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Signal Processing and Alert Logic Evaluation for
loT-Based Work Zone Proximity Safety System

Kinam Kim, Aff.M.ASCE"; Inbae Jeong?; and Yong K. Cho, M.ASCE?

Abstract: Construction projects are dynamic by nature because of continuously moving resources such as heavy equipment and workers.
This nature necessarily results in proximity hazards, especially on a large-scale construction site. Especially, struck-by accidents still account
for about 38% of the total injuries in the US construction industry. Although there have been several efforts to mitigate the hazards,
the statistics show that the hazards still persist. To provide a practical solution to this problem, this study proposes an Internet of Things
(IoT)-based proximity warning system that provides an alert to workers whenever they are close to heavy equipment. The system includes
equipment protection units (EPUs), personal protection units (PPUs), and Bluetooth low energy (BLE) beacons. A framework of signal
processing and alert logic was developed to estimate the distance between PPUs and EPUs and to activate alerting modules timely. By
calculating the distance based on the signal strength using a particle filtering method, EPUs and PPUs provide auditory and vibration alerts
to equipment operators and workers when they are in an alert range. Also, practical alert logic was developed based on the site worker’s
feedback. This study validates the system performance with different signal processing methods and alert logic through five real-world field
tests. The system achieved a precision, recall, and F1-score of 89.21%, 97.45%, and 0.931 from the field tests, respectively. Also, positive
feedback was obtained from the participating workers. The proposed loT-based proximity warning system has a high potential for a practical
solution to proximity hazards in actual construction sites. DOI: 10.1061/JCEMD4.COENG-12417. © 2022 American Society of Civil
Engineers.
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Introduction

Construction projects inherently involve various resources moving
dynamically, such as heavy equipment and workers. The dynamic
nature of construction projects has exacerbated a variety of hazards
in construction sites as the sites have been enlarged and compli-
cated. Due to this tendency, in 2020, 21.2% of the fatal injuries
in the private industry sector were in the construction industry ac-
cording to statistics reported by the US Department of Labor
(2021). Especially, struck-by accidents still accounted for about
40% of the total 1,008 fatal injuries in the US construction industry
in 2020 (US Department of Labor 2021).

Although advances in technologies can be used for safety man-
agement, safety issues in jobsites have remained unsolved. Tradi-
tionally, safety measures on jobsites mainly focused on the lagging
information obtained after accidents. Here, the lagging information
is defined as historical information generated after accidents hap-
pen (Hinze et al. 2013). For example, safety hazard statistics and
corresponding safety practices can only be available after a certain
number of accidents are accumulated. Once an accident occurs, the
safety manager collects information such as the type of the given
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tasks, accident context, type of related objects, and safety-related
statistics. After sufficient information is collected, conventional
safety practices, including safety training, safety education, and uti-
lization of task-specific personal protective equipment (PPE), are
implemented based on the accumulated lagging information.
Despite the widespread utilization of those practices in construction
projects, they are not an effective way to properly allow workers to
take proactive actions against a dangerous situation. As the lagging
information does not contain contextual information that the work-
ers are experiencing, the aforementioned practices cannot show the
best performance in a dynamic situation. To overcome this prob-
lem, the leading information is utilized for proactively recognizing
the hazards on a jobsite. As opposed to the lagging information, the
leading information is defined as information generated on a par-
ticular jobsite on a real-time basis (Kim et al. 2017b). For example,
the leading information includes the current surrounding hazards
such as moving objects, holes, pits, and electrical wires. If workers
can find and obtain this information, proactive actions can be taken,
and the hazards can be mitigated in time.

While several research efforts have been made to provide pro-
active information to workers to prevent struck-by accidents, prac-
tical solutions are still lacking. Common practical challenges in
existing efforts are the lack of infrastructure for monitoring a con-
struction site that has not only effectiveness but also scalability. For
example, a system that utilizes wireless communication such as ra-
dio frequency sensing and global positioning system (GPS) tech-
nologies requires a cumbersome infrastructure or expensive sensing
devices to enable the system to detect and track the movement of
objects of interest (Brilakis et al. 2011; Kim et al. 2015, 2017b).
Likewise, a system that uses vision cameras for monitoring objects
requires numerous cameras covering a large-scale construction site
to reduce blind spots (Park et al. 2016b). Installing and maintaining
many cameras in a changing dynamic construction site is not a
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feasible solution. In addition, vision-based systems require higher
computation cost and data transmission capacity (Huang et al.
2021). This indicates that the construction industry still needs a
practical solution that can reduce the risk of a struck-by accident.
This study proposes a proximity safety sensing and alerting sys-
tem that provides an alert to workers and heavy equipment oper-
ators when they are in proximity hazard situations by using an
Internet of Things (IoT) technology with the least required infra-
structure. Multiple field tests were conducted in actual construction
jobsites to validate the performance and utility of the system. The
system estimates the distance between equipment and workers by
using Bluetooth low energy (BLE) sensors attached to the equip-
ment. By calculating the distance with the signal strength of the
sensors, the system detects the workers at a certain distance and
provides alerts to the equipment operator and the worker simulta-
neously. Meanwhile, all data related to the hazard, including sensor
signal, worker identification number, and equipment identification
number, are uploaded and stored in a cloud server. Then, the data
are visualized in the web user interface so that the safety manager
can monitor the safety condition of the jobsite on a real-time basis.
To validate the system, the system is implemented and deployed on
different construction sites. From these field tests, the performance
of the system is evaluated under uncontrolled environments, and
lessons about implementing the system on an actual jobsite are
investigated.

