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Abstract

We prove an Allard-type regularity theorem for free-boundary minimal surfaces
in Lipschitz domains locally modeled on convex polyhedra. We show that if such
a minimal surface is sufficiently close to an appropriate free-boundary plane,
then the surface is C 1;� graphical over this plane. We apply our theorem to
prove partial regularity results for free-boundary minimizing hypersurfaces, and
relative isoperimetric regions. © 2022 Wiley Periodicals LLC.
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1 Introduction
We are interested in the regularity of free-boundary minimal hypersurfaces M

inside piecewise-smooth domains �. These surfaces M arise variationally as crit-
ical points of area or capillary-type functions among surfaces in � whose bound-
aries lie in @� but are otherwise free to vary. The existence and regularity of free-
boundary minimal surfaces has been extensively studied by Courant [6], Lewy
[25, 26], Hildebrandt [17], Nitsche [18, 31], Gruter [13] and Jost [15], Taylor
[38, 39], and Struwe [37], among others.

When @� is at least C 2, Gruter-Jost [15] proved an Allard-type regularity the-
orem that says that if M is sufficiently varifold close to a free-boundary plane (or,
equivalently in this case, when the density ratio ofM near a boundary point is suf-
ficiently close to 1=2), then nearby M is a C 1;� graph over this plane. Gruter [13]
used this regularity theorem to prove that the (optimal) dimension of the singular
set at the free-boundary for area-minimizing hypersurfaces satisfies the same codi-
mension 7 bound as in the interior (contrast this with Hardt-Simon’s [16] result
that showed every area-minimizing hypersurface is entirely regular near its Dirich-
let boundary).

In this paper we prove an Allard-type regularity for M when � is locally mod-
eled on any convex polyhedral cone, and hence is only piecewiseC 2. The archetype
of such a domain is a C 2 perturbation of a convex wedge (i.e., intersection of
two half-spaces). Existence and regularity of a free-boundary minimal M in non-
smooth � has a history dating back to the 19th century, when Gergonne [11] and
Schwartz [32] formulated and solved the question of determining minimal surfaces
with partially free boundary in a standard cube in R3. Since then, there has been a
rich history of investigation into free boundary minimal surfaces in various geomet-
ric and physical scenarios, where polyhedral domains naturally arise. For instance,
when � is a wedge region in R3, with opening angle �0, a range of geometric and
regularity properties of free boundary minimal surfaces were studied in [19–22].
See also [18], where �0 D 2� .

In these past results, as well as in [14, 23], it was observed that boundary reg-
ularity of minimal surfaces depends on the local structure of �. For instance, if
� is a wedge in R3 as above, and �0 D 2� , then an area-minimizing surface M
may have branch points at its free boundary (see [18]). More generally, as pointed
out in [20], when �0 2 .�; 2�/, an area-minimizing surface in � may contain an
interval on the edge f0g�R, and thus fail to be a regular surface meeting @� orthog-
onally (called the edge-creeping phenomenon). For a beautuful local description of
two-dimensional minimal surfaces in wedges using the Weierstrass representation,
see [3].

In polyhedral domains, similar regularity questions also naturally appear in geo-
metric problems with other types of boundary conditions, including capillary sur-
faces [33, 38] as well as general soap bubbles [12]. These surfaces are crucial in
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972 N. EDELEN AND C. LI

Gromov’s geometric comparison principle for scalar curvature proved by the sec-
ond named author [27, 28].

Simon [33] implemented tools of geometric measure theory in the investigation
of capillary surfaces in domains with corners. For a free boundary minimal surface,
he noted that local convexity of the model domain is a sufficient condition for the
existence of a nontrivial tangent cone at the corner. On the other hand, cusp-type
singularities may occur at the corner if local convexity is violated (see [4,5,33] and
the references therein).

Our main result is a local Allard-type regularity theorem, which says loosely
that if � \ B1 is a sufficiently small C 2 perturbation of a convex polyhedral cone
�.0/, and if MxB1 is sufficiently varifold close to an appropriate free-boundary
plane in �.0/, then sptM \ B1=2 is a C 1;� perturbation of this plane.

THEOREM 1.1. Let �nC1 D �0 � R be a polyhedral cone domain: a dilation-
invariant intersection of finitely many closed half-spaces, with nonempty interior.
Let Fi W B1 ! B1 be a sequence of C 2 diffeomorphisms that limit to Id in C 2.B1/.
Let Mi be a sequence of integral varifolds in B1 that are stationary free-boundary
in Fi .�/ (or have bounded mean curvature tending to 0) such that Mi ! ��0 �
f0g� as varifolds in B1.

Then for i � 1, we can write F�1
i .sptM/\B1=2 as C 1;� graphs over�0�f0g,

with C 1;� norm tending to zero.

Theorem 1.1 is stated for codimension-1 varifolds in Euclidean space, but ver-
sions hold for higher-codimension varifolds and other ambient manifolds; see Sec-
tion 8.

We note that there are two classes of free-boundary planes: if � D W 2 �Rn�1
is a wedge, then one has “horizontal” planes containing W 2 � f0g, and “vertical”
planes containing f0g�Rn�1. Our theorem holds only for horizontal planes, and in
general an Allard-type regularity fails for vertical planes (Example 3.6). Likewise,
regularity as in Theorem 3.1 can fail when � is nonconvex (Example 3.7).

We also remark that, by considering the corresponding linear Neumann problem,
we expect C 1;� regularity to be sharp for general �. For example, when � is a
wedge with opening angle �0, then we would expect no better regularity than C 1;�

for � D �
�0
� 1. If the opening angle is � �=2, then one might expect C 2;�

regularity. In the special case when � D W 2 � R is a 3-dimensional wedge, then
Theorem 1.1 was proven for minimal graphs over the free-boundary planeW 2�f0g
by [22].

Our regularity theorem implies a partial regularity for codimension-1 minimiz-
ing currents in domains which are locally modeled on polyedral cone domains. The
interior dimension bound of course follows from classical interior regularity—our
contributions are the estimates on the boundary. See Section 9 for exact definitions
and the proof.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 973

THEOREM 1.2 (Partial regularity). Let � be a locally polyhedral C 2 domain in
a complete C 3 Riemannian manifold N nC1. Suppose T D T x int� is a free-
boundary area-minimizing integral current in �, or that T D @�U � x int� is a
solution to the relative isoperimetric problem; i.e., T is area-minimizing in the
class of T 0 D @�U 0� x int� where U 0 is relatively open in � and jU 0j D jU j.

Then dim.singT \ int�/ � n � 7, and:

(1) dim.singT \ @�/ � n � 2, for general �;
(2) dim.singT \@�/ � n�3, if the dihedral angles of� are� �=2 (in which

case � is actually a domain-with-corners);
(3) dim.singT \ @�/ � n � 7, if the dihedral angles of � are D �=2.

We emphasize that � need only be locally a C 2 perturbation of a convex poly-
hedral domain, and does not need not be (locally) convex itself.

We think it should be true that dim.singT \ @�/ � n � 7 when the dihedral
angles are � �=2. The stumbling block is proving an appropriate Neumann eigen-
value bound for domains contained in an octant of S2. In this spirit, when the dihe-
dral angles of � are � �=2 our proof in fact gives dim.singM n @n�2�/ � n� 7,
where @n�2� consists of points where � is locally modelled on domains with at
least n�2 dimensions of symmetry. On the other hand, it is plausible that the n�2
bound for general � is sharp, as there are free-boundary planes in 3-dimensional
polyhedral cone domains which we think may be minimizing (Example 9.6).

Our strategy is to prove a certain “excess decay” inequality (3.5). The two key
difficulties we encounter are a lack of reflection principle, and a lack of a single
boundary model. This means that, unlike regularity with smooth boundaries (such
as Allard [2] and Gruter [13]), we do not have any easy characterization of low-
density tangent cones, nor do we have a nice monotone quantity defined at all scales
and all points along the boundary. Our proof therefore relies comparatively little
on monotonicity, in contrast to [2, 13], who used it as a key tool to obtain among
other things good effective graphical approximations.

Instead, we prove a trace-like inequality for the first variation, and use Moser
iteration to prove good lower Ahlfors regularity and nonconcentration estimates.
The key to make our excess decay argument work is a sharp L1-L2 bound, which
implies that, even at the scale of the excess, the L2 norm cannot “accumulate”
near the boundary. The main technical challenge is establishing a first-variation
control, and the corresponding trace-like inequality. To do this we induct on the
dimension of the cone, basing our argument on work of Simon [33] who considered
2-dimensional capillary surfaces in a 3-dimensional wedge.

While � resembles a fixed-cone-type, we can prove excess decay by compar-
ison with the linear problem, in the spirit of DeGiorgi’s original proof of interior
regularity. However, inevitably at certain finite scales � will cease to look like a
given cone, and here this argument breaks down (e.g., in a wedge, every big ball
looks like the wedge, but as the radius shrinks it may look like a half-space, or
an interior point). By an inductive argument on the strata, we show that � looks
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974 N. EDELEN AND C. LI

like one of finitely many cone types, away from finitely many scales. By giving
up some constant, we can chain together our excess decays at each cone model to
obtain a global excess decay down to 0. This last step is very general, and would
apply to any regularity problem in a “stratified” model.

It would be interesting to see if any of our techniques carry over to regularity
problems with other boundary conditions, for example the capillary problem. De
Philippis-Maggi [8] proved a (partial-)regularity theorem for energy-minimizing
capillary surfaces in C 1;1 domains, and the second author [28] proved regular-
ity of energy-minimizing 2-dimensional capillary surfaces in locally polyhedral
Lipschitz domains. However very little is known for capillary surfaces that are
only stationary for area, nor is the sharp regularity known for energy-minimizing
capillary surfaces in higher dimensions. We mention here that recently Kagaya-
Tonegawa [24] proved a monotonicity formula for stationary capillary surfaces.

2 Notation and Preliminaries
2.1 Notation

We work inRnC1. Given a subsetA � RnC1, we define dA.x/ D infa2A jx�aj
to be the usual Euclidean distance to A. If A D ¿, we define dA.x/ D 1.
Write Br.A/ D fx W dA.x/ < rg for the open r-tubular neighborhood of A, and
write xA for the closure of A. Br.x/ is the open r-ball centered at x. We write
B
p
r .x/ � Br.x/ \ Rp � f0nC1�pg, and Sp�1 � @B

p
1 for the unit sphere in

R
p � f0nCp�1g. Define the dilation/translation operator �y;r.x/ D .x � y/=r .

Given a subset � � RnC1, write �y;r D �y;r.�/.
Given vectors v;w 2 R

nC1, then v � w denotes the usual Euclidean inner
product, and jvj D p

v � v is the usual Euclidean length. Given linear maps
A;B W RnC1 ! R

nC1, we define the inner product A � B D P
i A.ei / � B.ei /,

summed over any choice of orthonormal basis ei ofRnC1, and correspondingly set
jAj2 D A � A. Unless otherwise stated, ei will denote the standard basis of RnC1.

Given a subspace V � RnC1, we let �V , �?V be the orthogonal projections to V ,
V ?, respectively. Given subpsaces V , W (not necessarily of the same dimension),
then we set V � W D �V � �W . We remark that if V and W do have the same
dimension, then

1

2
j�V � �W j2 D V ? �W D V �W ?:

If U � pCV and f W U ! V ?, we write graphpCV .f / D fxCf .x/ W x 2 U �
pC V g. For ease of notation, if pC V D R

n � f0g, and g W U � Rn � f0g ! R,
then we interpret graphRn�f0g.g/ � graphRn�f0g.genC1/.

Every constant written as c or ci will be � 1, and every constant �i or �i will be
� 1. Unindexed constants may change line to line.

2.2 Polyhedral cone domains
Here we define our model domains.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 975

DEFINITION 2.1. A polyhedral cone domain � in RnC1 is a closed, dilation-
invariant domain with nonempty interior, that can be written as the intersection
of finitely many closed half-spaces.

Take a polyhedral cone domain � as defined above, and write � D TN
jD1Hj

for Hj D fx W x � �j � 0g being closed half-spaces and �j unit vectors. Here
T
¿

is understood to be all of RnC1. If � contains a line L, then L ? �j for each j ,
and hence after a rotation we can write� D �0�R, where�0 is a polyhedral cone
domain in Rn. We can therefore repeat this process and find a maximal integer
m 2 f0; : : : ; nC 1g so that we can write

(2.1) � D O
�
�l
0 �Rm

�
for someO 2 SO.nC1/ and lCm D nC1. Equivalently, we haveO.f0g�Rm/ DT
j @Hj and O.�0 � f0g/ D .

T
j @Hj /

?. Under this decomposition � is said to
bem-symmetric. Note that�0 is 0-symmetric in the sense that it contains no lines.

We say � has dihedral angles � �=2 (resp., D �=2) if: given any pair of half-
spaces Hi ;Hj such that @Hi \ @Hj \� is a relatively open subset of @Hi \ @Hj ,
then we have �i � �j � 0 (resp., D 0). We may refer to � having dihedral angles
� �=2 as nonobtuse.

Example 2.2. IfL W RnC1 ! R
nC1 is a linear isomorphism, thenL.�0;1/l�Rm/

is a polyhedral cone domain. In fact, [7, theorem 1.1] implies that any nonobtuse
polyhedral cone domain is a simplicial prism, and hence takes the formL.�0;1/l�
R
m/ for some l , m, and L as above.

Example 2.3. When l D 0, � D R
nC1. When l D 1, � is a half-space. When

l D 2, � is a wedge W 2 � Rn�1 with interior angle < � . The convex wedge
W 2�Rn�1 is the archetype of the polyhedral cone domain, andW 2�Rn�2 is the
archetype of a free-boundary minimal surface in this domain.

Given x 2 � D TN
jD1Hj , there are indices I � f1; : : : ; N g so that we can

write

(2.2) x 2
\
j2I

@Hj \
\
j 62I

intHj :

If we let r < d.x;
S

i 62I @Hi / � inffjx � �i j W i 62 I g, then

(2.3) � \ Br.x/ D
\
i2I

Hi \ Br.x/ D .x C\i2IHi / \ Br.x/:

We therefore define the polyhedral cone domain Tx� WD T
i2I Hi to be the tan-

gent domain of � at x. Alternatively, one could realize Tx� as the limit (in the
local Hausdorff sense) of dilations limr!0

1
r
.� � x/. Trivially T0� D �.

We define the i -th stratum @i� to be the set of points x 2 �, such that the
tangent domain Tx� is at most i -symmetric. Equivalently, if x and I are as in
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976 N. EDELEN AND C. LI

(2.2), then x 2 @i� � \j2I@Hj is at most i -dimensional. We have the trivial
fibration

@0� � : : : � @n� D @� � @nC1� D �:

For notational convenience define @�1� D ¿. If� ism-symmetric, in which case
� D O.�0�Rm/ for some 0-symmetric�0, then we have @m� D O.f0g�Rm/,
@i� D ¿ for all i < m, and Tx� D � for all x 2 @m�.

We shall use the following quantification of (2.3):

LEMMA 2.4. Given � a polyhedral cone domain, there is a number B.�/ 2
.0; 1=4/ so that given x 2 @i�, we have

B2Bd .x/ \� D B2Bd .x/ \ .x C Tx�/; d D d.x; @i�1�/:

PROOF. Write � D TN
jD1Hj as before, with Hj D fx W x � �j � 0g. Fix

an i . Let Ii be the set of subcollections I � f1; : : : ; N g with the property that
VI WD

T
j2I @Hj is an i -dimensional plane, and such that I is “maximal” in the

sense that @Hk \ VI is .i � 1/-dimensional for every k 62 I . Take I 2 Ii . Let

�I D minfj�VI .�j /j W j 62 I g:
We have �I > 0, as otherwise �k ? VI for some k 62 I , contradicting maximality
of I .

Given x 2 VI such that d.x; VI \ @Hk/ � 1 for every k 62 I , we have

min
k 62I

d.x; @Hk/ D min
k 62I

jx � �kj

� �I min
k 62I

jx � �VI .�k/j
j�VI .�k/j

D �I min
k
d.x; Vi \ @Hk/

� �I :
Let �i D minI2Ii �I , which is positive since Ii is finite.

When i D 0 there is nothing to show, likewise if d.x; @i�1�/ D 0. Take
x 2 @i� n @i�1�, and after scaling we can without loss of generality suppose that
d.x; @i�1�/ � 1. Write

(2.4) x D
\
x2I

@Hj \
\
x 62I

intHj

as in (2.2). By our choice of x we have that \j2I@Hj is i -dimensional. If k 62 I ,
then necessarily @Hk\ .

T
j2I @Hj / is .i �1/-dimensional, as otherwise we would

have @Hk\.
T
j2I @Hj / D

T
j2I @Hj 3 x, contradicting our decomposition (2.4).

This implies that if y 2 @Hk \ .
T
j2I @Hj /, then y 2 @i�1�, and hence

min
k 62I

d.x; VI \ @Hk/ � d.x; @i�1�/ � 1:
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 977

Therefore I 2 Ii , and x 2 VI satisfies d.x; VI \@Hk/ � 1 for every k 62 I . We
deduce by our earlier computations

min
k 62I

d.x; @Hk/ � �i ;

and hence

B�i .x/ \� D B�i .x/ \ .
\
j2I

Hj / D B�i .x/ \ .x C Tx�/

as in (2.3). Taking B D 1
2

miniD1;:::;nC1 �i proves the lemma. �

Let us define the density of � as

(2.5) �� D !�1nC1H
nC1.� \ B1/ � !�1l Hl.�0 \ B1/;

where !n D Hn.B1.0
n// is the n-dimensional volume of the unit n-ball. By

convexity, we have the monotonicity

(2.6) �Tx� �
HnC1.� \ Br.x//

!nC1rnC1
8r > 0;

and hence we have the following lower-semicontinuity: if xi ! x, then

(2.7) lim inf
i

�Txi�
� �Tx�:

Let N� be the cone consisting of outer normals for �:

N� D
[�

� 2 RnC1 W � � fy W y � � � 0g	:
By convexity, N� ¤ ¿.

If we decompose � D O.�l
0 � Rm/ as in (2.1), then define P� to be the

collection of horizontal n-planes of the form O.Rl �W m�1/ for W m�1, an .m�
1/-plane in Rm. We observe the trivial inclusion

P� � PTx� 8x 2 �:
In particular, if x 2 @i� and y 2 � \ B2Bd.x;@i�1�/.x/, then

(2.8) PTx� � PTy�:

2.3 Curved polyhedral cones
Since a general polyhedral domain will at finite scales only look like the per-

turbation of a polyhedral cone domain, in our local regularity we must allow for
domains with a little bit of curvature (captured by the map �). Moreover, since
the model polyhedral cone will in general change as one moves along any given
stratum, we allow for small changes in the model domain itself (captured by �).

