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Abstract: Construction projects are dynamic by nature because of continuously moving resources such as heavy equipment and workers. 

This nature necessarily results in proximity hazards, especially on a large-scale construction site. Especially, struck-by accidents still account 

for about 38% of the total injuries in the US construction industry. Although there have been several efforts to mitigate the hazards, 

the statistics show that the hazards still persist. To provide a practical solution to this problem, this study proposes an Internet of Things 

(IoT)-based proximity warning system that provides an alert to workers whenever they are close to heavy equipment. The system includes 

equipment protection units (EPUs), personal protection units (PPUs), and Bluetooth low energy (BLE) beacons. A framework of signal 

processing and alert logic was developed to estimate the distance between PPUs and EPUs and to activate alerting modules timely. By 

calculating the distance based on the signal strength using a particle filtering method, EPUs and PPUs provide auditory and vibration alerts 

to equipment operators and workers when they are in an alert range. Also, practical alert logic was developed based on the site worker’s 

feedback. This study validates the system performance with different signal processing methods and alert logic through five real-world field 

tests. The system achieved a precision, recall, and F1-score of 89.21%, 97.45%, and 0.931 from the field tests, respectively. Also, positive 

feedback was obtained from the participating workers. The proposed IoT-based proximity warning system has a high potential for a practical 

solution to proximity hazards in actual construction sites. DOI: 10.1061/JCEMD4.COENG-12417. © 2022 American Society of Civil 

Engineers. 

Author keywords: Construction worker; Internet of things (IoT); Proximity safety; Mobile sensing; Bluetooth low energy (BLE). 

 

Introduction 

Construction projects inherently involve various resources moving 

dynamically, such as heavy equipment and workers. The dynamic 

nature of construction projects has exacerbated a variety of hazards 

in construction sites as the sites have been enlarged and compli- 

cated. Due to this tendency, in 2020, 21.2% of the fatal injuries 

in the private industry sector were in the construction industry ac- 

cording to statistics reported by the US Department of Labor 

(2021). Especially, struck-by accidents still accounted for about 

40% of the total 1,008 fatal injuries in the US construction industry 

in 2020 (US Department of Labor 2021). 

Although advances in technologies can be used for safety man- 

agement, safety issues in jobsites have remained unsolved. Tradi- 

tionally, safety measures on jobsites mainly focused on the lagging 

information obtained after accidents. Here, the lagging information 

is defined as historical information generated after accidents hap- 

pen (Hinze et al. 2013). For example, safety hazard statistics and 

corresponding safety practices can only be available after a certain 

number of accidents are accumulated. Once an accident occurs, the 

safety manager collects information such as the type of the given 
 

1Assistant Professor, Dept. of Construction Management, Univ. of 

Houston, Houston, TX 77204. Email: kkim48@central.uh.edu 
2Assistant Professor, Dept. of Mechanical Engineering, North Dakota 

State Univ., Fargo, ND 58108. Email: inbae.jeong@ndsu.edu 
3Professor, School of Civil and Environmental Engineering, Georgia 

Institute of Technology, Atlanta, GA 30332 (corresponding author). 

ORCID: https://orcid.org/0000-0002-3677-8899. Email: yong.cho@ce.gatech 

.edu 

Note. This manuscript was submitted on March 1, 2022; approved on 

September 6, 2022; published online on November 21, 2022. Discussion 

period open until April 21, 2023; separate discussions must be submitted 

for individual papers. This paper is part of the Journal of Construction 
Engineering and Management, © ASCE, ISSN 0733-9364. 

tasks, accident context, type of related objects, and safety-related 

statistics. After sufficient information is collected, conventional 

safety practices, including safety training, safety education, and uti- 

lization of task-specific personal protective equipment (PPE), are 

implemented based on the accumulated lagging information. 

Despite the widespread utilization of those practices in construction 

projects, they are not an effective way to properly allow workers to 

take proactive actions against a dangerous situation. As the lagging 

information does not contain contextual information that the work- 

ers are experiencing, the aforementioned practices cannot show the 

best performance in a dynamic situation. To overcome this prob- 

lem, the leading information is utilized for proactively recognizing 

the hazards on a jobsite. As opposed to the lagging information, the 

leading information is defined as information generated on a par- 

ticular jobsite on a real-time basis (Kim et al. 2017b). For example, 

the leading information includes the current surrounding hazards 

such as moving objects, holes, pits, and electrical wires. If workers 

can find and obtain this information, proactive actions can be taken, 

and the hazards can be mitigated in time. 
While several research efforts have been made to provide pro- 

active information to workers to prevent struck-by accidents, prac- 

tical solutions are still lacking. Common practical challenges in 

existing efforts are the lack of infrastructure for monitoring a con- 

struction site that has not only effectiveness but also scalability. For 

example, a system that utilizes wireless communication such as ra- 

dio frequency sensing and global positioning system (GPS) tech- 

nologies requires a cumbersome infrastructure or expensive sensing 

devices to enable the system to detect and track the movement of 

objects of interest (Brilakis et al. 2011; Kim et al. 2015, 2017b). 

Likewise, a system that uses vision cameras for monitoring objects 

requires numerous cameras covering a large-scale construction site 

to reduce blind spots (Park et al. 2016b). Installing and maintaining 

many cameras in a changing dynamic construction site is not a 
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feasible solution. In addition, vision-based systems require higher 

computation cost and data transmission capacity (Huang et al. 

2021). This indicates that the construction industry still needs a 

practical solution that can reduce the risk of a struck-by accident. 

