-spaces). Existence and regularity of a free-boundary minimal M in non-
smooth €2 has a history dating back to the 19th century, when Gergonne [11]] and
Schwartz [|32]] formulated and solved the question of determining minimal surfaces
with partially free boundary in a standard cube in R3. Since then, there has been a
rich history of investigation into free boundary minimal surfaces in various geomet-
ric and physical scenarios, where polyhedral domains naturally arise. For instance,
when Q is a wedge region in R3, with opening angle 6y, a range of geometric and
regularity properties of free boundary minimal surfaces were studied in [19-22].
See also [[18]], where 8y = 2.

In these past results, as well as in [14,23]], it was observed that boundary reg-
ularity of minimal surfaces depends on the local structure of 2. For instance, if
Q is a wedge in R3 as above, and §p = 2, then an area-minimizing surface M
may have branch points at its free boundary (see [18]]). More generally, as pointed
out in [20]], when 6y € (i, 27), an area-minimizing surface in 2 may contain an
interval on the edge {0} xR, and thus fail to be a regular surface meeting 0€2 orthog-
onally (called the edge-creeping phenomenon). For a beautuful local description of
two-dimensional minimal surfaces in wedges using the Weierstrass representation,
see [3]].

In polyhedral domains, similar regularity questions also naturally appear in geo-
metric problems with other types of boundary conditions, including capillary sur-
faces [33,/38]] as well as general soap bubbles [12]. These surfaces are crucial in
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972 N. EDELEN AND C. LI

Gromov’s geometric comparison principle for scalar curvature proved by the sec-
ond named author [27,,28]].

Simon [33]] implemented tools of geometric measure theory in the investigation
of capillary surfaces in domains with corners. For a free boundary minimal surface,
he noted that local convexity of the model domain is a sufficient condition for the
existence of a nontrivial tangent cone at the corner. On the other hand, cusp-type
singularities may occur at the corner if local convexity is violated (see [4}/5,33]] and
the references therein).

Our main result is a local Allard-type regularity theorem, which says loosely
that if Q N B is a sufficiently small C? perturbation of a convex polyhedral cone
QO and if MLB, is sufficiently varifold close to an appropriate free-boundary
plane in 2, then spt M N B, 2isaC L& perturbation of this plane.

THEOREM 1.1. Let Q"1 = Qg x R be a polyhedral cone domain: a dilation-
invariant intersection of finitely many closed half-spaces, with nonempty interior.
Let F; : By — By be a sequence of C? diffeomorphisms that limit to Id in C?(B1).
Let M; be a sequence of integral varifolds in By that are stationary free-boundary
in F; () (or have bounded mean curvature tending to 0) such that M; — [Q2¢ X
{0}] as varifolds in Bj.

Then fori > 1, we can write Fi_1 (spt M)NBy/pas C L oraphs over Qg x{0},
with C Y% norm tending to zero.

Theorem [I.1]is stated for codimension-1 varifolds in Euclidean space, but ver-
sions hold for higher-codimension varifolds and other ambient manifolds; see Sec-
tion[8l

We note that there are two classes of free-boundary planes: if @ = W2 x R?~!
is a wedge, then one has “horizontal” planes containing W2 x {0}, and “vertical”
planes containing {0} x R”~1. Our theorem holds only for horizontal planes, and in
general an Allard-type regularity fails for vertical planes (Example [3.6). Likewise,
regularity as in Theorem [3.1| can fail when €2 is nonconvex (Example [3.7).

We also remark that, by considering the corresponding linear Neumann problem,
we expect C 1 regularity to be sharp for general Q. For example, when Q is a
wedge with opening angle 6y, then we would expect no better regularity than C 1%

for ¢ = é’—o — 1. If the opening angle is < /2, then one might expect C %%

regularity. In the special case when @ = W2 x R is a 3-dimensional wedge, then
Theoremwas proven for minimal graphs over the free-boundary plane W2 x {0}
by [22].

Our regularity theorem implies a partial regularity for codimension-1 minimiz-
ing currents in domains which are locally modeled on polyedral cone domains. The
interior dimension bound of course follows from classical interior regularity—our
contributions are the estimates on the boundary. See Section 9] for exact definitions
and the proof.
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THEOREM 1.2 (Partial regularity). Let Q be a locally polyhedral C?* domain in

a complete C3 Riemannian manifold N"*t1. Suppose T = T L intQ is a free-

boundary area-minimizing integral current in Q, or that T = 9[U] LintQ is a

solution to the relative isoperimetric problem; i.e., T is area-minimizing in the

class of T' = 9[U’] L int Q where U’ is relatively open in Q and |U’| = |U|.
Then dim(sing T Nint Q) <n — 7, and:

(1) dim(sing T N dRQ) < n — 2, for general Q;

(2) dim(sing T NAQ) < n—3, if the dihedral angles of Q are < 7 /2 (in which
case 2 is actually a domain-with-corners);

(3) dim(sing T N 3RQ) < n — 7, if the dihedral angles of Q2 are = /2.

We emphasize that © need only be locally a C? perturbation of a convex poly-
hedral domain, and does not need not be (locally) convex itself.

We think it should be true that dim(sing 7" N d2) < n — 7 when the dihedral
angles are < /2. The stumbling block is proving an appropriate Neumann eigen-
value bound for domains contained in an octant of S2. In this spirit, when the dihe-
dral angles of 2 are < 7/2 our proof in fact gives dim(sing M \ 9,_,Q) <n —7,
where 9,22 consists of points where €2 is locally modelled on domains with at
least n — 2 dimensions of symmetry. On the other hand, it is plausible that the n —2
bound for general €2 is sharp, as there are free-boundary planes in 3-dimensional
polyhedral cone domains which we think may be minimizing (Example [9.6).

Our strategy is to prove a certain “excess decay” inequality (3.3). The two key
difficulties we encounter are a lack of reflection principle, and a lack of a single
boundary model. This means that, unlike regularity with smooth boundaries (such
as Allard [2] and Gruter [[13]]), we do not have any easy characterization of low-
density tangent cones, nor do we have a nice monotone quantity defined at all scales
and all points along the boundary. Our proof therefore relies comparatively little
on monotonicity, in contrast to [2,/13]], who used it as a key tool to obtain among
other things good effective graphical approximations.

Instead, we prove a trace-like inequality for the first variation, and use Moser
iteration to prove good lower Ahlfors regularity and nonconcentration estimates.
The key to make our excess decay argument work is a sharp L°°-L? bound, which
implies that, even at the scale of the excess, the L2 norm cannot “accumulate”
near the boundary. The main technical challenge is establishing a first-variation
control, and the corresponding trace-like inequality. To do this we induct on the
dimension of the cone, basing our argument on work of Simon [33]] who considered
2-dimensional capillary surfaces in a 3-dimensional wedge.

While Q2 resembles a fixed-cone-type, we can prove excess decay by compar-
ison with the linear problem, in the spirit of DeGiorgi’s original proof of interior
regularity. However, inevitably at certain finite scales 2 will cease to look like a
given cone, and here this argument breaks down (e.g., in a wedge, every big ball
looks like the wedge, but as the radius shrinks it may look like a half-space, or
an interior point). By an inductive argument on the strata, we show that € looks
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974 N. EDELEN AND C. LI

like one of finitely many cone types, away from finitely many scales. By giving
up some constant, we can chain together our excess decays at each cone model to
obtain a global excess decay down to 0. This last step is very general, and would
apply to any regularity problem in a “stratified” model.

It would be interesting to see if any of our techniques carry over to regularity
problems with other boundary conditions, for example the capillary problem. De
Philippis-Maggi [8] proved a (partial-)regularity theorem for energy-minimizing
capillary surfaces in C!>! domains, and the second author [28] proved regular-
ity of energy-minimizing 2-dimensional capillary surfaces in locally polyhedral
Lipschitz domains. However very little is known for capillary surfaces that are
only stationary for area, nor is the sharp regularity known for energy-minimizing
capillary surfaces in higher dimensions. We mention here that recently Kagaya-
Tonegawa [24] proved a monotonicity formula for stationary capillary surfaces.

2 Notation and Preliminaries

2.1 Notation

We work in R”*1, Given asubset A C R”T!, we define d4(x) = inf,c 4 |x—a]
to be the usual Euclidean distance to A. If A = &, we define d4(x) = ooc.
Write B, (A4) = {x : dq(x) < r} for the open r-tubular neighborhood of A4, and
write A for the closure of A. B,(x) is the open r-ball centered at x. We write
BP(x) = B,(x) NR? x {0"T1=P}, and S7~! = HBlp for the unit sphere in
R? x {0"TP~1} Define the dilation/translation operator 1y -(x) = (x — y)/r.
Given a subset @ C R"*!, write Q, , = 1y,,(Q).

Given vectors v,w € R”T! then v - w denotes the usual Euclidean inner
product, and |v| = 4/v-v is the usual Euclidean length. Given linear maps
A, B : R*T! — R"*1 we define the inner product 4 - B = Y_; A(e;) - B(e;),
summed over any choice of orthonormal basis e; of R?*!, and correspondingly set
|A|?> = A - A. Unless otherwise stated, e; will denote the standard basis of R? 1,

Given a subspace V C R**!, we let y, n‘J; be the orthogonal projections to V,
VL, respectively. Given subpsaces V, W (not necessarily of the same dimension),
then we set V - W = my - my. We remark that if V' and W do have the same
dimension, then

1

2
ftU Cp+Vand f:U — Vl,wewritegrapthrV(f) ={x+f(x):xelUC
p + V1. For ease of notation, if p + V = R” x {0},and g : U C R" x {0} — R,
then we interpret graphgs (03 (g) = graphgn oy (gen+1)-

Every constant written as ¢ or ¢; will be > 1, and every constant §; or ¢; will be
< 1. Unindexed constants may change line to line.

lny —aw?P=vi-w=v.wt

2.2 Polyhedral cone domains

Here we define our model domains.
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DEFINITION 2.1. A polyhedral cone domain  in R*T! is a closed, dilation-
invariant domain with nonempty interior, that can be written as the intersection
of finitely many closed half-spaces.

Take a polyhedral cone domain €2 as defined above, and write 2 = ﬂﬁvzl H;
for Hj = {x : x - v; < 0} being closed half-spaces and v; unit vectors. Here ar
is understood to be all of R?*1, If Q contains a line L, then L. 1 v ; for each j,
and hence after a rotation we can write 2 = Q' xR, where ' is a polyhedral cone
domain in R”. We can therefore repeat this process and find a maximal integer

m € {0,...,n + 1} so that we can write
2.1) Q = 0(Qh xR™)

forsome O € SO(n+1)and/+m = n+1. Equivalently, we have O({0} xR™) =
(), 0H; and O(Ro x {0}) = ((; dH;)*. Under this decomposition €2 is said to
be m-symmetric. Note that ¢ is O-symmetric in the sense that it contains no lines.

We say Q has dihedral angles < /2 (resp., = 7/2) if: given any pair of half-
spaces H;, H; such that 0H; N dH; N K is a relatively open subset of df; N 0H;,
then we have v; - v; < 0 (resp., = 0). We may refer to {2 having dihedral angles
< m/2 as nonobtuse.

Example 2.2. If L : R**1 — R+ js a linear isomorphism, then L ([0, 0o)? xR™)
is a polyhedral cone domain. In fact, [[7, theorem 1.1] implies that any nonobtuse
polyhedral cone domain is a simplicial prism, and hence takes the form L ([0, oo)l X
R™) for some /, m, and L as above.

Example 2.3. When ! = 0, @ = R*t!. When/ =1, Qisa half-space. When
[ =2, Qisawedge W? x R*~! with interior angle < 7. The convex wedge
W2 x R"~! is the archetype of the polyhedral cone domain, and W2 x R”~2 is the
archetype of a free-boundary minimal surface in this domain.

Given x € Q = ﬂj\]:l Hj, there are indices I C {1,..., N} so that we can
write
(2.2) xe()oH;n()intH;.
jel jgr

If weletr < d(x,\ ;¢ 0H;) = inf{|x - v;| : i & I}, then

(2.3) QN B(x) = (| Hi N Br(x) = (x + Nicg Hi) N Br(x).
i€l
We therefore define the polyhedral cone domain 7% := ();c; H; to be the tan-
gent domain of 2 at x. Alternatively, one could realize 72 as the limit (in the
local Hausdorff sense) of dilations lim, ¢ %(Q — x). Trivially 752 = Q.
We define the i-th stratum 9; Q2 to be the set of points x € €2, such that the
tangent domain 7 <2 is at most i-symmetric. Equivalently, if x and / are as in
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976 N. EDELEN AND C. LI

(2.2), then x € 9;Q2 <= NjecrdH; is at most i-dimensional. We have the trivial
fibration

00 C ... C 3,2 =00 C 0,412 = Q.

For notational convenience define d_1 Q2 = @. If Q is m-symmetric, in which case
Q = 0(Q xR™) for some 0-symmetric ¢, then we have d,,Q2 = O({0} x R™),
0;Q =@ foralli <m,and T, Q2 = Q for all x € 3,,Q.

We shall use the following quantification of (2.3)):

LEMMA 2.4. Given Q a polyhedral cone domain, there is a number B(Q) €
(0,1/4) so that given x € 0; L2, we have

Brpa(x) NQ = Bypa(x) N (x + TxR), d =d(x,0i-1).

PROOF. Write Q2 = ﬂf;l Hj as before, with H; = {x : x-v; < 0}. Fix
an i. Let J; be the set of subcollections / C {1,..., N} with the property that
V=) s 9H; is an i-dimensional plane, and such that / is “maximal” in the
sense that dHy N V7 is (i — 1)-dimensional for every k & [. Take [ € J;. Let

ar = min{|zy, (vj)] 1 j & 1}.

We have oy > 0, as otherwise vy L Vj for some k& ¢ I, contradicting maximality
of I.
Given x € Vj such that d(x, V; N dHy) > 1 forevery k & I, we have

ind(x,dH;) = min |x -
min (x, 0H) Ilglé?lx Vi |

- - x ey, (ve) |

> o7y min ———————
kel |y, (vl

=y n}cind(x, Vi N oHy)

> oy.

Let a; = minjey; a7, which is positive since J; is finite.

When i = 0 there is nothing to show, likewise if d(x,d;—12) = 0. Take
x € 0;2\ 0;—12, and after scaling we can without loss of generality suppose that
d(x,0;—12) > 1. Write

(2.4) x=()0H; N () int H;

xel x&l

as in (2.2). By our choice of x we have that N;e7dH; is i-dimensional. If k & I,
then necessarily dHy N (ﬂjel 0H;) is (i — 1)-dimensional, as otherwise we would
have dH; N (e 0H;) = (\;er 9H; > x, contradicting our decomposition (2.4).
This implies that if y € dH; N (ﬂjel 0H;), then y € d;—1%2, and hence

gcnéflld(X, Vi NOoHg) > d(x,0;—1) > 1.
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Therefore I € J;, and x € Vj satisfies d(x, V; NdHy) > 1 forevery k & 1. We
deduce by our earlier computations

mi?d(x, oHy) > «aj,

k¢
and hence
Bo; (x) NQ = By (x) N () Hj) = By (¥) N (x + TxQ)
jel
as in (2.3). Taking B = % min;=1,.._»+1 @; proves the lemma. O
Let us define the density of €2 as
(2.5) Oq = 0, L H"THR N Br) = 0 '3 (R0 N B),
where w, = H"(B1(0")) is the n-dimensional volume of the unit n-ball. By

convexity, we have the monotonicity

HHQ N Br(x))
wn+1”n+1

(2.6) Or.0 > Vr >0,

and hence we have the following lower-semicontinuity: if x; — x, then

(2.7) liminfOr, g > Or.@.
i ! .

Let Ng be the cone consisting of outer normals for 2:
No =U{veR”+1:Q C{y:y-v=0}}.

By convexity, Ng # @.
If we decompose @ = O(QL x R™) as in @2-1), then define Pg to be the

collection of horizontal n-planes of the form O(R? x W™=1) for W™=1 an (m —
1)-plane in R”. We observe the trivial inclusion

Pao C fPTxQ Vx € Q.
In particular, if x € 9;Q2 and y € Q2 N Bapg(x,3, ,0)(x), then
(2.8) Pr.a C ?TyQ.

2.3 Curved polyhedral cones

Since a general polyhedral domain will at finite scales only look like the per-
turbation of a polyhedral cone domain, in our local regularity we must allow for
domains with a little bit of curvature (captured by the map ®). Moreover, since
the model polyhedral cone will in general change as one moves along any given
stratum, we allow for small changes in the model domain itself (captured by W).

DEFINITION 2.5. Let Q@ be a polyhedral cone domain in R” 1, as per Definition
Given € € (0, 1), we define D (Q©@) as the set of domains €2 satisfying

QN By = o(W(Q?)) N By,
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978 N. EDELEN AND C. LI

where W is a linear isomorphism satisfying [¥ —Id| < €, and ® : B, — R"T1 is
a C? diffeomorphism satisfying

2.9) ®0) =0, DPlp=1d, |d-— Id|C2(B2) < €.
Let us call any such Q2 a curved polyhedral cone domain.

Remark 2.6. Since € < 1, we have ®(B,) D Bj. In fact, we could equivalently
have asked for ® to be a diffeomorphism By — By, but we shall see our definition
is slightly more convenient to work with.