DEFINITION 2.5. Let�.0/ be a polyhedral cone domain inRnC1, as per Definition
2.1. Given � 2 .0; 1/, we define D�.�

.0// as the set of domains � satisfying

� \ B1 D �
�
�.�.0//

� \ B1;
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978 N. EDELEN AND C. LI

where � is a linear isomorphism satisfying j� � Idj � �, and � W B2 ! R
nC1 is

a C 2 diffeomorphism satisfying

(2.9) �.0/ D 0; D�j0 D Id; j� � IdjC2.B2/
� �:

Let us call any such � a curved polyhedral cone domain.

Remark 2.6. Since � < 1, we have �.B2/ � B1. In fact, we could equivalently
have asked for� to be a diffeomorphism B1 ! B1, but we shall see our definition
is slightly more convenient to work with.

Take � D �.�.�.0/// \ B1 as in Definition 2.5, and given x 2 � let us write
x D �.�.´//. We define @i� D �.�.@i�

.0/// \ B1, so that @i� consists of
the points near which � is diffeomorphic to some polyhedral cone that is at most
i -symmetric.

There is a well-defined polyhedral cone domain Tx� D limr!0
1
r
.� � x/

that we will call the tangent domain. In fact, we can write Tx� D .D�j�.´/ �
�/T´�

.0/. It follows by scaling that if� 2 D�.�
.0//, then 1

R
�\B1 2 D�.�

.0//

for every R � 1, and hence T0� 2 D�.�
.0// also.

Since Tx� is a polyhedral cone domain, we can define density �Tx� and cone
of outer normals NTx� as before. We say a vector field X is tangential to � if
X.x/ � V D 0 for all V 2 NTx�, and for all x 2 �. Similar to (2.7), � obeys the
following lower-semicontinuity:

LEMMA 2.7. Suppose xi ! x 2 B1 and �i 2 D�i .�
.0// for some �i ! 0. Then

we have

(2.10) lim inf
i

�Txi�i
� �Tx�.0/ :

PROOF. Write �i D �i .�i .�
.0/// \ B1 as per Definition 2.5. Let ´i D

��1
i .��1i .xi //. We have Txi�i D .D�i j�i .´i / ��i /.T´i�

.0//, and therefore

�Txi�
� !�1nC1.1 � c.n/�i /HnC1

�
T´i�

.0/ \ B1�c.n/�i
�

� .1 � c.n/�i /�T´i�
.0/ :

(2.10) then follows from the lower-semicontinuity (2.7). �

2.4 Varifolds
Our notion of weak surface will be a varifold. For a more detailed background,

see [34] or [1]. Recall that an integral n-varifold in an open set U is a Radon
measure M on U �Gr.n; nC 1/ of the form

M.�.x; S// D
Z
�M

�.x; TxM/�.x/dHn

for some countably n-rectifiable set �M , and some nonnegative Borel-measurable
function � W �M ! Z. Here Gr.n; n C 1/ denotes the set of unoriented n-planes
in RnC1. We write IVn.U / for the space of integral n-varifolds in U . If S is an

 10970312, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22039 by N

ew
 Y

ork U
niversity, W

iley O
nline Library on [01/07/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 979

n-dimensional, C 1 submanifold of RnC1, we write �S� for the obvious varifold
induced by S .

Given M 2 IVn.U /, the mass measure �M D �]M is the pushforward under
the projection � W U �Gr ! U , so that �M D Hn

x�x zM . Given a C 1
c .U / vector

field X , generating a 1-parameter family of diffeomorphisms �t W U ! R
nC1, the

first variation of M along X is the derivative

�M.X/ WD d

dt

����
tD0

.�t /]M D
Z

divM .X/d�M ;

where divM .X/ D
P

i ei �DeiX , for any choice of ON basis feigi of Tx �M . Relat-
edly, given a function h 2 C 1

c .U /, we write rh D �
Tx �M

.Dh/ for the tangential
derivative of a function h along M .
M is said to have locally finite first variation if �M is a bounded operator on

every W b U . In this case we may decompose

�M.X/ D �
Z
X �H d�M C

Z
X � � d�

where H is the generalized mean curvature of M , � the generalized boundary
measure, and � the generalized boundary conormal.

We define the density ratio of M in a ball Br.x/ � U as

�M .x; r/ WD
�M .Br.x//

!nrn
:

If M has locally finite first variation, zero generalized boundary, and bounded
mean curvature kHMkL1.U I�M / � �, then e�r�M .x; r/ is increasing for r 2
.0; d.x; @U // [1]. In particular, the density at a point

�M .x/ WD lim
r!0

�M .x; r/

is a well-defined upper-semicontinuous function, satisfying �M .x/ � 1.
Given a curved polyhedral cone domain� � RnC1, we define the set of integral

varifolds in B1 with free boundary in �, denoted IVTn.�;B1/, to be the set M 2
IVn.B1/ satisfying the conditions that M DM x ��1.int�/, and

�M.X/ D �
Z
X �H tan

M d�M

for all X 2 C 1
c .B1/ tangential to �, for some H tan

M 2 L1loc.B1;R
nC1I�M /. In

other words, M has mean curvature but no boundary “tangential” to @� (made
precise in Theorem 4.3).

2.5 Excess
Our mechanism to establish regularity is the decay of an appropriate excess

quantity. Given� D �.�.�.0///\B1 as in Definition 2.5, and an n-plane V , the
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980 N. EDELEN AND C. LI

full L2 excess is:

E�.�;M;p C V; x; r/

D max
�
r�n�2

Z
Br .x/

d2pCV d�M ;

��1r2kHMk2L1.B1I�M / C ��1r2jD2�jC0.B2r .x//

�
:

We will often abbreviate

E.�;M;p C V; x; r/ D E1.�;M;p C V; x; r/;

and may also omit the � or M when there is no ambiguity. At scales for which
� resembles a fixed model cone �.0/, we will prove decay on E� by reducing the
problem to a decay estimate of the linearized problem.

When traversing cone types, we will find it convenient to work with the “total”
excess:

E1.M; p C V; x; r/ D r�2 sup
´2sptM\Br .x/

dpCV .´/
2

� r�2 sup
´2sptM\Br .x/

j�?V .´ � p/j2;

EW .M; V; x; r/ D r�n
Z
Br .x/

j�T´M � �V j2 d�M .´/

EW .M; V; x; r/ D r�n
Z
Br .x/

j�T´M � �V j2 d�M .´/

Etot t .�;M; p C V; x; r/ D maxfE1.M; p C V; x; r/;

EW .M; V; x; r/; E.�;M; p C V; x; r/g:
Implicit in the definition of excess is the requirement that �.0/ D 0, D�j0 D

Id, so even though E is formally scale invariant, one must be a little careful: in a
general ball Br.x/ \� will not look like a cone, and even when it does, if x ¤ 0

then � will no longer be the right map. This is made precise in the following
section.

2.6 Changing cone type
The key fact that we will use in our regularity theorem is that at any point, and

at any appropriately small scale,� looks like one of finitely many polyhedral cone
domains.

LEMMA 2.8. Let �.0/ be a polyhedral cone in RnC1. There is a finite set of poly-
hedral cone domains T.�.0// WD fT´�.0/ W ´ 2 �.0/g, and constants B.�.0// 2
.0; 1=4/, �B.n/, cB.n/, so that the following holds:
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 981

Given any� D �.�.�.0///\B1 2 D�.�
.0//, for � � �B and x D �.�.´// 2

@i�, take r � minfBd.x; @i�1�/; 1 � jxjg, and define �x;r D 1
r
.� � x/. Then

the following holds:
(1) We have

(2.11) .1 � cB�/d.x; @i�1�/ � d.´; @i�1�.0// � .1C cB�/d.x; @i�1�/:

(2) Given y 2 � \ Br.x/, then for every V 2 PTx� there is a W 2 PTy�
such that j�V � �W j � c.n/jD2�jC0.B2/

jx � yj.
(3) There is a T´�.0/ 2 T, a linear isomorphism � W RnC1 ! R

nC1, and a
C 2 diffeomorphism � W B2 ! R

nC1, satisfying

(2.12) j� � Idj � cB�;
and �.0/ D 0, D�j0 D Id, and

(2.13) .1 � cB�/jD2�jC0.B2/
� r jD2�jC0.B2r .x//

� .1C cB�/jD2�jC0.B2/
;

so that

(2.14) �x;r \ B1 D �.�.T´�
.0/// \ B1;

In particular, �x;r 2 DcB�.T´�
.0//.

(4) In the notation of part (3),

(2.15)
1

2
E.�;M;p C V; x; r/ � E��; .�x;r/]M;�x;r.p/C V; 0; 1

�
� 2E.�;M;p C V; x; r/;

and the same with E tot in place of E.

Remark 2.9. If x D 0, then for any r � 1 we have r�1�\B1 D �0;r.�.�
.0///\

B1, where �0;r.y/ D r�1�.ry/, and therefore we have the exact scaling

E.�;M;p C V; 0; r/ D E.�0;r ; .�0;r/]M; r
�1p C V; 0; 1/:

PROOF. For �B.n/ sufficiently small,��� is a .1Cc.n/�/-bi-Lipschitz equiv-
alence:

j�.�.y// ��.�.y0// � .y � y0/j � c.n/�jy � y0j;
from which (1) follows directly. In particular,

��1��1Br.x/ � B2Bd.´;@i�1�.0//.´/g:

We prove (2). Observe that for a fixed subspace U n and linear isomorphisms
A;B W RnC1 ! R

nC1, the map A 7! �A.U/ is well-defined and analytic in A, and
satisfies

(2.16) j�A.U/ � �B.U/j � c.n/jA � Bj
for A;B satisfying jA � Idj C jB � Idj < �.n/. Write y D �.�.w//. From (1)
and the inclusion (2.8), we have

PT´�.0/ � PTw�.0/ ;
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982 N. EDELEN AND C. LI

and therefore we can take W D D�jw �D��1jxV . We then estimate, provided
�B.n/ is sufficiently small,

j�V � �W j � c.n/
��D�jw �D��1jx � Id

�� � c.n/ ��D��1jx �D��1jy��
� c.n/jx � yjjD2�jC0.B1/

:

This proves 2.
We prove now (3) and (4). Let T D fT´�.0/g´2�.0/ and B be as in Lemma 2.4.

Let us define

� D D�j�.´/ ��; �.y/ D 1

Br

�
�.x C rD��1jxy/ � x

�
:

The bound (2.12) and �.0/ D 0, D�j0 D Id follow trivially. The Hessian bound
in (2.13) follows from our definition of � and the estimate .1 � c.n/�/jvj �
jD�jyvj � .1C c.n/�/jvj. Ensuring �B.n/ is small, we have

r � 2Bd.´; @i�1�.0//;

and therefore

.� � �/.B2 \ Tx�.0// \ B1 D .� � �/.B2 \�.0/
x;r/ \ B1

D �x;r \ B1:
This proves (3). Lastly, (4) follows by (2.13) and scaling, ensuring �B.n/ is suffi-
ciently small. �

3 Main Theorem
Our main Theorem 3.1 is the following Allard-type regularity result, which says

loosely that whenever an integral varifold M has free boundary in � D �.�.0/ D
�
.0/
0 �R/ and� is sufficiently close to the identity,M has sufficiently small mean

curvature, and M is sufficiently varifold close to the “horizontal” plane Rn � f0g,
then sptM is a C 1;� perturbation of �.0/

0 .
In general, � is curved, and so sptM will not be graphical over a particularly

“nice” subdomain of Rn. Instead, it is more convenient and precise to look at
��1.sptM/, which will be a graph over Rn \ �.0/ \ B1=32. We do not lose
anything in our estimates by doing this, as even before this transformation we must
use jD2�jC0 to control the tilting of tangent planes of sptM .

For various reasons we in fact want to allow not only the diffeomorphism �

to change, but also the reference domain �.0/ (mainly because different points in
�.�.0// will be modeled on different polyhedral cone domains, even when staying
in the same stratum; see Section 2.6). For this reason we in fact consider domains
of the form�.�.�.0///, where� is a diffeomorphism close to Id, and� is a linear
map close to Id. Our constants �; c; � will be uniform in�;�, but in each particular
case our “reference” polyhedral domain will be �.�.0//. It may be easier to parse
Theorem 3.1 by considering the case when� D Id, p D 0, and V D R

n, in which
case q D 0, W D R

n, T0� D �.0/.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 983

THEOREM 3.1 (Allard-type regularity). Let �.0/ be a polyhedral cone domain.
There are constants �.�.0//, c.�.0//, and �.�.0// so that the following holds: Let
� D �.�.�.0/// \ B1 2 D�.�

.0//, and take M 2 IVT.�;B1/. Assume there is
a V 2 PT0�, p 2 V ?, so that

(3.1) E WD
Z
B1

d2pCV d�M C kHk2L1.B1I�M / C jD2�j2
C0.B2/

� �2

and

(3.2) �M .0; 1/ � .3=2/�T0�; sptM \ B1=512 ¤ ¿:

Then if we set q D ��1.p/, W D D��1jpV , we can find a function

f W .q CW / \�.�.0// \ B1=128.q/! W ?

satisfying

(3.3) jf jC1;� � cE1=2

so that

��1.sptM/ \ B1=256 � ��1.sptM/ \ B1=128.q/
D graphqCW .f / \ B1=128.q/:

(3.4)

Some comments are in order.

Remark 3.2. Even though �.0/ is convex, � need not be.

Remark 3.3. � can in fact be chosen to be anything in some interval .0; e � 1/
(where e D e.�.0// > 1 as in Proposition 5.3 is determined by the Neumann
eigenvalue expansion of �l

0 \ @B1), provided � and c are taken to depend on �.
For example, when�.0/ isRnC1 or a half-plane, then any � 2 .0; 1/ is admissible.
When �.0/ D W 2 � Rn�1 is a wedge with angle 
 < � , then we can take � 2
.0;minf1; �=
 � 1g/. See Remark 5.4 for more details.

Remark 3.4. We state and prove Theorem 3.1 in codimension-one Euclidean space.
However when l D 1 our proof carries over verbatim to higher codimension and
ambient manifolds, giving an alternate proof of [15]. When l � 2, the proof carries
over except for two estimates in Section 4, which continue to hold if one knows
a priori that sptM is contained in some .n C 1/-dimensional submanifold. See
Section 8 for details.

Remark 3.5. If one assumes �M .0; 1/ � .1C �/�T0� then Theorem 3.1 holds for
varifolds that are only rectifiable but have a lower density bound �M � 1 �M -a.e.
This requires only minor modifications of the proof. (Specifically, in the contra-
diction arguments of Proposition 6.4 and Lemma 7.2, the choice of constant �1 in
Corollary 6.2, and the choice of constants in the induction argument of Theorem
7.1.) In a similar vein, Theorem 3.1 also holds if we assume HM 2 Lp.�M / for
p > n instead of p D1. In this case our constants would depend on p also.
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984 N. EDELEN AND C. LI

Our regularity Theorem 3.1 requires V to be “horizontal,” in the sense that if
�.�.0// D �

.0/
0 � R, then V � �

.0/
0 . When V is instead “vertical” in the sense

that V � f0g �R, then regularity as in Theorem 3.1 can fail. Below is an example
illustrating this.

Example 3.6. Let W � R2 be the wedge frei� W r 2 �0;1/;��=6 � � � �=6g,
and let Y � R

2 be the cone over f1; ei2�=3; e�i2�=3g consisting of three rays
meeting at the origin at 120�. Then for every � > 0, the integral varifold M� given
by integrating over .�CY/\W is stationary with free boundary inW . As � ! 0,
then M� converges as varifolds to the “vertical” plane P D fx � 0; y D 0g, but
none of the M� are C 1 perturbations of P .

One can construct a similar example by restricting the tetrahedal cone to a 0-
symmetric domain in R3 consisting of the intersection of 4 half-spces.

Example 3.6 is a little contrived, but we expect one should be able to construct
smooth counterexamples. However, we would not expect these examples to be
minimizing (in the sense of integral currents). Relatedly, when �.0/ is a wedge or
has dihedral angles � �=2, then the vertical planes are not minimizing (Lemma
9.5). For more general convex�.0/, or when�.0/ is a nonconvex wedge, this may
fail (see Examples 3.7 and 9.6).

When� is nonconvex, Theorem 3.1 can fail also, even whenM is in some sense
minimizing.

Example 3.7. [21, theorem 1] implies the following: Suppose� D W 2�R, where
W 2 is a wedge with angle> � and � is any smooth curve in int�\fx2Cy2 D 1g
such that � meets @� only at its endpoints fp1; p2g, and the height function x3j�
has no maxima away from the endpoints. Let BC D f.x; y/ 2 R2 W x2 C y2 <

1; y > 0g. Then there is a map F 2 C 0.BC; �/ \W 1;2.BC; �/ such that:

(1) F minimizes the Dirichlet energy, and F.BC/ is a smooth minimal sur-
face;

(2) F maps the semicircle @BC \ fy > 0g monotonically to � , �R2�f0g � F
maps the interval ��1; 1�monotonically into to @W , and �R2 �F maps BC
diffeomorphically to int� \ B1;

(3) writing F.BC/\ f0g �R D fqg, then F�1.q/ D �a1; a2� is an interval of
positive length, and F extends smoothly to BC n f�1; 1; a1; a2g;

(4) on .�1; 1/ n �a1; a2�, F meets @� orthogonally;
(5) on .a1; a2/, the unit normal of F is horizontal.

These items imply that M D �F .BC/� 2 IVT2.�;R
3 n �/ and has zero mean

curvature. By choosing � to be contained in a very thin slab R2 � ���; ��, the
maximum principle implies F.BC/ is contained in this slab also. Therefore we
can arrangeM xB1=2 to be arbitrarily varifold close to the multiplicity-1 horizontal
plane �R2� x B1=2, but sptM will never be graphical over R2 at 0.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 985

3.1 Outline of proof
Our strategy to prove Theorem 3.1 is to show the following excess decay esti-

mate: for all x 2 sptM \ B1=16 there is a plane Vx 2 PTx� so that

(3.5) sup
´2Br .x/\sptM

r�2d.´; x C Vx/
2 � c.�.0//r2�E 80 < r < 1=4;

where �.�.0// 2 .0; 1/. From (3.5) it follows easily that sptM \B1=32, and hence
��1.sptM/ \ B1=64, is a C 1;� graph with norm controlled by cE1=2.