Literature Review

The proximity safety sensing and alerting system provides a warn-
ing to equipment operators, workers, or both when a relative dis-
tance between entities is within a predefined range so that they can
proactively recognize a hazardous situation surrounding them.
Various types of warnings can be utilized, including visual, acous-
tic, and vibratory signals. One of the most dominant features that
categorize proximity safety sensing and alerting systems is calcu-
lating distances between entities of interest using different modal-
ities. Based on the calculated distances, the system can decide
whether it should provide a warning or not. In addition, proximity
safety sensing and alerting systems can be characterized by com-
munication methods for transferring, storing, and processing data.
In this context, this section reviews existing proximity sensing and
alerting techniques in construction safety.

In general, proximity safety sensing and alerting systems can be
classified according to methods of deriving a spatial relationship
between entities of interest, which include GPS, vision-based mon-
itoring techniques, and wireless sensing technologies. Each method
utilizes different modalities to calculate distances between entities
and has distinguishable advantages and disadvantages.

GPS uses triangulation to determine the absolute location of
a receiver in three-dimensional coordinates. The proximity between
the objects of interest, such as workers and heavy equipment,
can be measured by using the absolute locations of the objects
(Pradhananga and Teizer 2013; Razavi and Haas 2010; Song
et al. 2006; Wang and Razavi 2016; Wu et al. 2013). A framework
for monitoring a collision between large haulage equipment in dam
construction was developed based on its location derived from GPS
(Wu et al. 2013). Speed and heading direction, as well as two-
dimensional coordinates, were considered to reduce false warnings
in measuring proximity between objects (Wang and Razavi 2016).
However, the signal strength is vulnerable to factors such as cli-
mate, ionosphere, troposphere, and electromagnetic waves. It also
requires a wide field of view and fewer lines of sight occlusion
near the receiver. Moreover, expensive investments for additional
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hardware are required for high-accuracy localization (Pradhananga
and Teizer 2013). Wang and Razavi (2016) tried to fuse other sen-
sor data such as IMU with GPS because it helps improve accuracy.
However, they considered only one piece of equipment and worker;
therefore, other important factors such as site layout and equipment
operations were not taken into account. Also, the experiments in
this study were conducted in a controlled environment. Thus, it
did not reflect real-world scenarios involving multiple equipment
and workers.

The vision-based monitoring technique uses one or multiple and
two or three-dimensional cameras to identify objects without any
additional device such as positioning tags or other sensors. The spa-
tial relationship between objects of interest is derived by detecting
and localizing the objects based on their pixel intensity and their
changes in two or three-dimensional space. Then, proximity can be
calculated and measured based on the spatial relationship from im-
ages. By using an image-based object tracking algorithm, object
locations, categories, velocities, and violations of safety rules were
identified to assess safety conditions in earthmoving and surface
mining activities (Chi and Caldas 2012). A vision-based safety as-
sessment system using fuzzy inference logic was developed to
monitor struck-by accidents on construction sites (Kim et al. 2015).
Monocular images were utilized to track the locations of multiple
objects, and their proximity and crowdedness were used to evaluate
their safety levels. The fuzzy inference-based safety assessment
system was integrated with augmented reality in a wearable device
so that the derived results can be intuitively visualized to improve
workers’ recognition of hazards (Kim et al. 2017b). In addition to
the applications with fixed cameras, an unmanned aerial vehicle
(UAV)-assisted proximity monitoring system was developed with
a deep neural network-based object localization (Kim et al. 2019,
2020). However, it is impractical in terms of power supply and un-
safe to keep a UAV over construction workers and equipment long
period of time. Vision-based monitoring techniques have advan-
tages in the automation of detecting and tracking objects due to
the advance in image classification algorithms (Fang et al. 2018;
Kim et al. 2017a) and in the capability of recognizing multiple ob-
jects without any additional tag or sensor. However, image sensing
techniques are difficult to perform well under harsh outdoor cir-
cumstances such as dust, rain, snow, or night environments. Also,
it provides a restricted result in line-of-sight occlusion (Kim et al.
2017b).