This study proposes a proximity safety sensing and alerting sys- 

tem that provides an alert to workers and heavy equipment oper- 

ators when they are in proximity hazard situations by using an 

Internet of Things (IoT) technology with the least required infra- 

structure. Multiple field tests were conducted in actual construction 

jobsites to validate the performance and utility of the system. The 

system estimates the distance between equipment and workers by 

using Bluetooth low energy (BLE) sensors attached to the equip- 

ment. By calculating the distance with the signal strength of the 

sensors, the system detects the workers at a certain distance and 

provides alerts to the equipment operator and the worker simulta- 

neously. Meanwhile, all data related to the hazard, including sensor 

signal, worker identification number, and equipment identification 

number, are uploaded and stored in a cloud server. Then, the data 

are visualized in the web user interface so that the safety manager 

can monitor the safety condition of the jobsite on a real-time basis. 

To validate the system, the system is implemented and deployed on 

different construction sites. From these field tests, the performance 

of the system is evaluated under uncontrolled environments, and 

lessons about implementing the system on an actual jobsite are 

investigated. 

 

 

Literature Review 

The proximity safety sensing and alerting system provides a warn- 

ing to equipment operators, workers, or both when a relative dis- 

tance between entities is within a predefined range so that they can 

proactively recognize a hazardous situation surrounding them. 

Various types of warnings can be utilized, including visual, acous- 

tic, and vibratory signals. One of the most dominant features that 

categorize proximity safety sensing and alerting systems is calcu- 

lating distances between entities of interest using different modal- 

ities. Based on the calculated distances, the system can decide 

whether it should provide a warning or not. In addition, proximity 

safety sensing and alerting systems can be characterized by com- 

munication methods for transferring, storing, and processing data. 

In this context, this section reviews existing proximity sensing and 

alerting techniques in construction safety. 

In general, proximity safety sensing and alerting systems can be 

classified according to methods of deriving a spatial relationship 

between entities of interest, which include GPS, vision-based mon- 

itoring techniques, and wireless sensing technologies. Each method 

utilizes different modalities to calculate distances between entities 

and has distinguishable advantages and disadvantages. 

GPS uses triangulation to determine the absolute location of 

a receiver in three-dimensional coordinates. The proximity between 

the objects of interest, such as workers and heavy equipment, 

can be measured by using the absolute locations of the objects 

(Pradhananga and Teizer 2013; Razavi and Haas 2010; Song 

et al. 2006; Wang and Razavi 2016; Wu et al. 2013). A framework 

for monitoring a collision between large haulage equipment in dam 

construction was developed based on its location derived from GPS 

(Wu et al. 2013). Speed and heading direction, as well as two- 

dimensional coordinates, were considered to reduce false warnings 

in measuring proximity between objects (Wang and Razavi 2016). 

However, the signal strength is vulnerable to factors such as cli- 

mate, ionosphere, troposphere, and electromagnetic waves. It also 

requires a wide field of view and fewer lines of sight occlusion 

near the receiver. Moreover, expensive investments for additional 

hardware are required for high-accuracy localization (Pradhananga 

and Teizer 2013). Wang and Razavi (2016) tried to fuse other sen- 

sor data such as IMU with GPS because it helps improve accuracy. 

However, they considered only one piece of equipment and worker; 

therefore, other important factors such as site layout and equipment 

operations were not taken into account. Also, the experiments in 

this study were conducted in a controlled environment. Thus, it 

did not reflect real-world scenarios involving multiple equipment 

and workers. 

The vision-based monitoring technique uses one or multiple and 

two or three-dimensional cameras to identify objects without any 

additional device such as positioning tags or other sensors. The spa- 

tial relationship between objects of interest is derived by detecting 

and localizing the objects based on their pixel intensity and their 

changes in two or three-dimensional space. Then, proximity can be 

calculated and measured based on the spatial relationship from im- 

ages. By using an image-based object tracking algorithm, object 

locations, categories, velocities, and violations of safety rules were 

identified to assess safety conditions in earthmoving and surface 

mining activities (Chi and Caldas 2012). A vision-based safety as- 

sessment system using fuzzy inference logic was developed to 

monitor struck-by accidents on construction sites (Kim et al. 2015). 

Monocular images were utilized to track the locations of multiple 

objects, and their proximity and crowdedness were used to evaluate 

their safety levels. The fuzzy inference-based safety assessment 

system was integrated with augmented reality in a wearable device 

so that the derived results can be intuitively visualized to improve 
workers’ recognition of hazards (Kim et al. 2017b). In addition to 

the applications with fixed cameras, an unmanned aerial vehicle 

(UAV)-assisted proximity monitoring system was developed with 

a deep neural network-based object localization (Kim et al. 2019, 

2020). However, it is impractical in terms of power supply and un- 

safe to keep a UAV over construction workers and equipment long 

period of time. Vision-based monitoring techniques have advan- 

tages in the automation of detecting and tracking objects due to 

the advance in image classification algorithms (Fang et al. 2018; 

Kim et al. 2017a) and in the capability of recognizing multiple ob- 

jects without any additional tag or sensor. However, image sensing 

techniques are difficult to perform well under harsh outdoor cir- 

cumstances such as dust, rain, snow, or night environments. Also, 

it provides a restricted result in line-of-sight occlusion (Kim et al. 

2017b). 

The most widely used wireless sensing technologies in con- 

struction include radio frequency (RF) sensing, ultrawide band 

(UWB), BLE, ultrasonic, and magnetic field. Basically, these tech- 

nologies measure the distance between objects by using the signal 

strength of tags or sensors mounted on objects. Based on the mea- 

sured distance, a warning is provided to users, e.g., operators and 

workers, for informing them of approaching objects when the ob- 

jects are within the predefined warning range (Fang et al. 2016; Ju 

et al. 2012; Lee et al. 2012; Park et al. 2016b). Different types of 

wireless sensing technologies, including RF identification (RFID), 

Bluetooth, and magnetic field, were evaluated in terms of the ac- 

curacy of measuring the warning distance and false warning rate in 

the empirical experiment (Park et al. 2016b). In this study, it was 

found that the proximity sensing system utilizing Bluetooth outper- 

forms others in terms of installation, cost, and time for calibration 

while showing similar performance. UWB emits short pulses with 

low power and filters out the reflected signal to estimate accurate 

location results for distance calculation (Cho et al. 2010; Han et al. 