Take 2 = ®(V(Q®)) N By asin Deﬁnition and given x €  let us write
x = ®(¥(z)). We define 9;2 = ®(¥(9;2()) N By, so that 9; 2 consists of
the points near which €2 is diffeomorphic to some polyhedral cone that is at most
i-symmetric.

There is a well-defined polyhedral cone domain 7, Q = lim,_q %(Q —X)
that we will call the tangent domain. In fact, we can write 7xQ = (D®|y(;) o
)T, QO It follows by scaling that if @ € D(Q(®), then 52 N By € D(Q®)
for every R > 1, and hence ToS2 € D (2?) also.

Since T% 2 is a polyhedral cone domain, we can define density ®r, ¢ and cone
of outer normals N7,.q as before. We say a vector field X is tangential to 2 if
X(x)-V =0forall V € Nt g, and for all x € Q. Similar to (2.7), © obeys the
following lower-semicontinuity:

LEMMA 2.7. Suppose x; — x € By and Q; € Dy, (Q©) for some §; — 0. Then
we have

(2.10) liminf Or, @, > O q©.
i i *

PROOF. Write 2; = &;(V; (Q(O))) N By as per Definition Let z; =
\Ifl._l(CDi_l(xi)). We have Ty, Q; = (D®; |y, (z;) o ¥i)(Tz; Q). and therefore
Or, 0 > oyt (1= cm8)FH" (15,2 1 Bi_c(mys,)
> (1 c(n)8)Or, o
(2.10) then follows from the lower-semicontinuity (2.7). O
2.4 Varifolds

Our notion of weak surface will be a varifold. For a more detailed background,
see [34] or [1f]. Recall that an integral n-varifold in an open set U is a Radon
measure M on U x Gr(n,n + 1) of the form

M(@(x.5)) = /qu(x,TxM)e(x)d%"

for some countably n-rectifiable set M, and some nonnegative Borel-measurable
function 6 : M — Z. Here Gr(n,n + 1) denotes the set of unoriented n-planes
in R”*1. We write JV,,(U) for the space of integral n-varifolds in U. If S is an
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n-dimensional, C! submanifold of R”*!, we write [S] for the obvious varifold
induced by §.

Given M € JV,(U), the mass measure jipy = yM is the pushforward under
the projection 7w : U x Gr — U, so that upr = H" .M. Given a Cl(U) vector
field X, generating a 1-parameter family of diffeomorphisms ¢, : U — R" 1, the
first variation of M along X is the derivative

d
SM(X) = —

@M = [ divag (X
t=0
where divys (X) = ), e; - D¢, X, for any choice of ON basis {e; }; of TxM. Relat-
edly, given a function h € C1(U), we write Vi = Ty it (Dh) for the tangential
derivative of a function / along M .

M is said to have locally finite first variation if §M is a bounded operator on
every W &€ U. In this case we may decompose

8M(X)=—fX-HdMM+fX-nd0

where H is the generalized mean curvature of M, o the generalized boundary
measure, and 7 the generalized boundary conormal.
We define the density ratio of M in a ball B,(x) C U as

Or (x, 1) = W.

If M has locally finite first variation, zero generalized boundary, and bounded
mean curvature || Hasllzoow:p,) < A, then e Gyr (x, 1) is increasing for r €
(0,d(x,dU)) [1]. In particular, the density at a point

O (x) := 1im Opr (x.1)

is a well-defined upper-semicontinuous function, satisfying a7 (x) > 1.

Given a curved polyhedral cone domain Q C R”*!, we define the set of integral
varifolds in By with free boundary in 2, denoted IVT, (2, By), to be the set M €
IV, (B1) satisfying the conditions that M = M _ 7~ !(int ), and

SM(X) = —fX~H}‘}“duM

forall X e Ccl(Bl) tangential to €2, for some Hﬁ“ € Llloc(Bl,R”H;uM). In
other words, M has mean curvature but no boundary “tangential” to d€2 (made

precise in Theorem [4.3)).

2.5 Excess

Our mechanism to establish regularity is the decay of an appropriate excess
quantity. Given = ®(¥(Q®)) N By asin Deﬁnition and an n-plane V, the
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full L2 excess is:

Es(O, M, p+V,x,r)
= max r_”_2/ d?. v dum,
{ B, (x) Lt

5 2 N HM | Foo(Bysyungy + 6 721D @l co(Ba (1) (-

We will often abbreviate
E@ M, p+V,x,r)=E(®, M, p+V, x,r),

and may also omit the ® or M when there is no ambiguity. At scales for which
Q resembles a fixed model cone 2@, we will prove decay on Eg by reducing the
problem to a decay estimate of the linearized problem.

When traversing cone types, we will find it convenient to work with the “total”
excess:

E®M,p+V.x,r)=r"2 sup derV(Z,)2
z€spt M N B (x)

r2 sup wp@— p)lP
z€spt M N B (x)

EV (M. V,x.r) = 1= /B i — oy dpt (2)
- (x

EW (M. V,x.r) = r—"/ ot — P diag (2)

By (x)
E'%(®d, M, p+ V,x,r) =max{E®(M, p+V,x,r),
EV(M,V,x,r),E(®,M,p + V. x,r)}.

Implicit in the definition of excess is the requirement that ®(0) = 0, D®|¢ =
Id, so even though E is formally scale invariant, one must be a little careful: in a
general ball B,(x) N © will not look like a cone, and even when it does, if x # 0
then @ will no longer be the right map. This is made precise in the following
section.

2.6 Changing cone type

The key fact that we will use in our regularity theorem is that at any point, and
at any appropriately small scale, €2 looks like one of finitely many polyhedral cone
domains.

LEMMA 2.8. Let 29 pe a polyhedral cone in R" 1. There is a finite set of poly-
hedral cone domains T(2©) := (1,20 : z € QO and constants B(Q©®) €
(0,1/4), ep(n), cg(n), so that the following holds:

ASULOI'T SUOWIWO)) dATEAI)) d[qearidde oy £q PauIoA0S a1e SO[ONIE V() ‘2SN JO SA[NI 10§ AIRIGIT SUIUQ) AJ[IAY UO (SUOHIPUOI-PUE-SULID} WO’ KJ[1M " KTRIqI[aur[uo//:sd)y) SUOIIPUO) pue SULId L, 3t} 298 “[£20Z/L0/10] U0 A1eiqr auruQ Ao[ip ‘KNSIOATUN Y10 X MAN Aq €07 ®do/Z001°01/10p/wod Kaim' ATeiqrouriuoy/:sdny woiy papeo[umo( s ‘770T ‘TIE0L60T



REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 981

Givenany Q = (U (QO)NB; € DA(QD), fore < ep and x = d(V(z)) €
0; 2, take r < min{Bd(x,0;—12),1 — |x|}, and define Qx , = %(Q — x). Then
the following holds:
(1) We have

@.11) (1 —cge)d(x,0;—12) < d(z.0i—12©@) < (1 + cge)d(x, 0;_1).

(2) Given y € Q2 N By(x), then for every V € Pr.q thereisa W € Pr,q
such that |y — mw | < ¢(n)| D*®@|co(pylx — yl.

(3) There is a T,Q© € T, a linear isomorphism B : R"*1 — R"*+1 and a
C? diffeomorphism o : By — Rt satisfying

(2.12) | —1d| < cpe,
and a(0) = 0, Dol = 1d, and

2.13) (1 —cpe)|D%a|cop,) < 7ID*®|cocp,, ) < (1 + cae)|D*a|co(p,),
so that

(2.14) Qur N B = a(B(T2*) N By,
In particular, Qx , € DCBG(TZQ(O)).

(4) In the notation of part (3),
1
EE(é’ Ma p + V,X,r) S E(“ﬂ (nx,r)ﬂMa nx,r(P) + V7 Oa 1)
<2E(®,M,p+V,x,r),

(2.15)

and the same with E* in place of E.

Remark 2.9. If x = 0, then forany r < 1 we have r " 1QN By = @, (\D(Q(O))) N
By, where @ ,(y) = r~1®(ry), and therefore we have the exact scaling

E(®,M,p+V,0,r)= E(®o,, (o, )4M. 1~ p+V,0,1).

PROOF. For ep(n) sufficiently small, ®o W is a (1 + c¢(n)e)-bi-Lipschitz equiv-
alence:

[D(V()) — QW) — (v — ¥ < clm)ely — ¥l
from which (I)) follows directly. In particular,
\p_lq)_lBr (.X') C BZBd(Z,aj_lg(O))(z)g'

We prove (2). Observe that for a fixed subspace U” and linear isomorphisms
A, B :R"1 — R the map A — m4(p) is well-defined and analytic in 4, and
satisfies

(2.16) |mawy — W)l < c(n)|A — B

for A, B satisfying |4 —Id| + |B — Id| < e(n). Write y = ®(¥(w)). From
and the inclusion (2.8), we have

{:PTZ o C :PTw Q)
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982 N. EDELEN AND C. LI

and therefore we can take W = D®|, o D® 1| V. We then estimate, provided
€p(n) is sufficiently small,

lmy — ww| < c(n) |D®|y o DOy —1d| < c(n) | DO |, — DOy |
< c(n)lx — y||D?*®@|cocp,)-
This proves 2]

We prove now (3) and @). Let T = {7;Q2®}, o) and B be as in Lemma
Let us define

1 _
B = D<D|\Il(z) oW, a(y)= E(qD(X +rD® 1|xy) _x)-

The bound (2.12) and «(0) = 0, Da|p = Id follow trivially. The Hessian bound
in (2.13) follows from our definition of & and the estimate (1 — c(n)e)|v| <
|D®|,v| < (1 + c(n)e)|v|. Ensuring €g(n) is small, we have

r <2Bd(z,9;—12©),
and therefore
(o B)(Bx N TQ2@)N By = (2o B)(B2N QO )N By
= Qx’r m Bl.

This proves (3)). Lastly, (@) follows by (2.13) and scaling, ensuring €g (n) is suffi-
ciently small. O

3 Main Theorem

Our main Theorem [3.1]is the following Allard-type regularity result, which says
loosely that whenever an integral varifold M has free boundary in 2 = QO =

Q(()O) x R) and  is sufficiently close to the identity, M has sufficiently small mean
curvature, and M is sufficiently varifold close to the “horizontal” plane R” x {0},
then spt M is a C 1** perturbation of 80).

In general, €2 is curved, and so spt M will not be graphical over a particularly
“nice” subdomain of R”. Instead, it is more convenient and precise to look at
®~1(spt M), which will be a graph over R” N Q©® N B1/32. We do not lose
anything in our estimates by doing this, as even before this transformation we must
use | D2®| o to control the tilting of tangent planes of spt M.

For various reasons we in fact want to allow not only the diffeomorphism @
to change, but also the reference domain (?) (mainly because different points in
D(Q (O)) will be modeled on different polyhedral cone domains, even when staying
in the same stratum; see Section [2.6). For this reason we in fact consider domains
of the form @(\D(Q(O))), where @ is a diffeomorphism close to Id, and W is a linear
map close to Id. Our constants §, ¢, & will be uniform in &, W, but in each particular
case our “reference” polyhedral domain will be W(Q(®). It may be easier to parse
Theorem[3.1]by considering the case when ¥ = Id, p = 0, and V = R”, in which
caseqg =0, W =R”, TpQ2 = QO
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THEOREM 3.1 (Allard-type regularity). Let QO be a polyhedral cone domain.
There are constants §(QL®), (), and «(Q®) so that the following holds: Let
Q = (V(Q®)) N By € Dg(QD), and take M € TVT(Q, By). Assume there is
aV e€ePry p € VL so that

(3.1 E = /B1 dyydum + ||H||§OO(BI;MM) + |D2q>|g0(32) < §?

and

(3.2) O (0,1) < (3/2)Oryn. sptM N Bys1z # 2.

Then if we set ¢ = ®~1(p), W = DO~ |, V, we can find a function
f@+W)nw@O) N Bijaglg) > W

satisfying

(3.3) |flere < cEY?

so that

(3.4) ! (spt M) N Byjzs6 € @' (spt M) N By/128(q)

= graph, (/) N By/128(9).

Some comments are in order.
Remark 3.2. Even though 2© is convex, © need not be.

Remark 3.3. « can in fact be chosen to be anything in some interval (0,e — 1)
(where e = e(Q(O)) > 1 as in Proposition is determined by the Neumann
eigenvalue expansion of Qé M dBy1), provided § and ¢ are taken to depend on «.
For example, when (9 is R”*! or a half-plane, then any & € (0, 1) is admissible.
When Q@ = W2 x R""! is a wedge with angle y < 7, then we can take o €
(0, min{1, w/y — 1}). See Remark [5.4] for more details.

Remark 3.4. We state and prove Theorem|3.1]in codimension-one Euclidean space.
However when [ = 1 our proof carries over verbatim to higher codimension and
ambient manifolds, giving an alternate proof of [[15]. When [ > 2, the proof carries
over except for two estimates in Section 4} which continue to hold if one knows
a priori that spt M is contained in some (n + 1)-dimensional submanifold. See
Section [8] for details.

Remark 3.5. If one assumes 637 (0,1) < (1 4 §)©O1,q then Theoremholds for
varifolds that are only rectifiable but have a lower density bound 63; > 1 ups-a.e.
This requires only minor modifications of the proof. (Specifically, in the contra-
diction arguments of Proposition and Lemma the choice of constant §; in
Corollary [6.2] and the choice of constants in the induction argument of Theorem
[7.1]) In a similar vein, Theorem 3.1 also holds if we assume Hps € LP(upr) for
p > n instead of p = oo. In this case our constants would depend on p also.
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Our regularity Theorem [3.1] requires V' to be “horizontal,” in the sense that if
QO = Q(()O) x R, then V D Q((]O). When V is instead “vertical” in the sense
that V D {0} x R, then regularity as in Theorem 3.1]can fail. Below is an example
illustrating this.

Example 3.6. Let W C R2 be the wedge {re'? : r € [0,00), —n/6 < 6 < 7/6},
and let Y C R2 be the cone over {1, e!27/3 ¢7127/3} consisting of three rays
meeting at the origin at 120°. Then for every € > 0, the integral varifold M, given
by integrating over (¢ + Y) N W is stationary with free boundary in W. As € — 0,
then M, converges as varifolds to the “vertical” plane P = {x > 0,y = 0}, but
none of the M, are C! perturbations of P.

One can construct a similar example by restricting the tetrahedal cone to a 0-
symmetric domain in R3 consisting of the intersection of 4 half-spces.

Example [3.6]is a little contrived, but we expect one should be able to construct
smooth counterexamples. However, we would not expect these examples to be
minimizing (in the sense of integral currents). Relatedly, when Q@ is a wedge or
has dihedral angles < /2, then the vertical planes are not minimizing (Lemma
. For more general convex QO or when Q@ is a nonconvex wedge, this may
fail (see Examples[3.7/and 0.6).

When €2 is nonconvex, Theorem[3.T|can fail also, even when M is in some sense
minimizing.

Example 3.7. [21, theorem 1] implies the following: Suppose & = W2 xR, where
W2 is a wedge with angle > 7 and I" is any smooth curve in int QN {x? + y2 = 1}
such that I" meets 2 only at its endpoints {p1, p2}, and the height function x3|r
has no maxima away from the endpoints. Let B; = {(x,y) € R? : x2 4+ y2 <
1,y > 0}. Then there isamap F € C%(B,, Q) N W1L2(B, Q) such that:

(1) F minimizes the Dirichlet energy, and F(B4) is a smooth minimal sur-
face;

(2) F maps the semicircle 3B+ N {y > 0} monotonically to I', w2,y © ¥
maps the interval [—1, 1] monotonically into to dW, and w2 o F maps B+
diffeomorphically to int 2 N By;

(3) writing F(B1) N {0} x R = {g}, then F~1(q) = [a1.a»] is an interval of
positive length, and F' extends smoothly to B_+\ {—1.1,a1,as};

(4) on (—1,1)\ [a1, az], F meets 92 orthogonally;

(5) on (a1, az), the unit normal of F is horizontal.

These items imply that M = [F(By)] € IVT,(2,R3\ I') and has zero mean
curvature. By choosing I' to be contained in a very thin slab R? x [—e, €], the
maximum principle implies F(B.) is contained in this slab also. Therefore we
can arrange M _ By, to be arbitrarily varifold close to the multiplicity-1 horizontal
plane [R?] L B, /2, but spt M will never be graphical over R? at 0.
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3.1 Outline of proof

Our strategy to prove Theorem [3.1]is to show the following excess decay esti-
mate: for all x € spt M N By;¢ there is a plane Vy € Pr q so that

(3.5) sup  r2d(z.x + V)2 <c(QO)y2E Vo< r<1/4,
Z€B, (x)Nspt M

where (Q©) € (0, 1). From it follows easily that spt M N By /3,, and hence
O~ (spt M) N Bi/6s,isa C L@ graph with norm controlled by cE'/2.