The most widely used wireless sensing technologies in con-
struction include radio frequency (RF) sensing, ultrawide band
(UWB), BLE, ultrasonic, and magnetic field. Basically, these tech-
nologies measure the distance between objects by using the signal
strength of tags or sensors mounted on objects. Based on the mea-
sured distance, a warning is provided to users, e.g., operators and
workers, for informing them of approaching objects when the ob-
jects are within the predefined warning range (Fang et al. 2016; Ju
et al. 2012; Lee et al. 2012; Park et al. 2016b). Different types of
wireless sensing technologies, including RF identification (RFID),
Bluetooth, and magnetic field, were evaluated in terms of the ac-
curacy of measuring the warning distance and false warning rate in
the empirical experiment (Park et al. 2016b). In this study, it was
found that the proximity sensing system utilizing Bluetooth outper-
forms others in terms of installation, cost, and time for calibration
while showing similar performance. UWB emits short pulses with
low power and filters out the reflected signal to estimate accurate
location results for distance calculation (Cho et al. 2010; Han et al.
2019; Maalek and Sadeghpour 2016). RF-based systems can get
distance information by only tracking the signal intensity of tags.
Also, it has little impact on the occlusion problem and illumination
conditions (Zhang et al. 2017). However, it is limited in indoor
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environments due to multipath effects and also observed metal in-
terference (Cho et al. 2010). BLE is a wireless technology capable
of exchanging data, communicating over short distances, and con-
necting to several devices in real-time simultaneously through an
ad-hoc network. It has been widely used because of its rapid con-
nectivity, low-cost hardware, low energy consumption, and mini-
mal infrastructure requirements. Bluetooth has been successfully
evaluated for many applications, and the capabilities of this system
could potentially detect and alert workers during hazardous prox-
imity situations (Park et al. 2016b, 2016b). An ultrasonic-based
sensor system and a pulse radar-based system have been developed
for the prevention of backing accidents in construction work zones
(Choe et al. 2014) with a formalized framework for a sensor-based
proximity sensing system proposed by Choe et al. (2013). Magnetic
field sensing technology has been used in underground mining,
which showed relatively good performance among the other com-
pared devices. However, the disadvantage of the magnetic field de-
vice is that the installation and setup are difficult, the cost is
relatively high, and there is no calibration ability, meaning it re-
quires a change of antenna to modify the range limit, which adds
more cost (Park et al. 2016b). Table 1 shows the summary of the
literature review on proximity alerting systems with different sens-
ing types.

Among various proximity measuring techniques, this study de-
ployed a BLE-based proximity safety sensing and alerting system
for several reasons. First, a BLE-based system has appropriate scal-
ability for deploying the system on a large-scale construction site.
Second, it does not require a heavy infrastructure to communicate
between entities. The system can be deployed with a minimum in-
frastructure that can be easily carried like a smartphone or a cellular
hotspot. While other technologies require cumbersome equipment
or devices to cover a large-scale jobsite, a BLE-based system can
cover a large-scale jobsite by adding small-sized BLE beacons.
Moreover, the sensor calibration process is only required once at
the beginning of implementing the system. Last but not least, com-
pared to other wireless sensing technologies, BLE shows robust
and reliable accuracy in measuring proximity (Park et al. 2016b).

Table 1. The summary of the literature review

This feature is essential for developing a practical solution to prox-
imity hazards in construction sites. For these reasons, BLE was se-
lected as a communication protocol of the proposed proximity
safety sensing and alerting system in this study.

System Architecture

The proximity warning system uses two types of devices: personal
protection unit (PPU) and equipment protection unit (EPU). A PPU
is embedded in a worker’s safety vest and an EPU is attached to the
equipment. PPUs and EPUs use a multiwireless-protocol micro-
processor that supports WiFi, Zigbee, and Bluetooth. Fig. 1 illus-
trates the overall architecture of the proposed proximity warning
system. In Fig. 1, three types of data flow do not interfere with each
other.

PPUs sense the signal strength from the Bluetooth beacons that
are attached to equipment and periodically broadcast signals with
10 Hz frequency and estimate the distance to nearby beacons (Blue
dash lines in Fig. 1). A PPU checks if the worker who carries the
PPU is within a specific range to equipment from the estimated
distances. If an imminent accident is expected, it gives an alert
to the worker with vibration and noise. Then, the PPU stores the
information about the near-accident event, including the time, lo-
cation, and equipment (Red dash lines in Fig. 1). The information
generated by PPUs is sent to a cloud server through WiFi or 4G/5G
cell networks so that a safety manager can remotely monitor the
time and location of the event and statistical summary of the daily
events (black solid lines in Fig. 1). Moreover, the manager can ad-
just system configurations and parameters in the server, and the
changed configurations and parameters are sent to EPUs and PPUs
so that they can be reflected on a real-time basis. Whenever a
nearby PPU expects an imminent accident, the EPU also gives
an alert to the equipment operator with vibration, noise, and direc-
tion. The PPUs and EPUs were designed to run for 10-12 h to re-
main active for daily work on a construction site. Fig. 2 illustrates
the information flow framework for signal processing and alerting