We prove (3.5) in two steps. In step one (Section 6), given any fixed model cone
�.0/, we prove a decay like (3.5) with x D 0. Loosely speaking, we show that
sptM \B1 resembles aW 1;2 harmonic function in�.0/ with Neumann boundary
conditions. By understanding these linear solutions (by a Fourier expansion and
an eigenvalue estimate), we can prove C 1;� decay. This basic idea goes back to
DeGiorgi, who proved interior regularity by a similar “excess decay” strategy and
is implemented in a fashion closer to our style in [1, 10, 35].

In step two (Section 7), we exploit the polyhedral structure of �.0/ to show that
for every x 2 B1=4 and 0 < r < 1=4, we can find radii r D rC0 � r�0 � rC1 �
r�1 � � � � � rCnC1 � r�nC1 D 0 such that when s 2 �r�i ; r

C
i �, then � \ Bs.x/

is modeled on some T´i�
.0/ and r�i =r

C
i�1 � 1=c.�.0//. In other words, outside

of finitely many scales (controlled only by �.0//, � \ Bs.x/ is modeled on some
polyhedral cone of the form T´�

.0/. Since there are only finitely many tangents
T´�

.0/, we can therefore inductively prove decay by our first step in each interval
�r�i ; r

C
i � and extend decay from one interval to the next by enlarging our constant

c in (3.5) by a controlled amount.
The key technique hurdle in proving both steps is to show thatM has controlled

first variation �M . Our hypotheses imply �M is only bounded in directions tan-
gential to �, but we need to establish both that �M is bounded in all directions,
and an a priori tracelike estimate for k�Mk in terms of kMk (Theorem4.3). This
is the main point where we use convexity of �.0/.

A priori control on �M gives good compactness for sequences of such M , and
allows us to prove a sharp L1 � L2 estimate and a uniform lower density bound.
The L1 estimate is crucial in Step 1 to show that M doesn’t “concentrate” near
@� at the scale of excess (and therefore can be well approximated by the interior
“graphical” region). The lower density bound means that in various (blowup) limits
the varifolds do not disappear, as they might in the nonconvex case.

We elaborate on these steps below. For simplicity, in our outline we will assume
� D �.0/ and H D 0.

Step 1. Decay towards a single cone model. We wish to prove an excess decay
of the following type: ifM is sufficiently varifold close in B1 to a horizontal plane
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986 N. EDELEN AND C. LI

.p C V / \�, then there is a new horizontal plane p0 C V 0 and a �.�/ so that

(3.6) E.M;p0 C V 0; 0; �/ � 1

2
E.M;p C V; 0; 1/:

Here E.M;p C V; x; r/ D r�n�2
R
Br .x/

dpCV .´/
2 d�M .´/. (Proposition 6.1 is

phrased in terms of the L2 excess, which is a little more convenient, but in this
setting the L1 and L2 excesses are the same; see 4.7). By iterating (3.6), we
obtain an estimate like

E.M;p00 C V 00; 0; r/ � c.�/r2�E1.M; p C V; 0; 1/ 8d.sptM; 0/ � r � 1:
This is our main decay estimate in Step 1.

We prove (3.6) by contradiction. We assume there is a sequence ofMi such that
Mi ! �.p C V / \�� in B1 as varifolds such that

inf
p0CV 0

E.Mi ; p
0 C V 0; 0; �/ � 1

2
E.Mi ; p C V; 0; 1=2/ DW Ei .! 0 as i !1/:

On larger and larger sets Ui b int� \ .p C V / (for Ui ! int� \ .p C V /),
we can write sptMi \ Ui D graphpCV .ui /, where ui satisfy the minimal surface

equation. By setting vi D E
�1=2
i ui , then the vi are locally bounded in L1, and

after passing to a subsequence we get convergence

vi ! v;

where the Jacobi field v satisfies

�v D 0; @nv D 0;

Z
B1.0/\.pCV /\�

v2 � 1:

We now prove two key technical facts: First, by the sharp L1 bound (4.20), we
have strong convergence

E�1
i E.Mi ; p C V; 0; r/! r�n�2

Z
Br .0/\.pCV /\�

v2 80 < r < 1=4:

Second, using the W 1;2 estimate of (4.21), a sharp eigenvalue estimate for convex
domains in the sphere (Theorem 5.1), and a standard Fourier-type decomposition,
we can expand v as above like

v D aC b � x CO.r1C�/;

where b lies in some direction of translational symmetry of �. In other words,
the eigenvalue bound of Theorem 5.1 implies that any free-boundary plane is inte-
grable through rotations.

We can now repeat the blowup argument with

pi C Vi D graphpCV .EiaCEib � x/
in place of p C V , and obtain the Jacobi field

v0 D v � a � b � x D O.r1C�/:
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 987

Hence for i � 1 we have

E�1
i E.Mi ; pi C Vi ; 0; r/ � 2r�n�2

Z
Br .0/\.pCV /\�

v2 � c.�/r2�;

which is a contradiction for r.�/ small.
This general strategy is very robust and has been implemented in many other

contexts. However, in any given situation there are typically two key technical
issues to address: strong convergence in norm of the nonlinear problem to the
linear problem and decay of the linear problem. We handle these in our situation
by our sharp L1 bound and our sharp eigenvalue estimate.

Step 2. Decay across cone models. We prove the general decay (3.5) by using
Step 1 and an inductive argument on the strata. We first observe (Lemma 2.8) that
every point in � is locally modeled on some (other) polyhedral cone. Precisely,
there is a B.�/ so that if x 2 @i� and r � d.x; @i�1�/, then

BBr.x/ \� D BBr.x/ \ .x C Tx�/:

(When � 2 D�.�
.0// is only a perturbation of a polyhedral cone, a similar state-

ment holds.)
Now given x 2 @i�, we choose points zxj 2 @ij� and radii

1 D r�JC1 � rCJ � r�J � � � � � rC0 � r�0 D 0;

so that � \ Br.zxj / is modeled on some fixed polyhedral cone T
j́
�.0/ when

r 2 �r�j ; r
C
j � and r�j =r

C
j�1 � 1=c.�.0//. The degree of symmetry ij is strictly

decreasing as j increases, so J � n. We will apply Step 1 to get decay rCj ! r�j
and then give up a controlled number of scales to “decay” r�j ! rCj�1.

Some care must be taken in constructing these points/radii, since for each j we
need that:
(1) rCj � Bd.zxj ; @ij�1�/, so that�\B

r
C
j

.zxj / looks close to a polyhedral cone;

(2) jx � zxj j � r�j , so that we can apply Step 1 in B
r
C
j

.xj / to get decay down to
r�j ;

(3) B
r
C
j

.zxj / � Br�
jC1

=2.zxjC1/ but rCj � cr�jC1, so that we can control the mass

and excess in B
r
C
j

.zxj / in terms of the mass/excess in Br�
jC1

.zxjC1/.
Once we construct these zxj and r�j , we inductively prove a statement of the

form: for each j , there is a Vj 2 PTzxj�
so that

E.M;pj C Vj ; zxj ; r/ � �jEr2� 8r�j � r � 1=4;
and

�M .zxj ; r/ � .7=4/�Tzxj�
8r�j � r � rCj :

The excess control ensures M x Br.zxj / looks like a plane with some multiplicity,
the mass control ensures this multiplicity is � 1, and the fact that x 2 Br�

j
=2.zxj /

ensures this multiplicity is � 1. The proof of this statement follows in a fairly
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988 N. EDELEN AND C. LI

straightforward way from Lemma 2.8 and Step 1. An extra argument by contra-
diction (Lemma 7.2) is required to ensure that the mass control at scale Br�

j
.zxj /

carries over to scale B
r
C
j�1

.zxj�1/.
Minimizers. Here we apply our regularity theorem to minimizing currents and

isoperimetric sets of finite perimeter. We classify low-dimensional minimizing
cones and prove a compactness theorem, which together with our regularity result
implies a partial regularity theorem by standard dimension-reducing techniques.

The compactness is fairly straightforward—we just need to adapt an argument
of Gruter [13] to ensure mass cannot accumulate near the boundary. The main step
is classifying low-dimensional minimizing cones, which we prove by induction
on the number of symmetries of �. The idea is as follows: Assume that any
minimizing T in �0 � Rm�1 is a horizontal plane. Then if T is minimizing in
�0 �Rm, by induction and our regularity theorem T is a C 1;� surface away from
0. Under certain circumstances, we can boost this to C 2;� regularity and thereby
adapt Simons’ classical argument to prove T must be planar. Then, again in certain
circumstances, a cut-and-paste argument implies this plane must be horizontal.

Unfortunately, even in low dimensions we start running into issues. The barrier
to adapting Simons’ argument when �0 is more than 3 dimensional is the lack of
C 2;� regularity in 3-dimensional cones. We suspect this holds if the dihedral angles
are at most �=2, but this requires a Neumann eigenvalue estimate for spherical do-
mains that is not known. On the flip side, for general dihedral angles it is not clear
that every minimizing plane need be horizontal—when �0 is only an intersection
of 3 half-spaces in R3, it is plausible there are nonhorizontal minimizers. Taken
together, we get a codimension-2 bound for the singular set in general domains,
a codimension-3 bound in domains with dihedral angles � �=2, and the (sharp)
codimension-7 bound in certain special cases (e.g., when all dihedral angles are
D �=2).

4 First Variation, Mass Control
In this section, we prove that the mass and total first variation of an M 2

IVTn.�;B1/ are controlled by the mass, tangential mean curvature of M , and
geometry of�. We must first prove monotonicity and the mass control by cooking
up an appropriate tangential vector field, and then we use this to prove control on
the first variation. Two important consequences are lower Ahlfors regularity of M
(Corollary 4.6), and L1 � L2, W 1;2 � L2 bounds on excess (Corollary 4.7).

In this section we fix �.0/, a polyhedral cone domain (as per Definition 2.1),

and after a rotation there is no loss in assuming �.0/ D �
.0/
0

l � Rm. Note for the
reader: in this section (and occasionally in Section 9), we will allow m D 0, but in
all other sections we will assume m � 1. See also Example 3.6 and Lemma 9.5.

LEMMA 4.1. There are constants �mn.n/, cmn.n/, so that if

� 2 D�.�
.0//; M 2 IVTn.�;B1/; kH tan

M kL1.B1I�M / � �;
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 989

for � � �mn, then

(4.1) .1C cmn.n/��/
nC1�M .0; �/

is increasing in � < 1. If � D 0 and � < �, then we have the sharp monotonicity

(4.2) �M .0; �/ � �M .0; �/ D
Z
B�.0/nB� .0/

j�?M .´/j2
j´jnC2 d�M .´/:

PROOF. Define Y.x/ D D�j��1.x/.��1.x//. Then Y is a C 1 vector field
tangential to �. An easy computation, using (2.9) and taking �mn.n/ small, shows
that

(4.3) jY.x/ � xj � c.n/�jxj2; jDY jx � Idj � c.n/�jxj:
Let � be a smooth, decreasing approximation to 1.�1;1/ such that spt � � .�1; 1/.
Take � 2 .0; 1/, plug in the vector field X.x/ D �.jxj=�/Y.x/ into the first varia-
tion, and use (4.3), to deduce

(4.4)
�
d

d�

Z
�d�M � n

Z
� d�M � � d

d�

Z
�jx?j2=jxj2 d�M

� �c.n/�
Z
�jxj d�M � c.n/��2 d

d�

Z
� d�M :

Notice that the last terms on both the RHS and LHS are nonpositive. Setting
I.�/ D R

� d�M and discarding the last term on the left, we get

.1C c��/�I 0 � .n � c��/I � 0;
where without loss of generality both constants c D c.n/ are the same. This
implies

d

d�
..1C c�/nC1��nI.�// � 0:

Integrate in �, then take � ! 1.�1;1�, to obtain the required conclusion (4.1).
If � D 0, then in fact (4.4) is an equality (with no errors on the right-hand side).

Integrating up as before, but without discarding terms, gives (4.2). �

COROLLARY 4.2. Given any � 2 .0; 1/, there are constants �m.�.0// and cm.�.0/; �/

so that if

� 2 D�m.�
.0//; M 2 IVTn.�;B1/; kH tan

M kL1.B1I�M / � �m;
then for every x 2 B� and 0 < r < 1 � jxj, we have

(4.5) �M .x; r/ � cm�M .0; 1/:
PROOF. Let �n D � and set �i�1 D 1=4C .3=4/�i 2 .�i ; 1/ for i D 1; : : : ; n.

We prove by induction on i that there is a cm0.�;�.0// so that given xi 2 @i� \
B�i , then we have

(4.6) �M .xi ; r/ � ciC1m0 �M .B1/ 80 < r < 1 � jxi j:
This will establish (4.5) with cm D cnC1m0 .
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990 N. EDELEN AND C. LI

Take B.�.0// as in Lemma 2.8, and let us ensure that �m.�.0// is sufficiently
small so that �m � �B and cB�m � �mn. Take xi 2 @i� \ B� and set di D
d.xi ; @i�1�/, Ri D minfBdi ; 1 � jxi jg. For 0 < r � Ri , we have by Lemma 2.8
and monotonicity (4.1) that

�M .xi ; r/ � c.n/�M .xi ; Ri /:
First assume Ri D 1 � jxi j. Then we have

�M .xi ; Ri / � .1 � �i /�n�M .B1/ � c.n; �/�M .B1/;
and we are done. Notice that if i D m, then di D 1, and so this proves the
inductive base case.

Assume now Ri D Bdi . If di � .1=4/.1�jxi j/, then we can similarly estimate
for Ri � r � 1 � jxi j:

�M .xi ; r/ �
�

4

B.1 � �i /

�n
�M .B1/ � c.�.0/; �/�M .B1/;

and we are done. Let us assume now di � .1=4/.1 � jxi j/. Since

jxi j C di � 1=4C .3=4/jxi j � �i�1;
we can find an xi�1 2 @i�1� \ B�i�1 realizing di � d.xi ; @i�1�/. Now by
inductive hypothesis we have for Ri � r � 1 � jxi�1j � di :

�M .xi ; r/ � .1C 1=B/n�M .xi�1; r C di / � c.�.0//cim0�M .B1/:

On the other hand, since

jxi�1j C di � jxi j C 2di � 1=2C .1 � 1=2/�i � 1 � 1=c.n; �/;
if r � 1 � jxi�1j � di , then we have

�M .xi ; r/ � c.n; �/�M .B1/:
This proves the inductive claim (4.6) and finishes the proof of Corollary 4.2. �

THEOREM 4.3. There is an �.�.0// so that if

� 2 D�.�
.0//; M 2 IVTn.�;B1/; kH tan

M kL1.B1I�M / � �; �M .B1/ <1;
then k�Mk is a Radon measure on B1, and for any X 2 C 1

c .B1;R
nC1/ we can

write

�M.X/ D �
Z
H tan
M �X d�M C

Z
� �X d�;(4.7)

where � ? �M is a nonnegative Radon measure supported in @�; �.x/ 2 NTx�

for � -a.e. x, and k�Mk.@i�/ D 0 for all i � n � 2.
Moreover, we have

(4.8)
Z
�dk�Mk � c.�.0//

Z
jH tan

M j� C jr�jd�M

for all � 2 C 1
c .B1/ nonnegative.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 991

Remark 4.4. Notice that (4.8) is scale-invariant.

We prove Theorem 4.3 inductively on l . The cases l D 1, l D 2, and l � 3 are
handled separately. We shall use several times the following relation.

Let Q be a C 2 closed p-manifold, with p � n, and suppose the distance func-
tion d toQ is smooth on B1 nQ. Suppose �M is a Radon measure in B1 nQ, and
we decompose �M as in (4.7) forX supported away fromQ. Let � be any constant
vector, and h 2 C 1

c .B1/ a compactly supported, nonnegative function. Then we
have for any � > 0:

(4.9)
1

�

Z
B�.Q/

.rd � �/h �
Z

min.d=�; 1/h� � � d�

D �
Z �

H tan
M hCrh� � � min.d=�; 1/d�M :

PROOF WHEN l D 0; 1. When l D 0 there is nothing to show. Take l D 1.
Assume �.n/ is sufficiently small so that the distance function to @� � �.�.f0g�
R
m//\B1 is smooth in�. From Theorem A.1, we get that �M is a Radon measure

on B1, and we can write �M as in (4.7), where � satisfies our conclusions and
� D ���. It suffices to verify that � D C��.

Let d be the distance function to @�, and zd the signed distance function so that
zd D d in �. Let X D �D zd for � 2 C 1

c .B1/ nonnegative. From Theorem A.1,
we have Z

� � .���/� d� D
Z
� �D zd� d� D ��1.�jDd j2/ � 0:

Since � is arbitrary, we deduce � � �� � 0 for � -a.e. x.
Therefore � D ��, and (using Theorem A.1) we in fact haveZ

� d� D �1.�jDd j2/ �
Z ��H tan

M

��� C jr�jd�M :

Since k�Mk D jH tan
M j�M C � , we obtain (4.8). �

PROOF WHEN l D 2. In this case �.0/
0 � R

2 is simply a wedge, with angle
< � . For ease of notation let us write @�.0/

0 D L1[L2 for L1; L2 rays extending
from 0, and correspondingly let us decompose

@� D F1 [ F2;
where Fi D �.�.Li �Rm// \ B1, so that @m� D F1 \ F2.