We prove (3.5)) in two steps. In step one (Section|[6), given any fixed model cone
QO we prove a decay like with x = 0. Loosely speaking, we show that
spt M N By resembles a W12 harmonic function in Q) with Neumann boundary
conditions. By understanding these linear solutions (by a Fourier expansion and
an eigenvalue estimate), we can prove C 1'% decay. This basic idea goes back to
DeGiorgi, who proved interior regularity by a similar “excess decay” strategy and
is implemented in a fashion closer to our style in [[1,|10L35].

In step two (Section , we exploit the polyhedral structure of Q© to show that

o — +
forevery x € Byjgand 0 < r < 1/4, we can find radii r = rg =Tg =71 =

ryoz e > r,T_H > r,41 = 0 such that when s € [r;, ri+], then N Bs(x)
is modeled on some T%; Q© and ri/ rl.tl > 1/¢(2©). In other words, outside
of finitely many scales (controlled only by 2(9), @ N By(x) is modeled on some
polyhedral cone of the form 7,92 Since there are only finitely many tangents
T QO we can therefore inductively prove decay by our first step in each interval
[r;, ri+] and extend decay from one interval to the next by enlarging our constant
¢ in (3.5) by a controlled amount.

The key technique hurdle in proving both steps is to show that M has controlled
first variation §M. Our hypotheses imply 6M is only bounded in directions tan-
gential to 2, but we need to establish both that §M is bounded in all directions,
and an a priori tracelike estimate for ||§M || in terms of |M || (Theorem4.3). This
is the main point where we use convexity of QO

A priori control on §M gives good compactness for sequences of such M, and
allows us to prove a sharp L> — L? estimate and a uniform lower density bound.
The L°° estimate is crucial in Step 1 to show that M doesn’t “concentrate” near
a2 at the scale of excess (and therefore can be well approximated by the interior
“graphical” region). The lower density bound means that in various (blowup) limits
the varifolds do not disappear, as they might in the nonconvex case.

We elaborate on these steps below. For simplicity, in our outline we will assume
Q=Q@and H = 0.

Step 1. Decay towards a single cone model. We wish to prove an excess decay
of the following type: if M is sufficiently varifold close in By to a horizontal plane

ASULOI'T SUOWIWO)) dATEAI)) d[qearidde oy £q PauIoA0S a1e SO[ONIE V() ‘2SN JO SA[NI 10§ AIRIGIT SUIUQ) AJ[IAY UO (SUOHIPUOI-PUE-SULID} WO’ KJ[1M " KTRIqI[aur[uo//:sd)y) SUOIIPUO) pue SULId L, 3t} 298 “[£20Z/L0/10] U0 A1eiqr auruQ Ao[ip ‘KNSIOATUN Y10 X MAN Aq €07 ®do/Z001°01/10p/wod Kaim' ATeiqrouriuoy/:sdny woiy papeo[umo( s ‘770T ‘TIE0L60T



986 N. EDELEN AND C. LI

(p + V) N Q, then there is a new horizontal plane p’ + V' and a (L) so that
1

(3.6) EM,p" +V',0,6) < EE(M,P-FV,O, 1).

Here E(M, p + V,x,r) = r"2 I3, dp+v(2)? dum (2). (Propositionis
phrased in terms of the L? excess, which is a little more convenient, but in this
setting the L™ and L? excesses are the same; see . By iterating (3.6), we
obtain an estimate like

EM,p" +V",0,r) <c(Qr**E®M, p+V,0,1) Vd(sptM,0) <r < 1.

This is our main decay estimate in Step 1.
We prove (3.6) by contradiction. We assume there is a sequence of M; such that
M; — [(p + V) N Q] in By as varifolds such that

1
in{/ EWM;,p'+V'0,0) > EE(Mi»P +V,0,1/2) =: E; (—0asi — oo).
p/+ 7

On larger and larger sets U; € intQ N (p + V) (for U; — intQ N (p + V)),
we can write spt M; N U; = graph,,  y(u;), where u; satisfy the minimal surface

equation. By setting v; = E; Y zui, then the v; are locally bounded in .°°, and

after passing to a subsequence we get convergence
Vi = v,

where the Jacobi field v satisfies

Av =0, d,v=0, / v? < 1.
B1(O)N(p+V)NQ
We now prove two key technical facts: First, by the sharp L bound {.20), we

have strong convergence
E-'EM;, p+V,0,r) — r_"_2/ v VO <r < 1/4.
B (0O)N(p+V)NQ

Second, using the W 1:2 estimate of (#21)), a sharp eigenvalue estimate for convex
domains in the sphere (Theorem [5.1]), and a standard Fourier-type decomposition,
we can expand v as above like

v=a+b-x+ 0@F'TY),

where b lies in some direction of translational symmetry of Q. In other words,
the eigenvalue bound of Theorem [5.1]implies that any free-boundary plane is inte-
grable through rotations.

We can now repeat the blowup argument with

pi + Vi = graph,, y(Eia + Eib - x)
in place of p + V, and obtain the Jacobi field

V=v—a—b-x=0@F!T.
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Hence fori > 1 we have

Ei_lE(Mi,pi +V;,0,r) < 2r_”_2/ v? < e(Q)r?,
B-(0)N(p+V)NQ
which is a contradiction for r (£2) small.

This general strategy is very robust and has been implemented in many other
contexts. However, in any given situation there are typically two key technical
issues to address: strong convergence in norm of the nonlinear problem to the
linear problem and decay of the linear problem. We handle these in our situation
by our sharp L.°° bound and our sharp eigenvalue estimate.

Step 2. Decay across cone models. We prove the general decay (3.3) by using
Step 1 and an inductive argument on the strata. We first observe (Lemma [2.8)) that
every point in €2 is locally modeled on some (other) polyhedral cone. Precisely,
there is a B(2) so thatif x € 9; 2 and r < d(x, 0;—12), then

Bp:(x) N Q = Bp,(x) N (x + TxQ).

(When @ € Dg (Q(O)) is only a perturbation of a polyhedral cone, a similar state-
ment holds.)
Now given x € d;2, we choose points X; € d;; 2 and radii

l=rjp 0] 21y =2rf 2rg =0,
so that Q N B,(X;) is modeled on some fixed polyhedral cone 7, jQ(O) when

r € [rj_, rj+] and ;- / rj"'_1 > 1/¢(2©). The degree of symmetry ij is strictly

decreasing as j increases, so J < n. We will apply Step 1 to get decay r]f =1
and then give up a controlled number of scales to “decay” rj_ — rj+_1.

Some care must be taken in constructing these points/radii, since for each j we
need that:
(D r].Jr < Bd(X;,0i;,—152), so that @ N B_+ (X;) looks close to a polyhedral cone;
h J
(2) |x —Xj| < r;, so that we can apply Step 1 in Br;— (x;) to get decay down to
ri_;
i - N B
3) Br;r (Xj) C B,j—+1/2(x1+1) but ;T ZCriig,s0 that we can control the mass
and excess in Brjr (X;) in terms of the mass/excess in By, (Xj+1).
Once we construct these Xjand rji, we inductively prove a statement of the
form: for each j, thereis a V; € Pr. q so that
-]

E(M.pj +V;.55.r) S AJEr?® Vry <r <1/4,
and
Om(Xj,r) < (7/4)®T5c‘1~9 Vr <r < rJT*'.
The excess control ensures M . B,(X;) looks like a plane with some multiplicity,
the mass control ensures this multiplicity is < 1, and the fact that x € Brjf 12(X;)
ensures this multiplicity is > 1. The proof of this statement follows in a fairly
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straightforward way from Lemma [2.8] and Step 1. An extra argument by contra-
diction (Lemma i is required to ensure that the mass control at scale B (X;)

carries over to scale B+ (Xj—1).
Jj—1

Minimizers. Here we apply our regularity theorem to minimizing currents and
isoperimetric sets of finite perimeter. We classify low-dimensional minimizing
cones and prove a compactness theorem, which together with our regularity result
implies a partial regularity theorem by standard dimension-reducing techniques.

The compactness is fairly straightforward—we just need to adapt an argument
of Gruter [[13]] to ensure mass cannot accumulate near the boundary. The main step
is classifying low-dimensional minimizing cones, which we prove by induction
on the number of symmetries of €2. The idea is as follows: Assume that any
minimizing 7" in Qo x R~ is a horizontal plane. Then if 7" is minimizing in
Qo x R™, by induction and our regularity theorem 7 is a C 1'* surface away from
0. Under certain circumstances, we can boost this to C%* regularity and thereby
adapt Simons’ classical argument to prove 7" must be planar. Then, again in certain
circumstances, a cut-and-paste argument implies this plane must be horizontal.

Unfortunately, even in low dimensions we start running into issues. The barrier
to adapting Simons’ argument when €2¢ is more than 3 dimensional is the lack of
C %% regularity in 3-dimensional cones. We suspect this holds if the dihedral angles
are at most 77/2, but this requires a Neumann eigenvalue estimate for spherical do-
mains that is not known. On the flip side, for general dihedral angles it is not clear
that every minimizing plane need be horizontal—when ¢ is only an intersection
of 3 half-spaces in R3, it is plausible there are nonhorizontal minimizers. Taken
together, we get a codimension-2 bound for the singular set in general domains,
a codimension-3 bound in domains with dihedral angles < /2, and the (sharp)
codimension-7 bound in certain special cases (e.g., when all dihedral angles are
=m/2).

4 First Variation, Mass Control

In this section, we prove that the mass and total first variation of an M €
IVT, (2, By) are controlled by the mass, tangential mean curvature of M, and
geometry of 2. We must first prove monotonicity and the mass control by cooking
up an appropriate tangential vector field, and then we use this to prove control on
the first variation. Two important consequences are lower Ahlfors regularity of M
(Corollary [4.6), and L — .2, W12 — L2 bounds on excess (Corollary [4.7).

In this section we fix 2(?, a polyhedral cone domain (as per Definition ,

[
and after a rotation there is no loss in assuming Q(® = ng) x R™. Note for the
reader: in this section (and occasionally in Section [J)), we will allow m = 0, but in
all other sections we will assume m > 1. See also Example [3.6|and Lemma[9.5]

LEMMA 4.1. There are constants €y (n), Cmn(n), so that if
QeD(QD), M eIVTH(Q, B, [ H 008300 < €.

ASULOI'T SUOWIWO)) dATEAI)) d[qearidde oy £q PauIoA0S a1e SO[ONIE V() ‘2SN JO SA[NI 10§ AIRIGIT SUIUQ) AJ[IAY UO (SUOHIPUOI-PUE-SULID} WO’ KJ[1M " KTRIqI[aur[uo//:sd)y) SUOIIPUO) pue SULId L, 3t} 298 “[£20Z/L0/10] U0 A1eiqr auruQ Ao[ip ‘KNSIOATUN Y10 X MAN Aq €07 ®do/Z001°01/10p/wod Kaim' ATeiqrouriuoy/:sdny woiy papeo[umo( s ‘770T ‘TIE0L60T



REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 989

for € < €mp, then
4.1) (1 + cmn(m)ep)" 1021 (0, p)

is increasing in p < 1. If e = 0 and o < p, then we have the sharp monotonicity

737 (2)12

@2 (0.0~ b 0.0) = [ i (2.

By (0)\B(0)

PROOF. Define Y(x) = D®|g-1(y) (®~'(x)). Then Y is a C'! vector field
tangential to 2. An easy computation, using (2.9) and taking €,,, (1) small, shows
that

4.3) Y(x) — x| < c(m)elx|®.  |DY[x —1d| < c(n)elx].
Let { be a smooth, decreasing approximation to 1(_, 1) such that spt{ C (—o0, 1).

Take p € (0, 1), plug in the vector field X(x) = &(|x|/p)Y (x) into the first varia-
tion, and use (4.3)), to deduce

d d
o [ s —n [ e — o [ St dua
o dp
4.4) J
= —cne [ clxlduas —cmen’ - [ ¢ dun.
Notice that the last terms on both the RHS and LHS are nonpositive. Setting
I(p) = [ ¢ dup and discarding the last term on the left, we get
(1 + cep)pl’ — (n —cep)l >0,
where without loss of generality both constants ¢ = c¢(n) are the same. This
implies
d
(L +ce)"™p™"1(p)) = 0.
p

Integrate in p, then take { — 1(_no,1], to obtain the required conclusion (..
If € = 0, then in fact (4.4) is an equality (with no errors on the right-hand side).

Integrating up as before, but without discarding terms, gives (@.2). O
COROLLARY 4.2. Givenany 6 € (0, 1), there are constants € (2@) and ¢,n (29, 6)
so that if

Q€ D, (D), M eIVT, (R, B1), [HEM Loy in) < €m>

then for every x € Bg and 0 <r <1 — |x|, we have
(4.5) Opm (x,1) < cmOpr(0,1).
PROOF. Leto, = @ andsetoj—; = 1/4+ (3/4)o; € (03,1) fori = 1,...,n.

We prove by induction on i that there is a ¢z;0(8, Q(O)) so that given x; € 3; 2 N
B, , then we have

(4.6) O (xi,r) < cpfilup (B1) VO <7 <1—|x].
This will establish @3) with ¢, = ™1

m0
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Take B(Q©) as in Lemma and let us ensure that €,,($2(?) is sufficiently
small so that ¢, < €p and cpe;y < €mpn. Take x; € 0;Q2 N By and set d; =
d(xi,8;—1), Ri = min{Bd;, 1 — |x;|}. For 0 <r < R;, we have by Lemma[2.§|
and monotonicity (4.1)) that

Opm (xi,r) < c(n)Op (xi, Ri).

First assume R; = 1 — |x;|. Then we have

Opm(xi, Ri) < (1 —0y) " up (By) < c(n, )y (By),

and we are done. Notice that if i = m, then d; = oo, and so this proves the
inductive base case.

Assume now R; = Bd;. If d; > (1/4)(1 —|x;|), then we can similarly estimate
for R <r <1—|x;|:

B(1 —01)
and we are done. Let us assume now d; < (1/4)(1 — |x;]). Since
IXi| +di < 1/4+ @3/4)|xi] < 0i-1,

Op (xi.7) < (L) tim (Br) < c(Q©, 0)1p (By),

we can find an x; 1 € 0;-1R N By,_, realizing d; = d(x;,0;—1). Now by
inductive hypothesis we have for R; <r <1 — |x;_1| —d;:

Op (xir) < (1+ 1/BY' g (xie1.7 + di) < ()l oen (By).
On the other hand, since
Xic1 |+ di < x| +2d; < 1/2+ (1= 1/2)0; < 1—1/e(n, 6),
if r > 1 —|x;_1| — d;, then we have
Om (xi 1) < c(n, O)pum (Br).
This proves the inductive claim (4.6) and finishes the proof of Corollary@.2] O
THEOREM 4.3. There is an €(2©) so that if
Qe D(Q®), M eIVT,(Q.B). [HiLoos ) <€ Ham(Br) < oo,

then ||§M || is a Radon measure on B1, and for any X € C}(B1,R"™1) we can
write

4.7) SM(X) = —/H}Q“-Xd/LM —i—/n-Xda,

where o L i is a nonnegative Radon measure supported in 0Q2; n(x) € Nt g
for o-a.e. x, and ||M ||(0;2) = O foralli <n —2.
Moreover, we have

48) f $d|3M | < c(Q®) / \HE ¢+ |Vldiin

forall ¢ € C}(By) nonnegative.
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Remark 4.4. Notice that (4.8) is scale-invariant.

We prove Theoreminductively on!/. Thecases! =1,/ = 2,and ! > 3 are
handled separately. We shall use several times the following relation.

Let O be a C? closed p-manifold, with p < n, and suppose the distance func-
tion d to Q is smooth on By \ Q. Suppose M is a Radon measure in By \ Q, and
we decompose M as in for X supported away from Q. Let 7 be any constant
vector, and h € C}(B1) a compactly supported, nonnegative function. Then we
have for any p > 0:

4.9 l/ (Vd - t)h —/min(d/,o, Dhn-tdo
P JBy(Q)

= —/ (H}l}“h + Vh) -tmin{d/p, Ddupy.

PROOF WHEN [ = 0,1. When [ = 0 there is nothing to show. Take / = 1.
Assume €(n) is sufficiently small so that the distance function to 32 = d(W ({0} x
R™))N By is smooth in Q. From Theorem[A.1] we get that M is a Radon measure
on Bj, and we can write M as in (4.7), where o satisfies our conclusions and
n = tvgq. It suffices to verify that n = +vq.

_ Let d be the distance function to 9Q, and d the signed distance function so that
d =dinQ. Let X = ¢Dd for ¢ € C!(B1) nonnegative. From Theorem
we have

/n-(—m)¢ do = / n-Ddgdo = —T1($|Dd]?) <.

Since ¢ is arbitrary, we deduce 5 - v > 0 for o-a.e. x.
Therefore n = vg, and (using Theorem[A.T)) we in fact have

[ 9do =r101paP) < [ |Hilo + (Vpldnu.
Since ||M || = |H; |um + o, we obtain @-8). O

PROOF WHEN / = 2. In this case Q(()O) C R? is simply a wedge, with angle

< gr. For ease of notation let us write 02 (()0) = L1 U L, for Ly, L, rays extending
from 0, and correspondingly let us decompose

Q= F1 U F,,

where F; = ®&(W(L; x R™)) N By, so that 0,2 = F1 N F».
Away from F; N F5, the outer normal vg is well-defined on d€2. Write v; for
the outward normal on F;. Observe that for each x € F; N F», we have
N7 @ = {a1vi(x) + azva(x) 1 a1, az € (0,00)}.