Case study

Reference Type of sensor Type of alert Advantage Disadvantage in jobsites
Pradhananga and GPS Visual and auditory Wide outdoor area coverage,  Only for outdoor, Signal interfered Y
Teizer (2013) No line-of-sight issue by surroundings, Low accuracy
Wang and Razavi GPS-aided IMU  Visual, auditory and ~ More accurate, Identify Only for outdoor, Signal interfered N
(2016) vibratory speed of equipment by surroundings
Kim et al. (2019, Vision Visual and auditory Low-cost, Identify position,  Line-of-sight issue, Inaccurate in Y
2017b) and Zhang speed, and category low or changing lighting conditions
et al. (2020)
Cho et al. (2010) UWB — Applicable for both outdoor ~ Require install multiple receivers, N
and Maalek and and indoor sites, Low power  Sensitive to metal and line-of-sight
Sadeghpour (2016) view
Fang et al. (2016), RFID Visual and auditory Get distance by only Require install multiple readers, Y (Controlled)
Lee etal. (2012), and tracking the signal intensity ~ Limited detection range change,
Park et al. (2016b) of tags, Little impact on the ~ Low accuracy of data, Multipath

occlusion and illumination signal transmission, and Metal

interference
Park et al. (2016b, BLE on Visual and auditory Low-cost, easy to calibrate, ~ Smartphone: limited function Y (Controlled)
2017a) and Park and smartphone Easy to change detection development and utilization
Cho (2017) ranges options, High battery consumption
Kanan et al. (2018) Ultrasonic Auditory and Compact size, Low price, Limited detection range, Low N
vibratory Lightweight, and function accuracy of data, Inconsistent

for daytime and night detection, Small coverage area

Park et al. (2016b) Magnetic field  Auditory Varied proximity detection Limited detection range change, Y (Controlled)

range

Inaccurate near metal or motors
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Fig. 2. Information flow framework for signal processing and alerting logic.

logic. The framework consists of sensor signal collection, beacon
parameter estimation, distance estimation, and utilization of alert-
ing logic. Once the sensor signals are collected from every beacon
nearby in the server, the beacon parameters are estimated to min-
imize the noise in the signals. The estimated parameters are utilized
to estimate the distances between the beacons and PPUs. Sub-
sequently, the distances are used as criteria for the alerting logic
of the system. Based on the logic, the system decides whether
the alerting module is activated or not.

Beacon Parameters Estimation

BLE beacons, which are small-sized signal transmitters with low
power consumption, are adopted in the proximity warning system.
As it offers an easy-to-deploy, efficient, and inexpensive way to set
up, it is an ideal tool for proximity detection and localization in
a construction site where limited wireless communication infra-
structure is configured. A PPU is able to measure the received signal
strength indication (RSSI) values from multiple BLE beacons and
estimates the distance to the beacons. The characteristics of RSSI
values can be determined based on beacon parameters including
the path loss exponent and the RSSI value at a 1 m distance from
the beacon. A common signal propagation model to describe the
relationship between RSSI and distance is as shown in Eq. (1)
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where N = path loss exponent; d = distance to the beacon; and 7 =
RSSI value at 1 m distance from the beacon.

However, the beacon parameters N and T change over time
as their batteries are discharged, and thus all beacons have slightly
different parameters. In order to accurately estimate the parameters
of each beacon, the beacons are attached to equipment, and RSSI
values are measured before they are deployed. The RSSI values
are collected with PPUs in different positions, distances, and
orientations.

The measured RSSI values are then used to estimate the beacon
parameters. As RSSI measurements have a considerable amount
of noise, a maximum likelihood estimator is adopted to handle
the noise and probabilistically estimate the parameters. Using the
Gaussian distribution model (Haeberlen et al. 2004), the likelihood
function of RSSI measurements is defined as in Eq. (2)

LON ;T ;N ;T ;0;mb¥ YYY e Ot ROndyt
1 1 n n e
i j ok 210

02p

where n = number of beacons; mijx ¥ k-th RSSI measure-
ment of the j-th beacon at the i-th measurement location;
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RSSDbd;j; Nj, T;b= expected RSSI measurement of the j-th bea-
con at the i-th measurement location with parameters Nj, Tj.

The estimated parameters are sent to a cloud server, and the
parameters are distributed to PPUs deployed on the construction
site. Then, the PPUs update their distance estimation process with
the distributed beacon parameters. The parameter update process is
executed automatically and seamlessly so that the predeployed
PPUs do not need to be manually updated.

Distance Estimation

As RSSI measurement is a noisy process, the distance estimated
from the RSSI value has a noise, even though the parameters
are accurately estimated. In order to filter out the noise in the RSSI
measurements, three types of filtering algorithms are adopted:
mean filter, extended Kalman filter, and particle filter. The filtering
algorithms are applied to the RSSI values that are collected by a
PPU to estimate the distance between the PPU and equipment.

The mean filter is a filtering algorithm that calculates the
average of the recent signals collected for a time period. As the
noise in the RSSI measurements is modeled to follow the Gaussian
distribution, the mean value is able to effectively filter out the
noise of the measurement process. However, since RSSI measure-
ments may contain a considerable noise, a trimmed mean is
used to remove a small percentage of the largest and smallest
values.

While the mean filter estimates the distance to each beacon, the
extended Kalman filter used in this study is designed to directly
estimate the distance to each beacon using the RSSI measurements.
The extended Kalman filter is used independently to estimate the
distance to each beacon, and the estimated distances are used to
estimate the distance between a worker and equipment.

