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Abstract

We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in R* has intrinsic cubic
volume growth, provided the parametric elliptic integral is C2-close to the area functional. We also obtain an interior
volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants
explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein
theorem for minimal hypersurfaces in R*. The new proof is more closely related to techniques from the study of
strictly positive scalar curvature.
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1. Introduction
Consider ® : R™! \ {0} — (0, c0) a 1-homogeneous Cl30C function (i.e. ®(sv) = s®(v) for s > 0). For

M" — R™! a two-sided immersion (with chosen unit normal field v(x)), we can define the anisotropic
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2 O. Chodosh and C. Li

area functional

<I)(M):/M<I>(v(x))du.

Surfaces minimising the ®-functional arise as the equilibrium shape of crystalline! materials, as well
as scaling limits of Ising and percolation models (see [7, Chapter 5]). We say that M is ®-stationary if

% —o®@(M;) = 0 for all compactly supported variations of M (fixing dM) and that M is ®-stable if in
addition j—:z —o®@(M;) 2 0 for such variations. Note that if ®(v) = |v|, @ reduces to the n-dimensional

area functional and a ®@-stable hypersurface is known as a stable minimal hypersurface. We say that ®
is elliptic if the ®-unit ball ®~'((0, 1]) U {0} is uniformly convex.
This article is motivated by the following questions:

Question 1.1. For an anisotropic elliptic functional ®, is the flat hyperplane R" < R™*! the only
complete, two-sided @-stationary and stable immersion in R™*1?

Question 1.2. If M"* — R™! is a complete, two-sided ®-stationary and stable immersion (for some
anisotropic elliptic functional ®), does M satisfy the intrinsic polynomial volume growth condition
Vol(Bpy (p,p)) < Cp"?

By a well-known blowup argument, an affirmative answer to Question 1.1 yields a priori interior
curvature estimates for @-stable immersions with boundary, and even for stable immersion with respect
to a parametric elliptic integrand (where @ is allowed to also depend on x). We also note that for
minimal surfaces, one can derive lower polynomial growth bounds (both intrinsic and extrinsic), but
for general ®-stationary surfaces, no monotonicity type formula is known (cf. [3, 16, 17]) (on the other
hand, stability can be used to derive a lower volume growth estimate; see Corollary 3.3 and [17]).

For the area functional, Question 1.1 (and thus, Question 1.2) has been completely resolved in
the affirmative when n = 2 (independently) by Fischer-Colbrie and Schoen, do Carmo and Peng and
Pogorelov [19, 23, 39] (see also [42]) and recently, when n = 3 by the authors [10]. In particular, we
recall the result of Pogorelov (yielding a localised volume growth estimate).

Theorem 1.3 [39], cf. [51, Lemma 34], [36, Theorem 2]. Suppose that M> — R is a stable minimal
immersion so that the intrinsic ball By (p, R) € M has compact closure in M and is topologically a
disk. Then

4
|By (p, p)| < gﬂpz-

On the other hand, Questions 1.1 and 1.2 remain open (even for the area functional) for n = 4,5, 6.
There exist nonflat stable minimal hypersurfaces (area minimisers) in R® and beyond [4, 28] (thus
answering Question 1.1 in the negative), but all known examples satisfy the conclusion of Question 1.2.
Note that Schoen, Simon and Yau [41] (cf. [43, 47, 52]) have shown that when n < 5, a complete, two-
sided stable minimal immersion satisfying the volume growth condition in Question 1.2 must be flat.

For arbitrary elliptic functionals, there are nonflat minimisers for n > 3 [34, 35], but as in the case
of area, all known examples satisfy the intrinsic volume growth condition in Question 1.2. When n = 2,
Question 1.1 is open for general elliptic functionals but is resolved in the affirmative assuming quadratic
area growth (as shown by White [50]) or assuming the functional is sufficiently C2-close? to area (as
shown by Lin [30]; see also [29, 46]). Still, for n = 2, Colding and Minicozzi [14] have given a new
proof of Theorem 1.3 that extends to show that Question 1.2 holds in the affimative for functionals
sufficiently C2-close to area. When n > 3, Question 1.1 is answered in the negative by considering the
nonflat area minimising solutions constructed by Mooney and Yang [34] (see also [33, 35]). On the other
hand, Winklmann [53] has resolved Question 1.1 in the affirmative for n < 5 under the assumptions that

'We note that in the crystalline setting, ® is usually only Lipschitz continuous.
2Throughout this article, ® is C*-®-sufficiently close to area will mean that ||®—1 ||Ck"t(sn) < &(n) for some fixed (n) > 0.
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the functional is sufficiently C*-close to area and that the surface satisfies the growth condition from
Question 1.2.

1.1. Main results

In this article, we consider the volume growth problem (Question 1.2) for ®-stable hypersurfaces R*.
In fact, the estimate we prove here is new even in the case of stable minimal hypersurfaces. As such, it
yields an alternative approach to our recent result [10] (this is discussed further in Section 2).

We note that all constants in this paper can be given explicitly, see Remark 1.9.

Theorem 1.4. Assume that ® satisfies
|2 < DXD(v)(v,v) < V2|v|3, (1.1

forall v € v*+. Consider M> — R* a complete, two-sided, ®-stationary and stable immersion. Suppose
0 € M and M is simply~ connected. Then there exist explicit constants Vo = Vo(||®@l|¢c1(s3)), Q > O, such
that

(i) |Bm(0,p)| < Vop?, forall p > 0.
(ii) For each connected component Xy of dByy (0, p), we have

max r(x) < Q min r(x),
xX€Xy xeXy

where r(x) = dga (0, x).