Write dg, d1, d for the distance functions to Fy N Fy, Fy, F», respectively. Con-
vexity of SZ(()O) (and int Q(()O) # &) implies that by taking E(Q(()O)) sufficiently small,
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we can ensure that the d; are smooth in int £ N By, and that
(4.10) Dd; -Dd;j >0 on intQ N By.

Also by convexity, taking G(Qg))) small, we can choose a vector 7 € R? x {0}
and an €¢ (Q(()O)) > 0 so that
t-Ddi =€ >0 onintQ N Bj.
This of course implies that
4.11) T-vg <—¢ ondQN B\ FiNF.

The upper bounds (4.5) imply that for every 6 < 1 and any x € F1 N F> N By,
we have

1ar (Bp(x)) < c(Q©, 0)puar (B1)p".
In particular, we get
4.12) 1at (Bo(Fi N F2) N Bg) < (R, 0)uas (B1)p.

From the [ = 1 case, ||§M || is a Radon measure on B \ (F1 N F>). Take 6 < 1
and h € C}(Bjy) nonnegative. Let us apply formula with our choice of 7, and

do in place of d, and make use of (.10), (@.11)), and (.12) to obtain:
€0 / min(dy/p, Dhdo

1
<e€ h+|Vh|duM+—f hdua
P JB,(F1NF>)

1
<clhlcrpupm(Bg) + |h|C0;/fLM(Bp(F1 N F2) N By)

< clhlc
for ¢ = c(Q2, 0, upr(B1)). Taking p — 0, we get that
IBM||(Bg \ (F1 N F2)) < o0

forall 6 < 1.

We can now apply Theorem|[A.2]to deduce that ||§M | is a Radon measure on By,
and we can decompose M as in (4.7)), where 0 L s is nonnegative, supported
in 0€2; and for o-a.e. x, we have |n(x)| = 1, and

(1) n(x) =vi(x)if x € F; \ (F1 N F2)) and
(2) 7]()6) 1 Tx(Fl N Fz) if x € FiNF.

To verify the first half of our theorem, it will suffice to show that n(x)-v;(x) >0
when X € FiNF,.

Let d; be the signed distance function to F;, which coincides with d; on int 2 N
By. Take ¢ € C}(B1), and let X = ¢Dd;. By Theoremand @.10) we get

/ 1 (cvi)g do = / 1. Ddid do = —Ta(éDdo - Ddy) < 0.
FinF, Fink;
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Since ¢ is arbitrary, we deduce 7 - v; > 0.
To prove the second part, we observe that by our choice of t and characterisation
above, we have n(x) - T < —¢g for o-a.e. x. Therefore by the first variation,

60/(]56105—/n-r¢d0=/—H}§“-r¢—V¢-rdﬂM
< [ 15710 + 19 9ldun.
This completes the proof of case [ = 2. O

PROOF WHEN / > 3. By convexity of Q(()O) and since intQ((,O) # &, ensuring

G(Q(()O)) is sufficiently small, we can find a vector r € R”*! and ¢ (Q(()O)) > 0so0
that

T-v<—€ VYveNrgq, VxedlnBi.

Suppose by inductive hypothesis Theorem[4.3|holds for 1,2, ...,/ — 1 in place
of /. Since (using Lemma[2.8) any point of 92 \ 9,2 is locally modeled on some
/ /
Qéo) x R™*1 for Qéo) C R’~1, we have by induction that ||§M || is a Radon
measure in By \ 0,2, and a have a decomposition of §M as in for any X
supported away from d,, 2.

Ensuring E(Q(()O)) is sufficiently small, we can assume the distance function d
to 0,2 is smooth in int 2 N By. Analogous to the proof when / = 2, the mass

bounds imply that
(4.13) 1a1 (Bo(9mS2) N Bg) < ¢(Q©, 0)puas (B1)p?

for all & < 1. Therefore, as before, if # € C}(By) is nonnegative, we can apply
(#.9) with our choice of t and d to deduce

eO/min(d/p, Dhdo < cl|h|ct
independently of p, which implies |§M||(Bg \ 3,2) < oo.

Let X € C}(Bg,R"t!) forany 6 < 1. Let ¢(x) = ¢(d/p) for ¢ a smooth,
compactly supported approximation to 1(_so,1]. We compute

‘ f div($X)dpas

s[|¢’||X|+|¢||DX|dMM
1
<clX|en ;MM(Bp(amQ) N By)

<cp—>0 asp—0.
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Therefore, since ||§M ||L(9,,2)€ is a Radon measure on B;, we deduce that

SM(X) = Jim (BM(¢X) + SM((1 — ¢) X))

:—/ H}@“-X—i-f n-Xdo.
B\, Bi\9;, 2

So in fact ||6M | is a Radon measure on Bj, and ||§M ||(9,,2) = 0, so that same
decomposition (@.7) holds for all X. The inequality (4.8) follows by the same
computation as in the [ = 2 case. U

Inequality (4.8) is important for ensuring good compactness, but even more im-
portantly it implies a Sobolev inequality, which allows us to prove a mean value
inequality for subharmonic functions.

THEOREM 4.5. Let M € J,(B1) satisfy @X) for all nonnegative ¢ € C}(B1),
and additionally assume that

(4.14) pm(B) <A <oo, |HY 1.

HL"O(Bl;MM) =

Then the following holds: if u € CY(By) is a nonnegative function, and a is a
constant such that

fkudw sa/zu+ V2] + £ Vuldpag

V¢ e Cc1 (B1) nonnegative,

4.15)

then for every o < 1 we have the inequality

(4.16) sup  u SC(Q(O),A,Q,O)/ udppy .
spt ps NBy B

PROOF. By the same argument as in [30] (see Appendix [B| for more details),
inequality (4.8) implies the Sobolev inequality: for all # € C}(B;) nonnegative,
then
(4.17) suph < c(Q(O))f |H 2k + |Vh|dpp

ifn =1, and

(n—1)/n
@.18) ( [ ) < @) [ 1Hh + Vidua

for n > 2. The bound (4.16)) then follows from (4.14), @.18) (or @.17) if n = 1),
and (@.13) by standard iteration methods. O

An immediate consequence is lower Ahlfors regularity in every ball centered on
the support of M.
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COROLLARY 4.6. There is an (Q®) so that given

QeD(R), M eIVTH(Q.B1), |Hyf LoBun) <€ Om(0,1) <A,
then forany 8 < 1, x € sptM N By, and 0 < r < | — |x|, we have
(4.19) pm (Br(x) = " /e(Q?, 4.6).

PROOF. By Theorem {.3] M satisfies the scale-invariant inequality (4.8)), and
therefore if M' = (nx )yM, then M’ satisfies (4.8) also. From (4.3)) and scaling
we have the bounds

pum(B1) <c(Q.A.0), |Hipllro®duy,) < 1€ < 1.
Therefore we can apply Theoremto M’ withu = 1,0 = 1/2, to get
1 <c(2.A4,0)up (Br),
which implies the required estimate (4.19). g

Another important consequence of first variation control and Theorem [4.5] are
the following L>° and W12 estimates, which will be important in the blowup
argument to ensure good convergence to the linear problem.

COROLLARY 4.7. Givenany 8 € (0, 1), there are constants €,(2?), c.(Q©, 4, 9),

so that if

Qe D, (RO, M eIVT,(RQ, By), |HZ 04 (0,1) < A,
¢ M

HL‘X’(Bn;/LM) = €e

then given any V € Pryq and p € VL, we have the height bound

(4.20) sup  d(z,p+ V)2 <c.E(®,M, p+V,0,1)
ZE€EBpNspt M

and W2 bound

4.21) f |7TTZM—7TV|2dMM(Z) <ceE(O,M,p+V,0,1).
By

PROOF. Since V' € Pr,q, we can assume after rotation that V' = R" x {0}.
Write @ = ®(¥(Q©)) N By, and set @111 = DPg1(xy(en+1). Then &1
is tangential to €2, and an easy computation gives that, for x € B; and €.(n)
sufficiently small,

(4.22) |8ns1— Dxng1| < c(m)|D?*®@|cop,yy.  |Dent1] < c(n)|D>*P|cocpy)-

Ensure also that €, < ¢, the constant from Theorem 4.3]
Given ¢ € C1(By), plug the vector field X = ¢&, into the first variation to
obtain

/V(xn—i-l — Pn+1)- Vo

< e IHE oo (8, 00y + 1D2®lcos,) / 8] + IVbldians.
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996 N. EDELEN AND C. LI
Now if we assume ¢ > 0 and let

2
U= (xn-i-l - pn+1)2 + ”H]t\fl[nHLoo(Bl;MM) + |D2(I)|é0(32),

then we can compute
/ Vu - ng d[LM
= [ 291 = po) - Vit = pus 1)) = 2015011 die
< [ o] e + 1020l cogp)((ines = prs)l
+ V(1 = Prs DO = 21Vxn1117d dim
<c(n) / up +u|Veoldup.
We can then use Theorem §.5]to get the required (4.20).

To prove [@#.21), we plug in the field X = ¢?(xy+1 — Pn+1)én+1 into the first
variation and use (@.22) to obtain:

/ 62 Vorns1 P dis
< fc(n)(¢2 + SIVED(Vns1] + [t — Pst])
: (HHItlZnHLoo(Bl) +|D?®|cocg,))dim

+ 20V - Vxpir1lxnt1 — purildium .

Rearranging, we get
/¢2|Vxn+1|2dMM
< [ cong? + 1voi)
([ H 7o + D2 @120 + Pnt1 = putt 12 diin.
Choosing any fixed ¢ satisfying ¢ = 1 on By, and using the relation
Vinnlle = TM): VE = Sfnre — vl

we deduce (4.21). Il

The height bound (4.20) with the upper-Ahlfors regularity (4.5]) imply that mass
cannot accumulate near the boundary of our domain.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 997

COROLLARY 4.8. Given 1,0 € (0, 1), there is an €(Q®,0, A, 7) < €.(2©) so
that under the assumptions of Corollary[.7] if M additionally satisfies

E(@® M. Q. p+V.0,1) <é?
for someV € PryQ, p € VL, then we have the nonconcentration estimate
(4.23) iar (Bg N B (99)) < c(Q©®. 0, A)z.

PROOF. There is no loss in assuming t < (1 — 8)/4. From the height bound
(@20), ensuring (2, 9, A, 1) is sufficiently small, we have

spt M N By N B (3Q) C B2 (3[Q2 N (p + V))).

We can cover Bg N By (3[R N (p + V)]) with balls {B,(x;)}2 | such that Q <
()17 and each By(x;) C B(1+6)/2- Therefore by the mass bounds
we get
Q
puar(Bg N B:(0Q)) < D par (Be(x1)) < c(Q®. 4,0)r. O
i=1

5 Eigenvalues and the Linearized Operator

Let us fix here a polyhedral cone domain () = Q(()O)l x R™ c R**! with
m > 1. We prove in this section appropriate decay of the linearized problem on the
n-dimensional planar wedge Q(()O) x R™~1 < R”. Recall that if D is a manifold
with possible Lipschitz boundary dD, then ¢ is said to be a Neumann eigenvalue
of D with eigenvalue p if it solves

(5.1 /D Vo -Vi+upl =0 Ve wh2(D).

Provided D is compact and dD Lipschitz, then standard elliptic theory guarantees
the existence of a countable sequence of Neumann eigenvalues 0 = pg < p; <
.-+ — 00, and corresponding eigenfunctions ¢; € W1-2(D), so that the ¢; form an
L?(D)-ON basis.

We require the following Lichnerowicz eigenvalue bound for piecewise-convex
domains in the sphere. For smooth domains this is classical, while the resulting
piecewise-smooth domains follows from a straightforward approximation.

THEOREM 5.1 (Lichnerowicz eigenvalue bound). Let D be a piecewise-smooth,
convex domain of S"~1 C R™ (n > 1), and let ju1 be the first (nonzero) Neumann
eigenvaue, ¢ the first Neumann eigenfunction. Then pty > n —land u; = n — 1
if and only if the 1-homogenous extension of ¢ is linear.

PROOF. First assume D is smooth and weakly-convex (in the sense that the
second fundamental form of the boundary is > 0). Let i« be a Neumann eigenvalue
for D in the sense of (5.1)) and u be the corresponding eigenfunction. By standard
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998 N. EDELEN AND C. LI

elliptic regularity, ¥ € C°°(D) and satisfies 3,u = 0 along D. Therefore we can
integrate the Bochner formula

1 1
5A|Vu|2 > (n —2)|Vul® + —1(A“)2 — | Vul?,
n_

using the convexity of D and boundary condition on u, to obtain
-2 1
(=== [ vup = [ 9 - e aw?
n—1 D D n—1

This proves > n — 1. If u = n — 1, then we have Vizju + ugi; = 0(g;j being
the spherical metric), which implies that if we set #(x) = |x|u(x/|x|) to be the
1-homogenous extension of u, then D?# = 0. This proves Theorem in the
case when D is smooth.

Now take D to be convex and piecewise-smooth. Let p be the first nonzero
Neumann eigenvalue of D, and u the corresponding eigenfunction. Write dD =
d"D U 0°D, where 0" D is smooth. Take any sequence ¢; — 0. We can find
smooth, weakly convex domains D; C D;41 C --- C D such that D; = D
outside B¢, (0° D). Let u; be the first Neumman nonzero eigenvalues of D;, and
u; the eigenfunctions.

Normalize u, u; such that [ullp2(py = [uillL2(p;) = 1. It’s easy to check,
using the Raliegh quotient and standard Sobolev theory, that 4; — w and u; — u
in LZ(D’) for every D’ C D such that D' N 3D = @. In fact, by standard elliptic
regularity u; — u in C*(D’). We deduce that

-2 1
-1 2= / V2P — (A,
n—1 D\3SD n—1

and the rest of the proof follows as in the smooth case. U

For general Lipschitz cones, we have the following standard Fourier-type ex-
pansion.

LEMMA 5.2. Let D be a Lipschitz subdomain of S*~! C R" (n > 2), and let
CD be the cone over D. Let lu;, ¢; be the Neumann eigenvalues, eigenfunctions of
D C 8™ L. Suppose u € WH2(CD N By) solves

(5.2) /Du D=0 VvVteclcpyncls).

Then we have the expansion in W2(CD N By):

u(x =rw) = Y ar’gi @), vi=—(1-2)/2+ (1 -2/ + i
i=0

Here we writer = |x|, and w = x/|x| € D.
Ifn = 1 and u satisfies (5.2) for CD = R or [0, 00), then u is linear or constant

(resp.).
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 999

PROOF. This is standard, however for the reader’s convenience, and to empha-
size that we require no further regularity of u beyond W12, we give a proof in
Appendix [C| O

Combining Theorem [5.1] with Lemma [5.2] gives the following characterization
of the linear problem of our model.

PROPOSITION 5.3. Let Do = Q) N 871 and D = (Q©® x Rm=1) n s~ Iy
[ = 2 let n1(Dy) be the first Neumann eigenvalue of Dq; otherwise let us define
p1(Do) = 2.

Suppose u € Wl’z((Q(()O) x R™=1) N By) solves

(5.3) Du-D¢=0 Y¢eCMHBY.
QE)O)X]R”?*‘ ¢

Then there is an increasing sequence {c; }72 |, and constants b € R, A € {0} x
R™ 1 a; € R, and L?(D)-orthonormal Neumann eigenfunctions v;, so that we

have the expansion in Wl’z((Qg)) x R™= 1N By):

o, )
ux =rw)=b+A-x + Z air® i (w),

oj=>e

which for every fixed r is L*(D)-orthogonal, and where
e > minf—(1 - 2)/2 + J( =222 + w1 (D). 2} =1,

Remark 5.4. Whenl = 0,1, so Q© is R” or a half-space, then |e;| > 2. When
I = 2, in which case Q© is a wedge formed by two hyperplanes, then |o;| >
min{2, z/y}, where y is the angle of the wedge.

PROOF. If [ = 0 then u is harmonic in the entire ball By, and then Proposition
[5.3]follows by the usual Fourier expansion. Consider now / > 1. Let

u(x =rw) = Zair”fqﬁi(w) = Zui(x)
i=0 i=0

be the expansion of Lemma|[5.2] It suffices to show that if y; < e, then u; is either
constant or of the form A - x for some A € {Ol 3 x Rm—L

We have (g = yo = 0 and ¢pg = const, so the first term ¢ is a constant. Since
D is convex, y; > 1.

Suppose y; = 1, so that #; is 1-homogenous. Given v € {Ol} x R™~1 then
v - Du; is a 0-homogenous solution to (3.3)), and hence by the previous paragraph
must be constant. We deduce that u; = A - x + i1 (x) for some 4 € {01 } X Rm1

and some 1-homogenous i1 (x) : Q(()O) N By — R solving

(5.4) / Du;-D¢ =0 Ve CHB).
Q¥nB;
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1000 N. EDELEN AND C. LI

However, since Dg is O-symmetric, by Lemma [5.2] there are no 1-homogenous
solutions to (5.4), and so ] = 0.