The particle filter is also adopted for a similar purpose to the
extended Kalman filter, but to avoid linearization and use a non-
Gaussian noise model for higher accuracy and resiliency to noises.
The particle filter algorithm is a filtering algorithm that estimates
the internal states when partial noisy observations are given. The
particle filter is implemented to estimate the relative location of a
PPU to each piece of equipment by using the RSSI measurements
of the beacons attached to the equipment, as shown in Algorithm 1.
It estimates the relative location of a PPU in a 2D space where the
equipment is centered at the origin with multiple particles that re-
present possible locations and updates the particles to maximize the
likelihood of the particles.

Algorithm 1. Distance estimation algorithm using a particle filter
developed by the authors

Variables

* P: set of particles pm

* M: number of particles in P

* wm: importance weight of a particle pm

Estimate distance

1.P% O

2. initialize particle(P)

3. fori% 1to N do

4, observe RSSI values z for At
5. for mY% 1 to M do

6. Dm Y2 pm p NOO; Z b

7. WY pBthme

8. dfi

b R

0. Wi Ya normalizeE‘)fwmgrg%1 b

11. endfor resampledfpmQmy.; fwmgdi,p

12. Return estimated distance
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The distance estimation algorithm using a particle filter starts
with randomly distributed candidates. The importance weights
of the candidates are evaluated using the likelihood function de-
fined in Eq. (3)

Y Y

2
_dmj:k —RSSIddp; ';bl'; Tjbb

1
Lgp mpy, P _fife A _fi B3b
i x 2 MmO
where p = candidate’s location Ox; yP; mjx ¥4 k-th RSSI measure-

ment of the j-th beacon; and RSSI0d,;; F; ; Tbjb = expected RSSI
measurement of the j-th beacon at p with parameters®;, ;. Fig. 3
illustrates the particles used in estimating the location of PPUs.

After evaluating the importance weights of the particles, par-
ticles are resampled using the weights as the resampling probabil-
ity. In order to take the worker’s movement and equipment’s
movement into account, the position of a PPU is modeled as a
free-rolling ball on a flat surface with random external force,
and a certain amount of random disturbance is added to the par-
ticles. Iteratively repeating the process, the particles represent
the posterior distribution of the PPU’s location in the 2D space
and are used to estimate the PPU’s location.

However, due to the numerical instability, the likelihood func-
tion can easily converge to zero or diverge to infinity. To handle the
numerical instability, the log-likelihood in Eq. (4) is used to evalu-
ate the importance weights

XX
InL3p;mb% ~'  Ind2mGb
J

k
51,7 7 by - RSO TP Dab
Jj k

The log-likelihoods are normalized by adding a constant C that
makes the maximum log-likelihood 1 and converted to e°L Q; mb,
which is used as the importance weights of the particles.

The estimation accuracy increases as the number of particles
increases, but the resource requirements such as computation time,
memory space, and power consumption also increase, thus signifi-
cantly reducing the running time of PPUs. In order to have a

2
&
¥ &
@0

=y

ﬂ BLE beacons

Location
candidates

Fig. 3. Particle filter for estimating the location of PPUs.
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Fig. 4. Alert range and attention range of the proposed system.

balance between estimation accuracy and PPU’s running time,
PPUs use internal particle filters with a small number of particles
when they are out of the communication range. Suppose PPUs can
communicate with the cloud server using a cellular network. In that
case, PPUs cooperate with the cloud server to run the particle filter
with a large number of particles by offloading the heavy compu-
tation for the particle update process to the server and receiving the
estimated distance from the server.

Alerting Logic

The system defines two ranges: an alert range and an attention
range, as shown in Fig. 4. The alert range is determined as 3 meters
for highway construction, which is the heuristically estimated dis-
tance based on the feedback from roadway paving or maintenance
construction workers through a survey and interviews. Similarly,
the attention range is determined as 5 meters in which workers need
to pay attention to moving objects nearby. Based on the defined
ranges, the system provides an alert once a worker carrying
PPU enters the alert range and keeps alerting intermittently until
the worker moves out of the attention range. Fig. 5 describes
the alerting logic of the proposed system. While the activating

Deactivate
Buzzer and vibrator

A Distance Estimation
b/w beacons and PPUs

[

Yeas

Distance No

> attention

Distance
< alerting

Mo range range
Yes
b
Worker's PPU . AEthiRe

Buzzer and vibrator

Fig. 5. Alerting logic of the proposed system.
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criteria use the alert range for prompt and intuitive reactions of
the workers, the stopping criteria use the attention range for their
confidence in safety. This logic is defined to allow the worker to
continuously recognize the potential hazards unless the worker es-
capes the hazardous area.