Away from F1 \ F2, the outer normal �� is well-defined on @�. Write �i for
the outward normal on Fi . Observe that for each x 2 F1 \ F2, we have

NTx� D fa1�1.x/C a2�2.x/ W a1; a2 2 .0;1/g:
Write d0; d1; d2 for the distance functions to F1\F2; F1; F2, respectively. Con-

vexity of�.0/
0 (and int�.0/

0 ¤ ¿) implies that by taking �.�.0/
0 / sufficiently small,
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992 N. EDELEN AND C. LI

we can ensure that the di are smooth in int� \ B1, and that

(4.10) Ddi �Ddj � 0 on int� \ B1:
Also by convexity, taking �.�.0/

0 / small, we can choose a vector � 2 R2 � f0mg
and an �0.�

.0/
0 / > 0 so that

� �Ddi � �0 > 0 on int� \ B1:
This of course implies that

(4.11) � � �� � ��0 on @� \ B1 n F1 \ F2:
The upper bounds (4.5) imply that for every � < 1 and any x 2 F1 \ F2 \ B� ,

we have
�M .B�.x// � c.�.0/; �/�M .B1/�

n:

In particular, we get

(4.12) �M .B�.F1 \ F2/ \ B� / � c.�.0/; �/�M .B1/�:

From the l D 1 case, k�Mk is a Radon measure on B1 n .F1 \F2/. Take � < 1
and h 2 C 1

c .B� / nonnegative. Let us apply formula (4.9) with our choice of � , and
d0 in place of d , and make use of (4.10), (4.11), and (4.12) to obtain:

�0

Z
min.d0=�; 1/h d�

� �
Z
hC jrhjd�M C 1

�

Z
B�.F1\F2/

h d�M

� cjhjC1�M .B� /C jhjC0

1

�
�M .B�.F1 \ F2/ \ B� /

� cjhjC1

for c D c.�.0/; �; �M .B1//. Taking �! 0, we get that

k�Mk.B� n .F1 \ F2// <1
for all � < 1.

We can now apply Theorem A.2 to deduce that k�Mk is a Radon measure onB1,
and we can decompose �M as in (4.7), where � ? �M is nonnegative, supported
in @�; and for � -a.e. x, we have j�.x/j D 1, and

(1) �.x/ D �i .x/ if x 2 Fi n .F1 \ F2/) and
(2) �.x/ ? Tx.F1 \ F2/ if x 2 F1 \ F2.

To verify the first half of our theorem, it will suffice to show that �.x/ ��i .x/ � 0
when x 2 F1 \ F2.

Let zdi be the signed distance function to Fi , which coincides with di on int�\
B1. Take � 2 C 1

c .B1/, and let X D �D zdi . By Theorem A.2 and (4.10) we getZ
F1\F2

� � .��i /� d� D
Z
F1\F2

� �D zdi� d� D ��2.�Dd0 �Ddi / � 0:
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 993

Since � is arbitrary, we deduce � � �i � 0.
To prove the second part, we observe that by our choice of � and characterisation

above, we have �.x/ � � � ��0 for � -a.e. x. Therefore by the first variation,

�0

Z
� d� � �

Z
� � �� d� D

Z
�H tan

M � �� � r� � � d�M

�
Z ��H tan

M

��� C jr�jd�M :

This completes the proof of case l D 2. �

PROOF WHEN l � 3. By convexity of �.0/
0 and since int�.0/

0 ¤ ¿, ensuring
�.�

.0/
0 / is sufficiently small, we can find a vector � 2 RnC1 and �0.�

.0/
0 / > 0 so

that

� � � � ��0 8� 2 NTx�; 8x 2 @� \ B1:
Suppose by inductive hypothesis Theorem 4.3 holds for 1; 2; : : : ; l � 1 in place

of l . Since (using Lemma 2.8) any point of @� n @m� is locally modeled on some
�
.0/
0

0 � RmC1 for �.0/
0

0 � R
l�1, we have by induction that k�Mk is a Radon

measure in B1 n @m�, and a have a decomposition of �M as in (4.7) for any X
supported away from @m�.

Ensuring �.�.0/
0 / is sufficiently small, we can assume the distance function d

to @m� is smooth in int� \ B1. Analogous to the proof when l D 2, the mass
bounds (4.5) imply that

(4.13) �M .B�.@m�/ \ B� / � c.�.0/; �/�M .B1/�
2

for all � < 1. Therefore, as before, if h 2 C 1
c .B� / is nonnegative, we can apply

(4.9) with our choice of � and d to deduce

�0

Z
min.d=�; 1/h d� � cjhjC1

independently of �, which implies k�Mk.B� n @m�/ <1.
Let X 2 C 1

c .B� ;R
nC1/ for any � < 1. Let �.x/ D �.d=�/ for � a smooth,

compactly supported approximation to 1.�1;1�. We compute����Z div.�X/d�M

���� � Z
j�0jjX j C j�jjDX jd�M

� cjX jC1

1

�
�M .B�.@m�/ \ B� /

� c�! 0 as �! 0:
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994 N. EDELEN AND C. LI

Therefore, since k�Mkx.@m�/C is a Radon measure on B1, we deduce that

�M.X/ D lim
�!0

.�M.�X/C �M..1 � �/X//

D �
Z
B1n@m�

H tan
M �X C

Z
B1n@m�

� �X d�:

So in fact k�Mk is a Radon measure on B1, and k�Mk.@m�/ D 0, so that same
decomposition (4.7) holds for all X . The inequality (4.8) follows by the same
computation as in the l D 2 case. �

Inequality (4.8) is important for ensuring good compactness, but even more im-
portantly it implies a Sobolev inequality, which allows us to prove a mean value
inequality for subharmonic functions.

THEOREM 4.5. Let M 2 In.B1/ satisfy (4.8) for all nonnegative � 2 C 1
c .B1/,

and additionally assume that

(4.14) �M .B1/ � A <1;


H tan

M




L1.B1I�M /

� 1:

Then the following holds: if u 2 C 1.B1/ is a nonnegative function, and a is a
constant such that

(4.15)

Z
r� � rud�M � a

Z
�uC jr�juC �jrujd�M

8� 2 C 1
c .B1/ nonnegative;

then for every � < 1 we have the inequality

(4.16) sup
spt�M\B�

u � c.�.0/; A; a; �/

Z
B1

ud�M :

PROOF. By the same argument as in [30] (see Appendix B for more details),
inequality (4.8) implies the Sobolev inequality: for all h 2 C 1

c .B1/ nonnegative,
then

(4.17) suph � c.�.0//

Z
jH tan

M jhC jrhjd�M

if n D 1, and

(4.18)
�Z

hn=.n�1/d�M

�.n�1/=n
� c.�.0//

Z
jH tan

M jhC jrhjd�M

for n � 2. The bound (4.16) then follows from (4.14), (4.18) (or (4.17) if n D 1),
and (4.15) by standard iteration methods. �

An immediate consequence is lower Ahlfors regularity in every ball centered on
the support of M .
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 995

COROLLARY 4.6. There is an �.�.0// so that given

� 2 D�.�/; M 2 IVTn.�;B1/; kH tan
M kL1.B1I�M / � �; �M .0; 1/ � A;

then for any � < 1, x 2 sptM \ B� , and 0 < r < 1 � jxj, we have

(4.19) �M .Br.x// � rn=c.�.0/; A; �/:

PROOF. By Theorem 4.3 M satisfies the scale-invariant inequality (4.8), and
therefore if M 0 D .�x;r/]M , then M 0 satisfies (4.8) also. From (4.5) and scaling
we have the bounds

�M 0.B1/ � c.�;A; �/; kH tan
M 0kL1.B1I�M 0 / � r� � 1:

Therefore we can apply Theorem 4.5 to M 0 with u D 1, � D 1=2, to get

1 � c.�;A; �/�M 0.B1/;

which implies the required estimate (4.19). �

Another important consequence of first variation control and Theorem 4.5 are
the following L1 and W 1;2 estimates, which will be important in the blowup
argument to ensure good convergence to the linear problem.

COROLLARY 4.7. Given any � 2 .0; 1/, there are constants �e.�.0//, ce.�.0/; A; �/,
so that if

� 2 D�e .�
.0//; M 2 IVTn.�;B1/;



H tan
M




L1.B1I�M /

� �e; �M .0; 1/ � A;

then given any V 2 PT0� and p 2 V ?, we have the height bound

(4.20) sup
´2B�\sptM

d.´; p C V /2 � ceE.�;M;p C V; 0; 1/

and W 1;2 bound

(4.21)
Z
B�

j�T´M � �V j2 d�M .´/ � ceE.�;M;p C V; 0; 1/:

PROOF. Since V 2 PT0�, we can assume after rotation that V D R
n � f0g.

Write � D �.�.�.0/// \ B1, and set zenC1 D D���1.x/.enC1/. Then zenC1
is tangential to �, and an easy computation gives that, for x 2 B1 and �e.n/
sufficiently small,

(4.22) jzenC1 �DxnC1j � c.n/jD2�jC0.B2/
; jDzenC1j � c.n/jD2�jC0.B2/

:

Ensure also that �e � �, the constant from Theorem 4.3.
Given � 2 C 1.B1/, plug the vector field X D �zenC1 into the first variation to

obtain Z
r.xnC1 � pnC1/ � r�

� c.n/.kH tan
M kL1.B1I�M / C jD2�jC0.B2/

/

Z
j�j C jr�jd�M :
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996 N. EDELEN AND C. LI

Now if we assume � � 0 and let

u D .xnC1 � pnC1/2 C


H tan

M



2
L1.B1I�M /

C jD2�j2
C0.B2/

;

then we can computeZ
ru � r� d�M

D
Z
2r.xnC1 � pnC1/ � r..xnC1 � pnC1/�/ � 2�jrxnC1j2 d�M

�
Z
c.n/.



H tan
M




L1

C jD2�jC0.B2/
/.j.xnC1 � pnC1/�j

C jr..xnC1 � pnC1/�/j/ � 2jrxnC1j2� d�M
� c.n/

Z
u� C ujr�jd�M :

We can then use Theorem 4.5 to get the required (4.20).
To prove (4.21), we plug in the field X D �2.xnC1 � pnC1/zenC1 into the first

variation and use (4.22) to obtain:Z
�2jrxnC1j2 d�M

�
Z
c.n/.�2 C �jr�j/.jrxnC1j C jxnC1 � pnC1j/

� �

H tan
M




L1.B1/

C jD2�jC0.B1/

�
d�M

C 2�r� � rxnC1jxnC1 � pnC1jd�M :

Rearranging, we getZ
�2jrxnC1j2 d�M

�
Z
c.n/.�2 C jr�j2/

� �

H tan
M



2
L1

C jD2�j2
C0.B2/

C jxnC1 � pnC1j2
�
d�M :

Choosing any fixed � satisfying � � 1 on B� , and using the relation

jrxnC1j2j´ D .T´M/ W V ? D 1

2
j�T´M � �V j2;

we deduce (4.21). �

The height bound (4.20) with the upper-Ahlfors regularity (4.5) imply that mass
cannot accumulate near the boundary of our domain.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 997

COROLLARY 4.8. Given �; � 2 .0; 1/, there is an �.�.0/; �; A; �/ � �e.�
.0// so

that under the assumptions of Corollary 4.7, if M additionally satisfies

E.�;M;�; p C V; 0; 1/ � �2

for some V 2 PT0�, p 2 V ?, then we have the nonconcentration estimate

(4.23) �M .B� \ B� .@�// � c.�.0/; �; A/�:

PROOF. There is no loss in assuming � � .1 � �/=4. From the height bound
(4.20), ensuring �.�.0/; �; A; �/ is sufficiently small, we have

sptM \ B� \ B� .@�/ � B2� .@�� \ .p C V /�/:

We can cover B� \ B2� .@�� \ .p C V /�/ with balls fB� .xi /gQiD1 such that Q �
c.�.0//�1�n, and each B� .xi / � B.1C�/=2. Therefore by the mass bounds (4.5)
we get

�M .B� \ B� .@�// �
QX
iD1

�M .B� .xi // � c.�.0/; A; �/�: �

5 Eigenvalues and the Linearized Operator

Let us fix here a polyhedral cone domain �.0/ D �
.0/
0

l � Rm � R
nC1 with

m � 1. We prove in this section appropriate decay of the linearized problem on the
n-dimensional planar wedge �.0/

0 � Rm�1 � R
n. Recall that if D is a manifold

with possible Lipschitz boundary @D, then � is said to be a Neumann eigenvalue
of D with eigenvalue � if it solves

(5.1)
Z
D

r� � r� C ��� D 0 8� 2 W 1;2.D/:

Provided D is compact and @D Lipschitz, then standard elliptic theory guarantees
the existence of a countable sequence of Neumann eigenvalues 0 D �0 < �1 �
� � � ! 1, and corresponding eigenfunctions �i 2 W 1;2.D/, so that the �i form an
L2.D/-ON basis.

We require the following Lichnerowicz eigenvalue bound for piecewise-convex
domains in the sphere. For smooth domains this is classical, while the resulting
piecewise-smooth domains follows from a straightforward approximation.

THEOREM 5.1 (Lichnerowicz eigenvalue bound). Let D be a piecewise-smooth,
convex domain of Sn�1 � Rn .n > 1/, and let �1 be the first (nonzero) Neumann
eigenvaue, � the first Neumann eigenfunction. Then �1 � n � 1 and �1 D n � 1
if and only if the 1-homogenous extension of � is linear.

PROOF. First assume D is smooth and weakly-convex (in the sense that the
second fundamental form of the boundary is� 0). Let � be a Neumann eigenvalue
for D in the sense of (5.1) and u be the corresponding eigenfunction. By standard
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998 N. EDELEN AND C. LI

elliptic regularity, u 2 C1. xD/ and satisfies @nu D 0 along @D. Therefore we can
integrate the Bochner formula

1

2
�jruj2 � .n � 2/jruj2 C 1

n � 1.�u/
2 � �jruj2;

using the convexity of D and boundary condition on u, to obtain

.� � .n � 1//n � 2
n � 1

Z
D

jruj2 �
Z
D

jr2uj2 � 1

n � 1.�u/
2:

This proves � � n � 1. If � D n � 1, then we have r2
ijuC ugij D 0 (gij being

the spherical metric), which implies that if we set zu.x/ D jxju.x=jxj/ to be the
1-homogenous extension of u, then D2zu D 0. This proves Theorem 5.1 in the
case when D is smooth.

Now take D to be convex and piecewise-smooth. Let � be the first nonzero
Neumann eigenvalue of D, and u the corresponding eigenfunction. Write @D D
@rD [ @sD, where @rD is smooth. Take any sequence �i ! 0. We can find
smooth, weakly convex domains Di � DiC1 � � � � � D such that Di D D

outside B�i .@
sD/. Let �i be the first Neumman nonzero eigenvalues of Di , and

ui the eigenfunctions.
Normalize u, ui such that kukL2.D/ D kuikL2.Di /

D 1. It’s easy to check,
using the Raliegh quotient and standard Sobolev theory, that �i ! � and ui ! u

in L2.D0/ for everyD0 � D such thatD0\@sD D ¿. In fact, by standard elliptic
regularity ui ! u in C k.D0/. We deduce that

.� � .n � 1//n � 2
n � 1� �

Z
Dn@sD

jr2uj2 � 1

n � 1.�u/
2;

and the rest of the proof follows as in the smooth case. �

For general Lipschitz cones, we have the following standard Fourier-type ex-
pansion.

LEMMA 5.2. Let D be a Lipschitz subdomain of Sn�1 � R
n .n � 2/, and let

CD be the cone overD. Let �i ; �i be the Neumann eigenvalues, eigenfunctions of
D � Sn�1. Suppose u 2 W 1;2.CD \ B1/ solves

(5.2)
Z
Du �D� D 0 8� 2 C 1.CD/ \ C 1

c .B
n
1 /:

Then we have the expansion in W 1;2.CD \ B1/:

u.x D r!/ D
1X
iD0

air

i�i .!/; 
i D �.n � 2/=2C

q
..n � 2/=2/2 C �i :

Here we write r D jxj, and ! D x=jxj 2 D.
If n D 1 and u satisfies (5.2) for CD D R or �0;1/, then u is linear or constant

(resp.).

 10970312, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22039 by N

ew
 Y

ork U
niversity, W

iley O
nline Library on [01/07/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 999

PROOF. This is standard, however for the reader’s convenience, and to empha-
size that we require no further regularity of u beyond W 1;2, we give a proof in
Appendix C. �

Combining Theorem 5.1 with Lemma 5.2 gives the following characterization
of the linear problem of our model.

PROPOSITION 5.3. Let D0 D �
.0/
0 \ S l�1 and D D .�.0/ � Rm�1/ \ Sn�1. If

l � 2 let �1.D0/ be the first Neumann eigenvalue of D0; otherwise let us define
�1.D0/ D 2.

Suppose u 2 W 1;2..�
.0/
0 �Rm�1/ \ B1/ solves

(5.3)
Z
�
.0/
0
�Rm�1

Du �D� D 0 8� 2 C 1
c .B

n
1 /:

Then there is an increasing sequence f�ig1iD1, and constants b 2 R, A 2 f0lg �
R
m�1, ai 2 R, and L2.D/-orthonormal Neumann eigenfunctions  i , so that we

have the expansion in W 1;2..�
.0/
0 �Rm�1/ \ B1/:

u.x D r!/ D b C A � x C
1X

�i�e

air
�i i .!/;

which for every fixed r is L2.D/-orthogonal, and where

e � min
n
�.l � 2/=2C

q
..l � 2/=2/2 C �1.D0/; 2

o
> 1:

Remark 5.4. When l D 0; 1, so �.0/ is Rn or a half-space, then j�i j � 2. When
l D 2, in which case �.0/ is a wedge formed by two hyperplanes, then j�i j �
minf2; �=
g, where 
 is the angle of the wedge.

PROOF. If l D 0 then u is harmonic in the entire ball B1, and then Proposition
5.3 follows by the usual Fourier expansion. Consider now l � 1. Let

u.x D r!/ D
1X
iD0

air

i�i .!/ DW

1X
iD0

ui .x/

be the expansion of Lemma 5.2. It suffices to show that if 
i < e, then ui is either
constant or of the form A � x for some A 2 f0lg �Rm�1.

We have �0 D 
0 D 0 and �0 D const, so the first term u0 is a constant. Since
D is convex, 
1 � 1.

Suppose 
1 D 1, so that u1 is 1-homogenous. Given v 2 f0lg � Rm�1, then
v �Du1 is a 0-homogenous solution to (5.3), and hence by the previous paragraph
must be constant. We deduce that u1 D A � x C zu1.x/ for some A 2 f0lg �Rm�1
and some 1-homogenous zu1.x/ W �.0/

0 \ B1 ! R solving

(5.4)
Z
�
.0/
0
\B1

Dui �D� D 0 8� 2 C 1
c

�
B l
1

�
:
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1000 N. EDELEN AND C. LI

However, since D0 is 0-symmetric, by Lemma 5.2 there are no 1-homogenous
solutions to (5.4), and so zu1 D 0.