Note that (1.1) implies that v — ®(v) is convex (since D?®(v)(v,v) = 0 by 1-homogeneity). As
such, all @ considered in Theorem 1.4 satisfy the ellipticity condition mentioned previously.
‘We note that by combining Theorem 1.4 with [53], we obtain:

Corollary 1.5. If ® is C*-sufficiently close to area, then any two-sided, complete ®-stationary and
stable immersion is flat.

Remark 1.6. Although it is not explicitly done in [53], the ‘sufficiently close’ requirement can be
quantified. Alternatively, we note that by combining Theorem 1.4 with a contradiction argument in the
spirit of [46], Corollary 1.5 actually holds under the weaker assumption of C%“-closeness (but with no
numerical estimate of the required closeness).

We can also prove a localised version of Theorem 1.4 more in the spirit of Pogorelov’s result (cf.
Theorem 1.3). The estimate we prove here is slightly different, since it considers extrinsic balls, but is
an interior* estimate. Even for stable minimal surfaces, we are not aware of such an estimate in R® with
explicit® constants, cf. Remark 1.9.

Theorem 1.7. Suppose that ® satisfies (1.1). Assume M> — B1(0) c R* is a proper, two-sided ®-
stationary and stable immersion. Suppose 0 € M, M is simply connected and OM is connected. Then
there exist explicit constants pg € (0,1), Vi = Vi(||®]|c1(s3)), such that

|My | < Vi,

where M is the connected component of M N Bgs(0, po) that contains 0.

3We note that a standard argument (cf. [23]) shows that if M 3 5RYisa complete, two-sided ®-stable immersion, then so is
the immersion from the universal cover.

4As observed in [27, Section 1], the bridge principle for stable minimal surfaces [31] implies that there cannot be an estimate
for the area of a proper stable minimal immersion M2 — B (0) c R3, even if M is topologically constrained to be a disk.

5Given an area-free curvature estimate (available for minimal surfaces when n = 2,3 [10, 42]), one can prove an extrinsic
interior Pogorelov result [39] in the spirit of Theorem 1.7 by a straightforward contradiction argument (with no control on the
constant). The method used here gives an alternative proof of this curvature estimate (and extends to certain elliptic integrands)
and yields explicit (and not too large) constants.
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4 O. Chodosh and C. Li

Remark 1.8. More generally, we can drop the requirement that M is simply connected and M is
connected. In this case, we have:

| < Vi(bi(M) +E),

0

M,

where FE is the number of boundary connected components of M and b (M) is the first Betti number.

Remark 1.9. One may explicitly compute the constants Vy, Vi, O, po as follows. Let

311 3(cp-1 3(5+3V2
=5 5—8(010 1) el 56\/_)z0.495.
(75—5
Then we have
157
8me 1 ||D||-1 (g3 1x
Vo = .|| ||c(5)’ 0=k
3Amin, g O(v)
and
_sn 87||P|| 1 (g3
ey Srl®les)

EY min,, g3 P(v)’

1.2. Related work

We recall, here, some works (beyond those mentioned above) that are related to this paper. The regularity
of hypersurfaces minimising parametric elliptic integrands has been studied in several places including
[20, 21, 40, 44]. See also [ 1, 48] for estimates without the minimising hypothesis. Existence of critical
points of parametric elliptic integrands has been considered in [15, 49, 50]. Finally, we note that stable
solutions for the nonlocal area functional satisfy an a priori growth estimate (as in Question 1.2) in all
dimensions [13] (see also [22]).

1.3. Notation

We will use the following notation:

Bgrn1 (0, p) := {x € R™! : x| < p}.

r(x) = distgn+1 (0, x).

M" — R"™! is an immersion and g the induced Riemannian metric on M.

D is the connection in R™*!, V is the induced connection on M.

p is the volume form of g.

By (0,p) :={x € M : distps g(0,x) < p}.

v is a choice of unit normal vector field of M.

The shape operator will be written S = Vv and the second fundamental form written
AX,Y)=S(X)-Y.

e The scalar curvature of g will be denoted by R.

e We will use the £2-norm to define C¥-norms, that is || f||cx := (Zfeo ||D(f)f||éo)%.

1.4. Organisation of the paper

In Section 2, we explain the techniques used in this paper in the special case of the area functional.
The remaining part of the paper contains the details necessary for the generalisation to anisotropic
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integrands. We begin in Section 3 with some preliminary results. Section 4 contains a generalisation
of the one-ended result for stable minimal hypersurfaces due to Cao, Shen and Zhu to the case of
certain anisotropic integrands. We describe the conformally changed metric in Section 5 as introduced
by Gulliver-Lawson and then combine these techniques with u-bubbles to prove the main results in
Section 5. Appendix A contains (well-known) computations of the first and second variation for elliptic
integrands. Appendix B contains an auxiliary result comparing certain quadratic forms.

2. Volume growth for stable minimal hypersurfaces in R*

In this section, we illustrate how one may use stability to deduce area estimates for stable minimal
immersions M3 — R*. We will defer certain ancillary results and computation to later sections (where
they were carried out for general ®-stationary and stable hypersurfaces) and instead focus on the
geometric ideas and consequences.

The main result we will prove here is as follows:

Theorem 2.1. Let M> — R* be a complete, two-sided, simply connected, stable minimal immersion,

0 € M. Then,
37\? eV
T\2 eV’
By (0,p)| < | == 3,
1B (0, p)| (3) 6ﬁp
forallp > 0.