2019; Maalek and Sadeghpour 2016). RF-based systems can get 

distance information by only tracking the signal intensity of tags. 

Also, it has little impact on the occlusion problem and illumination 

conditions (Zhang et al. 2017). However, it is limited in indoor 
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environments due to multipath effects and also observed metal in- 

terference (Cho et al. 2010). BLE is a wireless technology capable 

of exchanging data, communicating over short distances, and con- 

necting to several devices in real-time simultaneously through an 

ad-hoc network. It has been widely used because of its rapid con- 

nectivity, low-cost hardware, low energy consumption, and mini- 

mal infrastructure requirements. Bluetooth has been successfully 

evaluated for many applications, and the capabilities of this system 

could potentially detect and alert workers during hazardous prox- 

imity situations (Park et al. 2016b, 2016b). An ultrasonic-based 

sensor system and a pulse radar-based system have been developed 

for the prevention of backing accidents in construction work zones 

(Choe et al. 2014) with a formalized framework for a sensor-based 

proximity sensing system proposed by Choe et al. (2013). Magnetic 

field sensing technology has been used in underground mining, 

which showed relatively good performance among the other com- 

pared devices. However, the disadvantage of the magnetic field de- 

vice is that the installation and setup are difficult, the cost is 

relatively high, and there is no calibration ability, meaning it re- 

quires a change of antenna to modify the range limit, which adds 

more cost (Park et al. 2016b). Table 1 shows the summary of the 

literature review on proximity alerting systems with different sens- 

ing types. 

Among various proximity measuring techniques, this study de- 

ployed a BLE-based proximity safety sensing and alerting system 

for several reasons. First, a BLE-based system has appropriate scal- 

ability for deploying the system on a large-scale construction site. 

Second, it does not require a heavy infrastructure to communicate 

between entities. The system can be deployed with a minimum in- 

frastructure that can be easily carried like a smartphone or a cellular 

hotspot. While other technologies require cumbersome equipment 

or devices to cover a large-scale jobsite, a BLE-based system can 

cover a large-scale jobsite by adding small-sized BLE beacons. 

Moreover, the sensor calibration process is only required once at 

the beginning of implementing the system. Last but not least, com- 

pared to other wireless sensing technologies, BLE shows robust 

and reliable accuracy in measuring proximity (Park et al. 2016b). 

This feature is essential for developing a practical solution to prox- 

imity hazards in construction sites. For these reasons, BLE was se- 

lected as a communication protocol of the proposed proximity 

safety sensing and alerting system in this study. 

 

 

System Architecture 

The proximity warning system uses two types of devices: personal 

protection unit (PPU) and equipment protection unit (EPU). A PPU 
is embedded in a worker’s safety vest and an EPU is attached to the 

equipment. PPUs and EPUs use a multiwireless-protocol micro- 

processor that supports WiFi, Zigbee, and Bluetooth. Fig. 1 illus- 

trates the overall architecture of the proposed proximity warning 

system. In Fig. 1, three types of data flow do not interfere with each 

other. 

PPUs sense the signal strength from the Bluetooth beacons that 

are attached to equipment and periodically broadcast signals with 

10 Hz frequency and estimate the distance to nearby beacons (Blue 

dash lines in Fig. 1). A PPU checks if the worker who carries the 

PPU is within a specific range to equipment from the estimated 

distances. If an imminent accident is expected, it gives an alert 

to the worker with vibration and noise. Then, the PPU stores the 

information about the near-accident event, including the time, lo- 

cation, and equipment (Red dash lines in Fig. 1). The information 

generated by PPUs is sent to a cloud server through WiFi or 4G/5G 

cell networks so that a safety manager can remotely monitor the 

time and location of the event and statistical summary of the daily 

events (black solid lines in Fig. 1). Moreover, the manager can ad- 

just system configurations and parameters in the server, and the 

changed configurations and parameters are sent to EPUs and PPUs 

so that they can be reflected on a real-time basis. Whenever a 

nearby PPU expects an imminent accident, the EPU also gives 

an alert to the equipment operator with vibration, noise, and direc- 
tion. The PPUs and EPUs were designed to run for 10–12 h to re- 

main active for daily work on a construction site. Fig. 2 illustrates 

the information flow framework for signal processing and alerting 

 

 
Table 1. The summary of the literature review 

Case study 

Reference Type of sensor Type of alert Advantage Disadvantage in jobsites 

Pradhananga and GPS Visual and auditory Wide outdoor area coverage, Only for outdoor, Signal interfered Y 

Teizer (2013)   No line-of-sight issue by surroundings, Low accuracy  

Wang and Razavi GPS-aided IMU Visual, auditory and More accurate, Identify Only for outdoor, Signal interfered N 

(2016)  vibratory speed of equipment by surroundings  

Kim et al. (2019, Vision Visual and auditory Low-cost, Identify position, Line-of-sight issue, Inaccurate in Y 

2017b) and Zhang   speed, and category low or changing lighting conditions  

et al. (2020)      

Cho et al. (2010) 
and Maalek and 

UWB — Applicable for both outdoor 
and indoor sites, Low power 

Require install multiple receivers, 
Sensitive to metal and line-of-sight 

N 

Sadeghpour (2016)    view  

Fang et al. (2016), RFID Visual and auditory Get distance by only Require install multiple readers, Y (Controlled) 

Lee et al. (2012), and   tracking the signal intensity Limited detection range change,  

Park et al. (2016b)   of tags, Little impact on the Low accuracy of data, Multipath  

   occlusion and illumination signal transmission, and Metal  

    interference  

Park et al. (2016b, BLE on Visual and auditory Low-cost, easy to calibrate, Smartphone: limited function Y (Controlled) 

2017a) and Park and smartphone  Easy to change detection development and utilization  

Cho (2017)   ranges options, High battery consumption  

Kanan et al. (2018) Ultrasonic Auditory and Compact size, Low price, Limited detection range, Low N 
  vibratory Lightweight, and function accuracy of data, Inconsistent  

   for daytime and night detection, Small coverage area  

Park et al. (2016b) Magnetic field Auditory Varied proximity detection Limited detection range change, Y (Controlled) 

   range Inaccurate near metal or motors  
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Fig. 1. Overall architecture of the proximity warning system. 