Suppose 
i 2 .1; 2/. Then for each v as above, v � Dui is a 
i � 1 2 .0; 1/-
homogenous solution to (5.3), and hence by the previous two paragraphs must be
zero. We deduce ui .x/ D ui .�Rl�f0m�1g.x// is a function of Rl only, and hence
solves (5.4). If l D 1, then ui must be constant, which is impossible since 
i > 1.
If l � 2, then applying Lemma 5.2 to ui , we deduce


i � �.l � 2/=2C
q
..l � 2/=2/2 C �1.D0/: �

6 L
2 Excess Decay

In this section we work towards an excess decay theorem (Proposition 6.1),
which gives a decay estimate of the L2 excess E when M looks close to planar,
and � looks close to a cone. At a general point x, for most scales � will look like
one of only finitely many cones, and so in the next section we will be able to use
Corollary 6.2 on each model cone to prove decay on all scales. As before, in this

section we fix �.0/ a polyhedral cone domain of the form �
.0/
0

l � Rm, where we
assume m � 1.

PROPOSITION 6.1. Let e.�.0/
0 / be the exponent bound of Proposition 5.3. For any

� � 1=10, there are constants �0.�.0/; �/, c0.�.0//, so that the following holds:
Let � D �.�.�.0/// \ B1 2 D�0.�

.0// and M 2 IVTn.�;B1/ satisfy

(6.1)
E�0.�;M;p C V; 0; 1/ � E � �20 ;

�M .0; 1/ � .7=4/�T0�; dsptM .0/ � �0;
for some p 2 V ?, V 2 PT0�.

Then there are V 0 2 PT0�, p0 2 V 0?, satisfying

(6.2) jp � p0j C j�V � �V 0 j � c0E1=2;

so that

(6.3) E�0.�;M;p
0 C V 0; 0; �/ � c0�2.e�1/E:

By iterating Proposition 6.1, we obtain the direct corollary. As a technical aside,
instead of using the monotonicity formula (4.1) to iterate Proposition 6.1, one could
use Lemma 7.2.

COROLLARY 6.2. There are constants �1.�.0//, c1.�.0//, and �.�.0// so that the
following holds: Let � D �.�.�.0/// \ B1 2 D�1.�

.0//, M 2 IVTn.�;B1/,
and suppose that

(6.4)
E.�;M;p C V; 0; 1/ � E � �21 ;

�M .0; 1/ � .3=2/�T0�; dsptM .0/ � �;
for some p 2 V ?, V 2 PT0�, and some 0 � � � 1=2.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1001

Then there are V 0 2 PT0�, p0 2 V 0? \ B1, satisfying

(6.5) jp � p0j C j�V � �V 0 j � .c1E/1=2;
such that

E tot.�;M;p0 C V 0; 0; r/ � c1Er2� 8� � r � 1=2:(6.6)

Remark 6.3. The exact form of the upper bound �T0� is flexible. One could
equally well use ��.0/ or !�1nC1H

nC1.�/, provided we take �1 sufficiently small.
However, in the following section we will find it convenient to use T0�.

PROOF OF COROLLARY 6.2. Choose �.�.0// sufficiently small so that c0�2.e�1/ �
1=2. Ensure �1.�.0// is sufficiently small so that

�1 � minf�mn; �eg; .3=2/.1C cmn�1/
nC1 � 7=4 ce�1 � 1=4;

and �1 � �20 with our choice of � . Here �mn.n/; cmn.n/ are the constants from
Lemma 4.1; ce.�.0/; � D 1=2; A D 2/; �e.�

.0// are from Corollary 4.7, and
�0.�

.0/; �/, c0.�.0// are from Proposition 6.1.
First suppose � > �1. Then take p0 D p, V 0 D V , and we have trivially

E.�;M;p0 C V 0; 0; r/ � ��n�41 r2�E 8� � r � 1:
Provided we take c1 � ��n�41 , this proves the theorem.

Let us therefore assume � � �1. Define ri D � i , and let I be the maximal
nonnegative integer for which � � rI �1. If � D 0, then we set I D 1 � I C 1.
For i D 0; 1; : : : ; I C 1, we define inductively a sequence pi 2 B1, Vi 2 PT0�, so
that

(6.7) r�1i jpiC1 � pi j C j�ViC1
� �Vi j � c02�i=2��10 E1=2

and

(6.8) E�0.�;M;pi C Vi ; 0; ri / � 2�i��20 E:

We take p0 D p, V0 D V . Suppose, by inductive hypothesis, we have con-
structed pi , Vi satisfying (6.8) and (if i � 1) (6.7). By our choice of I and �1,
Remark 2.9, and monotonicity (4.1), we can apply Proposition 6.1 to the rescaled
varifold .�0;ri /]M in �0;ri to obtain a zpiC1, zViC1. Setting piC1 D ri zpiC1 and
ViC1 D zViC1, the required estimates (6.7), (6.8) hold by scaling. This proves the
inductive step, and therefore the existence of the required pi , Vi .

If I < 1, then set p0 D pI , V 0 D VI . Otherwise, if I D 1, then observe
that (6.7) implies the pi , Vi form Cauchy sequences, and so we can take p0 D
limi!1 pi , V 0 D limi!1 Vi . For each (finite) i � I , we have

(6.9) r�1i jp0 � pi j C j�V 0 � �Vi j � c.�.0//2�i=2E1=2:

In particular, taking i D 0 gives (6.5).
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1002 N. EDELEN AND C. LI

Given � < r � 1, either r � �1, in which case we set i D 0, or we have a
maximal i � I for which r � �1ri . Using (6.9) and (4.5), we compute

E.�;M;p0 C V 0; 0; r/

� .��1/�n�2E.�;M;p0 C V 0; 0; ri /

� cE.�;M;pi C Vi ; 0; ri /C cj�V 0 � �Vi j2 C cr�2i jp0 � pi j2

� cE2�i D cEr
2�
i � c.�.0//Er2�;

where � D log.1=2/= log.�/. This proves the required L2 decay of (6.6) for
� � r � 1. To deduce the decay of E tot we use Remark 2.9 to apply Corollary 4.7
at each scale � � r � 1=2. �

The rest of the section is devoted to proving Proposition 6.1. We first require a
definition and some helper theorems.

PROPOSITION 6.4 (Fine graphical approximation). Given any �; �, there exist con-
stants �.�; �;�.0// and c.�.0// so that the following holds: Let� D �.�.�.0///\
B1 2 D�.�

.0//, M 2 IVTn.�;B1/, satisfy

E.�;M;p C V; 0; 1/ � E � �2;
�M .0; 1/ � .7=4/�T0�; dsptM .0/ � �;

(6.10)

for some p 2 V ? and V 2 PT0�. Then the following holds:
(1) There is a domain U � p C V and C 1 function u W U ! V ? satisfying

(6.11) .p C V / \� \ B1=4 n B2� .@�/ � U; r�1juj C jDuj � �;
and

(6.12) MxB1=2 n B� .@�/ D �graph.u/�:

(2) We have the estimates

(6.13) sup
U

juj2 C
Z
U

jDuj2 � cE and sup
´2spt�M\B1=2

d.´; p C V /2 � cEI

(3) for any � 2 C 1
c .p C V; V ?/ \ C 1

c .B1=4/, we have����Z
U

Du �D�
���� � cj�jC1

�kHkL1.B1I�M / C jD2�jC0.B2/
C �1=2E1=2

�
:

PROOF. Suppose, towards a contradiction, there is a sequence �i ! 0, pi 2
V ?
i , Vi 2 PT0�i

,�i D �i .�i .�
.0///\B1 2 D�i .�

.0//, andMi 2 IVTn.�i ; B1/,
satisfying (6.10), but failing conclusion (1). By the height bound (4.20) and our
assumption sptMi \ B�i ¤ ¿, we have d.pi C Vi ; 0/ ! 0, and by Theorem
4.3 we have that k�Mik is uniformly bounded on compact subsets of B1. We can
therefore find a V 2 P�.0/ and an M 2 IVn.B1/, so that after passing to a subse-
quence, we get pi ! 0, Vi ! V , and Mi ! M on compact subsets of B1. Since
j�i � IdjC2.B2/

! 0, j�i � Idj ! 0, we have �T0�i
! �T0�.0/ .
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1003

Since E.�i ;M; pi C Vi ; 0; 1/! 0, we have

sptM � p C V and k�Mk�int�.0/ \ B1
� D 0:

Therefore by the constancy theorem M x int�.0/ D k�p C V � x .int�.0/ \ B1/
for some constant k. By the nonconcentration estimate (4.23), �M .@�.0// D 0,
and trivially spt�M � �.0/, and so in fact M D k�p C V � x .int�.0/ \ B1/.
From lower-regularity (4.19), �Mi

.B1=2/ � 1=c.�.0//, and hence �M .B1/ �
1=c.�.0//. This implies k � 1. On the other hand,

�M .B1/ � lim inf
i

�Mi
.B1/ � .3=2/ lim

i
�T0�i

D .3=2/�T0�.0/ ;

and so k � 1. We deduce k D 1. Since for every W b int�.0/ and i � 1 the
Mi xW have bounded mean curvature (tending to zero) and zero boundary, Allard’s
theorem [1] implies the convergence is C 1 on compact subsets of int�.0/ \ B1.
This proves conclusion (1).

Let us now fix a �; U , and prove conclusions (2) and (3). Ensuring �.�.0//

is sufficiently small, there is no loss in assuming p C V D R
n � f0g. Given a

function f W D � .p C V / ! V ?, we can extend f to be defined in D � V ?

by setting zf .x/ D f .p C �V .x � p//. Given f; g W D ! V ?, then at �M -a.e.
x 2 sptM \ .D � V ?/ we have the bound

(6.14) jr zf � r zg �D zf �Dzgj � j�TxM � �V j2jD zf kDzgj:
In the special case when f D u as defined on U , then

(6.15) jrzuj2 D jrxnC1j2 � j�TxM � �V j2:
Combining (6.14) and (6.15) with (4.21), and (without loss of generality) ensuring
� � �.n/, we getZ

U

jDuj2 � .1C c.n/�2/

Z
B1=2

jDzuj2 d�M

� c.n/
Z
B1=2

j�T´M � �V j2 d�M .´/ � c.�.0//E:

This completes the W 1;2 estimate of conclusion 2; the L1 estimates both follow
from the sharp height bound (4.20).

We prove conclusion (3). Take � 2 C 1
c .p C V; V ?/ \ C 1

c .B1=4/. Let � be any
function that is 1 on B1=2 and is supported in B1. By the height bound (4.20) we
can assume that sptM \ spt z� � B1=2. Plugging the field X D z��zenC1 into the
first variation (where zenC1 is defined as in the proof of Corollary 4.7), and noting
that X is tangential to �, we obtain�����

Z
B1=2

rz� � rxnC1 d�M
�����

� c.n/j�jC1

�

H tan
M




L1.B1I�M /

C jD2�jC0.B2/

�
:

(6.16)
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1004 N. EDELEN AND C. LI

Let us make some remarks. First, provided �.n/ is sufficiently small, the Jaco-
bian Ju of u satisfies the bounds

(6.17) 1 � Ju � 1C c.n/jDuj2:
Second, ensuring that �.�;�.0// is sufficiently small, by the nonconcentration es-
timate (4.23) we have

�M .B� .@�/ \ B1=2/ � c.�.0//�:

Last, using (4.21), this implies that

(6.18)

����Z
B1=2\B� .@�/

rz� � enC1 d�M
����

� c.�.0//j�jC1�1=2
�Z

B1=2

j�T´M � �V j2 d�M .´/
�1=2

� c.�.0//j�jC1�1=2E1=2

Using conclusions (1) and (2), and equations (6.16), (6.17), and (6.18), we ob-
tain����Z

U

D� �Du
����

� c�j�jC1

Z
U

jDuj2 C
�����
Z
B1=2nB� .@�/

Dz� �Dzud�M
�����

� cj�jC1

Z
U

jDuj2 C cj�jC1

Z
B1=2

j�T´M � �V j2 d�M .´/

C
�����
Z
B1=2nB� .@�/

rz� � enC1 d�M
�����

� cj�jC1E C cj�jC1�1=2E1=2 C cj�jC1

�kHkL1.B1I�M / C jD2�jC0.B2/

�
� cj�jC1�1=2E1=2 C cj�jC1

�kHkL1.B1I�M / C jD2�jC0.B2/

�
;

for c D c.�.0//. The last inequality follows because we can of course assume
�2 � � . This completes conclusion (3) and the proof of Proposition 6.4. �

DEFINITION 6.5. Given sequences �i ; �i 2 R; �i D �i .�i .�
.0/// \ B1 2

D�i .�
.0//, Vi 2 PT0�i

, pi 2 V ?
i , and Mi 2 IVTn.�;B1/, we say�

�.0/; �i ;Mi ; pi C Vi ; �i ; �i
�

is a blowup sequence if:
(1) pi ! 0, Vi ! R

n � f0g, �i ! 0, �i ! 0;
(2) �Mi

.B1/ � .7=4/�T0�i
and dsptMi

.0/! 0;
(3) lim supi �

�2
i E�i .�i ;Mi ; pi C Vi ; 0; 1/ <1.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1005

PROPOSITION 6.6. Let .�.0/; �i ;Mi ; pi C Vi ; �i ; �i / be a blowup sequence. Let
us write pi C Vi D graphRn�f0g.qi C �i � x/ for qi 2 R and �i 2 f0lg � Rm�1.

Then there is a W 1;2 function v W .�.0/
0 �Rm�1/ \ B1=4 ! R such that:

(1) v is weakly harmonic with Neumann boundary:

(6.19)
Z
.�

.0/
0
�Rm�1/\B1=4

Dv �D� D 0 8� 2 C 1
c .B1=4 \ .Rn � f0g//I

(2) v has the W 1;2 boundZ
.�

.0/
0
�Rm�1/\B1=4

v2 C jDvj2

� c.�/
�

lim sup
i

��2i E�i .�i ;Mi ; pi C Vi ; 0; 1/x
�
I

(6.20)

(3) on any compact set U b B1=4 \ .�.0/
0 � Rm�1/ n @�.0/, we have L2

convergence

(6.21) ��1i ui .x C qi C �i � x/! v.x/I
(4) for any � � 1=4, we have the L2 convergence

(6.22) ��2i

Z
B�

d2piCVi d�M !
Z
B�\.�

.0/
0
�Rm�1/

v2:

PROOF. Let �i ! 0 sufficiently slowly so that for each i large we can apply
Proposition 6.4 to deduce

Mi \ B1=2 n B�i .@�.0// D graphpiCVi .ui /;

where ui is defined on some domain Ui satisfying

.pi C Vi / \ B1=4 n B2�i .@�.0// � Ui � pi C Vi :

Write Ei D E�i .�i ;Mi ; pi C Vi ; 0; 1/.
Fix any U b B1=4 \ .�.0/

0 � Rm�1/ n @�.0/. Then for sufficiently large i ,
x 7! wi .x/ WD ui .x C qi C �i � x/ is well-defined, and parametrizes a subset of
sptMi . For x 2 U , we have

Dwi .x/ D .1C o.1//Dui .x C qi C �i � x/; 1 � J.x/ � 1C o.1/;

where J.x/ is the Jacobian of x 7! x C qi C �i � x. It follows from Proposition
6.4 that

(6.23)
Z
U

jwi j2 C jDwi j2 � cEi ; sup
U

jwi j2 � cEi ;

and for any � 2 C 1
c .B1=4/,

(6.24)
����Z
U

D� �Dwi
���� � o.1/j�jC1E

1=2
i :
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1006 N. EDELEN AND C. LI

If vi D ��1i wi , then (6.23) (and our definition of blowup sequence) shows
that the vi are bounded in W 1;2.U /, with a bound independent of either i or U .
A diagonalization argument implies there is a v 2 W 1;2.B1=4 \ .�.0/

0 � Rm�1//
satisfying the bound (6.20), so that for every U as above vi ! v strongly inL2.U /
and weakly in W 1;2.U /.

From (6.23) we have

(6.25) sup jvj2 � c.�.0//;

and from (6.24) we get that v satisfies the required (6.19). The strong L2 con-
vergence (6.22) follows from the L1 bounds (6.25), (6.13), and (4.23) and the
fact Z

B�nB�i .@�
.0//

d2piCVi d�M D .1C o.1//

Z
Ui

jui j2: �

DEFINITION 6.7. Let us call any v as obtained in Proposition 6.6 a Jacobi field on
�
.0/
0 �Rm�1.

We are now ready to prove Proposition 6.1.

PROOF OF PROPOSITION 6.1. Suppose, towards a contradiction, there is a se-
quence �i ! 0, Vi 2 PT0�i

, pi 2 V ?
i , �i D �i .�i .�

.0/// 2 D�i .�
.0//, and

Mi 2 IVTn.�i ; B1/ such that

Ei WD E�i .�i ;Mi ; pi C Vi ; 0; 1/ � �2i ;
�Mi

.B1/ � .7=4/�T0�i
; sptMi \ B�i ¤ ¿;

but for which
E�i .�i ;Mi ; p

0 C V 0; 0; �/ � c0�2.e�1/Ei
for all p0 C V 0 satisfying (6.2). Here c0 is a constant depending only on �.0/ that
we will choose later.

Let �2i D E�i .�i ;Mi ; pi C Vi ; 0; 1/, so of course �i ! 0 also. From the
height bound (4.20), we can assume pi ! 0, and after passing to a subsequence
and rotating as necessary, we can assume Vi ! R

n � f0g. Then .�.0/; �i ;Mi ;

pi C Vi ; �i ; �i / is a blowup sequence, and we can apply Proposition 6.6 to obtain
a Jacobi field v satisfyingZ

�
.0/
0
�Rm�1

Dv �D� D 0 8� 2 C 1
c .B1=4 \ .Rn � f0g//;

and the W 1;2 estimateZ
.�

.0/
0
�Rm�1/\B1=4

jvj2 C jDvj2 � c.�.0//:

From Proposition 5.3, we can expand in W 1;2

(6.26) v.x D r!/ D b C A � x C
X
i

air
�i�i .!/
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1007

for some A 2 f0lg � Rm�1 and �i � e > 1 for e.�.0/
0 / as in 5.3. Using the

L2..�
.0/
0 �Rm�1/ \ Sn�1/-orthogonality of this expansion for every fixed r , we

get

(6.27) jbj2 C jAj2 C
X
i

a2i .1=4/
2�iCn

2�i C n
� c.�.0//:

Let us write
pi C Vi D graphRn�f0g.qi C �i � x/

for qi 2 R and �i 2 f0lg �Rm�1. Now define the new affine planes

p0i C V 0
i D graphRn�f0g.qi C �ib C .�i C �iA/ � x/:

Since A 2 f0lg � Rm�1, we have V 0
i 2 P�.0/ , and we can take p0i 2 V 0

i
?. By

definition of the p0i , V
0
i , and by considering the analytic maps

� 7! �� WD �graphRn�f0g.��x/ .q; �/ 7! �?� .qenC1/;

we have

(6.28) jpi � p0i j C j�Vi � �V 0
i
j � c.n/�i .jbj C jAj/ � cd1.�.0//�i :

Therefore, .�.0/; �i ;Mi ; p
0
i C V 0

i ; �i ; �i / is a blowup sequence also, and we can
again use Proposition 6.6 to obtain a new Jacobi field v0 (with, a priori, a slightly
worse W 1;2 bound than v).