As long as repeating alerts may not alert the workers but only
disturb them, causing stress and distractions, alert suppression has
been added to the alerting criteria. If a worker remains in the alert
range after receiving an alert, the system assumes that the worker is
operating the equipment or doing a task in close proximity to the
equipment and suppresses alerts.

loT Platform Framework

The 10T is defined as the network of physical objects supported by
embedded technology for data communication and sensors to in-
teract with both internal and external states of the objects and
the environment (Haghi et al. 2017). The IoT technology has been
widely utilized, enabling interconnection between objects and com-
puting devices beyond a simple connection to the internet in various
industries. In the construction industry, [oT technology can provide
a reliable framework for interconnecting various entities in con-
struction projects and computing devices and a cloud computing
platform for seamless interactions (Awolusi et al. 2019). The struc-
tural condition of scaffolds was monitored by connecting strain
sensors to the finite element model (Cho et al. 2018). By analyzing
strain data, structural stability was automatically calculated and
monitored. Construction workers’ safety monitoring framework
was developed based on an IoT-based real-time object tracking
by integrating an accurate localization algorithm with a cloud-
enabled BIM (Park et al. 2016a; Park and Cho 2017). IoT-enabled
proximity alerting system was developed by deploying directional
ultrasonic sensors (Kanan et al. 2018). These efforts established
seamless data communication framework by utilizing IoT technol-
ogy and developed the sensing and monitoring functions upon it.
Hence, the concept of IoT was deployed in this study so that the
information about proximity between multiple entities can be ro-
bustly transferred, stored, and processed in a cloud server and also
visualized in a user interface on a real-time basis.

The BLE beacons, EPUs, PPUs, and the cloud server are closely
interconnected for their own purposes. Each BLE beacon attached
to the equipment is registered to the cloud server with the identi-
fication number and corresponding equipment. The EPUs and
PPUs upload the incident data to the server whenever there is avail-
able WiFi or a cell network. If there is no available internet con-
nection, PPUs store the data in the internal memory and storage so
that no data are lost, and they keep preparing for the next connec-
tion. The PPUs continuously scan and detect signals from BLE bea-
cons around them to estimate the distances from the beacons. Once
the PPU is in the alert range, it activates a buzzer and a vibrator and
sends incident information, including timestamp, RSSI value, the
closest beacon’s ID, worker ID, and equipment ID, to the server. In
the EPUs, the buzzer and vibrator are activated simultaneously as
well. This data communication is processed independently so that
multiple objects can also be seamlessly connected without informa-
tion loss.

Web-Based User Interface

The incident data sent from EPUs and PPUs are visualized through
aweb user interface as shown in Fig. 6. Once the data are sent to the
server, it is stored in the database. Then, the essential information
about the incidents is visualized through different pages. The dash-
board shows the incident statistics of the current and historical data
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Fig. 6. Web user interface; dashboard and worker statistics pages.

and the daily incident tendency. In addition to the dashboard, the
user interface provides a jobsite layout, worker statistics, equip-
ment statistics, and device status. The worker and equipment
statistics include the identification number, occupation, work de-
scription, and the number of accumulated incidents of each worker.
By integrating with the proposed IoT platform, the project manager
can understand and manage the safety condition of jobsites on a
real-time basis remotely.

Field Tests and Performance Evaluation

This study conducted five field tests, including a preliminary test
and four evaluation tests on the Georgia Department of Transpor-
tation’s construction or maintenance projects and McDermott’s
LNG plant construction project. The preliminary test was con-
ducted prior to the four full evaluation tests to establish the logistics
of onsite system implementation and obtain initial measure-
ment data.

The performance of the system was evaluated in quantitative
and qualitative manners. For the quantitative evaluation, this study
utilized an F1-score as the evaluation metric, which is derived from
three elements of a confusion matrix: true positives, false positives,
and false negatives. The F1-score was calculated from the classi-
fication result by using Egs. (5)—(7)

_ precision - recall

F1% 2 — o5p
precision p recall
. True  positives
Precision } — o
& True positives p False positives BeP
True positives
Recall ¥4 o7p

True positives p False negatives

The classification was conducted by comparing the incident
logs and recorded videos that are the ground truth of the incidents.
This classification categorizes each incident into four cases such as
true positive, false positive, false negative, and true negative. Here,
the true positives mean incident cases where a worker is in the alert-
ing range and the alarm goes off. The false positives mean incident
cases where a worker is out of the alerting range, but the alarm goes
off. The false negatives mean incident cases where a worker is in
the alerting range, but the alarm does not go off. The true negatives
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are not considered in this study because the case is a safe situation
that does not require an alert. In addition to the quantitative evalu-
ation, the questionnaire survey was conducted with the workers
who participated after each test to collect their opinions about
the overall system performance.

Preliminary Test

The preliminary test was conducted to better understand the real-
world onsite environment, technical needs, and required resources
before the evaluation tests were conducted. A testbed of this test
was a parking lot pavement site located in Georgia, as shown in
Fig. 7. The given work was paving the parking lot surface, which
had remaining tasks including placing and compacting the asphalt.
Four types of equipment such as a roller, backhoe, dump truck, and
asphalt paver were utilized at the site. Among the equipment, three
pieces of equipment, including a roller, backhoe, and asphalt paver,
were selected for the test. Dump trucks were excluded from the test
because of their long asphalt delivery cycle time. The sensors were
installed on the equipment in advance, as shown in Fig. 8. Nine
ground workers participated in the preliminary test. PPUs and
EPUs were distributed at the beginning of the work, as shown
in Fig. 9. The participating workers wore the PPU-embedded safety
vests with an identification number on the back and were asked to
perform their given tasks as usual. Multiple video cameras were
utilized to record the movements of the workers and equipment,
and the video data were used as ground truth. During the tests, in-
cident logs with the workers’ and equipment IDs were automati-
cally stored in the server whenever each worker was in an alerting
range.