Combined with the work of Schoen et al. [41], this yields a new proof of our recent result [10]:
Corollary 2.2. Any complete, two-sided, stable minimal immersion M> — R* is flat.
In fact, we have the following localised volume estimate in the spirit of Theorem 1.3.
Theorem 2.3. Let M> — R* be a two-sided, simply connected stable minimal immersion, with 0 € M,
OM connected and M — Bg4(0, 1) proper. Then,
3
M| < (327”) L
6vVr
where My, is the connected component of M N Bg+ (0, ro) that contains 0 and po = e_]%.

Proof of Theorem 2.1. The first step is to consider a particular conformal deformation of (M, g). On
M \ {0}, consider the conformally deformed metric § = »~2g (where we recall that r is the Euclidean
distance to the origin and g is the induced metric on M). We use v, a, A to denote the covariant derivative,
the volume form and the Laplacian with respect to g, respectively. This conformal change was first used
by Gulliver and Lawson [27] to study isolated singularities for minimal hypersurfaces in R"*!,

Remark 2.4. The relevance of the Gulliver and Lawson conformal deformation is a key insight in our
work. Indeed, this allows us to apply tools from the study of strictly positive scalar curvature (cf. Remark
2.5). Our previous proof of Corollary 2.2 used tools from nonnegative scalar curvature (cf. [37, 38]).°

The computations in this part work for minimal immersions M" — R whenevern > 3.For A € R,
pE Cé (M \ {0}), consider the quadratic form
Q)= [ (196l + (4R-20¢) di
M

¢Added in proof: some time after this paper appeared, Catino et al. found a third proof of Corollary 2.2, based on a surprising
connection between stability and nonnegative Bakry—Emery Ricci curvature [24].
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6 O. Chodosh and C. Li

where R is the scalar curvature of . One computes (see Section 5 for details) that
Qo) = [ (PIVEF 0P + (bR - 02
M

n n+2 _
=/M(|V¢|2+%R902+(5( |Vr |2) ) 2¢2)du
2/ (|V¢|2+%R¢2+(M—d))d,u.

M 4

By the (traced) Gauss equations, minimality of M implies that |A|> = —R,. Thus, we can use stability
of M to conclude

1
/ (V6 - 1P du =0 = / Vol + LR du > 0,
M M 2

forall ¢ € C& (M). Note that we have used the fact that the scalar curvature of a minimal hypersurface
in R™*! has R < 0 and that % < 1. In particular, choosing A = (" 2) above, we find that Q(¢) > 0 for

any ¢ € CO1 (M \ {0}). Using [23, Theorem 1], there exists u € C°°(M \ {0}), u > 0O in the interior of
M \ {0}, such that

Au S—%(#—E)u. @.1)

We note that (2.1) is an integral form of strictly positive scalar curvature.
In the second step, we restrict to the case of n = 3. We use warped u-bubbles to derive geometric
inequalities for 3-manifolds (N3, g) admitting a positive function u with (2.1).

Remark 2.5. The u-bubble technique was first used by Gromov [8, Section 5 %] (see also [25]). Warped

p-bubbles have previously been combined with minimal hypersurface techniques to study problems in

scalar curvature and in minimal surfaces (see, e.g. [9, 11, 12, 26, 55, 56]). Precisely, suppose n = 3

and ON # 0. Then there exists an open set € containing N, Q C B 10z (ON), such that each connected
3

%27r

component of J€ \ dN is a 2-sphere with area at most and intrinsic diameter at most 4‘/—% (see

Lemma 6.1).

107
Fix p > 0. By [6], M\ By (O e Vs p) has only one unbounded component E. Denote by M’ = M\ E.
We apply Remark 2.5 to N = M’ and find My ¢ M’ with distz (0 Mo, 0M’) < 10” . The topological

assumptions on M force 0 My to be connected, so [0 Mp|z < 32" and 0 M, has 1ntr1n51c diameter < “‘/’%

By comparing g-distance with g-distance (see (2) in Lemma 6.2), we find that
107
BM(O,p) C M() C BM(O,e V3 p).

107
In particular, bounding intrinsic distance by extrinsic distance, we see that supgy,, 7(x) < e ¥3 p. Thus,

we have
327\? eV
3 mT\2 e V3
By (0,p)| < |Mo| < OMol2 < —— (e p)YloMy)? < (2 3,
1Bum (0, 0)] < [Mo] 6\/_I 0|g 6\/_( ) 0Mo|? < (3)6\/;/?
where in the second step, we have used the isoperimetric inequality for minimal hypersurfaces in
Euclidean spaces due to Brendle [5] (cf. [32]). This completes the proof. O
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We now consider the requisite changes needed to prove the local result:

Proof of Theorem 2.3. In the case where M is properly immersed in B (0) ¢ R*, we proceed similarly

as before and obtain a region M’, such that distz(0M’, dB(0)) < ]OT;’, [OM'|; < QT” and OM’ is

connected. Again, using Lemma 6.2, we conclude that
* ’
MpO c M’

_10x
where pp = e¢ V3 and M;;O is the connected component of M N Bg4 (0, po) that contains 0. Using [5] as

above,
1 1 327)\7 1
3 3 P
M| < M| < —|0M')} < —|oM’|2 < | == —.
M3 <M1 < gl < o |g(3)6ﬁ
This completes the proof. O

3. Preliminaries on anisotropic integrands

We now consider a general anisotropic elliptic integrand. For M" — R"*! two-sided immersion, we
can set

D(M) = / D(v(x)) du.
M
In this section, we discuss the first and second variation formulae, as well as some important conse-
quences to be used later.
3.1. First variation

Recall that M is ®-stationary means that % —o®(M;) = 0 for all compactly supported variations M,

fixing OM. By (A.1), (A.2), (A.3) this is equivalent to
divy (DO(v)) = try (P (v)Sm) =0,

which we can interpret as vanishing of the ®-mean curvature. Here, ¥(v) : TR™! — TR"*! is defined
by ¥(v) : X — D>®(v)[X, -] and Sy, is the shape operator of M.