There is a sequence �i ! 0 so that we can write

(6.29) Mi \ B1=2 n B�i .@�.0// D graphpiCVi .ui / D graphp0
i
CV 0

i
.u0i /;

where, for any compact subset U b B1=4 \ .int�.0/
0 �Rm�1/, we have

(6.30) jui .xCqiC�i �x/jC1.U /Cju0i .xCqiC�ibC.�iC�iA/ �x/jC1.U / ! 0

and (from Proposition 6.6.3)

(6.31) ��1i ui .xCqiC�i �x/! v; ��1i u0i .xCqiC�ipC.�iC�iA/�x/! v0;

in L2.U /.
From (6.29) and (6.30) and since jpi jCj�i j ! 0, we have that for every x 2 U ,

(6.32)
ju0i .x C qi C �ip C .�i C �iA/ � x/ � ui .x C qi C �i � x/ � �ip � �iA � xj
� o.1/�i ;

where o.1/! 0 as i !1. By (6.31) and (6.32), we deduce that

v0.x/ D v.x/ � b � A � x D
X
i

air
�i�i .x/;

where ai as in equation (6.26).
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1008 N. EDELEN AND C. LI

Therefore, using (6.27), 4� � 1 and j�i j � 1C �, we haveZ
B�\.�

.0/
0
�Rm�1/

jv0j2 D
X
i

a2i �
2�iCn

2�i C n
� cd2.�.0//.4�/nC2e:

Provided we take c0 larger than cd1 and 84Cncd2, then by the strong L2 conver-
gence

��2i

Z
B�

d2
p0
i
CV 0

i

d�M !
Z
B�\.�

.0/
0
�Rm�1/

jv0j2;

we obtain a contradiction (we remind the reader that theH and� terms ofE decay
gratuitously). This completes the proof of Proposition 6.1. �

7 Regularity
The main theorem of this section is the following decay estimate, which we

shall prove by induction on the boundary strata @i�. The idea is that we can use
the decay of Proposition 6.1 (or rather Corollary 6.2) whenever � resembles a
polyhedral cone. If we hit a radius at which � stops resembling a cone, then by
recentering on a lower stratum and dropping a controllable number of scales, �
will start looking like a cone.

Although the L2, W 1;2, and L1 distances to planes are all effectively compa-
rable when � resembles a cone (and the plane lies in the “good” space PT0�), as
we traverse scales and cone types, it will be convenient to prove a decay on the
L2, W 1;2, and L1 excesses simultaneously. The proof is no more involved than
proving a decay on the L2 by itself.

As in the previous sections, we fix here a polyhedral cone domain �.0/ D
�
.0/
0

l �Rm having m � 1.

THEOREM 7.1. There are constants c3.�.0//, �3.�.0//, �.�.0// so that the fol-
lowing holds. Let � D �.�.�.0/// \ B1 2 D�3.�

.0//, M 2 IVTn.�;B1/

satisfy

(7.1) E.�;M;p C V; 0; 1/ � E � �23 ; �M .0; 1/ � .3=2/�T0�;

for some p 2 V ?, V 2 PT0�.
Then for every x 2 sptM \ B1=16, there is plane Vx 2 PTx� so that

(7.2) j�V � �Vx j � c3E1=2;

and for all 0 < r < 1=4,

(7.3) E tot.�;M; x C Vx; x; r/ � c3r2�E:
We require first a helper lemma.

LEMMA 7.2. Given any � > 0, there is a �4.�.0/; �/ so that the following holds.
Let � D �.�.�.0/// \ B1 2 D�4.�

.0// and M 2 IVTn.�;B1/ satisfy

(7.4) E.�;M;p C V; 0; 1/ � �24 ; �M .0; 1/ � .7=4/�T0�;
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1009

for some p 2 V ?, and some V 2 PT0�. Then given any x 2 � \ B1 and r � �,
so that Br.x/ � B1��, we have

(7.5) �M .x; r/ � .3=2/�Tx�:

PROOF BY CONTRADICTION. Suppose there is a sequence �i ! 0, domains
�i D �i .�i .�

.0/// \ B1 2 D�i .�
.0//, and varifolds Mi 2 IVTn.�i ; B1/, so

that
E.�i ;Mi ; pi C Vi ; 0; 1/! 0; �Mi

.0; 1/ � .7=4/�T0�i
;

for some sequence Vi 2 PT0�i
, pi 2 V ?

i , but there are points xi 2 �i \ B1 and
radii ri � � such that

Bri .xi / � B1��; �Mi
.xi ; ri / � .3=2/�Txi�i

:

By the height bound (4.20) there is no loss in assuming the pi are bounded, as
otherwise we would have sptMi \ B1 D ¿ for large i . We can therefore pass
to a subsequence and get convergence pi ! p0 2 RnC1, Vi ! V 0 2 PT0�.0/ ,
xi ! x 2 B1, ri ! r � �, so that Br.x/ � B1��, and Mi ! M 0 for some
M 0 2 IVn.B1/. As in the proof of Proposition 6.4, we must have M 0 D �p0 C
V 0� x .int�.0/ \ B1/.

For a.e. 1 � jxj > � > r we have by the lower-semicontinuity (2.10):
�M .B�.x// D lim

i
�Mi

.B�.x//

� lim sup
i

�Mi
.Bri .xi // � .3=2/�Tx�.0/!nr

n:

On the other hand, since V 2 P�.0/ , we can use monotonicity (2.6) to get

�M .B�.x// D Hn..p C V / \�.0/ \ B�.x//
� Hn..x C V / \�.0/ \ B�.x// � �Tx�.0/!n�

n;

which is a contradiction for � sufficiently close to r . �

PROOF OF THEOREM 7.1. There is no loss in assuming p 2 B1. Let B.�.0//

be as in Lemma 2.8. Observe that since the set fT´�.0/g´ is finite, any constant
that depends on some T´�.0/ can be made to depend only on �.0/. In particular,
let us choose � by setting

� D minf�.T´�.0//g´
where � as in Corollary 6.2. In the following c will denote a generic constant � 1
depending only on �.0/, which may increase from line to line.

Take x 2 @mCi� \ B1=16 (note i � 0). Let xi D x, and then for j D
i; : : : ; 1 define xj�1 2 @mCj�1� to be the point realizing d.xj ; @mCj�1�/. Let
us formally define .B=2/jx0 � x�1j D 1=8.

Let i0 D i . If i D 0, let J D 0. Otherwise, define inductively j D 0; 1; : : : ; J

by the conditions that 0 � ijC1 < ij , and

jxij � xijC1
j C Bjxij � xij�1j � .B=2/jxijC1

� xijC1�1j;
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1010 N. EDELEN AND C. LI

but

jxij � xkj C Bjxij � xij�1j > .B=2/jxk � xk�1j 8k D ijC1 C 1; : : : ; ij � 1:
Note that since jxj � 1=16, 0 2 @m�, and by Lemma 2.8(1) we have (by taking
�3.n/ small)

jxij � xkj C Bjxij � xij�1j � .3=2/jxij j � .3=2/.1C cB�3/jxj � 1=8
for every k � ij � 1, and in particular we have iJ D 0.

Let r�0 D 0. Define

rCj D Bjxij � xij�1j .j D 0; : : : ; J /;

r�j D 2rCj�1 C 2jxij�1 � xij j .j D 1; : : : ; J /:

Note that since iJ D 0, we have rCJ D 1=4. By construction we have the inclusions

(7.6) x 2 Br�
j�1
.xij�1/ � B

r
C
j�1

.xij�1/ � Br�
j
=2.xij / � B1.0/:

Now for j D 0; 1; : : : ; J � 1 we have

jxij � xijC1
j � jxij � xijC1C1j C jxijC1C1 � xijC1

j
� jxij � xijC1C1j C .2=B/.jxij � xijC1C1j C Bjxij � xij�1j/
� 2jxij � xij�1j C .1C 2=B/jxij � xijC1C1j
� 2.1C .1C 2=B//jxij � xij�1j C .1C 2=B/2jxij � xijC1C2j
:::

� c.n; B/jxij � xij�1j:
Therefore

rCj

r�jC1
D Bjxij � xij�1j
2jxij � xijC1

j C 2Bjxij � xij�1j

D 1

.2=B/
jxij�xijC1

j

jxij�xij�1j
C 1

� 1

c.�.0//
:(7.7)

For ease of notation let us set zxj D xij . Then we shall prove for j D J

J � 1; : : : ; 0 the following statement, which we call .�j /: There is a �j .�.0//,
Vj 2 Tzxj�, and pj 2 V ?

j so that

(7.8) E tot.M; pj C Vj ; zxj ; r/ � �j r2�E 8r�j � r � 1=4;
and

(7.9) �M .zxj ; r/ � .7=4/�Tzxj�
8r�j � r � rCj
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1011

and

(7.10) jpj � pj C j�Vj � �V j � �1=2
j E1=2

�
rCj
��
:

Observe that (7.8) implies that

d.x; pj C Vj / � c.r�j /�;
and hence when j D 0, we have p0 C V0 D x C V0. Since x D zx0, we have
V0 2 Tx�, and (7.10) implies that

j�Vx � �V j � c.�.0//E1=2:

Therefore when j D 0, .�0/ implies our theorem.
To prove .�j / we induct downwards on j . If j D J , then let us set zxJC1 D 0,

r�JC1 D 1=4, �JC1 D 4nC4, pJC1 D p, VJC1 D V , and proceed as below.
Otherwise, let us assume by hypothesis that .�jC1/ holds. We prove .�j /.

We have

(7.11) E tot.�;M;pjC1 C VjC1; zxjC1; r/ � �jC1r2�E
for all r�jC1 � r � 1=4, and

�M .zxjC1; r�jC1/ � .7=4/�TzxjC1
�:

SinceB
r
C
j

.zxj / � Br�
jC1

=2.zxjC1/ and rCj =r
�
jC1 � 1=c.�.0//, we can use (7.15)

and apply Lemma 7.2 to deduce

�M .zxj ; rCj / � .3=2/�Tzxj�
;

and hence by monotonicity (4.1) we get

(7.12) �M .zxj ; r/ � .7=4/�Tzxj�
8r � rCj :

(7.11) implies we can find a q0j 2 pjC1 C VjC1 so that

jx � q0j j � �1=2
jC1E

1=2.r�jC1/
1C� � r�jC1

for �3.�jC1; �.0// sufficiently small. In particular, we have jzxj � q0j j � crCj . As
per Lemma 2.8, choose V 0

j 2 PTzxj�
such that

(7.13) j�VjC1
� �V 0

j
j � c.�.0//E1=2jzxj � zxjC1j � cE1=2rCj :

Then, using (7.6) and (7.7), we have

(7.14)

E1.M; q0j C V 0
j ; zxj ; rCj /

D .rCj /
�2 sup

´2B
r
C
j

.zxj /

j�?
V 0
j

.´ � q0j /j2

D cj�V 0
j
� �VjC1

j2 C cE1.�;M;pjC1 C VjC1; zxjC1; r�jC1/

� c.1C�jC1/.r
C
j /

2�E;
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1012 N. EDELEN AND C. LI

and similarly

EW .M; V 0
j ; zxj ; rCj /CE.�;M; q0j C V 0

j ; zxj ; rCj /
� c.1C�jC1/.r

C
j /

2�E:

By Lemma 2.8, there is a ´ 2 �.0/, a linear isomorphism � W RnC1 ! R
nC1, and

a C 2 mapping � W B2 ! R
nC1 such that �

zxj ;r
C
j

2 Dc�3.Tx�
.0// and

E tot.�; .�
zxj ;r

C
j

/]M;�zxj ;r
C
j

.q0j /; V
0
j ; 0; 1/ � 2E tot.�;M; q0j C V 0

j ; zxj ; rCj /
� c.1C�jC1/.r

C
j /

2�E:(7.15)

By (7.12) and (7.15), provided �3.�.0/; �jC1/ is sufficiently small, we can ap-
ply Corollary 6.2 to deduce: there is a Vj 2 Tzxj�, pj 2 V ?

j so that

(7.16) E tot.�;M;pj C Vj ; zxj ; r/ � c.1C�jC1/r
2�E 8r�j � r � rCj ;

(recall that jx � zxj j � r�j ) and

(7.17) j�Vj � �V 0
j
j � �

c.1C�jC1/E
�1=2

.rCj /
�:

Combining (7.13) and (7.17) we get

(7.18) j�Vj � �VjC1
j � .c.1C�jC1//

1=2E1=2.rCj /
�;

which with (7.10) implies

(7.19) j�Vj � �V j � .c.1C�jC1//
1=2E1=2:

On the other hand, we can estimate

jpj � pj � j�?Vj .x � pj /j C j�?V .x � p/j C j�Vj � �V j
� rCj E.M;�; pj C Vj ; zxj ; rj /1=2 CE.M;�; p C V; 0; 1/1=2

C .c.1C�jC1//
1=2E1=2

� .c.1C�jC1//
1=2E1=2:(7.20)

Finally, we must show decay (7.16) for r � rCj . (7.16) implies that we can find
a qj 2 pj C Vj such that

jx � qj j � .c.1C�jC1//
1=2E1=2.rCj /

1C� � rCj
and hence

(7.21) jqj � q0j j � .c.1C�jC1//
1=2E1=2.rCj /

1C�; and jzxj � qj j � crCj :
Therefore, using (7.18), (7.21), (7.6), and (7.7), we have for rCj � r � .1=4/.rCj =r�jC1/:

E1.�;M;pj C Vj � qj C Vj ; zxj ; r/
D r�2 sup

´2Br .zxj /\sptM
j�Vj .´ � qj /j2 �
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1013

� cj�Vj � �VjC1
j2 C r�2jqj � q0j j

C cE1.�;M; q0j C VjC1; zxjC1; rr�jC1=rCj /
� c.1C�jC1/Er

2�:

On the other hand, when .1=4/rCj =r
�
jC1 � r � 1=4, then we have r � 1=c.�.0//,

and hence we can estimate using (7.19), (7.20):

E1.�;M;pj C Vj ; zxj ; r/
� cj�Vj � �V j2 C cjpj � pj2 CE1.�;M;p C V; 0; 1/

� c.1C�jC1/E � c.1C�jC1/Er
2�:

Bounds on EW and E follow by similar computations.
Provided we take�j � c.1C�jC1/ sufficiently big, depending only on c.�.0//

and �jC1, this proves .�j /. �

PROOF OF THEOREM 3.1. Take �.�.0// sufficiently small so that we can apply
Theorem 7.1. Given x 2 sptM \ B1=16, let Vx 2 PTx� be as in Theorem 7.1.

Given x; y 2 sptM \ B1=16, using (4.19) and (7.3) we can estimate

1

c.�.0//
j�Vx � �Vy j2

� jx � yj�n�M .Bjx�yj.x//j�Vx � �Vy j2

� 2jx � yj�n
Z
Bjx�yj.x/

j�Vx � �T´M j2 C j�Vy � �T´M j2 d�M

� 2E tot.�;M; x C Vx; x; jx � yj/C 2E tot.�;M; y C Vy ; y; 2jx � yj/

� c.�.0//jx � yj2�E;

and hence

(7.22) j�Vx � �Vy j � c.�.0//E1=2jx � yj�:

This effectively shows that sptM lies inside some C 1;� graph. We must show
that sptM fills out this entire graph, and the same holds true for .��1/]M . We
first prove two auxiliary claims.

Claim 1. For all x 2 int� \ sptM \ B1=16, we have

1

r
dH .sptM \ Br.x/; .x C Vx/ \ Br.x//! 0 as r ! 0:
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1014 N. EDELEN AND C. LI

We prove this by contradiction. Otherwise, suppose there is a sequence ri ! 0

and � > 0 so that

(7.23)

1

2ri
dH .sptM \ Bri .x/; .x C Vx/ \ Bri .x//
� dH .sptMi \ B1=2; Vx \ B1=2/
� � 8i

where Mi D .�x;ri /]M . Since E1.Mi ; Vx; 0; 1/ ! 0 as r ! 0, we can argue
as in Proposition 6.4, using Theorem 4.3 and Corollary 4.8, to deduce that (after
passing to a subsequence)

Mi ! �Vx�

as varifolds in B1. The lower bound (4.19) then implies that sptMi \ B1=2 !
Vx \ B1=2 in the Hausdorff distance, which is a contradiction for large i . This
proves Claim 1.

Claim 2. We have sptM \ B1=512 \ int� ¤ ¿.
On the one hand, by (4.19) we have limr!0 r

�n�M .Br.x// > 0 for every
x 2 sptM . On the other hand, for every x 2 sptM \B1=16\@� the decay bound
(7.3) and nonconcentration estimate (4.23) imply

lim sup
r!0

r�n�M .Br.x/ \ @�/ D 0:

Since sptM \ B1=512 ¤ ¿, this proves Claim 2.

Let M� D .��1/]M . Since 1=c � �M .x/ � c for every x 2 sptM \ B� ,
c D c.�;�.0//, we can write

�M D Hn
x sptM x �M ;

where sptM is countably n-rectifiable. By the area formula we can therefore write

�M�
D Hn

x��1.sptM/ x .�M ��/:
This implies (for �.n/ sufficiently small) that�.sptM/\B1=32 D sptM�\B1=32,

�.sptM� \ B1=32/ � sptM \ B1=16;
and T��1.x/M� D D��1jxTxM for �M -a.e. x 2 B1=16.

We aim to show decay estimates like (7.3) and (7.22) for��1.sptM/ � sptM�.
This is essentially a direct consequence of the fact that � is a C 2 diffeomor-
phism. Define q D ��1.p/, W D D��1jpV for p, V as in our hypotheses.
For ´ 2 sptM� \ B1=32, define W´ D D��1j�.´/V�.´/.