 

 
 

 

Fig. 2. Information flow framework for signal processing and alerting logic. 

 

 
logic. The framework consists of sensor signal collection, beacon 

parameter estimation, distance estimation, and utilization of alert- 

ing logic. Once the sensor signals are collected from every beacon 

nearby in the server, the beacon parameters are estimated to min- 

imize the noise in the signals. The estimated parameters are utilized 

to estimate the distances between the beacons and PPUs. Sub- 

sequently, the distances are used as criteria for the alerting logic 

of the system. Based on the logic, the system decides whether 

the alerting module is activated or not. 

 

Beacon Parameters Estimation 

BLE beacons, which are small-sized signal transmitters with low 

power consumption, are adopted in the proximity warning system. 

As it offers an easy-to-deploy, efficient, and inexpensive way to set 

up, it is an ideal tool for proximity detection and localization in 

a construction site where limited wireless communication infra- 

RSSI ¼ −ð10 × NÞlog10d þ T ð1Þ 

where N = path loss exponent; d = distance to the beacon; and T = 

RSSI value at 1 m distance from the beacon. 

However, the beacon parameters N and T change over time 

as their batteries are discharged, and thus all beacons have slightly 

different parameters. In order to accurately estimate the parameters 

of each beacon, the beacons are attached to equipment, and RSSI 

values are measured before they are deployed. The RSSI values 

are collected with PPUs in different positions, distances, and 

orientations. 

The measured RSSI values are then used to estimate the beacon 

parameters. As RSSI measurements have a considerable amount 

of noise, a maximum likelihood estimator is adopted to handle 

the noise and probabilistically estimate the parameters. Using the 

Gaussian distribution model (Haeberlen et al. 2004), the likelihood 

function of RSSI measurements is defined as in Eq. (2) 

structure is configured. A PPU is able to measure the received signal 

strength indication (RSSI) values from multiple BLE beacons and 
LðN ; T ; :: :;  N ; T ; σ; mÞ¼  

1 ffiffiffiffiffiffiffi 
ðmi;j;k −RSSIðdi;j ;Nj ;Tj ÞÞ

2 

2σ2 

estimates the distance to the beacons. The characteristics of RSSI 

values can be determined based on beacon parameters including 

the path loss exponent and the RSSI value at a 1 m distance from 

1 1 n n 
i j k 2πσ 

ð2Þ 

the beacon. A common signal propagation model to describe the 

relationship between RSSI and distance is as shown in Eq. (1) 

where n = number of beacons; mi;j;k k-th RSSI measure- 

ment of the j-th beacon at the i-th measurement location; 

− 
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RSSI di;j; Nj; Tj = expected RSSI measurement of the j-th bea- 

con at the i-th measurement location with parameters Nj, Tj. 

The estimated parameters are sent to a cloud server, and the 

parameters are distributed to PPUs deployed on the construction 

site. Then, the PPUs update their distance estimation process with 

the distributed beacon parameters. The parameter update process is 

executed automatically and seamlessly so that the predeployed 

PPUs do not need to be manually updated. 

 
Distance Estimation 

As RSSI measurement is a noisy process, the distance estimated 

from the RSSI value has a noise, even though the parameters 

are accurately estimated. In order to filter out the noise in the RSSI 

measurements, three types of filtering algorithms are adopted: 

mean filter, extended Kalman filter, and particle filter. The filtering 

algorithms are applied to the RSSI values that are collected by a 

PPU to estimate the distance between the PPU and equipment. 

The mean filter is a filtering algorithm that calculates the 

average of the recent signals collected for a time period. As the 

noise in the RSSI measurements is modeled to follow the Gaussian 

distribution, the mean value is able to effectively filter out the 

noise of the measurement process. However, since RSSI measure- 

ments may contain a considerable noise, a trimmed mean is 

used to remove a small percentage of the largest and smallest 

values. 

While the mean filter estimates the distance to each beacon, the 

extended Kalman filter used in this study is designed to directly 

estimate the distance to each beacon using the RSSI measurements. 

The extended Kalman filter is used independently to estimate the 

The distance estimation algorithm using a particle filter starts 

with randomly distributed candidates. The importance weights 

of the candidates are evaluated using the likelihood function de- 

fined in Eq. (3) 
 

1 ðmj;k −RSSIðdp;j ; Nj ; Tj ÞÞ 

ð ;  Þ¼ p

2
ffiffiffi

π
ffiffiffi

σˆ
ffiffi ð3Þ 

where p = candidate’s location ðx; yÞ; mj;k ¼ k-th RSSI measure- 

ment of the j-th beacon; and RSSIðdp;j; Ncj ;  Tb
jÞ = expected RSSI 

measurement of the j-th beacon at p with parameters Nj, Tj. Fig. 3 

illustrates the particles used in estimating the location of PPUs. 

After evaluating the importance weights of the particles, par- 

ticles are resampled using the weights as the resampling probabil- 
ity. In order to take the worker’s movement and equipment’s 

movement into account, the position of a PPU is modeled as a 

free-rolling ball on a flat surface with random external force, 

and a certain amount of random disturbance is added to the par- 

ticles. Iteratively repeating the process, the particles represent 
the posterior distribution of the PPU’s location in the 2D space 

and are used to estimate the PPU’s location. 

However, due to the numerical instability, the likelihood func- 

tion can easily converge to zero or diverge to infinity. To handle the 

numerical instability, the log-likelihood in Eq. (4) is used to evalu- 

ate the importance weights 

ln Lðp; mÞ¼ − 
1 X X 

lnð2πσ̂ Þ 

distance to each beacon, and the estimated distances are used to 

estimate the distance between a worker and equipment. 