By the calculation in Section A.3, we find that if M is ®-stationary, then for any compactly supported
(but not necessarily normal) vector field X along %, we have

/ O(v)divy X + DpayrX - v = / (V)X -n+ (X -v)DO(v) - 7. 3.D
M oM

By plugging the position vector field into (3.1), we obtain the following isoperimetric type inequality.

Corollary 3.1. Suppose M"* — R™*! is ®-stationary and the image of OM is contained in Bgn+1 (0, p)
for some p > 0. Then

PPl sy

M —
M| < n - min,cgn O(v)

oM.

Proof. Recall that r(x) = distgn+i(x,0). Plug X = l’.‘:ll x;e;, the position vector field in R™*!, into
(3.1). Then divy; X = n and

DpopyrX-v= Z(Dom(v)Txi)(ei ) = Z(D‘D(V)T ~ei)(e;-v) =D®(v)" - v =0.
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8 O. Chodosh and C. Li

On the other hand, | X (x)| < r(x). Thus, we find (using v,  orthonormal)

/r@hﬁﬁ/.HQkaWhﬂﬁﬁkmwwML
M oM
O

This completes the proof.
The next lemma generalises the traced Gauss equation R = —|A|? (valid for minimal hypersurfaces) to

the case of ®-stationary hypersurfaces in R*, under the assumption that D>®(v) is sufficiently pinched.

Lemma 3.2. Suppose ® satisfies (1.1) and M> — R* is ®-stationary. Then at each point on M, the
(3.2)

induced scalar curvature satisfies R < 0 and
—R < |A? < —=coR,

where
1
~ 1.09.

co =
R

Proof. Recall that @-stationarity can be written as trys (¥ (v)Sys) = 0. Diagonalising Ay, at a given
point, write k; for the principal curvatures of M and e; for corresponding principal directions. Thus,

®@-stationarity can be written as
aiki,

M-

0=

i=1

where a; =

D>®(v)[e;, ¢;]. Without loss of generality, we can assume that a; < a, < a3. Note that the
pinching assumption (1.1) yields

1Sa1Sa2Sa3S\/§.

arki+ark;
_M, we have

We have |A|2 = Zk?,R = 22i<j kikj.Writing k3 = @
2442 2, .2
ay+a 2 as+a

AP = Q1 (ky, ka) := 5 3k%+ a12a2k1k2+ 2 > 3k§,
a a3 a3

3
2 2(a; +ay — 2
R = ok ky) = 22 A2 7 A) 2020
as as as

By the Gauss equation, we have R + |A|2 = H? > 0, and hence, |A|2 > —R. Moreover, whenever
(a 1+aQ—a3)2 < 4aja, (which is guaranteed by, for instance, az < 4ay), QO is a positive definite quadratic
form, and hence, —R is nonnegative. Given that Z—?, Z—; € [1, V2], (3.2) follows from Appendix B. O

3.2. Second variation
Suppose now that M"* — R"™! is ®-stationary and stable. In Section A.2, we derive the following

second variation formula.
d2
— (3.3)

dr?

tzO(D(Mt):A4<VM,T(V)VM>—trM (lP(V)sz\,[)uz,
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where uv is the variation vector field. Note that stability and (3.3) imply that
/ |Vul? = AlAPu® > 0, (3.4)
M

for all u € CL(M \ dM). Here, A depends on the ellipticity of ®. It is important to observe that if ®
satisfies (1.1), then A > % and in particular,

1
/ |Vul? - @|A|2u2 >0, (3.5)
M

forallu € C/(M\ oM).

3.3. Sobolev inequality and its consequences

In this section, we assume that n > 3, M" is a two-sided ®@-stationary and stable hypersurface immersed
in R™*!, where ® is a general anisotropic elliptic integral. The Michael-Simon Sobolev inequality [32]
implies that for any f € CL(M),

c(/ |f|n"1) ' s/ IV 71+ | FH]
M M
(see also [5]).

Replacing f by f = , we find:

n-1

m |\ " 2 -1 n 2(n-1
G ([ ) " s [ 215 6
M M n-

By the Holder inequality,

/M Tiaali ( /M szz)é (

The ®-stability inequality implies

/M fH <n /M AP < C(@) /M v /P,

Now we use the Holder inequality on the first term of the right hand of (3.6) and conclude the following
Sobolev inequality:

<
S
0
v_

( / |f|3"2) " <Cn o) / 2. 3.7)
M M

Corollary 3.3. Suppose M" — R™! is ®-stationary and stable. Assume that By (p, p) € M has
compact closure. Then,

|Bm (p,p/2)| = C(n, ®)p".
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10 0. Chodosh and C. Li

Proof. Forany u € C'(M), such that u > 0 and Au > 0, the Sobolev inequality (3.7) and the standard
Moser iteration implies that, for any 6 € (0, 1), s > 0,

1/s
sup u < C(n,0,0,s) (p_"/ us) .
By (p,6p) Bum (p.p)

The result follows by takingu = 1, s = 1 and 6 = % O

Remark 3.4. The use of Sobolev inequality for volume lower bound was first used by Allard [2, Section
7.5].

Corollary 3.5. Suppose M — R™! is two-sided complete, ®-stationary and stable, and K is a compact
subset of M. Then each unbounded component of M \ K has infinte volume.