Suppose y; € (1,2). Then for each v as above, v - Du; isay; — 1 € (0, 1)-
homogenous solution to (3.3)), and hence by the previous two paragraphs must be
zero. We deduce u; (x) = u; (Ri xgom-13(x)) is a function of R/ only, and hence
solves (5.4). If I = 1, then u; must be constant, which is impossible since y; > 1.
If [ > 2, then applying Lemma[5.2]to u;, we deduce

yi =~ = 2)/2+ /(I =2/ + p1(Do). O

6 L? Excess Decay

In this section we work towards an excess decay theorem (Proposition [6.1),
which gives a decay estimate of the L2 excess £ when M looks close to planar,
and €2 looks close to a cone. At a general point x, for most scales €2 will look like
one of only finitely many cones, and so in the next section we will be able to use
Corollary on each model cone to prove decay on all scales. As before, in this

l
section we fix (0 a polyhedral cone domain of the form Qéo) x R™, where we
assume m > 1.

PROPOSITION 6.1. Let e(QéO)) be the exponent bound of Proposition For any
6 < 1/10, there are constants §3(2L@, ), co(2©), so that the following holds:
Let @ = &(¥(QO)) N By € Dg,(RD) and M € VT, (R, By) satisfy
Es,(®,M,p +V,0,1) < E < 82,
Om(0,1) < (7/H)O1y0. dypim(0) < o,
forsome p e VL, V e Prya.
Then there are V' € Pryq, p’ € V’J‘, satisfying

6.1)

(6.2) lp— |+ |7y — 7| < coEY2,
so that
(6.3) Es,(®, M, p' +V',0,0) < o> ¢ VE.

By iterating Proposition we obtain the direct corollary. As a technical aside,
instead of using the monotonicity formula (.1) to iterate Proposition[6.1] one could
use Lemma

COROLLARY 6.2. There are constants §1(Q2®), ¢1(2©), and B(Q©®) so that the
following holds: Let @ = ®(¥(Q®)) N By € D5, (Q®), M € IVT,(2, By),
and suppose that

E(®,. M, p+V,0,1) < E <87,
Om(0,1) < (3/2)Orye, dpim(0) <p,

for some p € Vi ve Py, and some 0 < p < 1/2.

6.4)
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1001

Then there are V' € Pryq, p’ € V't N By, satisfying

6.5) Ip— |+ |ny — 7p| < (c1E)Y2,
such that
(6.6) E°Y(D,M, p' +V',0,r) < c1Er®f Vp<r<1/2.

Remark 6.3. The exact form of the upper bound O, is flexible. One could
equally well use @) or w,,. _il_lﬂ{”"‘l (2), provided we take §; sufficiently small.
However, in the following section we will find it convenient to use 7€2.

PROOF OF COROLLARY [6.21 Choose 8(2(?) sufficiently small so that cg§2€~1 <
1/2. Ensure §;($2©) is sufficiently small so that

81 < min{emp, €}, (3/2)(1 + Cmn(gl)n—i_1 <T7/4 cedy < 1/4,

and §; < 88 with our choice of 6. Here ¢;,,(n), c;un(n) are the constants from
Lemma (RO 0 = 1/2,4 = 2),6,(2©®) are from Corollary and
§0(Q©® 8), co(Q©) are from Proposition

First suppose p > 8;. Then take p’ = p, V/ = V, and we have trivially

E@ M, p' +V',0,r)<8" %™ E Vp<r<I.

Provided we take ¢1 > § 1_”_4, this proves the theorem.
Let us therefore assume p < §;. Define r; = 6%, and let / be the maximal
nonnegative integer for which p < ry8;. If p = 0, thenweset /| = oo =1 + 1.

Fori =0,1,...,1 + 1, we define inductively a sequence p; € By, V; € Pr,q, so
that

(6.7 i piv1 — pil + v, — v | < co2 /285 EV/?

and

(6.8) Eso(®. M. p; + V;,0,r) <2755,

We take po = p, Vo = V. Suppose, by inductive hypothesis, we have con-
structed p;, V; satisfying (6.8) and (if i > 1) (6.7). By our choice of / and d,
Remark [2.9] and monotonicity (@.I]), we can apply Proposition [6.1]to the rescaled
varifold (no,r;)4M in Qg r, to obtain a p; 11, IA/}H. Setting pi+1 = r; pi+1 and
Vii1 = Vi41, the required estimates (6.7), (6.8) hold by scaling. This proves the
inductive step, and therefore the existence of the required p;, V;.

If I < oo, thenset p’ = py, V' = Vj. Otherwise, if I = oo, then observe
that implies the p;, V; form Cauchy sequences, and so we can take p’ =
lim; 500 pi, V' = lim; 50 V;. For each (finite) i < I, we have

(69) P = pil |y =y | < e(@ )22 EV2,
In particular, taking i = 0 gives (6.5).
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1002 N. EDELEN AND C. LI
Given p < r < 1, either r > §1, in which case we set i = 0, or we have a
maximal / < [ for which » < §;r;. Using (6.9) and (.5)), we compute
E(®,M,p" +V',0,r)
< (08) " 2E(@, M, p' +V',0,1)
< cE(®, M. p; + Vi, 0.r:) + clmy: — 7y, > + er?|p' — pi?
<cE27 = cErizﬂ < C(Q(O))Erz"’,

where B = log(1/2)/log(6). This proves the required 2 decay of (6.6) for
p < r < 1. To deduce the decay of E™" we use Remark-to apply Corollary-
ateachscale p <r < 1/2.

The rest of the section is devoted to proving Proposition [6.1] We first require a
definition and some helper theorems.

PROPOSITION 6.4 (Fine graphical approximation). Given any t, B, there exist con-
stants 8(t, . @) and ¢ (©) so that the following holds: Let @ = d(U(2®)N
By € Ds(2O), M € IVT,(Q, By), satisfy

E(@ M, p+V.0,1)<E <§2,
Om(0,1) < (7/4)O1,0, dgpim(0) <6,
forsome p e VX and V € Pryq. Then the following holds:
(1) There is a domain U C p + V and C* functionu : U — V- satisfying
(6.11) (p+V)NQN B\ B2e(0Q) CU, 7 Mu| + |Dul < B,
and
(6.12) M B/, \ B:(30€2) = [graph(u)].
(2) We have the estimates

(6.10)

(6.13) sup u|? —i—[ |Du|*> <cE and sup d(z,p+V)? <cE;
U U z€Esptups NB1 /2

(3) foranyt € Cl(p+V.VHnCd (B1/4), we have

| Du- DY) = cltler (1 | i + 1D @lcoqsy + '/2E'2).

PROOF. Suppose, towards a contradiction, there is a sequence 6; — 0, p; €
Vi Vi € Prya,. Qi = @ (W (QONNB; € Dy, (2©), and M; € IVT (2, By).
satisfying (6.10), but failing conclusion (1). By the height bound (&.20) and our
assumption spt M; N Bs, # &, we have d(p; + V;.0) — 0, and by Theorem
we have that ||6M; || is uniformly bounded on compact subsets of B;. We can
therefore find a V € Pqo) and an M € IV, (B), so that after passing to a subse-
quence, we get p; — 0, V; — V,and M; — M on compact subsets of B1. Since
|d; — Id|C2(Bz) — 0, |¥; —Id| — 0, we have @TOQ[ — ®TOQ(0).

ASULOI'T SUOWIWO)) dATEAI)) d[qearidde oy £q PauIoA0S a1e SO[ONIE V() ‘2SN JO SA[NI 10§ AIRIGIT SUIUQ) AJ[IAY UO (SUOHIPUOI-PUE-SULID} WO’ KJ[1M " KTRIqI[aur[uo//:sd)y) SUOIIPUO) pue SULId L, 3t} 298 “[£20Z/L0/10] U0 A1eiqr auruQ Ao[ip ‘KNSIOATUN Y10 X MAN Aq €07 ®do/Z001°01/10p/wod Kaim' ATeiqrouriuoy/:sdny woiy papeo[umo( s ‘770T ‘TIE0L60T



REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1003

Since E(P;, M, p; + V;,0,1) — 0, we have
sptM C p+V and [|8M]|(intQ© n By) = 0.

Therefore by the constancy theorem M _ intQ©® = k[p + V] L (intQ2©® N By)
for some constant k. By the nonconcentration estimate @#23)), ua (02©) = 0,
and trivially sptppy € Q©, and so in fact M = k[p + V] (intQ©@ N By).
From lower-regularity (4.19), pas; (B1/2) > 1/¢(Q©), and hence up(B1) >
1/¢(Q©@). This implies k > 1. On the other hand,

ppm (B1) < liminf pupg; (Br) < (3/2)limOryq; = (3/2)Or 0,
1 1

and so k < 1. We deduce k = 1. Since for every W € int Q2 and i > 1 the
M; W have bounded mean curvature (tending to zero) and zero boundary, Allard’s
theorem [1]] implies the convergence is C! on compact subsets of int Q© N B.
This proves conclusion (1).

Let us now fix a 7, U, and prove conclusions (2) and (3). Ensuring §(Q2(?)
is sufficiently small, there is no loss in assuming p + V' = R” x {0}. Given a
function f : D C (p + V) — V-, we can extend f to be defined in D x V-+
by setting ,f(x) = f(p + ny(x — p)). Given f.g : D — V=, then at up-a.e.
x € spt M N (D x V1) we have the bound

(6.14) Vf-V§—Df-Dgl < |nr.m —7v’IDFIDZ.
In the special case when f = u as defined on U, then
(6.15) Vil)? = [Vani1|* < |orom — v .

Combining (6.14) and (6.13) with (@.21)), and (without loss of generality) ensuring
B < B(n), we get

/ DU < (1 + c(m)p?) f DA dpus
U B>

<cm) |l —avPdum (@) < «(Q@O)E.
Bi/2
This completes the W -2 estimate of conclusion 2; the L estimates both follow
from the sharp height bound (4.20).

We prove conclusion (3). Take ¢ € Cl(p + V, vyHn c} (B1/4). Let ¢ be any
function that is 1 on Bj/, and is supported in By. By the height bound @.20) we
can assume that spt M N spt'E~ C By/,. Plugging the field X = Eqﬁé'nﬂ into the
first variation (where €41 is defined as in the proof of Corollary [4.7), and noting
that X is tangential to €2, we obtain

(6.16)

/ V- Vini1 dim
By

< el (| Hyf' | Lo 8,210,y + 1P ®lcosy)-
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1004 N. EDELEN AND C. LI

Let us make some remarks. First, provided B(n) is sufficiently small, the Jaco-
bian Ju of u satisfies the bounds
(6.17) 1 <Ju<1+c@m)|Dul?

Second, ensuring that §(z, QO) is sufficiently small, by the nonconcentration es-
timate (4.23)) we have

pa (Be(32) N Bija) < (@),
Last, using (#.21)), this implies that

/ VE-entt d#M‘
B1/2NB(0R2)

618 < c@Oieler?( |

By

< c(Q@)¢|er e 2EV?

Using conclusions (1) and (2), and equations (6.16), (6.17), and (6.18)), we ob-
tain

/UDZ-DM

SC/3|§|CI/ Duf® +
U

1/2
r g — ey 2 duM(Z))

/ D¢ - Diiduy
B1/2\B.(92)

§C|§|CI/U|DM|2+C|§|CIf rpt — 7 2 dpng (2)
1/2

_l’_

/ VT ent1dim
B1/2\B;(8R2)

< clelrE + cltlert PEY? el o (1 H |l Loo(Byuag) + 1D ®@leosy)

< cltler e PEVZ 4 cltlor (I1H 100 By sun) + 1 D> ®leo(sy))-

for ¢ = c(2©). The last inequality follows because we can of course assume
82 < 1. This completes conclusion (3) and the proof of Proposition U

DEFINITION 6.5. Given sequences B;,0; € R, Q; = @i(\lfi(Q(O))) N By €
D5 (QD), Vi € Pryg,. pi € V5 and M; € IVT,(Q, By), we say

(Q©. Qi My, pi + Vi, Bi. i)
is a blowup sequence if:
(1) pi —>0,V; > R" x {0}, B; — 0,8; — 0;

(2) M M; (Bl) = (7/4)®T()Q, and dsptM,’ (O) - O?
(3) limsup; B;2Es, (®i, M, pi + Vi.0,1) < oc.

ASULOI'T SUOWIWO)) dATEAI)) d[qearidde oy £q PauIoA0S a1e SO[ONIE V() ‘2SN JO SA[NI 10§ AIRIGIT SUIUQ) AJ[IAY UO (SUOHIPUOI-PUE-SULID} WO’ KJ[1M " KTRIqI[aur[uo//:sd)y) SUOIIPUO) pue SULId L, 3t} 298 “[£20Z/L0/10] U0 A1eiqr auruQ Ao[ip ‘KNSIOATUN Y10 X MAN Aq €07 ®do/Z001°01/10p/wod Kaim' ATeiqrouriuoy/:sdny woiy papeo[umo( s ‘770T ‘TIE0L60T



REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1005
PROPOSITION 6.6. Let (29, Q;, M;, pi + Vi, Bi.8;) be a blowup sequence. Let
us write p; + Vi = graphpn403(qi + ¢i - x) for gi € R and ¢; € {0y x R™—1,
Then there is a Wl’zﬁmction v (Q((]O) X Rm_l) N By/4 — R such that:

(1) v is weakly harmonic with Neumann boundary:
(6.19) [ Dv-D{=0 VCe Ccl(Bl/4 N (R" x {0}));
QY xRM=1)NB 4
(2) v has the W12 bound

/ v2 + |Dv|?
QY xR"=1)NBy /4

(6.20)
< C(Q)(lim sup,Bi_ZE(gi (®;, M;, p; +V;,0, I)X)§
i

(3) on any compact set U € By;4 N (ng) x R™ 1)\ 9Q©, we have L2
convergence

(6.21) Bi tui(x + qi + i - x) = v(x);

(4) forany p < 1/4, we have the L? convergence

(6.22) ﬂ;2f d} v duym —>/ . v’
B, B,N(QY xRM—1)

PROOF. Let t; — O sufficiently slowly so that for each i large we can apply
Proposition [6.4]to deduce

M; N Byjy \ By, (02©) = graph, 4y, (i),
where u; is defined on some domain U; satisfying
(i + Vi) N Bija \ Bag, 0Q) C Ui € pi + Vi
Write E; = Es,(®;. M;, p; + V;.0.1).
Fix any U @ By/4 N (Q(()O) x R™=1)\ 9Q©@. Then for sufficiently large i,

x = wi(x) == u;(x + q;i + ¢; - x) is well-defined, and parametrizes a subset of
spt M;. For x € U, we have

Dw;i(x) = (1 +o(1)Dui(x +¢i + ¢i -x), 1=J(x)=1+o0(),

where J(x) is the Jacobian of x + x + g; + ¢; - x. It follows from Proposition

[6.4] that
(6.23) / lwi|? 4+ |Dw;|* < cE;,  sup|w;|® < cE;.
U U

and for any ¢ € Cc1 (B1/4),

/[]D§'Dwi

(6.24) < o(D)|¢|cr £,
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1006 N. EDELEN AND C. LI

If vi = B Lw;, then (6.23)) (and our definition of blowup sequence) shows
that the v; are bounded in W 2(U), with a bound independent of either i or U.
A diagonalization argument implies there is a v € W12(B, /4 N (Q(()O) x R™~1y)
satisfying the bound (6.20)), so that for every U as above v; — v strongly in L2(U)
and weakly in W12(U).

From (6.23)) we have

(6.25) sup [v]? < ¢(Q©),

and from (6.24) we get that v satisfies the required (6.19). The strong L2 con-

vergence (6.22)) follows from the L bounds (6.23), (6.13), and (4.23) and the
fact

a2 .WM4=<1+00»/'an. 0
/Bp\Br,- @aoy PtV v

DEFINITION 6.7. Let us call any v as obtained in Proposition[6.6|a Jacobi field on
Q(()O) x R™~1
We are now ready to prove Proposition [6.1]

PROOF OF PROPOSITION[6.1]. Suppose, towards a contradiction, there is a se-
quence §; — 0, V; € Pryq,, pi € Vi Qi = @;(W;(Q®)) € Dy, (), and
M; € IVT,(L2;, By) such that

E;i == Es (%, My, pi + V3,0,1) < 87,
M M; (Bl) = (7/4)®T09i’ SptMi N B(S,’ 75 ,
but for which
Eg, (9. Mi. p' +V'.0.0) > o8 VE;

for all p’ + V'’ satisfying (6.2)). Here ¢y is a constant depending only on Q© that
we will choose later.