The particle filter is also adopted for a similar purpose to the 

− 
 1  X X 

m
 

2σ̂2 j k 

 
j;k − RSSIðd p;j; Ncj ;  Tb

jÞÞ ð4Þ 

extended Kalman filter, but to avoid linearization and use a non- 

Gaussian noise model for higher accuracy and resiliency to noises. 

The particle filter algorithm is a filtering algorithm that estimates 

the internal states when partial noisy observations are given. The 

particle filter is implemented to estimate the relative location of a 

PPU to each piece of equipment by using the RSSI measurements 

of the beacons attached to the equipment, as shown in Algorithm 1. 

It estimates the relative location of a PPU in a 2D space where the 

equipment is centered at the origin with multiple particles that re- 

present possible locations and updates the particles to maximize the 

likelihood of the particles. 

 
Algorithm 1. Distance estimation algorithm using a particle filter 

developed by the authors 

Variables 

• P: set of particles pm 
• M: number of particles in P 
• wm: importance weight of a particle pm 
Estimate distance 

1. P ∅ 
2. initialize_particle(P) 

3. for i 1 to N do 
4. observe RSSI values zt for Δt 
5. for m 1 to M do 

6. pm pm N 0; Σ 
7. wm p zt pm 
8. endfor 

The log-likelihoods are normalized by adding a constant C that 

makes the maximum log-likelihood 1 and converted to eCL p; m , 
which is used as the importance weights of the particles. 

The estimation accuracy increases as the number of particles 

increases, but the resource requirements such as computation time, 

memory space, and power consumption also increase, thus signifi- 

cantly reducing the running time of PPUs. In order to have a 

9. fwmg
M 

¼ normalizeðfwmg Þ 
10. P ¼m¼1 

M 
m¼1 

 
11. endfor 

resampleðfpmgm¼1; fwmg
M 

1Þ 

12. Return estimated distance 
Fig. 3. Particle filter for estimating the location of PPUs. 

 
 

2 

ð 
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Fig. 4. Alert range and attention range of the proposed system. 
 

 

 

 
balance between estimation accuracy and PPU’s running time, 

PPUs use internal particle filters with a small number of particles 

when they are out of the communication range. Suppose PPUs can 

communicate with the cloud server using a cellular network. In that 

case, PPUs cooperate with the cloud server to run the particle filter 

with a large number of particles by offloading the heavy compu- 

tation for the particle update process to the server and receiving the 

estimated distance from the server. 

 
Alerting Logic 

The system defines two ranges: an alert range and an attention 

range, as shown in Fig. 4. The alert range is determined as 3 meters 

for highway construction, which is the heuristically estimated dis- 

tance based on the feedback from roadway paving or maintenance 

construction workers through a survey and interviews. Similarly, 

the attention range is determined as 5 meters in which workers need 

to pay attention to moving objects nearby. Based on the defined 

ranges, the system provides an alert once a worker carrying 

PPU enters the alert range and keeps alerting intermittently until 

the worker moves out of the attention range. Fig. 5 describes 

the alerting logic of the proposed system. While the activating 

 

 

 
Fig. 5. Alerting logic of the proposed system. 

 
 

criteria use the alert range for prompt and intuitive reactions of 

the workers, the stopping criteria use the attention range for their 

confidence in safety. This logic is defined to allow the worker to 

continuously recognize the potential hazards unless the worker es- 

capes the hazardous area. 

As long as repeating alerts may not alert the workers but only 

disturb them, causing stress and distractions, alert suppression has 

been added to the alerting criteria. If a worker remains in the alert 

range after receiving an alert, the system assumes that the worker is 

operating the equipment or doing a task in close proximity to the 

equipment and suppresses alerts. 

 

IoT Platform Framework 

The IoT is defined as the network of physical objects supported by 

embedded technology for data communication and sensors to in- 

teract with both internal and external states of the objects and 

the environment (Haghi et al. 2017). The IoT technology has been 

widely utilized, enabling interconnection between objects and com- 

puting devices beyond a simple connection to the internet in various 

industries. In the construction industry, IoT technology can provide 

a reliable framework for interconnecting various entities in con- 

struction projects and computing devices and a cloud computing 

platform for seamless interactions (Awolusi et al. 2019). The struc- 

tural condition of scaffolds was monitored by connecting strain 

sensors to the finite element model (Cho et al. 2018). By analyzing 

strain data, structural stability was automatically calculated and 
monitored. Construction workers’ safety monitoring framework 

was developed based on an IoT-based real-time object tracking 

by integrating an accurate localization algorithm with a cloud- 

enabled BIM (Park et al. 2016a; Park and Cho 2017). IoT-enabled 

proximity alerting system was developed by deploying directional 

ultrasonic sensors (Kanan et al. 2018). These efforts established 

seamless data communication framework by utilizing IoT technol- 

ogy and developed the sensing and monitoring functions upon it. 

Hence, the concept of IoT was deployed in this study so that the 

information about proximity between multiple entities can be ro- 

bustly transferred, stored, and processed in a cloud server and also 

visualized in a user interface on a real-time basis. 

The BLE beacons, EPUs, PPUs, and the cloud server are closely 

interconnected for their own purposes. Each BLE beacon attached 

to the equipment is registered to the cloud server with the identi- 

fication number and corresponding equipment. The EPUs and 

PPUs upload the incident data to the server whenever there is avail- 

able WiFi or a cell network. If there is no available internet con- 

nection, PPUs store the data in the internal memory and storage so 

that no data are lost, and they keep preparing for the next connec- 

tion. The PPUs continuously scan and detect signals from BLE bea- 

cons around them to estimate the distances from the beacons. Once 

the PPU is in the alert range, it activates a buzzer and a vibrator and 

sends incident information, including timestamp, RSSI value, the 
closest beacon’s ID, worker ID, and equipment ID, to the server. In 

the EPUs, the buzzer and vibrator are activated simultaneously as 

well. This data communication is processed independently so that 

multiple objects can also be seamlessly connected without informa- 

tion loss. 