Proof. Let E be an unbounded component of M \ K. Suppose the contrary, that |E| < V < co. Choose p,
such that C(n, ®)p™" > V. By completeness, there exists p € E, such that dys (p, dE) > p. Then we have
V > |E| > |By(p,p)| > C(n,®)p" >V,

a contradiction. This completes the proof. O

Combining (3.7) and Corollary 3.5, the same argument as used by Cao et al. [6] implies the following
result:

Corollary 3.6. If M" — R is a complete two-sided, ®-stationary and stable immersion with at least
two ends, then there is a bounded nonconstant harmonic function on M with finite Dirichlet energy.

4. One-endedness

Through this section, we assume that n = 3, M> — R* is ®-stationary and stable. By analysing
harmonic functions on M, we will show that M has only one end, if ® satisfies (1.1) (following [6, 45]).

Lemma 4.1. Suppose that M? is a complete two-sided, ®-stationary and stable immersion in R* and u
is a harmonic function on M. Then

1
(A=) [ Purmal s [ 2P < [ vePivap @)
M M M

Jorany ¢ € Cé(M). Here, A = A(®D) is the constant in (3.4).

Proof. Fix p € M. Let k; be the principal curvatures, e; be the corresponding orthonormal principal
directions diagonalising Ay .

We first show that for any immersed hypersurface M> in R*, equipped with the induced metric,
p € M, and any unit vector v € T, M, we have

1
Ric(v,v) > ——|A[%.
V2

Write v = ), y;e;. Then y% = 1. By the Gauss equation, we have

Ric(es, ej) = ) Rm(ej, ex,ex,e) = ) (Alex, ex)Ales, e)) = Alei, ex)Ale, ex))
k k
and thus, Ric(e;, e;) =0 wheni # j and Ric(e;, e;) = X 4; A(ei, e;)A(e, ;). Therefore,
Ric(v,v) = >° )" Alej,ej)Alei, en)y} = ki(ka + ka)y} +ka(ks + k1)y3 + ks (ki + ka)y?.

i j#i

https://doi.org/10.1017/fmp.2023.1 Published online by Cambridge University Press



Forum of Mathematics, Pi 11

By Cauchy-Schwarz and the inequality of arithmetic and geometric means,

1
i+ 2k + S (k+ks)” 2 ~V2ky (ko + k3)

1 1
= ki(ky+k3) > —— k2 :__|A|2'
LS
Similarly,
ka(ks + k1) = ——Z AP, ks(ky+ k) = ———|AP
203+ K1) 2 ——I|AI%, k3(ki+Kr2) =2 ——[A[".
V2 V2
Therefore,
Ric(v,v) > —L|A|ZZ:)’[2 = _i|A|2. (4.2)
V2 et

Applying this to Vu, we conclude that:
Ric(Vu, Vu) > _i|AM|2|Vu|2.
V2
Since M is ®-stable, (3.4) yields
[oniare < [ wai voechan.
M M
Replacing ¢ by |Vu|yp, we have:
[ twupiar < [ 19oPIuP +2 [ (ol9ul(Te.719ul) + 29I9ulF)
M M M
- [ P~ [ Pwaamd. @)
M M
By the improved Kato inequality,
3
|V2ul? > gIVMI’QIVIVMIZIZ.

Combined with the Bochner formula and (4.2), we have:

A|Vu|* = 2Ricp (Vu, Vi) +2|V2ul?

3 (4.4)
> —V2|A]2|Vul? + Z|Vu|_2|V|Vu|2|2.
Thus,
AlVul| > —l|A|2|vu| + l|vu|*‘|V|Vu||2. 4.5)
\2 2
(4.1) follows from (4.3) and (4.5). m]

Proposition 4.2. Suppose ® satisfies (1.1). Then any complete, two-sided ®-stable immersion M> in
R* has only one end.
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Proof. Suppose the contrary, that M has at least two ends. Then Corollary 3.6 implies that M admits
a nontrivial harmonic function u with /M |[Vu|> < C < 0. For p > 0, take ¢ € C!(M), such that

@lBr (0.0) = 1, @1Bas(0,20) = 0 and [V < %. Then (4.1) implies that

1 4 4C
/ (A - %)|A|2|Vu|2+—|V|Vu||2 < —2f IVul* < —-.
Bar (0.,0) 2 2 P> Jm P

Here, A > \%2 by (1.1). Sending p — oo, we conclude that

|V|Vul|?> = 0.

In particular, this implies that |Vu| is a constant. Since u is nonconstant, we have that |[Vu| > 0. However,

this implies that
1
/ 1=—2/ |Vul? < oo,
M Vul* Jm

contradicting Corollary 3.5. O

5. A conformal deformation of metrics

Take M3 — R* to be ®-stable, where @ satisfies (1.1). In this section, we carry out the conformal
deformation technique used by Gulliver and Lawson [27] on M.

Consider the function r(x) = distgn+ (0,x) on M and the position vector field X. Then AX = H.
Thus, A(r2) = A(Xx?) = 2X - AX +2|VX|* = 2X - H +2n. We find:

\vj 2
Ar=" 4 HG -
r

here, X = % is the normalised position vector.

Suppose that w > 0 is a smooth function on M" \ {0}. On M \ {0}, define § = w?g. For A € R,
¢ € CL(M \ {0}), consider the quadratic form

Q0 (¢) = /M (19613 + (4R~ )¢?) i

where V, R, [ are the gradient, the scalar curvature and the volume form with respect to g, respectively.
One relates the geometric quantities in g and g as follows:

Vel =w?|VelZ, du=w"dj.
Moreover, we have
w?R=R-2(n—1)Alogw — (n—1)(n—2)|Viogw|.