Let ,Biz = E5,(®i, M;. pi + V;.,0,1), so of course B; — 0 also. From the
height bound (4.20)), we can assume p; — 0, and after passing to a subsequence
and rotating as necessary, we can assume V; — R” x {0}. Then (Q(O), Q;, M;,
pi + Vi, Bi., ;) is a blowup sequence, and we can apply Proposition [6.6] to obtain
a Jacobi field v satisfying

| Dv-DE=0 VEeClByan ®" x {0}).
Q 0) xRm—1
(0]

and the W 12 estimate

/ W2 4 [Du? < (@),
QY xR"=1)NBy /4

From Proposition we can expand in W12
(6.26) v(x = rw) :b+A'x+Zaira[¢i(w)

1
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1007

for some A4 < {Ol} x R™land a; > e > 1 for e(Q(()O)) as in Using the

L2((Q (()O) x R™=1) N §7~1)-orthogonality of this expansion for every fixed r, we
get

ai2(1/4)2a,' +n

< (O,
20; +n =l )

(6.27) b2+ AP+
i

Let us write
pi + Vi = graphgn (01 (gi + ¢i - x)
for ¢; € R and ¢; € {0/} x R™~. Now define the new affine planes
p; + V| = graphgnysoy(qi + Bib + (¢ + Bi A) - x).
Since A4 € {0’} x R™~1, we have V! € Pqw), and we can take p; € Vi’J‘. By
definition of the p;, ¥/, and by considering the analytic maps
¢ Ty = ngrathnX{O}(q&x) (q’ ¢) = ﬂ(;_(qen—i-l),

we have
6.28)  |pi = pil + v, — | < c@)Bi((b] + |A]) < cq1(QO)Bi.

Therefore, (2©, Q;, M;, p; + V/,Bi.8;) is a blowup sequence also, and we can
again use Proposition to obtain a new Jacobi field v’ (with, a priori, a slightly
worse W12 bound than v).

There is a sequence 7; — 0 so that we can write

(6.29)  M; N By \ By, (3Q®) = graph,, .y, (u;) = graph, (),
where, for any compact subset U € B4 N (int 2 (()0) x R™™1), we have

(6.30) |ui(x+qi +¢i-X)|crwy+u; (x+qi +Bib+(pi + i A)-x)|cryy = O
and (from Proposition [6.6]3)

631) B ui(x+qi+¢i-x) = v, Biluli(x+qi+PBip+(gi+BiA)x) >V,

in L2(U).
From (6.29) and (6.30) and since | p;| + |¢;| — 0, we have that for every x € U,

lu;(x +qi + Bip+ (¢ + BiA)-x) —ui(x +qi +¢i -x)—Pip — BiA- x|
<o()Bi.

where 0(1) — 0 asi — oc. By (6.31) and (6.32), we deduce that
VX) =v(x)—b—A-x = Zair“"gbi(x),
i

(6.32)

where a; as in equation (6.26).
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1008 N. EDELEN AND C. LI

Therefore, using (6.27), 40 < 1 and |¢;| > 1 + «, we have
2 a; it (0) +2
W5 =) S < cqa(QV)(40)" T
fBgn(sng)mel) Xl: 20 +n
Provided we take cq larger than cg; and 8*7"¢4,, then by the strong L? conver-
gence
ﬂ.—Z/ A2,y dpm — ',
', PitVi Bon(Q xRm-1)

we obtain a contradiction (we remind the reader that the H and ® terms of £ decay
gratuitously). This completes the proof of Proposition|[6.1] O

7 Regularity

The main theorem of this section is the following decay estimate, which we
shall prove by induction on the boundary strata d; 2. The idea is that we can use
the decay of Proposition (or rather Corollary whenever 2 resembles a
polyhedral cone. If we hit a radius at which €2 stops resembling a cone, then by
recentering on a lower stratum and dropping a controllable number of scales, 2
will start looking like a cone.

Although the L2, W12, and L™ distances to planes are all effectively compa-
rable when 2 resembles a cone (and the plane lies in the “good” space Pz, ), as
we traverse scales and cone types, it will be convenient to prove a decay on the
L2, WH2 and L™ excesses simultaneously. The proof is no more involved than
proving a decay on the L? by itself.

As in the previous sections, we fix here a polyhedral cone domain QO —

I
Q" x R™ having m > 1.
THEOREM 7.1. There are constants ¢3(2©), §3(Q©@), a(Q©®) so that the fol-
lowing holds. Let @ = ®(¥(Q©) N By € D5, (QO), M € IVTL,(Q, B1)
satisfy
(7.1)  E@M.p+V.0.1)<E<68. 6y(0.1) < (3/2)Opaq.

forsome p e VL, V e Prya.
Then for every x € spt M N By16, there is plane V. € Pr q so that

(1.2) 7wy — v, | < 3 EV2,
and forall 0 < r < 1/4,
(7.3) E°Y®, M, x + Ve, x,r) < c3r**E.

We require first a helper lemma.

LEMMA 7.2. Given any € > 0, there is a $4(Q©, €) so that the following holds.
Let @ = (¥(QO)) N By € Ds,(2D) and M € VT, (R, By) satisfy

(7.4) E(@ M, p+V,0,1) <8, 0y(0,1) < (7/4)O71q,
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1009

for some p € VL, and some V € Prye. Then given any x € Q N By andr > e,
so that B, (x) C Bj—_¢, we have

(7.5) Op(x,r) < (3/2)Or.q.
PROOF BY CONTRADICTION. Suppose there is a sequence §; — 0, domains
i = 0 (T(QO)) N By € D, (Q®), and varifolds M; € IVT, (2, By), so
that
E(®;, M, pi +V;,0.1) =0, 03,;(0.1) < (7/4)O1,;.
for some sequence V; € Pryq;, pi € ViJ-, but there are points x; € €; N By and
radii ; > ¢ such that

By, (xi) C Bi—e, Om;(xi.17) > (3/2)®Txi9f'

By the height bound (4.20) there is no loss in assuming the p; are bounded, as
otherwise we would have spt M; N By = & for large i. We can therefore pass
to a subsequence and get convergence p; — p’ € R*T1 V; — V/ ¢ Pryeo,
Xj —> X € By, r; > r > ¢, sothat By(x) C Bi—, and M; — M’ for some
M’ € JV,(By). As in the proof of Proposition [6.4] we must have M' = [p’ +
VL (intQ©@ N By).

Fora.e. 1 — |x| > p > r we have by the lower-semicontinuity (2.10):

pat (Bp(x)) = lim g, (Bo(x))

> lim sup ppg; (By, (xi)) = (3/2)Or qowar".
1

On the other hand, since V' € Pq), we can use monotonicity to get
um (Bo(x) = 3 ((p + V) N 0 N By(x))
<H"((x + V)N QO N B,y(x) < O qownp”,
which is a contradiction for p sufficiently close to r. 0

PROOF OF THEOREM[Z.1l. There is no loss in assuming p € Bj. Let B(Q2(©)
be as in Lemma Observe that since the set {7, 29}, is finite, any constant
that depends on some TZQ(O) can be made to depend only on QO In particular,
let us choose « by setting

@ = min{ (T Q).

where f as in Corollary In the following ¢ will denote a generic constant > 1
depending only on Q© which may increase from line to line.

Take x € 0;+i2 N By (note i > 0). Let x; = x, and then for j =
i,...,1define xj_1 € 04 ;—152 to be the point realizing d(x;, 0+ j—182). Let
us formally define (B/2)|xg — x—1| = 1/8.

Letip =i.Ifi = 0, let J = 0. Otherwise, define inductively j = 0,1,...,J
by the conditions that 0 < i;4+1 < i;, and

|xij _xij+1| + B|xij _xij—1| = (B/2)|xij+1 _xij+1—1|s
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1010 N. EDELEN AND C. LI

but
|xij. — X | —|—B|x,-j —x,-j_1| > (B/2)|xg —xp—1| Yk =ij41+1,...,ij -1

Note that since |x| < 1/16, 0 € 3,2, and by Lemma [2.8((1)) we have (by taking
83(n) small)

[xi; = x| + Blxi; — xi;—1] = 3/2)|xi; | = (3/2)(1 + cpb3)|x| < 1/8

for every k < i; — 1, and in particular we have i; = 0.
Let ry” = 0. Define

}’j =B|x,~j—x,~j_1| (j:O,,,,,J),
r]._:2rj—i__1—i—2|xij71—xij| (j=1,...,J).

Note that since iy = (0, we have r;r = 1/4. By construction we have the inclusions
(7.6) X e Brjf_l(xijfl) C Br;r_l(xijfl) C Brf/2(xij) C B1(0).

Now for j =0,1,...,J —1 we have

iy =i | = Xy = X 41— Xy
< |xi; = Xi; 41| + 2/B)(xi; — xi; 441 + Blxi; — xi;-1)
<20xi; —xi;—1| + (L +2/B)|xi; — Xi; 1 +1]
<2(1+ (1 +2/B)|xi; —xi;—1] + (1 +2/B)?|xi, — xi, ;42|

<c(n, B)|xi; — xi;—1].

Therefore
J’_
i Blxi; — xi;-1|
ripr o 2xi; = x|+ 2Blx; — X
B 1
- Ixi; —xi; |
(2/B) |x/ _x'+1| +1
(1.7) -
' T c(QO)
For ease of notation let us set X; = x;;. Then we shall prove for j = J

J —1,...,0 the following statement, which we call (f;): There is a A; (QO),
Vi € T3,€2, and p; € VjJ' so that

(7.8) E°M.pj + V;.%j.r) < Njr*®E ¥y <r <1/4,
and
(7.9) Om(%j.r) < (7/HO1 @ Vry <r=<rf
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1011

and
(7.10) |pj — pl+ |y, —mv| < A
Observe that implies that
d(x, pj + V) < c(ri)®,
and hence when j = 0, we have pg + Vo = x + Vp. Since x = Xg, we have
Vo € TxS2, and implies that
|y, — 7v| < c(QO)YEYV2,

Therefore when j = 0, (o) implies our theorem.

To prove (F;) we induct downwards on j. If j = J, thenletus set X;j 1 = 0,
g = U4 Ajp = 474 pyi1 = p, Vyyr = V, and proceed as below.
Otherwise, let us assume by hypothesis that (§;41) holds. We prove ().

We have
(7.11) EYD. M, pjy1+ Vir1.Xj41.7) < Aj1r™E

for all rj_+1 <r <1/4,and

O (Xj+1.7740) < (7/4)®Tfj+19'

1/2 p1/2(.,.+\@
] E (rj).

Since Brj+ (Xj) C Brjf+1/2(fj+1) and rj+/rj_+1 > 1/¢(929), we can use (7.19)
and apply Lemma(7.2]to deduce
Om (j.7;") < 3/2)0r 0.
and hence by monotonicity (.1 we get
(7.12) Om(Xj.r) < (7/HOr @ Vr=r.

(7.11)) implies we can find a q]’. € pj+1 + Vj41 sothat

1/2 - _
=il < AR EV (i) < 7
for 63(Aj+1, Q) sufficiently small. In particular, we have |X; — q]’.| < cr}*. As
per Lemma choose Vj’ € ?Tx—_,- @ such that

(7.13) 74—yl < c(QNEV2E) — %] < cEVriF

Then, using and (7.7), we have

E®(M.q; + V].%.r})
_ 1
= (r].+) 2 sup |7y (2 —q_})|2
X ZGB’__J_(fj) ’
(7.14) ) o0 X i
= clayr =y, |7+ CEZ(O, M, it 4 Vitr, Xj+1,7511)

<c(l+ Aj) () E,
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1012 N. EDELEN AND C. LI

and similarly

EV(M.V].%.r") + E(@. M.q} + V].%.r}})
<c(l + Aj+1)(r]+)2aE.

By Lemma there is a z € Q@ a linear isomorphism f : R”*! — R”*! and
aC? mapping « : B, — R”+1 such that Q)’E- r.+ c ®083 (TXQ(O)) and

E®Y(a, (ngj,r;r)ﬁM,n +(6]]), 1,0 1) < 2E°Y(®, M, q] + V’ 5.7 .+)
(7.15) <c(l+ Aj+) () E.

By (7.12)) and (7.13)), provided §3(2®, A j+1) is sufficiently small, we can ap-
ply Corollaryto deduce: thereisa Vj € Ty, 2, pj € VjJ' so that

(7.16)  EN®, M, p; + V;,5j.r) <c(l+ Ajp)r**E ¥y <r<rf,

(recall that |x — X | < r;) and

1/2
(7.17) v, = 7yl < (e(1+ Aj1)E) 2.
Combining ((7.13)) and (7.17) we get
(7.18) |y, — 7y, | < e+ Ajpa)VPEV2 (e,
which with (7.10) implies
(7.19) iy, —mvl < (c(1+ Ajy)PEV,

On the other hand, we can estimate
pj — p| < |7y, (x = pp)| + |73 (x = p)| + |mw, — 7w
<rFE(M.®, pj + V.5, )" + E(M,®.p + V.0.1)!/?
+ (c(1 + AJ'+1))1/2E1/2
(7.20) <(c(1+A; 1 ))2EV2,

Finally, we must show decay (7.16) for r > rJr (7.16) implies that we can find
aqj € pj + Vj such that
x —q;] < (c(l+ Ajp ) VPEV2r )T < rf
and hence
(721) lgj =g}l < (c(L+ A ))VPEY2¢ )T, and |55 —gj] <erff

Therefore, using (7.18)), (7.21), (7.6)), and (7.7), we have for rj <r=<(1/4) (r+/r RYE

E®(®,. M, p; +Vj =q; +Vj,Xj,r)
=r2 sup v, (2 — g <
zZ€B,(X;)Nspt M

ASULOI'T SUOWIWO)) dATEAI)) d[qearidde oy £q PauIoA0S a1e SO[ONIE V() ‘2SN JO SA[NI 10§ AIRIGIT SUIUQ) AJ[IAY UO (SUOHIPUOI-PUE-SULID} WO’ KJ[1M " KTRIqI[aur[uo//:sd)y) SUOIIPUO) pue SULId L, 3t} 298 “[£20Z/L0/10] U0 A1eiqr auruQ Ao[ip ‘KNSIOATUN Y10 X MAN Aq €07 ®do/Z001°01/10p/wod Kaim' ATeiqrouriuoy/:sdny woiy papeo[umo( s ‘770T ‘TIE0L60T



REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1013

< clmy; =y, >+ r7g; — 4]
+ cE®(Q, M, q; + Vj+1,fj+1,rrj_+1/rf)
<c(l4+ Ajp1)Er?,

On the other hand, when (1/4)1’].+/rj__H < r < 1/4, then we have r > 1/¢(Q(?),
and hence we can estimate using (7.19), (7.20):
EOO(CD, M, Dj + I/J-,)Ac'j,r)
<clry, =7y > +clpj — pI* + E¥(®, M. p + V.0,1)
<c(l+Aj4)E <c(l+ Ajp)Er*®,

Bounds on EW and E follow by similar computations.
Provided we take Aj > c¢(1+ A, +1) sufficiently big, depending only on ¢(£2 (0)y
and Aj 41, this proves (). O

PROOF OF THEOREM [3.1] Take §(2(?) sufficiently small so that we can apply
Theorem Given x € sptM N By 16, let Vy € Pr . be asin Theorem
Given x, y € spt M N By /16, using (4.19) and (7.3) we can estimate

1
c(Q®)

< lx =y um Bx—y (%) [y, — 7y,

|y, — v, |2

|2
<2x—y|™" f v, — . m|? + |y, — oM [ dpm

Bix—y(x)

E 2Et0t(q)v M’x + Vx,x» |x - y|) + 2Et0t(®’ ny + V ’ys2|x _y|)
< c(Q@)|x — y*E,

and hence

(7.22) 7y, — 7y, | < c(QO)EY2|x — y|o.

This effectively shows that spt M lies inside some C 1% graph. We must show
that spt M fills out this entire graph, and the same holds true for (@‘1)#M . We
first prove two auxiliary claims.

Claim 1. For all x € int€2 N spt M N By/16, we have

1
—dg(sptM N B (x),(x + Vx) N By(x)) >0 asr — 0.
r
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1014 N. EDELEN AND C. LI

We prove this by contradiction. Otherwise, suppose there is a sequence r; — 0
and € > 0 so that

1
;dH(SPtM N By (x), (x + Vx) N By, (x))
i

(7.23) = dy (spt M; N By, Vi N 31/2)

>e¢ Vi
where M; = (nx;)yM. Since E*°(M;,Vx,0,1) — 0asr — 0, we can argue
as in Proposition [6.4] using Theorem {.3] and Corollary {.8] to deduce that (after
passing to a subsequence)
M; — [Vi]

as varifolds in By. The lower bound (@.19) then implies that spt M; N By, —
Vx N By, in the Hausdorff distance, which is a contradiction for large i. This
proves Claim 1.

Claim 2. We have spt M N By/51, NintQ # @.