 

Web-Based User Interface 

The incident data sent from EPUs and PPUs are visualized through 

a web user interface as shown in Fig. 6. Once the data are sent to the 

server, it is stored in the database. Then, the essential information 

about the incidents is visualized through different pages. The dash- 

board shows the incident statistics of the current and historical data 
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Fig. 6. Web user interface; dashboard and worker statistics pages. 

 
 

and the daily incident tendency. In addition to the dashboard, the 

user interface provides a jobsite layout, worker statistics, equip- 

ment statistics, and device status. The worker and equipment 

statistics include the identification number, occupation, work de- 

scription, and the number of accumulated incidents of each worker. 

By integrating with the proposed IoT platform, the project manager 

can understand and manage the safety condition of jobsites on a 

real-time basis remotely. 

 
 

Field Tests and Performance Evaluation 

This study conducted five field tests, including a preliminary test 

and four evaluation tests on the Georgia Department of Transpor- 
tation’s construction or maintenance projects and McDermott’s 

LNG plant construction project. The preliminary test was con- 

ducted prior to the four full evaluation tests to establish the logistics 

of onsite system implementation and obtain initial measure- 

ment data. 

The performance of the system was evaluated in quantitative 

and qualitative manners. For the quantitative evaluation, this study 

utilized an F1-score as the evaluation metric, which is derived from 

three elements of a confusion matrix: true positives, false positives, 

and false negatives. The F1-score was calculated from the classi- 
fication result by using Eqs. (5)–(7) 

are not considered in this study because the case is a safe situation 

that does not require an alert. In addition to the quantitative evalu- 

ation, the questionnaire survey was conducted with the workers 

who participated after each test to collect their opinions about 

the overall system performance. 

 

Preliminary Test 

The preliminary test was conducted to better understand the real- 

world onsite environment, technical needs, and required resources 

before the evaluation tests were conducted. A testbed of this test 

was a parking lot pavement site located in Georgia, as shown in 

Fig. 7. The given work was paving the parking lot surface, which 

had remaining tasks including placing and compacting the asphalt. 

Four types of equipment such as a roller, backhoe, dump truck, and 

asphalt paver were utilized at the site. Among the equipment, three 

pieces of equipment, including a roller, backhoe, and asphalt paver, 

were selected for the test. Dump trucks were excluded from the test 

because of their long asphalt delivery cycle time. The sensors were 

installed on the equipment in advance, as shown in Fig. 8. Nine 

ground workers participated in the preliminary test. PPUs and 

EPUs were distributed at the beginning of the work, as shown 

in Fig. 9. The participating workers wore the PPU-embedded safety 

vests with an identification number on the back and were asked to 

perform their given tasks as usual. Multiple video cameras were 

F1 2 · 
precision · recall 

precision þ recall 

Precision  
True  positives 

True positives þ False positives 

Recall 
 True positives  

True positives þ False negatives 

ð5Þ 

ð6Þ 

ð7Þ 

utilized to record the movements of the workers and equipment, 

and the video data were used as ground truth. During the tests, in- 
cident logs with the workers’ and equipment IDs were automati- 

cally stored in the server whenever each worker was in an alerting 

range. 

The tested system performance results are shown in Table 2. In 
this preliminary field test, the system’s technical viability was 

mainly tested, and the developed signal processing and filtering 

methods were not used to compare the test with the later tests; thus, 

The classification was conducted by comparing the incident 

logs and recorded videos that are the ground truth of the incidents. 

This classification categorizes each incident into four cases such as 

true positive, false positive, false negative, and true negative. Here, 

the true positives mean incident cases where a worker is in the alert- 

ing range and the alarm goes off. The false positives mean incident 

cases where a worker is out of the alerting range, but the alarm goes 

off. The false negatives mean incident cases where a worker is in 

the alerting range, but the alarm does not go off. The true negatives 

the test results do not show the desired system performance. 

 

First Evaluation Test 

Based on the lessons learned from the preliminary test, the first 

evaluation test was prepared and conducted at a road maintenance 

site located in Georgia. The given work was the asphalt pavement 

of the existing road, as shown in Fig. 10. Two pieces of equipment, 

such as a roller and skid steer, were utilized in the test. An asphalt 



© ASCE 05022018-8 J. Constr. Eng. Manage.  

 
 

Fig. 7. Jobsite scene of the preliminary test. 

 
 

 

 
 

Fig. 8. Sensor installation. 
 

 

paver was excluded from the test because they move very slowly, 

and workers are supposed to work close to the paver, causing nui- 

sance alerts. During the two-day test, six workers participated in the 

test each day. 

As a result, the system showed a precision of 87.39%, recall of 

95.10%, and F1-score of 0.911, as shown in Table 3. In this test, the 

improved performance was achieved because; (1) target equipment 

was properly selected, which is fit for the purpose of the system; 

and (2) an improved signal processing technique, i.e., a mean filter, 

was applied to find the optimal parameters of the sensors. These 
measures allowed the sensors’ signal estimation to be more robust 

within a designed range so that the system could calculate the dis- 

tance between equipment and workers more accurately. 

 

Second Evaluation Test 

The second evaluation was conducted at another road maintenance 

site located in Georgia. Two pieces of equipment, including a roller 

and skid steer, were utilized in the test, and four workers partici- 

pated in the test. The given work was the road pavement of the 

 

 

 
 

Fig. 9. (a) Placing a PPU to a worker’s safety vest; and (b) EPU mounted on the equipment. 

 

 

 
Table 2. Classification and evaluation results of the preliminary test 

True positive False positive False negative Precision Recall F1-score 

183 103 24 63.99% 88.41% 0.742 



© ASCE 05022018-9 J. Constr. Eng. Manage.  

 
 

Fig. 10. Jobsite scene of the first evaluation test. 