Denote by O,, (¢) := Q,, (wz_Tntp). We compute:

_ 2-n 5 - n
=/A; (w V(w2 (,0)|§+(%R—/l)w2 "gaz)w du

= /M (w"_2|w2_TnV¢,0 - ”T_2¢w_%VW|§ + (%WZR - wle)<,02> du
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Vo — 2 2gonogw|2 +(5 Lw2R — w?)e? )

—)|V10gw|2ga2+(2 w?R - w2/l)<p)

)
)
- [ 1wtz + (

= / (|V¢p|§, + %Rga - (g (A logw + @IVlogWIE) +w2/l) (,02) du.
M

N

N

(|w| e V<¢2>Vlogw>+

_2 .
ogw + (n 1 i |Vlogw|§,+%w2R—w2/l) 4,02) du

13

We now choose w = r~! on M \ {0}. Note that (dropping the g subscript on the norm of the gradient)

-2 Vr[?
Alogw + 1 |Vlogw|* = n| };l
2
n H@E-v) n+2|Vr]?
= —_—— + .
r2 r 2 2

Therefore,

Qw(so):/ (|V90|2+ IR¢? +(2(n+rH(x v)—"+2|vr|) ) —2¢2)dﬂ
> /M (|V¢|2+%R¢2+(§ (”—%ﬁrsz—ﬁ— "T+2|Vr|2) _/1) r’zgoZ) du
= [, (6l = (R =200 ¢ (5 (1= dy = 2219F) =) ) e

for 8 > 0 to be chosen later.
By the Gauss equation and Lemma 3.2,

=|APP+R < (1 - co)R.

Combining with |Vr| < 1, we have
Quie> [ (196P+ (3 4ptco = DIRG + (50252 = o) - 2) r26?) .
M

On the other hand, (3.5) and (3.2) imply that for every ¢ € C1(M),

1
[Vel? + —chz) du > 0.
Juler+

Note that R < 0. Thus, by choosing

_4(\/%—%) _n(n=2 1) n[(n-2 n(co-1)
" n(cp-1)° 20 2 28] 2| 2 8(%—%)

5.1

(5.2)

we have that O, (¢) > 0 for all ¢ € CL(M \ {0}). We summarise these in the following proposition.

Proposition 5.1. Suppose n > 3, (M™, g) is an immersed hypersurface in R"™', A, ¢ € R, such that:

(96l + AR avy = 0. v e L,
M
A>L co>1, |AP < —coRum.
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Then the conformally deformed manifold (M \ {0}, § = r~'g) satisfies

AL (-A+1R) > A,

_n[n=2 _ n(c-1
where/l—z( > 8(A_%)).

6. Volume estimates

We first recall a diameter bound for warped p-bubbles in 3-manifolds satisfying 41 (—A + %R) >4>0.

Lemma 6.1 (Warped p-bubble area and diameter bound). Let (N3, g) be a 3-manifold with compact
connected boundary satisfying

L(-A+3iR) > 2> 0. 6.1)

Suppose there exists p € N, such that dy (p,dN) > f/_% Then there exists a connected open set €
containing ON, Q C Bsz (ON), such that each connected component of 0Q \ dN is a 2-sphere with area
Va

at most 87” and intrinsic diameter at most f—&

Proof. This is an application of estimates for the warped p-bubbles (see, e.g. [9, Section 3]). Since N
satisfies (6.1), there exists u € C®(N), u > 0 in N, such that

Ayu < =122 - Ry)u. (6.2)

Take @9 € C* (M) to be a smoothing of dy (-, dN), such that | Lip(¢p)| < 2 and ¢ = 0 on d N. Choose
e € (0, %), such that &, i/lﬂ' + 2¢& are regular values of ¢g. Define

Yo—& T
= a e
ita

Q={xeN:-F<p<F}landQ={x € N: -7 < ¢ < 0}. We have that | Lip(¢)| < @.Inﬂl,
define h(x) = —% tan(e(x)). By a direct computation, we have

A+ h?=2|Vh| > 0. (6.3)
Minimise

A(Q) = / udH?* - | (xa - xo,)hudH’,
a0 Q

among Caccioppoli sets, Q in Q; with QAQ is compactly contained in Q. By [9, Proposition 12], a
minimiser Q exists and has regular boundary. We take Q to be the connected component of {x € N : 0 <
@o(x) < £} UQ that contains N (in other words, we disregard any component of Q that is disjoint from
ON). We verify that Q satisfies the conclusions of Lemma 6.1. Indeed, for any connected component X
of 0Q N Qy, the stability of A implies [9, Lemma 14]:

/ Vg u — $(Ry — A= 2Ks)¢?u + (Anu — Asu)y*
>

=L VNu vy - LA+ R+ 2V v)Pu 2 0, Yy e CH(Z). (6.4)
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Taking ¥ = u~7 and using (6.2), (6.3), we conclude that

MMSZ/KyMSSH = |ms%;
z

Note that we have used Gauss—Bonnet, which also implies that X is a 2-sphere. The diameter upper
bound follows from [9, Lemmas 16 and 18]. ]

For the next lemma, recall that r(x) = distgm (0, x).

Lemma 6.2. Below, k > 2 and N* is a compact connected manifold, possibly with boundary.

1. Consider an immersion N* — R™ \ {0}. Consider p,q € N with dz(p,q) < D, where § = r™%g

and g is the induced metric on N. Then r(p) < ePr(q).