The tested system performance results are shown in Table 2. In
this preliminary field test, the system’s technical viability was
mainly tested, and the developed signal processing and filtering
methods were not used to compare the test with the later tests; thus,
the test results do not show the desired system performance.

First Evaluation Test

Based on the lessons learned from the preliminary test, the first
evaluation test was prepared and conducted at a road maintenance
site located in Georgia. The given work was the asphalt pavement
of the existing road, as shown in Fig. 10. Two pieces of equipment,
such as a roller and skid steer, were utilized in the test. An asphalt
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Fig. 7. Jobsite scene of the preliminary test.

Fig. 8. Sensor installation.

paver was excluded from the test because they move very slowly,
and workers are supposed to work close to the paver, causing nui-
sance alerts. During the two-day test, six workers participated in the
test each day.

As a result, the system showed a precision of 87.39%, recall of
95.10%, and F1-score 0of 0.911, as shown in Table 3. In this test, the
improved performance was achieved because; (1) target equipment
was properly selected, which is fit for the purpose of the system,;
and (2) an improved signal processing technique, i.e., a mean filter,
was applied to find the optimal parameters of the sensors. These
measures allowed the sensors’ signal estimation to be more robust
within a designed range so that the system could calculate the dis-
tance between equipment and workers more accurately.

Second Evaluation Test

The second evaluation was conducted at another road maintenance
site located in Georgia. Two pieces of equipment, including a roller
and skid steer, were utilized in the test, and four workers partici-
pated in the test. The given work was the road pavement of the

()

Fig. 9. (a) Placing a PPU to a worker’s safety vest; and (b) EPU mounted on the equipment.

Table 2. Classification and evaluation results of the preliminary test

True positive

False positive

False negative

Precision Recall Fl-score

183

103

24

63.99% 88.41% 0.742
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Fig. 10. Jobsite scene of the first evaluation test.

Table 3. Classification and evaluation results of the first evaluation test

True positive False positive False negative

Precision Recall Fl-score

194 28 10

87.39% 95.10% 0.911

existing road as same as the one of the first evaluation tests. Fig. 11
illustrates the jobsite scene of the second evaluation test. In this test,
three different filtering techniques, such as a mean filter, Kalman
filter, and particle filter, were tested to find the optimal method for
signal processing.

As a result, the system showed F1-scores of 0.835, 0.875, and
0.897 with a mean filter, Kalman filter, and a particle filter, as
shown in Tables 4—6, respectively. Among three cases, the system

with a particle filter showed the highest precision and F1-score and
also included fewer false-negative cases. The number of false-
negative cases is very important for evaluating the proximity safety
sensing and alerting system because the false-negative cases are
where the system did not alarm while the workers were in a danger-
ous situation. Hence, to improve the precision and F1-score and
reduce the number of false-negative cases, a particle filter method
was selected as a signal processing technique for the system.

Fig. 11. Jobsite scene of the second evaluation test.

Table 4. Classification and evaluation results of the second evaluation test with a mean filter

True positive False positive False negative Precision Recall F1-score
86 30 4 74.14% 95.55% 0.835
© ASCE 05022018-9 J. Constr. Eng. Manage.



Table 5. Classification and evaluation results of the second evaluation test with a Kalman filter

True positive False positive False negative Precision Recall Fl-score
70 18 2 79.55% 97.22% 0.875
Table 6. Classification and evaluation results of the second evaluation test with a particle filter

True positive False positive False negative Precision Recall Fl-score
65 14 2 83.33% 97.10% 0.897

Third Evaluation Test

The third evaluation was conducted at another road maintenance
site located in the state of Georgia. The test condition was the same
as the second evaluation test; a roller, a skid steer, and four workers
were involved in the road pavement work, as shown in Fig. 12. Asa
result, an F1-score of 0.883 was achieved in Table 7. Only the par-
ticle filtering algorithm was applied to this test based on the finding
from the 2nd evaluation test.

Fourth Evaluation Test

The fourth evaluation was conducted in an LNG plant construction
site located in the state of Texas. The given work was moving tem-
porary facilities, e.g., job trailers, barricades, and temporary rest-
rooms, as shown in Fig. 13. Two pieces of equipment, such as a
dozer and skid steer, were utilized in the test. Six workers partici-
pated in the test. As a result, the system showed the highest
F1-score, which is 0.931 as shown in Table 8. Table 9 shows the
summary of all tests, including a preliminary test and four evalu-
ation tests.

Qualitative Evaluation

The questionnaire survey was conducted with the workers after
each test to collect their opinions about the performance of the

system. The survey included questions about the noticeability of
the alerts, effectiveness of the system, and preferred alerting range.
The results from the survey with 23 responses are shown in Fig. 14
and Table 10.

As a result of the survey, 91% of the workers were able to rec-
ognize the alerts on the jobsites properly. The combination of audi-
tory and vibratory alerts was effective since most workers could
recognize at least one of them in noisy working environments.