On the one hand, by @.19) we have lim, o r~" uar(Br(x)) > 0 for every
X € spt M. On the other hand, for every x € spt M N By16 N d<2 the decay bound
(7.3) and nonconcentration estimate (.23)) imply

limsup r™" ups (Br(x) N92) = 0.

r—0
Since spt M N By/512 # @, this proves Claim 2.
Let Mp = (CD_I)ﬂM. Since 1/¢ < Op(x) < ¢ for every x € sptM N By,
¢ =c(8,2©®), we can write
Uy = H* spt M L O,
where spt M is countably n-rectifiable. By the area formula we can therefore write
UMy = H" L q)_l(sptM) L (B 0 D).
This implies (for §(n) sufficiently small) that ®(spt M )N By /3, = spt MM By /32,
cD(Spth; N Bl/32) C SptM N Bl/167
and Tg—1(yyMe = DO Ty M for pipr-a.e. x € By
We aim to show decay estimates like (7-3)) and (7.22) for &~ (spt M) = spt M.
This is essentially a direct consequence of the fact that ® is a C? diffeomor-
phism. Define g = &~ 1(p), W = DCI>_1|I,V for p, V as in our hypotheses.
For z € spt Mo N By 32, define Wy = DO g5y Vp(z).-
Let us recall that ® is a bi-Lipschitz equivalence: for every x, y € B, we have
[@(x) = @(y) — (x = y)| = c(n)d|x -y,
and we have the bound

DO — DO, | < ()| D*®|cocp,ylx — yl.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1015

Claim 3. Take a € By14, V an n-plane, y € sptM N By(a) for r < 1/4, and
x € (@a+ V)N By(a). Then we can find a ¥ € (&~ '(a) + DO ,(V)) N
B(1+c(n)8)r(q)_1(a)) such that

|27 (y) —X| < 2|y — x| + c(m)| D*®|co(pr.
To prove this, let ¥ = ®~1(a) + D®~!|,(x —a). Then
171 (x)—%| = |97 (x) -2 (@) - DD, (x—a)| < c(n)|D>*P|cocp,lx—al’,

and
|27 (y) — @7 ()| < (1 4 ¢d)|y —x].
This proves Claim 3.
Claim 3 and our definition of W5 implies that for every a = ®(a) € spt Mg N
Bi/3z and r < 1/8 we have

su z,a+ Wz) < su ,a+ Vg)+cn r
P d(z,a+ Wz) <2 p d(y Va) + ¢(n)| D*®|r?

z&€spt MpN B, (@) yespt MN By, (a)
<c(n)E®(®,M,a + Va,a,2r)1/2r
(7.24) < c(QOYEV2p1He
and by the same reasoning
(7.25) sup d(z.q + W) < c(QO)YE2,
zE€spt MoNB1 /32

Similarly, combining Claim 1 with Claim 3 we have that
1
(7.26) lin%) —dy (spt Mo N By (a), (@ + Wz) N Br(a)) =0
r—>0r

for every a € spt Mg N By /3, Nint Q.
As in the proof of Lemma[2.8] we have the bounds

lmavy — Byl S c)|A = B|,  |maw) — maw)l < c)|my —mw|,

for linear maps A, B satisfying |4 — Id| + |B — Id| < e(n). Therefore for §(n)
sufficiently small, we can estimate

7w, — 7wy | < c(@)| DO g — DO p| + c(n)|my, — 7, |
< cm)|D?®@|cocpyyla b + (@) E2|a — b|*
(7.27) < c(QYEV2G - p)e,
where a = ®(a), b= ®(b) both lie in spt Mg N Bj/3,. The same proof gives us
the bound
(7.28) W, — ww] < c(QO)EV2,
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1016 N. EDELEN AND C. LI

Combining (7.24)), (7.27), (7.28) we get
iy (v = 2)| < c(Q@EV2|x -y,
(7.29) 7, (v — D) < c(QO)EV? |y — 2|,
w, — 7w, | < cQO)EV2|y — 2
forall y,z € spt Mg N By/3,.
Let Up = Q'N(g+W)N By 128(q), int Uy = int Q"N (g +W)N By /125(q), and

U= UyxWt)n Bi/64(q). For 8(Q®) sufficiently small we have |g| < 1/300,
and hence

(7.30) Bl/256 cU C 31/32.
Further, by (7.25)) we can assume that
(7.31) spt Mo N By/3p C Byyzeo(g + W),

and therefore spt Mg N U is a closed subset of R+

By and the projection mapping F(x) = mw (x) + ”#_V (¢) induces
a (1 + ¢6)-bi-Lipschitz equivalence between spt My N U and some closed subset
Uy C Uy, and in particular by Uy satisfies the property that

lim dpy (B (y) 0 Uo, Br(y) NUp) =0 Vy € Uy N int Up.
r—

It follows by an elementary argument that we must have either l70 Nint Uy = int Uy
or UpNint Uy = &. By Claim 2 spt M Nint Q'NBy /256 # D, 50 UpNint Uy # &,
and hence ﬁo = Up.

This proves F is a (1 + ¢§)-bi-Lipschitz equivalence between spt M N U and
Up. We can therefore find a Lipschitz function u : Uy — R so that spt Mp N U =
graph(u). It follows easily from (7.29), that u is C ** and satisfies the bound
ulcra @y < c(QO)EV2, O

8 Higher Codimension and Ambient Manifolds

The only part of our regularity theorem that requires codimension-1 is in ob-
taining the estimates (4.12), (@.13). If / = 1, or one can otherwise verify these
estimates, then we get corresponding regularity in higher codimension. The most
obvious situation in which (.12) and (.13) continue to hold is when we know a
priori that spt M is contained in some closed (n + 1)-submanifold with controlled
geometry. Beyond these estimates the proofs are verbatim to the codimension-1
case. To avoid excess notational clutter, we outline this here rather than integrate it
into the original proof.

Suppose we are in RFTI+HE I analogy to the original definitions, we now

[ l
let QO = Qg)) x R™*k be a finite union of half-spaces such that Qg)) is 0-
symmetric. Define P to be the collection of n-planes of the form R? x wn!
for some (n — [)-plane in {0} x R+ Given ®, ¥ : B, — B, as in Defintion
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we let © = &(U(Q®)) N By € Ds(29) analogously to the codimension-1
case.

Then we have the following extension of our results to higher codimension. We
point out that since any complete C3 (n + 1)-manifold N can be locally isometri-
cally embedded into some RrHI+E space, Theoremimplies our regularity can
be extended to codimension-1 varifolds in general ambient manifolds.

THEOREM 8.1. Let Q© = ng)l x RMHK pe g polyhedral cone domain in
R* 5 and let @ = (W(Q®)) N By € D(QW). Write N = &(¥(Q© x
R™ x {0¥})) N By, so that N is a closed C* (n + 1)-submanifold of B. Let
M e, (Bl).

Ifl > 2, assume that M satisfies spt M C N and

MO0 = [ Hiy X ds. HE Nl < e

for all X € C}(By) that are tangential to Q and X(x) € TyN forall x € N. If
[ =1, it suffices to assume that M € IVT (2, By), with H H}C‘IHHLOO <e

Then provided E(Q(O)) is sufficiently small, the theorems of Sections con-
tinue to hold for M.

9 Minimizers

In this section we use Theorems [3.1] and [8.1]to prove the partial regularity The-
orem [I.2] for codimension-1 area-minimizing free-boundary currents in a mani-
fold N. We will use the Nash embedding theorem and reduce our problem to
one in Euclidean space, as in Section[§] We prove some technical lemmas, estab-
lishing appropriate nonconcentration (9.2)) and compactness (9.4) for almost-area-
minimizing currents. We then classify low-dimensional minimizing cones with
free-boundary (Lemmas [0.5]and 9.7)), and use a standard-dimension-reducing ar-
gument to get our partial regularity bound.

First, we establish some notation. Given an open set U C R K we let
Jn(U) be the set of integer-multiplicity rectifiable n-currents in {/ with locally
finite mass. Given T € J,(U), we will write |T| for the mass measure, and
spt T C U for the support of 7. Note that associated to every such T there is an
integral varifold that we will often denote by 7" also such that u7 = || T||. Given an
openset E C U, we write [E] for the (n + 1)-current in U obtained by integrating
the standard orientation over . We say E is a set of locally finite perimeter in U
if 3[E] € I, (U).

Given a domain @ € R"t'*K and T € 7,(U), we say T is minimizing with
free boundary in Q if 7' = T L int Q and satisfies

©.1) ITIW) < IT + Sl(W)
forall W € U and all S € J,,(U) satisfying spt S € N W and 9S L intQ = 0.
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1018 N. EDELEN AND C. LI

Given A > 0, > 0,8 > 0, we say T is (4, «, §)-almost-minimizing with
free-boundary in Q if T = T Lint 2, and given W, S as above with diam(W) < §,
then we have the inequality

ITNW) < |IT +S||(W)+ ArtTe, diam(W) < min{é, r}.
instead of (9.1]).

Let Q© = Q¢ x R™*% be a polyhedral cone domain in R*t1+k @ ¢
De(Q©). Recall that € is closed in B;, int$2 = €, and we have the natural
stratification

BOQ C 819 c---C an+1+kQ - Q,

where 9; 2 consists of the points near which € is diffeomorphic to a polyhedral
cone domain having at most i dimensions of translational symmetry.

Given T € J,(By) with T = T L intQ2, we define reg T to be the set of
points x € sptT C S with the following property: there is an r > 0, a C2
diffeomorphism ¢ : B,(x) — Br(x), aV € Pr_q, and a C1¥ function u :
Bor(x) N (x + V) — VL so that

¢(sptT N Br(x)) = graph, , yy (u) N Br(x).

Note that this implies dg2 Nreg T = & (but also recall that 3; 2 = @ fori <
m + k). Note further that if x € reg 7, then the tangent plane of 7 at x lies in
Pr.o. We define sing7 = sptT \reg 7.

The global domains we are interested in are locally polyhedral domains, defined
precisely here.

DEFINITION 9.1. Let N"t1 be a complete manifold. A locally polyhedral domain
is a closed domain 2 C N with nonempty interior that is locally diffeomorphic
to some polyhedral cone domain at every point. Precisely, for every x € € there
is a radius » > 0, a polyhedral cone domain Q| and a diffeomorphism ¢ :
Bi(0"t1) — B,(x € N) sothat $(B1 N Q@) = @ N B.(x) and 1 D¢l is an
isometry. We say €2 is C¥ if the associated diffeomorphism is C¥.

In the special case when every model polyhedral cone Q© takes the form
L(R? x [0,00)*~") for some i and linear isomorphism L, then Q is said to be
a domain with corners. We say 2 has dihedral angles < 7 /2 (resp., = n/2) if
every model Q© a5 above has dihedral angles < /2 (resp., = 7/2). As before,
we may call 2 with dihedral angles < 7/2 nonobtuse.

The following two lemmas prove the required compactness and closure theo-
rems for our (almost-)area-minimizing currents.

LEMMA 9.2 (Boundary nonconcentration). Let QO pea polyhedral cone domain
in R* 145 Lot @ € D(Q®) and T € 3,(B1) be (A, 0, 1)-almost-minimizing
with free-boundary in Q such that T L int Q2 = 0.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1019
Then for € < €(©), there is a continuous function n(z) : [0,1] — [0,1]
depending only on 08, QO satisfying n(0) = 0, such that
IT[(B(3) N Bg) < || T|[(B1)n(r) + 24.

Remark 9.3. We speculate that it should be true for minimizers that |07 ||(Bg) <
C(H,Q© | T||(By1)) (cf. [13]). However, the above weaker statement is easier to
prove in our more singular setting, and suffices for our purposes.

PROOF. Fix any unit vector 7 € int €2, and let H be the half-space with outer
normal given by —t. Then for €($2(?) sufficiently small, @ C H, and we can write
d$2 as a Lipschitz graph over dH. Given R > 2, E(Q(O)) small and x € B; N 2,
there is a unique {(x) € 92 such that {(x) — Rt = Ax(x — Rt) for some A, > 1.
Provided we fix R(6, Q®) to be sufficiently large, then ¢ is a Lipschitz function
satisfying

{(Bg) C Baroya. ¥ =t < e(D)d(x, 99),

9.2) ©)
D¢ ooy < ().

Since T = T LintQ, let us view T € J,(int Q2 N By), in which case dT = 0.
Define f(x) = d(x,dR) + g(|x|), where g = 0 on By, g is increasing, g = 1
on B(14¢)/2, and |Dg| < 4/(1 —6). Thenforallh < I, T L {f < h} €
Jn(int 2 N B(H_g)/z).

Let T, = (T, f. h) be the slice (see [34, sec. 28]) of T at f = h, defined for a.e.
h,and let m(h) = |T L{f < h}||(B1). By the coarea formula, we have

9.3) 17 1(B1) < c(O)m’
for a.e. i < 1. On the other hand, again for a.e. &, by slicing we have
T, =0(T L{f <t}).
Therefore if we define
F(t,x) =tx+ (1 —t)l(x), te€]0,1], x € By,

then dFy([0, 1] x Tp,) Lint Q = T}, and spt Fy([0, 1] x T},) C N B(14¢)/2, and so
by area comparison and the homotopy formula [34, sec. 26.22] we have

(9.4) m(h) < ||FeThll(B1) + A < Q)| T3 ||(By) + A,

having used (9.2) and the fact that |x — ¢(x)| < cd(x,dR) < cf(x). Together,
(9.3) and (9.4) imply that for a.e. & < 1 we have

m(h) < (O, 0)hm’ + A,

and therefore since m is increasing there is an @ > 0 so that h=%(m(h) — A) is
increasing for & € (0, 1). Letting n(h) = h® proves the lemma. d
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LEMMA 9.4. Let Q = Qé x R™*k pe a polyhedral cone domain in RHIHE Lo
€ -0, 4; > 0, Q; € D, (), and T; € In(B1). Suppose T; is (A;,0, 1)-area-
minimizing with free boundary in Q; and satisfies

9.5 oT; LintQ2 =0, supl|7;]|(B1) < oo.
i

Then after passing to a subsequence, there isa T € J,(By) that is area-minimizing
with free boundary in 2 such that T; — T as currents in By and ||T; || — || T || as
Radon measures on Bj.

If T; as varifolds lie in IVT(2;, By) with ||H%“||Loo(31) — 0, then T €
IVT(Q2, B1), T; — T as varifolds, ||HF" || Leo(B,) = 0.

Write Q; = ®;(V; () N By, and let N; = ®; (V;(Qo x R™ x {0F})) N By.
Suppose, additionally to the previous two paragraphs, there are relatively open sets
E; C NiN By sothat T; = 0[E;|Lint Q. Then T is multiplicity-1 || T ||-a.e. and for
every x € reg TN By, there is aneighborhood By (x) such that sing T;N By (x) = &
foralli > 1.

PROOF. By assumption we have |®; —Id|¢c2(p,) — 0, |¥; —Id] — 0. We can
find C? functions F; : B, — B, functions satisfying

Qi = Fi(Q)N By, |F —1d|c2y — O,

such that for every U &€ int 2 N By, we have F;|y = Id foralli > 1.

By a diagonalization argument, after passing to a subsequence, we can find a
T € J,(int Q) so that T; (w) — T (w) for any smooth n-form compactly supported
in B; Nint 2. We have ||T||(intQ N By) < oo, so extend T to be an element
of J,(B1) by restriction T := T L int Q2. Because of our definition of 7" and
convergence 7; — T as currents on compact subsets of int 2 N B, we can also
assume that the ||7; || limit to some Radon measure on By, whichis > ||T].

By slicing theory and (9.5)), and after passing to a further subsequence, we can
find dj — 0, — 1 sothatif Djx = By, N{dsq > d;}, then

(9.6) 10(T;  Dji)ll(B1) = Cjk

for Cj independent of i. Since, for any fixed j.k, T; . Djp — T L D i, we have
d(T; L Dji) — (T L Dji) and hence

0.7 10(T « Dji)ll(B1) < Cjk
also.

By Lemma 9.2} we have
9.8) ITill(Bry \ Djr) < ni(d;) + 24;

for some continuous function 7 independent of i, j that satisfies ; (0) = 0. Lower
semicontinuity and our hypothesis 4; — 0 implies

9.9) ITII(Br \ Djx) < nx(d;).
Inequalities (9.8) and (9.9) imply that 7; — T as currents in Bj.
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Fix § € J,(B1) with sptS C Q N By and 4S5 L int 2 = 0. We wish to prove
that

ITI(B1) < IT + S[(B1).

Since T = T L int 2, there is no loss in assuming S = S L int Q2 also. Define §; =
(Fi)S, sothat fori > 1: sptS; C Q; N By, 38; LintQ; =0, 8; = §; L intQ;
and ||S — S;||(B1) — 0.

Fix a k such that sptS C By, for all i large, and fix any j arbitrary. By (9.6),
(9.7), slicing theory, and the deformation theorem (see, e.g., [34] theorem 7.2.4]),
we can find P; € J,41(B1), R; € J,,(B1) such that

(T; —T)L Djr = oP; + R;
and
spt Pi.spt Ri C Djy1 k. I1Pill(B1) + [[Ri[[(B1) + ||9P; || (9Br) — 0.

Since 7; is (A;, 0, 1)-almost-minimizing with free boundary in €2; and dP; is an
admissible competitor, we have

1T 1(Br) < IT; + 0P + Sill(Br) + A Vg <1 <1,
and hence taking r — r, we get
1T 1(Bri) = IIT; + 0P; + Sill(Bry) + 9P [|(0Br,) + Ai

<(IT v Djz + ST+ IS = Sill + [1R: 1) (Br,)
+ [10P; [|(3By, ) + Ai
Let i — o0; then by lower-semicontinuity we get
ITN(Br) = IT « Dji + S(Bry)
(9.10) <IT + SI(Br) + ITI(Br; \ Dj)
<7+ S|(Bry) + nic(d;).

Since (0.10) holds for every j (k fixed), we can take j — oo to get
ITN(Br) = IT + SII(Br).

which proves that 7' is minimizing. If we apply the same argument to S = 0,
then we get || T||(By,) = lim; || 7;||(By, ), which by lower-semicontinuity implies
I7; | = |IT||. This proves the first part of the lemma.