2. Consider animmersion ¢ : N — R™ with0 € ¢(N). Consider p,q € N\¢~'(0) withdz(p, q) < D.
Write g for the induced metric on N, and let 7(x) = dg4 (¢71(0), x) denote the intrinsic distance on N.
Then 7 (p) < eP7(q).

Proof. We first establish (1). Choose a curve y : [0, L] — N, parametrised by g-unit speed, connecting
p and g, such that L < D + &. Using |Vr|g < 1, we compute

o2 (@) ~togr(p) = [ 4 oa Gy
=£5wmﬂaWMWMr
sALMﬂm*wmwxmwr
s[frwo»*wx0Em
=LLW0mw=LSD+a

Thus, r(gq) < eP*€r(p). The result follows by sending & — 0.
For (2), we begin by noting that |V#|, = 1 and r(x) < 7(x) for any x € N. Thus, arguing as above

L L
1%%@4%ﬂms£fwmrwwmmslrwmrwvmm=L

The proof is completed as above. O

Proof of Theorem 1.4. Let r = distga(-,0) and 7 = distps ¢(-,0), and consider g = r2g.Fix p > 0, and

consider the geodesic ball By, (0, e & 0). By Proposition 4.2, M\ By (0, e & ©) has only one unbounded
connected component E. Denote by M’ = M \ E. We claim that 9M’ = JE is connected. Indeed, since
M’ and E are both connected, if M’ has more than one connected component, then one can find a
loop in M intersecting one component of M’ exactly once, contradicting that M is simply connected.
Applying Lemma 6.1 to (M’ \ {0}, &), we find a connected open set Q in the i/—’/ll neighborhood of dM’,

such that each connected component of 9Q \ d M’ has area bounded by 87” and diameter bounded by %/—’/11

(we emphasise here that the distance, area and diameter are with respect to g). Let M, be the connected
component of M’ \ Q that contains 0.

We make a few observations about M. First, we claim that M \ M is connected. To see this, let M
be the union of connected components of M’ \ Q other than My. Then M \ My = M; UQ U E. Note
that each connected component of M; shares a common boundary with Q. Since Q is connected, so
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is M1 U Q. Next, we claim that M, has only one boundary component: otherwise, since both M, and
M \ M, are connected, as before, we can find a loop in M intersecting a connected component of d My
exactly once, contradicting that M is simply connected.
Denote by £ = dMj. By (2) in Lemma 6.2, minyey 7(x) > p. Since By (0, p) is connected, this
implies that By (0, 0) C Mp. On the other hand, by comparing intrinsic to extrinsic distance, we see
Sn

that max,ex r(x) < eVip, so

107t
|Z|g—/dﬂ /rdu<epr2I efp
Thus, Corollary 3.1 implies that

[Pllc!

Pl s
Myl £ ———mM8M——— W oMy, <
Mol < 3min, g @(v) 1ploMol < 3/1 min

1Bum (0, p)g < T
M p & yesS3 q)(v)p

This proves the first part of the assertion.

Now consider a connected component Xy of 9By (0, p), and let E be the connected component of
M\ B (0, p), such that F contains X. Since M is simply connected, we must have that 0E = X. Apply
Lemma 6.1 to M \ E, and obtain a connected surface %, such that distg (X9, ) < % and diamg () < i/—’/fl
(the proof that X is connected follows a similar argument as used above). By the triangle inequality, we

have that diamg (Zg) < Z/—% Thus, Lemma 6.2 implies that

max r(x) < e‘f m1n r(x).
X€X) €y

This proves the assertion. O

Proof of Theorem 1.7. The proof is very similar to that of Theorem 1.4. We apply Lemma 6.1 to

(M \ {0},& = r~2g) and find a region Q in the i/—’I neighborhood of dM, such that each connected

component of Q \ d M has area bounded by (again, the distance and area are with respect to g). Let
M’ be the connected component of M \ Q that contains {0}. Then M’ is connected.

_sx
Denote by £ = 9M’ and pg = e¢ V1. By (1) in Lemma 6.2, min,eq r(x) > po. In particular, this
implies that M c M’. We have

8
3], = /du - /rzdﬂ <3l < =,
b b 4

Therefore, Corollary 3.1 implies that

M | < M) < IPllc x| 87| Pllc
&= T 3min, g ®(v) ¢ T 3Amin, g P(v)’

This completes the proof. O

Remark 6.3. In the more general case where we do not assume that M is simply connected or has one
end (or boundary component), similar proofs work out. The only modification here is that My in the
proof of Theorem 1.4 (or AM’ in the proof of Theorem 1.7) has connected components bounded by
b1(M) + E, where E is the number of ends if M is complete, and is the number of boundary components
if M c B1(0). Thus, we have

|Bpm,r(0)| < Vo(bi(M) +E),

https://doi.org/10.1017/fmp.2023.1 Published online by Cambridge University Press



Forum of Mathematics, Pi 17

if M is complete and
M| < Vi(bi(M) + E),

it M c B;(0).

A. First and second variation

We derive first and second variations of ® with emphasis on our geometric applications (see also [18,
Appendix A] and [54, Section 2]). For M"* — R™! a two-sided immersion, set

D(M) :=/Md>(v)

for @ : R™*! — (0, c0) an elliptic integrand.