Let us recall that � is a bi-Lipschitz equivalence: for every x; y 2 B1 we have

j�.x/ ��.y/ � .x � y/j � c.n/�jx � yj;
and we have the bound

jD��1jx �D��1jy j � c.n/jD2�jC0.B1/
jx � yj:
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1015

Claim 3. Take a 2 B1=16, V an n-plane, y 2 sptM \ Br.a/ for r < 1=4, and
x 2 .a C V / \ Br.a/. Then we can find a zx 2 .��1.a/ C D��1ja.V // \
B.1Cc.n/�/r.�

�1.a// such that

j��1.y/ � zxj � 2jy � xj C c.n/jD2�jC0.B2/
r2:

To prove this, let zx D ��1.a/CD��1ja.x � a/. Then

j��1.x/�zxj D j��1.x/���1.a/�D��1a .x�a/j � c.n/jD2�jC0.B2/
jx�aj2;

and
j��1.y/ ���1.x/j � .1C c�/jy � xj:

This proves Claim 3.

Claim 3 and our definition of Wza implies that for every za D �.a/ 2 sptM� \
B1=32 and r < 1=8 we have

sup
´2sptM�\Br .za/

d.´; zaCWza/ � 2 sup
y2sptM\B2r .a/

d.y; aC Va/C c.n/jD2�jr2

� c.n/E1.�;M; aC Va; a; 2r/
1=2r

� c.�.0//E1=2r1C�;(7.24)

and by the same reasoning

(7.25) sup
´2sptM�\B1=32

d.´; q CW / � c.�.0//E1=2:

Similarly, combining Claim 1 with Claim 3 we have that

(7.26) lim
r!0

1

r
dH .sptM� \ Br.za/; .zaCWza/ \ Br.za// D 0

for every za 2 sptM� \ B1=32 \ int�.
As in the proof of Lemma 2.8, we have the bounds

j�A.V / � �B.V /j � c.n/jA � Bj; j�A.V / � �A.W /j � c.n/j�V � �W j;
for linear maps A;B satisfying jA � Idj C jB � Idj � �.n/. Therefore for �.n/
sufficiently small, we can estimate

j�Wza
� �Wzb

j � c.n/jD��1ja �D��1jbj C c.n/j�Va � �Vb j
� c.n/jD2�jC0.B1/

ja � bj C c.�.0//E1=2ja � bj�

� c.�.0//E1=2jza � zbj�;(7.27)

where za D �.a/, zb D �.b/ both lie in sptM� \ B1=32. The same proof gives us
the bound

(7.28) j�Wza
� �W j � c.�.0//E1=2:
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1016 N. EDELEN AND C. LI

Combining (7.24), (7.27), (7.28) we get

(7.29)

j�?W .y � ´/j � c.�.0//E1=2jx � yj;
j�?W´

.y � ´/j � c.�.0//E1=2jy � ´j1C�;
j�Wy

� �W´
j � c.�.0//E1=2jy � ´j�

for all y; ´ 2 sptM� \ B1=32.
LetU0 D �0\.qCW /\B1=128.q/, intU0 D int�0\.qCW /\B1=128.q/, and

U D .U0�W ?/\B1=64.q/. For �.�.0// sufficiently small we have jqj � 1=300,
and hence

(7.30) B1=256 � U � B1=32:

Further, by (7.25) we can assume that

(7.31) sptM� \ B1=32 � B1=300.q CW /;

and therefore sptM� \ U is a closed subset of RnC1.
By (7.29) and (7.31) the projection mapping F.x/ D �W .x/C �?W .q/ induces

a .1C c�/-bi-Lipschitz equivalence between sptM� \ U and some closed subset
zU0 � U0, and in particular by (7.26) zU0 satisfies the property that

lim
r!0

dH .Br.y/ \ zU0; Br.y/ \ U0/ D 0 8y 2 zU0 \ intU0:

It follows by an elementary argument that we must have either zU0\intU0 D intU0
or zU0\intU0 D ¿. By Claim 2 sptM�\int�0\B1=256 ¤ ¿, so zU0\intU0 ¤ ¿,
and hence zU0 D U0.

This proves F is a .1 C c�/-bi-Lipschitz equivalence between sptM \ U and
U0. We can therefore find a Lipschitz function u W U0 ! R so that sptM� \U D
graph.u/. It follows easily from (7.29), (7.25) that u isC 1;� and satisfies the bound
jujC1;�.U0/

� c.�.0//E1=2. �

8 Higher Codimension and Ambient Manifolds
The only part of our regularity theorem that requires codimension-1 is in ob-

taining the estimates (4.12), (4.13). If l D 1, or one can otherwise verify these
estimates, then we get corresponding regularity in higher codimension. The most
obvious situation in which (4.12) and (4.13) continue to hold is when we know a
priori that sptM is contained in some closed .nC 1/-submanifold with controlled
geometry. Beyond these estimates the proofs are verbatim to the codimension-1
case. To avoid excess notational clutter, we outline this here rather than integrate it
into the original proof.

Suppose we are in RnC1Ck . In analogy to the original definitions, we now

let �.0/ D �
.0/
0

l � RmCk be a finite union of half-spaces such that �.0/
0

l
is 0-

symmetric. Define P�.0/ to be the collection of n-planes of the form R
l �W n�l

for some .n � l/-plane in f0g �RmC1Ck . Given �;� W B2 ! B2 as in Defintion
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1017

2.5, we let � D �.�.�.0/// \ B1 2 D�.�
.0// analogously to the codimension-1

case.
Then we have the following extension of our results to higher codimension. We

point out that since any complete C 3 .nC 1/-manifold N can be locally isometri-
cally embedded into some RnC1Ck space, Theorem 8.1 implies our regularity can
be extended to codimension-1 varifolds in general ambient manifolds.

THEOREM 8.1. Let �.0/ D �
.0/
0

l � RmCk be a polyhedral cone domain in
R
nC1Ck , and let � D �.�.�.0/// \ B1 2 D�.�

.0//. Write N D �.�.�.0/ �
R
m � f0kg// \ B1, so that N is a closed C 2 .n C 1/-submanifold of B1. Let

M 2 In.B1/.
If l � 2, assume that M satisfies sptM � N and

�M.X/ D �
Z
H tan
M;N �X d�M ; kH tan

M;N kL1 � �;

for all X 2 C 1
c .B1/ that are tangential to � and X.x/ 2 TxN for all x 2 N . If

l D 1, it suffices to assume that M 2 IVTn.�;B1/, with


H tan

M




L1

� �.
Then provided �.�.0// is sufficiently small, the theorems of Sections 3–7 con-

tinue to hold for M .

9 Minimizers
In this section we use Theorems 3.1 and 8.1 to prove the partial regularity The-

orem 1.2 for codimension-1 area-minimizing free-boundary currents in a mani-
fold N . We will use the Nash embedding theorem and reduce our problem to
one in Euclidean space, as in Section 8. We prove some technical lemmas, estab-
lishing appropriate nonconcentration (9.2) and compactness (9.4) for almost-area-
minimizing currents. We then classify low-dimensional minimizing cones with
free-boundary (Lemmas 9.5 and 9.7), and use a standard-dimension-reducing ar-
gument to get our partial regularity bound.

First, we establish some notation. Given an open set U � R
nC1Ck , we let

In.U / be the set of integer-multiplicity rectifiable n-currents in U with locally
finite mass. Given T 2 In.U /, we will write kT k for the mass measure, and
sptT � U for the support of T . Note that associated to every such T there is an
integral varifold that we will often denote by T also such that�T D kT k. Given an
open set E � U , we write �E� for the .nC 1/-current in U obtained by integrating
the standard orientation over E. We say E is a set of locally finite perimeter in U
if @�E� 2 In.U /.

Given a domain � � R
nC1Ck and T 2 In.U /, we say T is minimizing with

free boundary in � if T D T x int� and satisfies

(9.1) kT k.W / � kT C Sk.W /
for all W b U and all S 2 In.U / satisfying sptS � S� \W and @S x int� D 0.
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1018 N. EDELEN AND C. LI

Given A � 0, � � 0, � > 0, we say T is .A; �; �/-almost-minimizing with
free-boundary in� if T D T x int�, and givenW , S as above with diam.W / � �,
then we have the inequality

kT k.W / � kT C Sk.W /C ArnC�; diam.W / � minf�; rg:
instead of (9.1).

Let �.0/ D �0 � RmCk be a polyhedral cone domain in RnC1Ck , � 2
D�.�

.0//. Recall that � is closed in B1, int� D �, and we have the natural
stratification

@0� � @1� � � � � � @nC1Ck� D �;

where @i� consists of the points near which � is diffeomorphic to a polyhedral
cone domain having at most i dimensions of translational symmetry.

Given T 2 In.B1/ with T D T x int�, we define regT to be the set of
points x 2 sptT � � with the following property: there is an r > 0, a C 2

diffeomorphism � W Br.x/ ! Br.x/, a V 2 PTx�, and a C 1;� function u W
B2r.x/ \ .x C V /! V ? so that

�.sptT \ Br.x// D graphxCV .u/ \ Br.x/:
Note that this implies @0� \ regT D ¿ (but also recall that @i� D ¿ for i <
m C k). Note further that if x 2 regT , then the tangent plane of T at x lies in
PTx�. We define singT D sptT n regT .

The global domains we are interested in are locally polyhedral domains, defined
precisely here.

DEFINITION 9.1. LetN nC1 be a complete manifold. A locally polyhedral domain
is a closed domain � � N with nonempty interior that is locally diffeomorphic
to some polyhedral cone domain at every point. Precisely, for every x 2 � there
is a radius r > 0, a polyhedral cone domain �.0/, and a diffeomorphism � W
B1.0

nC1/ ! Br.x 2 N/ so that �.B1 \ �.0// D � \ Br.x/ and 1
r
D�j0 is an

isometry. We say � is C k if the associated diffeomorphism is C k .
In the special case when every model polyhedral cone �.0/ takes the form

L.Ri � �0;1/n�i / for some i and linear isomorphism L, then � is said to be
a domain with corners. We say � has dihedral angles � �=2 (resp., D �=2) if
every model �.0/ as above has dihedral angles � �=2 (resp., D �=2). As before,
we may call � with dihedral angles � �=2 nonobtuse.

The following two lemmas prove the required compactness and closure theo-
rems for our (almost-)area-minimizing currents.

LEMMA 9.2 (Boundary nonconcentration). Let �.0/ be a polyhedral cone domain
in RnC1Ck . Let � 2 D�.�

.0// and T 2 In.B1/ be .A; 0; 1/-almost-minimizing
with free-boundary in � such that @T x int� D 0.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1019

Then for � � �.�.0//, there is a continuous function �.�/ W �0; 1� ! �0; 1�

depending only on �;�.0/, satisfying �.0/ D 0, such that

kT k.B� .@�/ \ B� / � kT k.B1/�.�/C 2A:

Remark 9.3. We speculate that it should be true for minimizers that k@T k.B� / �
C.�;�.0/; kT k.B1// (cf. [13]). However, the above weaker statement is easier to
prove in our more singular setting, and suffices for our purposes.

PROOF. Fix any unit vector � 2 int�, and let H be the half-space with outer
normal given by�� . Then for �.�.0// sufficiently small,� � H , and we can write
@� as a Lipschitz graph over @H . Given R � 2, �.�.0// small and x 2 B1 \�,
there is a unique �.x/ 2 @� such that �.x/�R� D �x.x �R�/ for some �x � 1.
Provided we fix R.�;�.0// to be sufficiently large, then � is a Lipschitz function
satisfying

(9.2)
�.B� / � B.1C�/=2; jx � �.x/j � c.�.0//d.x; @�/;

kD�kL1.B1/ � c.�.0//:

Since T D T x int�, let us view T 2 In.int� \ B1/, in which case @T D 0.
Define f .x/ D d.x; @�/ C g.jxj/, where g D 0 on B� , g is increasing, g D 1

on B.1C�/=2, and jDgj � 4=.1 � �/. Then for all h � 1, T x ff < hg 2
In.int� \ B.1C�/=2/.

Let Th D hT; f; hi be the slice (see [34, sec. 28]) of T at f D h, defined for a.e.
h, and let m.h/ D kT x ff < hgk.B1/. By the coarea formula, we have

(9.3) kThk.B1/ � c.�/m0

for a.e. h < 1. On the other hand, again for a.e. h, by slicing we have

Th D @.T x ff < tg/:
Therefore if we define

F.t; x/ D tx C .1 � t /�.x/; t 2 �0; 1�; x 2 B� ;
then @F].�0; 1�� Th/ x int� D Th and sptF].�0; 1�� Th/ � �\B.1C�/=2, and so
by area comparison and the homotopy formula [34, sec. 26.22] we have

(9.4) m.h/ � kF]Thk.B1/C A � c.�.0//hkThk.B1/C A;

having used (9.2) and the fact that jx � �.x/j � cd.x; @�/ � cf .x/. Together,
(9.3) and (9.4) imply that for a.e. h < 1 we have

m.h/ � c.�.0/; �/hm0 C A;

and therefore since m is increasing there is an � > 0 so that h��.m.h/ � A/ is
increasing for h 2 .0; 1/. Letting �.h/ D h� proves the lemma. �
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1020 N. EDELEN AND C. LI

LEMMA 9.4. Let � D �l
0 �RmCk be a polyhedral cone domain in RnC1Ck . Let

�i ! 0, Ai ! 0, �i 2 D�i .�/, and Ti 2 In.B1/. Suppose Ti is .Ai ; 0; 1/-area-
minimizing with free boundary in �i and satisfies

(9.5) @Ti x int� D 0; sup
i

kTik.B1/ <1:

Then after passing to a subsequence, there is a T 2 In.B1/ that is area-minimizing
with free boundary in � such that Ti ! T as currents in B1 and kTik ! kT k as
Radon measures on B1.

If Ti as varifolds lie in IVT.�i ; B1/ with kH tan
Ti
kL1.B1/ ! 0, then T 2

IVT.�;B1/, Ti ! T as varifolds, kH tan
T kL1.B1/ D 0.

Write �i D �i .�i .�// \ B1, and let Ni D �i .�i .�0 � Rm � f0kg// \ B1.
Suppose, additionally to the previous two paragraphs, there are relatively open sets
Ei � Ni\B1 so that Ti D @�Ei �xint�i . Then T is multiplicity-1 kT k-a.e. and for
every x 2 regT\B1, there is a neighborhoodBr.x/ such that singTi\Br.x/ D ¿

for all i � 1.

PROOF. By assumption we have j�i � IdjC2.B2/
! 0, j�i � Idj ! 0. We can

find C 2 functions Fi W B2 ! B2 functions satisfying

�i D Fi .�/ \ B1; jFi � IdjC2.B2/
! 0;

such that for every U b int� \ B1, we have Fi jU D Id for all i � 1.
By a diagonalization argument, after passing to a subsequence, we can find a

T 2 In.int�/ so that Ti .!/! T .!/ for any smooth n-form compactly supported
in B1 \ int�. We have kT k.int� \ B1/ < 1, so extend T to be an element
of In.B1/ by restriction T WD T x int�. Because of our definition of T and
convergence Ti ! T as currents on compact subsets of int� \ B1, we can also
assume that the kTik limit to some Radon measure on B1, which is � kT k.

By slicing theory and (9.5), and after passing to a further subsequence, we can
find dj ! 0, rk ! 1 so that if Djk D Brk \ fd@� > dj g, then

(9.6) k@.Ti xDjk/k.B1/ � Cjk
for Cjk independent of i . Since, for any fixed j; k, Ti xDjk ! T xDjk , we have
@.Ti xDjk/! @.T xDjk/ and hence

(9.7) k@.T xDjk/k.B1/ � Cjk
also.

By Lemma 9.2, we have

(9.8) kTik.Brk nDjk/ � �k.dj /C 2Ai

for some continuous function �k independent of i; j that satisfies �k.0/ D 0. Lower
semicontinuity and our hypothesis Ai ! 0 implies

(9.9) kT k.Brk nDjk/ � �k.dj /:
Inequalities (9.8) and (9.9) imply that Ti ! T as currents in B1.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1021

Fix S 2 In.B1/ with sptS � � \ B1 and @S x int� D 0. We wish to prove
that

kT k.B1/ � kT C Sk.B1/:
Since T D T x int�, there is no loss in assuming S D S x int� also. Define Si D
.Fi /]S , so that for i � 1: sptSi � �i \ B1, @Si x int�i D 0, Si D Si x int�i

and kS � Sik.B1/! 0.
Fix a k such that sptS � Brk for all i large, and fix any j arbitrary. By (9.6),

(9.7), slicing theory, and the deformation theorem (see, e.g., [34, theorem 7.2.4]),
we can find Pi 2 InC1.B1/, Ri 2 In.B1/ such that

.Ti � T / xDjk D @Pi CRi

and

sptPi ; sptRi � DjC1;k; kPik.B1/C kRik.B1/C k@Pik.@Brk /! 0:

Since Ti is .Ai ; 0; 1/-almost-minimizing with free boundary in �i and @Pi is an
admissible competitor, we have

kTik.Br/ � kTi C @Pi C Sik.Br/C Ai 8rk < r < 1;
and hence taking r ! rk , we get

kTik.Brk / � kTi C @Pi C Sik.Brk /C k@Pik.@Brk /C Ai

� �kT xDjk C Sk C kS � Sik C kRik
�
.Brk /

C k@Pik.@Brk /C Ai

Let i !1; then by lower-semicontinuity we get

(9.10)

kT k.Brk / � kT xDjk C Sk.Brk /
� kT C Sk.Brk /C kT k.Brk nDjk/

� kT C Sk.Brk /C �k.dj /:

Since (9.10) holds for every j (k fixed), we can take j !1 to get

kT k.Brk / � kT C Sk.Brk /;
which proves that T is minimizing. If we apply the same argument to S D 0,
then we get kT k.Brk / D limi kTik.Brk /, which by lower-semicontinuity implies
kTik ! kT k. This proves the first part of the lemma.

Abusing notation, let us write Ti , T for the underlying varifolds associated to the
n-currents, and assume as in our hypothesis that Ti 2 IVT.�i ; B1/. By Theorem
4.3, the Ti have uniformly bounded first variation, and hence after passing to a
further subsequence we can assume Ti converge as varifolds in B1. Since Ti , T
are both integral varifolds, and kTik ! kT k, then we must have Ti ! T as
varifolds.
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1022 N. EDELEN AND C. LI

Fix any X 2 C 1
c .B1/ tangential to �. Let Xi .x/ D DFi jF�1

i
.x/X.F

�1
i .x//.