Abusing notation, let us write 7;, T for the underlying varifolds associated to the
n-currents, and assume as in our hypothesis that 7; € JVT(€2;, By). By Theorem
|.3] the 7; have uniformly bounded first variation, and hence after passing to a
further subsequence we can assume 7; converge as varifolds in By. Since 7;, T’
are both integral varifolds, and ||7;]|| — ||T]|, then we must have 7; — T as
varifolds.
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1022 N. EDELEN AND C. LI

Fix any X € C}(B) tangential to Q. Let X;(x) = DFi|F_71(x)X(Fi_1(x)).

Then X; € C1(B1), X; is tangential to 2;, and | X; — X|cogyy — 0. Pick 6 <1
such that spt X; and spt X C Bg. We have

8T (X)| < C(Q)|X|coesy | H7, 1Loom) ITi I (Bo)
+ C(Q)|Xi = X|cocp)) 18T:[(Bg).

and hence §7'(X) = 0. This implies 7 € JVT(Q, By) and H#" = 0.

Suppose 1T; = d[E;]Lint ; for some relatively open sets £; C N; N B;. Then,
after passing to a further subsequence as necessary, we can assume [F;] — £ C
Qo x R™ x {0%}, and hence T = 3[E] L Q¢ x R™ has multiplicity-1 ||T | -a.e.
If x € regT, then at sufficiently small scales T L B,(x) is varifold-close to a
multiplicity-1 plane in P7, g, and hence the T; L B, (x) lie close to this plane also.
For r sufficiently small and i sufficiently large, we deduce by Theorems [3.1] and
B.1]that sing 7; N B, (x) = @. O

We now work towards classifying low-dimensional tangent cones.

LEMMA 9.5. Let Q"1 be a 0-symmetric polyhedral cone domain. If n > 2,
assume S2 is nonobtuse. Then 2 is a domain with corners, and given any T €
In (R"*1Y a free-boundary minimizing cone in Q such that spt T is contained in a
plane, then T = Q.

It is plausible Lemma[9.5]fails in higher dimensions when 2 does not satisfy the
dihedral angle condition.

Example 9.6. Let Q3 be the intersection of the half-spaces with outer normals
given by

(1,0,1), (—=1,0,1), (0,¢,1).

Then when € > 0 is relatively small, it may be the case that the plane y = 0 is not
minimizing with free boundary in €.

PROOF OF LEMMA [9.3] By the constancy theorem, T = k[P Nint Q] for some
integer k > 0 and some oriented plane P.

We perform induction on n. First assume n = 1: Q = W? is a 2-dimensional
wedge with interior angle 8 < 7 and P N W is aray. If we write 0W = L{ U L,
where L; are the two rays meeting at angle §, then after relabeling as necessary
the rays P and L; meet at some angle < w/2. Take any point ¢ € P, and let
g1 = projz, ¢- Then |gq1| < |og|, so P is not length-minimizing. We therefore
must have k = 0 and hence 7" = 0.

Assume the statement holds for all positive integers less than 7. Since Q"1 is
0-symmetric and nonobtuse by [7, theorem 1.1], €2 is simplicial. In other words,
there exists n + 1 half-spaces Hy, H», ..., Hy+1 such that Q = ﬂ?:ll H;, and if
F; = 0QN3dH;, then each F; and F; meet along some (n —1)-dimensional set. Let
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v; denote the outer unit normal vector of dH;. Since 2 is nonobtuse, v; - v; < 0,
and
Q={xeR":x-v;<0,i=1,2,....,n+ 1}.

Suppose, for the sake of contradiction, that k& # 0. We first observe that spt 7 N
0n—12 = {0}. Otherwise, letg € sptT N 9,—12. Then Tan, T = T’ x RA+1I=J
7,2 = Q"7 x R*1=J for some 2 < j < n, Q' is O-symmetric, and 7" is free-
boundary minimizing in ', contradicting the induction hypothesis.

Therefore spt T N d<2 only in the smooth part of 32, and thus spt T meets 92
orthogonally. Denote 29 = P N Q. Note that ¢ is a 0-symmetric #-dimensional
polyhedral cone. Thus by dimension counting, P intersects exactly n faces, say
Fi, F,, ..., F, orthogonally. After a rotation if necessary, we may assume that
P ={xy41 = 0}and e, € P NintQ. Since ¢, € intQ2 C H,1, we have
en - Vnt+1 < 0. On the other hand, regarded as a convex polyhedron in P = R”,
€20 has outer unit normals v{, va,..., vy, and e, € int(2¢). Therefore there exists

a linear combination
n
e = E Ajvj
Jj=1

with A; < 0. Hence

n
en Vn+l = levj “Vn+1 > 0.
j=1
Asaresult, e,-v,4+1 = 0, and hence e, € dH,, 1. This implies that PN Fy 41 #
{0}, a contradiction. a

LEMMA 9.7. Let T € 3,(R™*1) be a dilation-invariant minimizing current with
free boundary in a polyhedral cone domain Q" +Y. Then T is entirely regular if-
Hn=1,
(2) n = 2 and 2 is nonobtuse,
(3) n < 6and 2 = [0, 00)! x R* 1.

PROOF. Suppose n < 6 and Q2 = [0, oo)l x R"*t1=! When ! = 0, then T is
minimizing without boundary in R”*!, and hence T is planar by Simons’ theorem
[36]. For general /, we can assume by induction that sing 7 C {0}. Otherwise, if
x € sing T'\ {0}, then by and Lemma(9.4) we would be able to find a nonzero
singular tangent cone 7’ x [R] at x which is minimizing with free boundary in some
[0, 00)! 1 x R".

Now by reflection we can obtain a cone T in R"t! that is C 1@ away from 0,
and smooth and stable away from finitely many (n—2)-planes. By standard interior
elliptic regularity and a cutoff argument it follows that T is smooth and stable on
all of R”*1\ {0}, and hence by Simons’ theorem T is planar.

Suppose n = 1. By the previous characterization, we can without loss of gener-
ality assume €2 = W?2 is a nonobtuse wedge. Then T is a cone over finitely many
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1024 N. EDELEN AND C. LI

points, and hence is a union of minimizing rays (with possible multiplicity) in W?2.
But then by Lemma[9.5] 7 = 0. This completes the n = 1 case.

Suppose n = 2 and Q is nonobtuse. We claim that spt7 N (912 \ {0}) = @.
Otherwise, if there were an x € spt7 N (3:Q \ {0}), then by (.19) and Lemma
(and a rotation as necessary), we could obtain a nonzero tangent cone 7’ x [R]
in some cone W2 x R, where W?2 is a wedge. But 7’ is minimizing in W2, and
hence by our n = 1 case we would have 77 = 0, which is a contradiction.

Therefore spt 7 \ {0} meets 92 only where 02 is planar, and hence by re-
flection and interior regularity spt 7" is smooth away from 0. Moreover, by the
free-boundary condition spt 7" satisfies the usual stability inequality

/ |A|2525/ VZ2 Ve e CLRM (o)),
sptT sptT

and d,|A| = 0 along spt T N dQ \ {0}. (Here A is the second fundamental form of
spt T'.) It then follows by the usual proof of Simons’ theorem that spt 7" is a finite
union of disjoint free-boundary planes in int 2.

As before we can assume without loss of generality that € is either W2 xR or 0-
symmetric. If @ = W2 xR, then since spt T is planar and spt 7 N ({0} x R) C {0},
we must have spt 7 = W?2 x {0}, and hence T is regular. If Q is O-symmetric, then
by Lemma[9.5| we must have 7 = 0. O

Using the previous results and the Nash embedding theorem, partial regularity
is now a standard argument.

PROOF OF THEOREM[L.Zl Since N is a complete, Riemannian C3 (n + 1)-
manifold, we can by Nash’s theorem isometrically embed it in some R” ! +k space
(for k = k(n)). Without loss of generality assume 0 € 3QNspt T, ToN = R"+1x
{0%}, and by dilating N as necessary we can assume that the map expy . N (x,v)
that takes x € N, v € TxlN to x + v is a diffeomorphism onto its image for
X € By, [v] < 2,and expy1y (B2, B2) D By. Let Q' = exproy (22, B2) N By,
and then Q' € D (T2 ka), where € can be made arbitrarily small by dilating N.

Suppose T is area-minimizing with free-boundary in 2. Then T is (A4, 1, 1)-
almost-area-minimizing in By with free-boundary in ', where 4 depends only
on the curvature of N. Since T has zero tangential mean curvature in 2 C N,
then T has bounded tangential mean curvature in ' C Bj (again controlled by
the curvature of V). By standard codimension-1 theory we can reduce to the case
when 7' = J[E] L int Q' for £ C N relatively open.

Suppose 7" = d[E]Lint €2 is an isoperimetric region. Then 7" is (A, 1, §)-almost-
area-minimizing in N with free boundary in €2 for some constants A4, § (depending
on the volume |E|; see [29, example 21.3]), and hence as above T is (4’,1,8/2)-
almost-area-minimizing in By with free boundary in Q’. Similarly, since 7" has
bounded tangential mean curvature in 2 C N, then T has bounded tangential
mean curvature in Q' C Bj also.
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In either case, if we consider a sequence of dilations 7; = (no,r; )37, then by
#.19), (&.1), and Lemma[9.4] the 7; will subsequentially converge as currents and
varifolds to some nonzero area-minimizing cone 7" with free boundary in Q”,
where Q" = TyQ C ToN. Moreover, if x € regT”, thensingT; N B,(x) = &
for all i large.

Lemmal9.7]implies that:

(1) if 7" is (n — 1)-symmetric, then 7" is regular;

(2) if T" is (n — 2)-symmetric and 2 is nonobtuse, then 7" is regular;

(3) if 7" is (n — 6)-symmetric and 2 has dihedral angles = 7/2, then T” is
regular.

The partial regularity of Theorem then follows from a standard dimension-
reducing argument. 0

Appendix A Tangential First Variation

Let Q be a C2, closed p-submanifold in Rk Suppose that the nearest point
projection ¢(x) : By — @ is smooth in Bj. Define the subspaces
t(x) = Te(xyM.,  1(x) = span{x — {(x)}, o(x) = 7(x) ® 1(x).

Write r = |x — {(x)].
We consider a rectifiable n-varifold M € JV(B; C R*1%) such that ups (Q) =
0 and pp(B1) < oo.

A.1 Free boundary

Let Q be a hypersurface, so that p = n + k — 1. Let M "“" be §M restricted to
vector fields X that are tangential to Q, i.e., those X € C} for which X(x) € Ty Q
forall x € Q.

Assume ||SM'"“"||(B;) < oo, so in particular we can write

SM™(X) = M(X) = /X'Mta“dﬂf?Mta“II, w = 18M™"]-a.e.

for all tangential X, and some ||§M""|-integrable, unit-vector-valued function
W If || SMBY| > g, then let us write

SM™(X) = —fH}\j“-XduM.

THEOREM A.1 ([15] or [9]). Assuming the above setup on Q, M, then we can
conclude the following:

(1) For any nonnegative h € C1(B1), we have that

1
ry(h) := lim — (M - Hh
P=0 P JB,(Q)

= /hDr S || M| + /(M -D?rYh —Vh-Vrduy
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1026 N. EDELEN AND C. LI

is a Radon measure on By, and for any X € C}(B1, R" 1) (not necessar-
ily tangential) we have

SM(X) = /X P d | EMEY| — Ci(X - Dr).

(2) In particular, M is a Radon measure in B1, and if we write
MO = [ X pdloM . ul = 1.16M -ce.
then ||SM™| = |uT9|||6M ||, where

p(x), x¢Q
rr.o(u(x)), x€Q
) If |SM™|| > up, then we can write

SM(X) =—/H}\f‘1“-XduM+/r)-Xda,

where 0 L upr is a nonnegative Radon measure supported in Q, and for
o-a.e. x we have |n(x)| = 1, n(x) € (T Q).

pex) =

A.2 Prescribed boundary

Let O be an (n — 1)-manifold. Assume that ||6M ||[(B1 \ Q) < oo so that for
every X € CH(By \ Q.R"*¥), we can write

SM(X) = /X -pd||sM ||, p(x)| =1 ||6M ||-a.e. x.
If6M L (B1 \ Q) > up, then let us write
SM(X) = —/H-XdMM.

THEOREM A.2 ([2]). Assuming the above on Q, M, then we can conclude the
following:
(1) For any nonnegative h € C}(B1), we have that

1
o (h) := lim — h
P=0 0 JB,(Q)

:/ hDr-ud|sM||
B1\Q

—th Vr+ M -oJ')h/r + M - (tol—DO)r/rdum
is a Radon measure on By, and for any X € Cc1 (B1,R*™ 1), we have
SM(X):/ X -wd|SM| —T2(X - Dr).

Bi\Q
In particular, M is a Radon measure on By.
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(2) We have

1
lim — |Vr — Dr|>duy = 0.
p=0 0 JB,(Q)

(3) If M  (B1 \ Q) > um, then for any X we can write

SM(X) =—/H-Xd/LM+/n-Xdo,
where 0 L lpr is a nonnegative Radon measure supported in Q, and for
o-a.e. x we have |n(x)| = 1, n(x) € (T Q).
A.3 Higher codimension boundary

Assume now p < n—2. Assume ||6M ||[(B1\ Q) < o0, and additionally, assume
that there is some constant C such that

pm (Bp(x)) < Cp" Vx e QN By,

THEOREM A.3. Assuming the above on Q, M, then ||6M | is a Radon measure on
By and ||SM[(Q) = 0.

PROOF. Follows directly from the fact that, for any 6 < 1, we have

1
;/LM(B,,(Q) NBg) < (0,C)p—0 asp—0. O

Appendix B First Variation and Sobolev Inequalities

Here we sketch a proof of the inequalities (4.17) and ({.18)) for a rectifiable n-
varifold M satisfying the first-variation bound (4.8) and the condition 63y > 1
Uar-a.e.

PROOF OF (.17), (4.18). Combining the isoperimetric bound of [1}, theorem
7.1] (see also the [30] lemma 2.3]) with (4.8)), we get

1/n
@ [ i =@ ([ naun ) [ 150+ Vb
h>1

for all nonnegative 1 € Cl(Bj). Take ye : R — R a C function that is 0 on
(—00,0] and 1 on [e, 00), and then plug in y<(h — ¢) into (B.I) in place of 4, to
obtain

pmh >1+¢€)

d
< @O > 0 ([ 1= 5 [ vt = 9hldia ).
h>t dt
If n = 1, then we can integrate (B.2) to obtain

fsuph pa(h >t +€)
0 g (> 1)
Since for a.e. ¢ the integrand pas(h > t + €)/upm(h > t) — lase — 0, we
obtain (.17) by the dominated convergence theorem.

(B.2)

ar =e@©) [ 1310+ Vbl duy.
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If n > 2, then we multiply (B2) by (z + €)1/®~D to get

pp(h >t + €yt + €)'/

l/n d
< c( (h + eyr/ =D duM) ( [ g -5 [ i duM).
h>0 h>t dt

Now integrate in ¢ € [0, 00):

/ (h + /=D _ /=D g,

1/n
<c (/ (h + e)”/(”_l)duM) (/ |HE b+ |Vh|du),
h>0

and let e — 0 to get (4.18). O

Appendix C Fourier Expansion in Cones

PROOF OF LEMMA [5.2] First, since u € W12(CD N By), we have that v —
u(rw) € L%(D) for every 0 < r < 1, and hence for each such r we can expand in
L*(D):

(R urw) = Y @), ) = [ utwp©.

i D

By Fatou’s lemma, this expansion holds in L?(CD N By).
It’s easy to check that

() = /D Br1);

weakly, and so ¢; (r)¢; (w) € Wli;cz (CDN B1\{0}). Using that the ¢; are Neumann
eigenfunctions, we can bound

/CDnBy\B,

and hence the expansion (C.1)) holds in W12(CD N By) also.
Using equation (3.2)) and the definition of ¢;, one can verify that

2

N
Y Dcigi)

i=0

5/ |Dul> Vo<r <s<1, VN,
CDNB;

1
0= [ @+ = ' fr = pan/rdr Ve CHO.D).
0

Setting f(f) = c;(e')e =2 then this implies that f solves the linear equation
f"—((m—=2)f"— uif = 0in the weak sense, and hence in the strong sense.
Therefore, when n > 3, we have

(C2) i) = Air? + Biri .y = (0 —2)/2) £ /(1 ~ /2 + pu.
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for some constants A;, B;. If n = 2, then (C.2) holds for i > 1, but wheni = 0
then

co(r) = Ao + Bglog(r).
We just need to show each B; = 0. Suppose otherwise, that B; # 0 for some i.

Since )L;r > 0and A, < —(n — 2), we can find a radius 0 < ro < I so that for
r < ro we have

+ 1 AT
| A | fzzuﬁuxiv*u

Therefore we have
1 1 ro -~
[ apul= [Ceprtar= s [T
B 0 4 0
1 o
> Z'Bi|2f r = 0o
0

which is a contradiction. If n = 2 andi = 0, then we have the similar contradiction

1
/ |Du|22|BO|2/ dr/r = oc.
B 0

This shows every B; = 0, and hence proves Lemma@] forn > 2. Then = 1 case
is trivial. O
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