A.l. First variation

Consider a 1-parameter family of surfaces M; with normal speed at t = O given by uv (with u €
CL(M \ OM)). Recall that v = —Vu. We find

d

dt

o(M,) = / (Hud() - Dyu®(v))
t=0 M

=/ (Hd>(v)+divM(Dd>(v)T))u

M

= / (H®(v) +divy (DP(v) — (D, @(v))v)) u
M

- / (H®(v) + diva (DO(v)) — (D, ®(v))H) u.
M

Now, we note that we have that D®(v) - v = ®(v) by the Euler theorem for homogeneous functions.
Thus, we find that

d

dt

CI)(Mt)z/ divy (DD(v))u. (A.1)
t=0 M

Thus,
Hgp = divy (D®(v)), (A2)

vanishes if and only if M is a critical point of ®. Let us rewrite this as follows (with {e;}", a local
orthonormal frame for M):

divy (DO(v)) = 3 (De, DO(Y)) - ¢;
i=1

- Z D*®(v)[D,,v, e;]
i=1

= Z D*®(v)[Sx(ei), eil,
i=1
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for Sy; the shape operator of M. Let us define ¥(v) : TR™! — TR™! by ¥(v) : X — D>®(v)[X, ]
(this is just the (1, 1)-tensor associated to D>®(v) via the Euclidean metric).
Then, we find
Hep =trpy (P (v)Spr). (A3)
Note that for ®(v) = |v|, we have

DO(v) = vV, ¥(v) = v Id=|v| v P,

so in particular, when |v| = 1, we find ¥(v)|r, s = Idz,x. Thus, this recovers the usual mean curvature.

A.2. Second variation

Recall the tube formula:
S=-V2u-Su

(where we are regarding VZu as a (1, 1)-tensor via gs). Note also that the trace of a (1, 1)-tensor is
independent of the metric. Thus, we find

He = trp (P (v)Viu — ¥ (v)S3,u + ¥ (v)'Su).
Note that
P(v) = =(Dva'P)(v).
Hence,
Hg = try (=P (v)Vu — ¥ (v)S3,u — (Dvi,P) (v)Spr)-

Integration on M gives

d2
| @0 = / (Vu, ¥ (v)Vut) — trag (‘P(V)SIZ\,I) 2. (A4)
t=0 M
Thus, stability implies that
/ |Vul> = AJAPPu? 20, VYueCL(M\IM). (A.5)
M

Here, A depends on the ellipticity of ®. In particular, if @ satisfies (1.1), then (3.3) implies that for
®-stable surfaces M, we have

1
/ \Vul> = —|Ap*u® 20, YueCLM\oM). (A.6)
M V2

Note that when @ (X) = |X|, we have seen that ¥(Y) = |Y|~' Id—|Y|3Y ® Y”. Hence,

Dx¥(v) = Py+X)=2(X-v)Id-X &' —v® X".

11
dtle=0

In particular, Dy, ¥ (v) |T,, M = 0. Thus, we recover the standard second variation formula in this case.
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A.3. First variation through vector fields

We also deduce the first variation formula of ® through variations that are not necessarily normal to M.
We compute as follows:

/ O(v)divy X

M

= / O(v)divy XT +®(v)(X - v)H
M

= / diva (@(V)XT) = V(D(v)) - XT + d(v)(X - v)H
M

= / divy (@(V)X") = Dpo(yyrv - X' +®@(v)(X - v)H
M

= / divy (@(V)X") = Dpo(yr X' - v+ ®(v)(X - v)H
M

_ / divas ()XY + D payyr (X - v) = Dpoyr X - v + @) (X - V)H
M

= / divys (@(V)XT) +div((X - v)DP(V)T) = (X - v) divy DO(v)T
M
=~ DpopyrX - v+®(v)(X - v)H

= / —(X -v)divy DO(v)T - DpopyrX - v+@(v)(X -v)H
M
+/ OWV)X -+ (X-v)DD(v) -7
oM
= / —(X - v)divyy DO(v) = Dpgyr X - v +/ O(V)X -+ (X -v)DD(v) - 1.
M oM
Thus, we find that if He = 0, then

/ O(v)divyy X + DpgyrX - v = / O(V)X -n+ (X -v)DO(v) - 1. (A7)
M oM

B. Some computations for quadratic forms

In this section, we explicitly compute the constant cq that appeared in Lemma 3.2. The approach is
elementary.

Lemma B.1. Let a| < ay < a3 be positive constants, such that Z—? < V2. Consider quadratic forms

2,2 2, .2
ajta 2 as+a
Q1(kika) = 25203 + T2 k4 25243,
a; a; a;
2 2(a; +as — 2
Os(ki,kp) = 2002 Mt az = ay) o 2620
as as as
Then we have Q| < coQ», where
1
co = ~ 1.09.

V-1
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Proof. Write @ = gt B = 2, with 272 <@ < B < 1. Then

01 (k1, ko) = (1 +a?)k? +2aBkika + (1 + Hk3

2 2 2
af l+a”+p6° ,
=(1+a?) |k + ky| + ————k;. B.1
( a)(l 1 +a? 2) l1+a2 2 B.1)
. . af l—ﬁ—(tﬁ+(12
Under the substitution x = k; +Wk2,y = ky, we have kj+ky+(—ak;—Bky) = (1 —a)x+T

Thus, by Cauchy-Schwartz,

(01 = Qo) (k1, k) = (ki + ko — aky — Bk2)?
1-B-aB+a? )2

((l—a)x+ — T3 a2

1+a?+p?
Tazlgy2)=le1(k1,k2),

IA

Cq ((1 +a?)x% +

2 2\2
where ¢; = U=2) +(1_ﬂ_“ﬁ+“ ) e’ Thi gives Q] < Q2.Using2‘% < a < B < 1,wehave:

1+a? 1+a? ’ 1+a2+pB2" = l-c;
(1-275)2 [1-27% 1+l o3
c1 < I + I . ) 2 = E — \/E
1+ 2 1+ 3
The result follows. O
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