 

 
 

Table 3. Classification and evaluation results of the first evaluation test 

True positive False positive False negative Precision Recall F1-score 

194 28 10 87.39% 95.10% 0.911 

 
 

existing road as same as the one of the first evaluation tests. Fig. 11 

illustrates the jobsite scene of the second evaluation test. In this test, 

three different filtering techniques, such as a mean filter, Kalman 

filter, and particle filter, were tested to find the optimal method for 

signal processing. 

As a result, the system showed F1-scores of 0.835, 0.875, and 

0.897 with a mean filter, Kalman filter, and a particle filter, as 
shown in Tables 4–6, respectively. Among three cases, the system 

with a particle filter showed the highest precision and F1-score and 

also included fewer false-negative cases. The number of false- 

negative cases is very important for evaluating the proximity safety 

sensing and alerting system because the false-negative cases are 

where the system did not alarm while the workers were in a danger- 

ous situation. Hence, to improve the precision and F1-score and 

reduce the number of false-negative cases, a particle filter method 

was selected as a signal processing technique for the system. 

 

 

 
 

Fig. 11. Jobsite scene of the second evaluation test. 

 

 
 

Table 4. Classification and evaluation results of the second evaluation test with a mean filter 

True positive False positive False negative Precision Recall F1-score 

86 30 4 74.14% 95.55% 0.835 
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Table 5. Classification and evaluation results of the second evaluation test with a Kalman filter 

True positive False positive False negative Precision Recall F1-score 

70 18 2 79.55% 97.22% 0.875 

 

 

Table 6. Classification and evaluation results of the second evaluation test with a particle filter 

True positive False positive False negative Precision Recall F1-score 

65 14 2 83.33% 97.10% 0.897 

 
 

Third Evaluation Test 

The third evaluation was conducted at another road maintenance 

site located in the state of Georgia. The test condition was the same 

as the second evaluation test; a roller, a skid steer, and four workers 

were involved in the road pavement work, as shown in Fig. 12. As a 

result, an F1-score of 0.883 was achieved in Table 7. Only the par- 

ticle filtering algorithm was applied to this test based on the finding 

from the 2nd evaluation test. 

 
Fourth Evaluation Test 

The fourth evaluation was conducted in an LNG plant construction 

site located in the state of Texas. The given work was moving tem- 

porary facilities, e.g., job trailers, barricades, and temporary rest- 

rooms, as shown in Fig. 13. Two pieces of equipment, such as a 

dozer and skid steer, were utilized in the test. Six workers partici- 

pated in the test. As a result, the system showed the highest 

F1-score, which is 0.931 as shown in Table 8. Table 9 shows the 

summary of all tests, including a preliminary test and four evalu- 

ation tests. 

 
Qualitative Evaluation 

The questionnaire survey was conducted with the workers after 

each test to collect their opinions about the performance of the 

system. The survey included questions about the noticeability of 

the alerts, effectiveness of the system, and preferred alerting range. 

The results from the survey with 23 responses are shown in Fig. 14 

and Table 10. 

As a result of the survey, 91% of the workers were able to rec- 

ognize the alerts on the jobsites properly. The combination of audi- 

tory and vibratory alerts was effective since most workers could 

recognize at least one of them in noisy working environments. 

 

 

Discussion 

From a series of field tests with real construction projects, the 

system showed performance improvement. Among the evaluation 

metrics, recall is considered the top priority because false-negative 

cases are the most critical case associated with safety. As the false- 

negative cases indicate that the system failed to detect the danger- 

ous situation despite its presence, reducing the number of false 

negatives is important to improve not only the technical perfor- 

mance but also the practical safety performance. As a result of 

the repeated tests with continuous sensor calibrations and sensor 

signal filtering techniques, a recall of 97.45% was achieved from 

the fourth evaluation test. The sensor signals from the BLE beacons 

inherently include noise. Without the calibration and signal 

processing technique, the signals are not reliable enough to 

 

 

 
 

Fig. 12. Jobsite scene of the third evaluation test. 

 
 

Table 7. Classification and evaluation results of the third evaluation test with a particle filter 

True positive False positive False negative Precision Recall F1-score 

98 21 5 82.35% 95.15% 0.883 
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Fig. 13. Jobsite scene of the fourth evaluation test. 
 

 

 

Fig. 14. Results of the question about the noticeability of the alert. 
 

 

 

estimate the distance. This phenomenon was also observed in the 

preliminary test. In the preliminary test, the precision, recall, and 

F1-score were relatively low because the proper calibration and ad- 

vanced signal processing techniques were not involved. However, 

once they were deployed based on the knowledge accumulated 

from the repeated tests, the system showed higher performance 

scores in the later test. Meanwhile, some workers answered that 

the system provided alerts when they were out of range occasion- 

ally. This phenomenon is because of false-positive cases. In these 

cases, the system may underestimate the distances between workers 

and equipment when they do not fully escape the attention range or 

Table 10. Results of the question about the effectiveness of the system 

Effectiveness of the system 

Answers Counts Percentage 

work around the boundary. This can cause nuisance alerts, which 8 1 4.35% 

may be annoying and make them less sensitive to the alerts. Based 9 2 8.70% 

on the analysis and survey results, it is found that a logic to filter out 10 (completely effective) 5 21.74% 

the false-positive cases is needed to further improve the perfor- Average 6.83 N/A 

mance of the system. For example, a rule-based time restraint logic 

can be added to suspend the continuous alerts if a worker performs 

a task near heavy equipment for a long time. 
From the worker’s perspective, the system showed that the pro- 

vided auditory and vibration alerts were clearly recognized in time. 
Although the PPUs were closely attached to the worker’s ears, there 

might be a possibility that a worker did not recognize the alert in a 

noisy and congested jobsite. However, the questionnaire survey re- 

sult showed that 91% of workers were able to recognize the alert 

properly. It was possible because two different types of alerts were 

provided simultaneously so that the worker could recognize either 

auditory or vibration alerts even if the worker did not recognize one 

of them. In addition, the workers positively answered the question 

Total 23 100% 
 

 

 

 

 
about the effectiveness of the system. This showed that both oper- 

ators and workers were able to better recognize the proximity haz- 

ards by using the system. 