Then Xi 2 C 1
c .B1/, Xi is tangential to �i , and jXi � X jC0.B1/

! 0. Pick � < 1
such that sptXi and sptX � B� . We have

j�Ti .X/j � C.�/jX jC0.B1/
kH tan

Ti
kL1.B1/kTik.B� /

C C.�/jXi �X jC0.B1/
k�Tik.B� /;

and hence �T .X/ D 0. This implies T 2 IVT.�;B1/ and H tan
T D 0.

Suppose Ti D @�Ei �x int�i for some relatively open sets Ei � Ni \B1. Then,
after passing to a further subsequence as necessary, we can assume �Ei � ! E �
�0 � Rm � f0kg, and hence T D @�E� x �0 � Rm has multiplicity-1 kT k-a.e.
If x 2 regT , then at sufficiently small scales T x Br.x/ is varifold-close to a
multiplicity-1 plane in PTx�, and hence the Ti xBr.x/ lie close to this plane also.
For r sufficiently small and i sufficiently large, we deduce by Theorems 3.1 and
8.1 that singTi \ Br.x/ D ¿. �

We now work towards classifying low-dimensional tangent cones.

LEMMA 9.5. Let �nC1 be a 0-symmetric polyhedral cone domain. If n � 2,
assume � is nonobtuse. Then � is a domain with corners, and given any T 2
In.R

nC1/ a free-boundary minimizing cone in � such that sptT is contained in a
plane, then T D 0.

It is plausible Lemma 9.5 fails in higher dimensions when� does not satisfy the
dihedral angle condition.

Example 9.6. Let �3 be the intersection of the half-spaces with outer normals
given by

.1; 0; 1/; .�1; 0; 1/; .0; �; 1/:

Then when � > 0 is relatively small, it may be the case that the plane y D 0 is not
minimizing with free boundary in �.

PROOF OF LEMMA 9.5. By the constancy theorem, T D k�P \int�� for some
integer k � 0 and some oriented plane P .

We perform induction on n. First assume n D 1: � D W 2 is a 2-dimensional
wedge with interior angle � < � and P \W is a ray. If we write @W D L1 [L2
where Li are the two rays meeting at angle �, then after relabeling as necessary
the rays P and L1 meet at some angle < �=2. Take any point q 2 P , and let
q1 D projL1

q. Then jqq1j < joqj, so P is not length-minimizing. We therefore
must have k D 0 and hence T D 0.

Assume the statement holds for all positive integers less than n. Since �nC1 is
0-symmetric and nonobtuse by [7, theorem 1.1], � is simplicial. In other words,
there exists nC 1 half-spaces H1;H2; : : : ;HnC1 such that � DTnC1

iD1 Hi , and if
Fi D @�\@Hi , then each Fi and Fj meet along some .n�1/-dimensional set. Let
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1023

�i denote the outer unit normal vector of @Hi . Since � is nonobtuse, �i � �j � 0,
and

� D fx 2 Rn W x � �i � 0; i D 1; 2; : : : ; nC 1g:
Suppose, for the sake of contradiction, that k ¤ 0. We first observe that sptT \

@n�1� D f0g. Otherwise, let q 2 sptT \ @n�1�. Then Tanq T D T 0 �RnC1�j ,
Tq� D �0j � RnC1�j for some 2 � j � n, �0 is 0-symmetric, and T 0 is free-
boundary minimizing in �0, contradicting the induction hypothesis.

Therefore sptT \ @� only in the smooth part of @�, and thus sptT meets @�
orthogonally. Denote �0 D P \�. Note that �0 is a 0-symmetric n-dimensional
polyhedral cone. Thus by dimension counting, P intersects exactly n faces, say
F1; F2; : : : ; Fn orthogonally. After a rotation if necessary, we may assume that
P D fxnC1 D 0g and en 2 P \ int�. Since en 2 int� � HnC1, we have
en � �nC1 � 0. On the other hand, regarded as a convex polyhedron in P � R

n,
�0 has outer unit normals �1; �2; : : : ; �n, and en 2 int.�0/. Therefore there exists
a linear combination

en D
nX

jD1

�j �j

with �j � 0. Hence

en � �nC1 D
nX

jD1

�j �j � �nC1 � 0:

As a result, en��nC1 D 0, and hence en 2 @HnC1. This implies thatP\FnC1 ¤
f0g, a contradiction. �

LEMMA 9.7. Let T 2 In.R
nC1/ be a dilation-invariant minimizing current with

free boundary in a polyhedral cone domain �nC1. Then T is entirely regular if:
(1) n D 1,
(2) n D 2 and � is nonobtuse,
(3) n � 6 and � D �0;1/l �RnC1�l .

PROOF. Suppose n � 6 and � D �0;1/l � RnC1�l . When l D 0, then T is
minimizing without boundary inRnC1, and hence T is planar by Simons’ theorem
[36]. For general l , we can assume by induction that singT � f0g. Otherwise, if
x 2 singT nf0g, then by (4.19) and Lemma 9.4 we would be able to find a nonzero
singular tangent cone T 0��R� at x which is minimizing with free boundary in some
�0;1/l�1 �Rn�l .

Now by reflection we can obtain a cone zT in RnC1 that is C 1;� away from 0,
and smooth and stable away from finitely many .n�2/-planes. By standard interior
elliptic regularity and a cutoff argument it follows that zT is smooth and stable on
all of RnC1 n f0g, and hence by Simons’ theorem zT is planar.

Suppose n D 1. By the previous characterization, we can without loss of gener-
ality assume � D W 2 is a nonobtuse wedge. Then T is a cone over finitely many
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1024 N. EDELEN AND C. LI

points, and hence is a union of minimizing rays (with possible multiplicity) inW 2.
But then by Lemma 9.5 T D 0. This completes the n D 1 case.

Suppose n D 2 and � is nonobtuse. We claim that sptT \ .@1� n f0g/ D ¿.
Otherwise, if there were an x 2 sptT \ .@1� n f0g/, then by (4.19) and Lemma
9.4 (and a rotation as necessary), we could obtain a nonzero tangent cone T 0 � �R�
in some cone W 2 � R, where W 2 is a wedge. But T 0 is minimizing in W 2, and
hence by our n D 1 case we would have T 0 D 0, which is a contradiction.

Therefore sptT n f0g meets @� only where @� is planar, and hence by re-
flection and interior regularity sptT is smooth away from 0. Moreover, by the
free-boundary condition sptT satisfies the usual stability inequalityZ

sptT
jAj2�2 �

Z
sptT

jr�j2 8� 2 C 1
c .R

nC1 n f0g/;

and @njAj D 0 along sptT \ @� n f0g. (Here A is the second fundamental form of
sptT .) It then follows by the usual proof of Simons’ theorem that sptT is a finite
union of disjoint free-boundary planes in int�.

As before we can assume without loss of generality that� is eitherW 2�R or 0-
symmetric. If� D W 2�R, then since sptT is planar and sptT \.f0g�R/ � f0g,
we must have sptT D W 2�f0g, and hence T is regular. If� is 0-symmetric, then
by Lemma 9.5 we must have T D 0. �

Using the previous results and the Nash embedding theorem, partial regularity
is now a standard argument.

PROOF OF THEOREM 1.2. Since N is a complete, Riemannian C 3 .n C 1/-
manifold, we can by Nash’s theorem isometrically embed it in someRnC1Ck space
(for k D k.n/). Without loss of generality assume 0 2 @�\sptT , T0N D R

nC1�
f0kg, and by dilating N as necessary we can assume that the map expT?N .x; v/
that takes x 2 N , v 2 T?x N to x C v is a diffeomorphism onto its image for
x 2 B2, jvj � 2, and expT?N .B2; B2/ � B1. Let �0 D expT?N .�;B2/ \ B1,
and then�0 2 D�.T0��Rk/, where � can be made arbitrarily small by dilatingN .

Suppose T is area-minimizing with free-boundary in �. Then T is .A; 1; 1/-
almost-area-minimizing in B1 with free-boundary in �0, where A depends only
on the curvature of N . Since T has zero tangential mean curvature in � � N ,
then T has bounded tangential mean curvature in �0 � B1 (again controlled by
the curvature of N ). By standard codimension-1 theory we can reduce to the case
when T D @�E� x int�0 for E � N relatively open.

Suppose T D @�E�xint� is an isoperimetric region. Then T is .A; 1; �/-almost-
area-minimizing inN with free boundary in� for some constants A; � (depending
on the volume jEj; see [29, example 21.3]), and hence as above T is .A0; 1; �=2/-
almost-area-minimizing in B1 with free boundary in �0. Similarly, since T has
bounded tangential mean curvature in � � N , then T has bounded tangential
mean curvature in �0 � B1 also.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1025

In either case, if we consider a sequence of dilations Ti D .�0;ri /]T , then by
(4.19), (4.1), and Lemma 9.4, the Ti will subsequentially converge as currents and
varifolds to some nonzero area-minimizing cone T 00 with free boundary in �00,
where �00 D T0� � T0N . Moreover, if x 2 regT 00, then singTi \ Br.x/ D ¿

for all i large.
Lemma 9.7 implies that:
(1) if T 00 is .n � 1/-symmetric, then T 00 is regular;
(2) if T 00 is .n � 2/-symmetric and � is nonobtuse, then T 00 is regular;
(3) if T 00 is .n � 6/-symmetric and � has dihedral angles D �=2, then T 00 is

regular.
The partial regularity of Theorem 1.2 then follows from a standard dimension-
reducing argument. �

Appendix A Tangential First Variation

Let Q be a C 2, closed p-submanifold in RnCk . Suppose that the nearest point
projection �.x/ W B1 ! Q is smooth in B1. Define the subspaces

�.x/ D T�.x/M; �.x/ D spanfx � �.x/g; �.x/ D �.x/� �.x/:

Write r D jx � �.x/j.
We consider a rectifiable n-varifoldM 2 IV.B1 � RnCk/ such that �M .Q/ D

0 and �M .B1/ <1.

A.1 Free boundary
Let Q be a hypersurface, so that p D nC k � 1. Let �M tan be �M restricted to

vector fieldsX that are tangential toQ, i.e., thoseX 2 C 1
c for whichX.x/ 2 TxQ

for all x 2 Q.
Assume k�M tank.B1/ <1, so in particular we can write

�M tan.X/ � �M.X/ D
Z
X � �tandk�M tank; j�tanj D 1 k�M tank-a.e.

for all tangential X , and some k�M tank-integrable, unit-vector-valued function
�tan. If k�M tank � �M , then let us write

�M tan.X/ D �
Z
H tan
M �X d�M :

THEOREM A.1 ([15] or [9]). Assuming the above setup on Q;M , then we can
conclude the following:

(1) For any nonnegative h 2 C 1
c .B1/, we have that

�1.h/ WD lim
�!0

1

�

Z
B�.Q/

.M � �/h

D
Z
hDr � �tandk�M tank C

Z
.M �D2r/h � rh � rr d�M
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1026 N. EDELEN AND C. LI

is a Radon measure on B1, and for anyX 2 C 1
c .B1;R

nC1/ (not necessar-
ily tangential) we have

�M.X/ D
Z
X � �tan dk�M tank � �1.X �Dr/:

(2) In particular, �M is a Radon measure in B1, and if we write

�M.X/ D
Z
X � �dk�Mk; j�j D 1; k�Mk-a.e.;

then k�M tank D j�TQjk�Mk, where

�TQ.x/ D
(
�.x/; x 62 Q
�TxQ.�.x//; x 2 Q

(3) If k�M tank � �M , then we can write

�M.X/ D �
Z
H tan
M �X d�M C

Z
� �X d�;

where � ? �M is a nonnegative Radon measure supported in Q, and for
� -a.e. x we have j�.x/j D 1, �.x/ 2 .TxQ/?.

A.2 Prescribed boundary
Let Q be an .n � 1/-manifold. Assume that k�Mk.B1 n Q/ < 1 so that for

every X 2 C 1
c .B1 nQ;RnCk/, we can write

�M.X/ D
Z
X � �dk�Mk; j�.x/j D 1 k�Mk-a.e. x:

If �M x .B1 nQ/� �M , then let us write

�M.X/ D �
Z
H �X d�M :

THEOREM A.2 ([2]). Assuming the above on Q;M , then we can conclude the
following:

(1) For any nonnegative h 2 C 1
c .B1/, we have that

�2.h/ WD lim
�!0

1

�

Z
B�.Q/

h

D
Z
B1nQ

hDr � �dk�Mk

�
Z
rh � rr C .M � �?/h=r C .M � .� � � �D�//h=r d�M

is a Radon measure on B1, and for any X 2 C 1
c .B1;R

nC1/, we have

�M.X/ D
Z
B1nQ

X � �dk�Mk � �2.X �Dr/:

In particular, �M is a Radon measure on B1.
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1027

(2) We have

lim
�!0

1

�

Z
B�.Q/

jrr �Dr j2 d�M D 0:

(3) If �M x .B1 nQ/� �M , then for any X we can write

�M.X/ D �
Z
H �X d�M C

Z
� �X d�;

where � ? �M is a nonnegative Radon measure supported in Q, and for
� -a.e. x we have j�.x/j D 1, �.x/ 2 .TxQ/?.

A.3 Higher codimension boundary
Assume now p � n�2. Assume k�Mk.B1nQ/ <1, and additionally, assume

that there is some constant C such that

�M .B�.x// � C�n 8x 2 Q \ B1:
THEOREM A.3. Assuming the above onQ;M , then k�Mk is a Radon measure on
B1 and k�Mk.Q/ D 0.

PROOF. Follows directly from the fact that, for any � < 1, we have
1

�
�M .B�.Q/ \ B� / � c0.�; C /�! 0 as �! 0: �

Appendix B First Variation and Sobolev Inequalities
Here we sketch a proof of the inequalities (4.17) and (4.18) for a rectifiable n-

varifold M satisfying the first-variation bound (4.8) and the condition �M � 1

�M -a.e.

PROOF OF (4.17), (4.18). Combining the isoperimetric bound of [1, theorem
7.1] (see also the [30, lemma 2.3]) with (4.8), we get

(B.1)
Z
h�1

h d�M � c.�.0//

�Z
h d�M

�1=n Z
jH tan

M jhC jrhjd�M

for all nonnegative h 2 C 1
c .B1/. Take 
� W R ! R a C1 function that is 0 on

.�1; 0� and 1 on ��;1/, and then plug in 
�.h � t / into (B.1) in place of h, to
obtain

�M .h > t C �/

� c.�.0//�M .h > t/
1=n

�Z
h>t

jH tan
M j � d

dt

Z

�.h � t /jrhjd�M

�
:

(B.2)

If n D 1, then we can integrate (B.2) to obtainZ suph

0

�M .h > t C �/

�M .h > t/
dt � c.�.0//

Z
jH tan

M jhC jrhj d�M :

Since for a.e. t the integrand �M .h > t C �/=�M .h > t/ ! 1 as � ! 0, we
obtain (4.17) by the dominated convergence theorem.
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1028 N. EDELEN AND C. LI

If n � 2, then we multiply (B.2) by .t C �/1=.n�1/ to get

�M .h > t C �/.t C �/1=.n�1/

� c
�Z

h>0

.hC �/n=.n�1/ d�M

�1=n �Z
h>t

jH tan
M j d�M � d

dt

Z

 jrhj d�M

�
:

Now integrate in t 2 �0;1/:Z
.hC �/n=.n�1/ � �n=.n�1/d�M

� c
�Z

h>0

.hC �/n=.n�1/d�M

�1=n �Z
jH tan

M jhC jrhjd�
�
;

and let � ! 0 to get (4.18). �

Appendix C Fourier Expansion in Cones
PROOF OF LEMMA 5.2. First, since u 2 W 1;2.CD \ B1/, we have that ! 7!

u.r!/ 2 L2.D/ for every 0 < r < 1, and hence for each such r we can expand in
L2.D/:

(C.1) u.r!/ D
X
i

c.r/�i .!/; ci .r/ D
Z
D

u.r!/�i .!/:

By Fatou’s lemma, this expansion holds in L2.CD \ B1/.
It’s easy to check that

c0i .r/ D
Z
D

.@ru/�i

weakly, and so ci .r/�i .!/ 2 W 1;2
loc
.CD\B1nf0g/. Using that the �i are Neumann

eigenfunctions, we can boundZ
CD\BsnBr

�����
NX
iD0

D.ci�i /

�����
2

�
Z
CD\B1

jDuj2 80 < r < s < 1; 8N;

and hence the expansion (C.1) holds in W 1;2.CD \ B1/ also.
Using equation (5.2) and the definition of �i , one can verify that

0 D
Z 1

0

ci .r/r
n�1.�00 C .n � 1/�0=r � �i�=r2/dr 8� 2 C 2

c .0; 1/:

Setting f .t/ D ci .e
t /e.n�2/t , then this implies that f solves the linear equation

f 00 � .n � 2/f 0 � �if D 0 in the weak sense, and hence in the strong sense.
Therefore, when n � 3, we have

(C.2) ci .r/ D Air


C
i C Bir


�
i ; 
�i D �..n � 2/=2/�

q
..n � 2/=2/2 C �i ;
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REGULARITY IN LOCALLY POLYHEDRAL DOMAINS 1029

for some constants Ai ; Bi . If n D 2, then (C.2) holds for i � 1, but when i D 0

then
c0.r/ D A0 C B0 log.r/:

We just need to show each Bi D 0. Suppose otherwise, that Bi ¤ 0 for some i .
Since �Ci � 0 and ��i � �.n � 2/, we can find a radius 0 < r0 < 1 so that for
r < r0 we have

jAi j�Ci r�
C
i � 1

4
jBi jj��i jr�

�
i :

Therefore we haveZ
B1

jDuj2 �
Z 1

0

.c0i /
2rn�1 dr � 1

4
jBi j2

Z r0

0

r2

�
i
Cn�3 dr

� 1

4
jBi j2

Z r0

0

r�nC1 dr D1

which is a contradiction. If n D 2 and i D 0, then we have the similar contradictionZ
B1

jDuj2 � jB0j2
Z 1

0

dr=r D1:

This shows every Bi D 0, and hence proves Lemma 5.2 for n � 2. The n D 1 case
is trivial. �
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