There are several lessons learned from a series of case studies 

for practical implementation as follows: 

• The target equipment should be thoroughly selected based on 

the nature of its movement, given tasks, and safety statistics. 

Slowly moving heavy equipment, e.g., asphalt paver, does not 

need proximity alerts. 

 

 
Table 8. Classification and evaluation results of the fourth evaluation test with a particle filter 

True positive False positive False negative Precision Recall F1-score 

306 37 8 89.21% 97.45% 0.931 

 

 

Table 9. Summary of the preliminary test and four evaluation tests 

Test Tasks # of workers Equip. Filtering methods Precision Recall F1-score 

Pre-test Parking lot pavement 9 Roller, Backhoe, Asphalt paver N/A 63.99% 88.41% 0.742 

1st test Road pavement 12 Roller, Skid steer Mean filter 87.39% 95.10% 0.911 

2nd test Road pavement 4 Roller, Skid steer Mean filter 83.33% 97.10% 0.897 
    Kalman filter 83.33% 97.10% 0.897 
    Particle filter 83.33% 97.10% 0.897 

3rd test Road pavement 4 Roller, Skid steer Particle filter 82.35% 95.15% 0.883 

4th test Temporary facility re-install 6 Dozer, Skid steer Particle filter 89.21% 97.45% 0.931 

0 (Not effective at all) 0 0% 

1 1 4.35% 

2 0 0% 

3 2 8.70% 

4 0 0% 
5 3 13.04% 

6 4 17.39% 

7 5 21.74% 
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• The sensor calibration for each piece of equipment should be 

preceded before the system implementation to achieve the ex- 

pected performance. The calibration should be done while an 

engine is running to consider any electromagnetic fields gener- 

ated by the engine. The electromagnetic field can change RSSI 

values directly or generate noises so that the distance estimation 

error can be caused. Thus, those factors that may interfere with 

the BLE signals should be identified and calibrated before 

implementing the system. The calibration process takes up to 

20 min for a piece of equipment. 

• The wireless communication latency may exist depending on a 
network’s condition or the location of BLE sensors, which can 

also affect the system’s performance. Hence, it should be exam- 

ined during the calibration process. A round-trip time of a test 

alert from a PPU to an EPU through the cloud server can be 

measured as the latency, and it should be confirmed that the la- 

tency is small enough to alert the workers and equipment oper- 

ators. In the tests conducted in this study, it was found that the 

round-trip communication between a PPU and EPU through 

the server took up to 300 ms depending on the router setting. 

This latency examination process takes up to 3 min. 

• In hot weather, the heat generated from the PPUs should be con- 

tinuously monitored to prevent damage to devices. 

• When the BLE beacons are not used, their power configurations 

should be changed to low-power modes to reduce power waste. 

 

 

Conclusion 

This study proposes a proximity warning system that provides an 

alert to workers whenever they are close to heavy equipment by 

using BLE sensors. Also, four full-scale case studies were con- 

ducted on real construction sites to practically validate the system. 

Through continuous improvement in the performance with the re- 

peated tests, the system showed a precision, recall, and F1-score of 

89.21%. 97.45%, and 0.931, respectively. The proposed system did 
not interrupt any usual working conditions and workers’ working 

routines. The users’ experiences were investigated through the 

questionnaire survey in terms of the recognizability of the alert 

and the effectiveness of the system. It showed that 91% of the work- 

ers were able to recognize the alert properly in time, and the work- 

ers positively answered the question about the effectiveness, which 

was 6.83 points out of 10 points. With these findings, this study can 

provide a practical solution to proximity hazards in dynamic and 
congested construction sites by enhancing the workers’ abilities to 

recognize the struck-by hazards. 

The main contribution of this study is two folds. First, this study 

thoroughly investigated the technical and practical feasibility of the 

proximity warning system in real construction sites. This study ex- 

plored performance improvement and learned practical lessons to 

implement the system on an actual jobsite. Second, this study va- 

lidated the system without any restricted or controlled settings and 
environments that can affect the system’s performance. Unlike a lab 

or controlled environment, real-world construction sites are unpre- 

dictable, continuously change, and involve numerous entities such 

as workers and equipment. The proposed system requires the work- 

ers to wear only a safety vest with an embedded safety alert device 

(PPU), which is a noninvasive approach, to perform the given ordi- 

nary tasks. Hence, it is expected that this proposed system can prac- 

tically improve the safety conditions in dynamic construction sites. 

Future research will be conducted to address several limitations 

of the proposed system. First, the automated BLE beacon charac- 

terization and calibration methods will be developed to easily 

deploy the system in a new jobsite with minimum manual effort. 

This will also help implement the system in large-scale and con- 

gested construction sites and further examine its practical and tech- 

nical feasibility in different types of construction projects. Second, 

the functions of EPUs rely on WiFi or cell network availability. 

If such networks are not available, only PPUs work properly. 

However, the research team has been resolving this issue with an 

improved communication structure in which PPUs and EPUs can 

provide alerts regardless of the availability of WiFi or a cell net- 

work and store the data internally until WiFi or a cell network is 

available. Thus, the future system will not be affected by the avail- 

ability of WiFi or cell network. Third, an in-depth questionnaire 

survey and interview with a thorough analysis will be conducted 

to investigate the impact of how different hardware configurations 

of PPUs, e.g., PPU placement, PPU weight, and recognizability 

under harsher conditions, affect the performance of the system and 
the user’s experience. Last, the technology trust of workers will be 

investigated by collaborating with relevant experts to further exam- 

ine the usability of the system in real-world projects. With these 

directions, the proposed system can be further improved as a jobsite 

proximity hazard management solution. 
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