Discussion

From a series of field tests with real construction projects, the
system showed performance improvement. Among the evaluation
metrics, recall is considered the top priority because false-negative
cases are the most critical case associated with safety. As the false-
negative cases indicate that the system failed to detect the danger-
ous situation despite its presence, reducing the number of false
negatives is important to improve not only the technical perfor-
mance but also the practical safety performance. As a result of
the repeated tests with continuous sensor calibrations and sensor
signal filtering techniques, a recall of 97.45% was achieved from
the fourth evaluation test. The sensor signals from the BLE beacons
inherently include noise. Without the calibration and signal
processing technique, the signals are not reliable enough to

Fig. 12. Jobsite scene of the third evaluation test.

Table 7. Classification and evaluation results of the third evaluation test with a particle filter

True positive False positive False negative Precision Recall Fl-score
98 21 5 82.35% 95.15% 0.883
© ASCE 05022018-10 J. Constr. Eng. Manage.



Fig. 13. Jobsite scene of the fourth evaluation test.

estimate the distance. This phenomenon was also observed in the
preliminary test. In the preliminary test, the precision, recall, and
F1-score were relatively low because the proper calibration and ad-
vanced signal processing techniques were not involved. However,
once they were deployed based on the knowledge accumulated
from the repeated tests, the system showed higher performance
scores in the later test. Meanwhile, some workers answered that
the system provided alerts when they were out of range occasion-
ally. This phenomenon is because of false-positive cases. In these
cases, the system may underestimate the distances between workers
and equipment when they do not fully escape the attention range or
work around the boundary. This can cause nuisance alerts, which
may be annoying and make them less sensitive to the alerts. Based
on the analysis and survey results, it is found that a logic to filter out
the false-positive cases is needed to further improve the perfor-
mance of the system. For example, a rule-based time restraint logic
can be added to suspend the continuous alerts if a worker performs
a task near heavy equipment for a long time.

From the worker’s perspective, the system showed that the pro-
vided auditory and vibration alerts were clearly recognized in time.
Although the PPUs were closely attached to the worker’s ears, there
might be a possibility that a worker did not recognize the alert in a
noisy and congested jobsite. However, the questionnaire survey re-
sult showed that 91% of workers were able to recognize the alert
properly. It was possible because two different types of alerts were
provided simultaneously so that the worker could recognize either
auditory or vibration alerts even if the worker did not recognize one
of them. In addition, the workers positively answered the question

Moticeability of the alert

Imperceptible

9%
wery clear
0% less noticeable
05
noticeable -
clear noticeable
9% 52%

Fig. 14. Results of the question about the noticeability of the alert.

Table 10. Results of the question about the effectiveness of the system

Effectiveness of the system

Answers Counts Percentage
0 (Not effective at all) 0 0%

1 1 4.35%
2 0 0%

3 2 8.70%
4 0 0%

5 3 13.04%
6 4 17.39%
7 5 21.74%
8 1 4.35%
9 2 8.70%
10 (completely effective) 5 21.74%
Average 6.83 N/A
Total 23 100%

about the effectiveness of the system. This showed that both oper-

ators and workers were able to better recognize the proximity haz-

ards by using the system.
There are several lessons learned from a series of case studies
for practical implementation as follows:

* The target equipment should be thoroughly selected based on
the nature of its movement, given tasks, and safety statistics.
Slowly moving heavy equipment, e.g., asphalt paver, does not
need proximity alerts.

Table 8. Classification and evaluation results of the fourth evaluation test with a particle filter

True positive False positive False negative Precision Recall Fl-score
306 37 8 89.21% 97.45% 0.931
Table 9. Summary of the preliminary test and four evaluation tests
Test Tasks # of workers Equip. Filtering methods Precision Recall Fl-score
Pre-test Parking lot pavement 9 Roller, Backhoe, Asphalt paver N/A 63.99% 88.41% 0.742
Ist test Road pavement 12 Roller, Skid steer Mean filter 87.39% 95.10% 0.911
2nd test Road pavement 4 Roller, Skid steer Mean filter 83.33% 97.10% 0.897
Kalman filter 83.33% 97.10% 0.897
Particle filter 83.33% 97.10% 0.897
3rd test Road pavement 4 Roller, Skid steer Particle filter 82.35% 95.15% 0.883
4th test Temporary facility re-install 6 Dozer, Skid steer Particle filter 89.21% 97.45% 0.931
© ASCE 05022018-11 J. Constr. Eng. Manage.



* The sensor calibration for each piece of equipment should be
preceded before the system implementation to achieve the ex-
pected performance. The calibration should be done while an
engine is running to consider any electromagnetic fields gener-
ated by the engine. The electromagnetic field can change RSSI
values directly or generate noises so that the distance estimation
error can be caused. Thus, those factors that may interfere with
the BLE signals should be identified and calibrated before
implementing the system. The calibration process takes up to
20 min for a piece of equipment.

* The wireless communication latency may exist depending on a
network’s condition or the location of BLE sensors, which can
also affect the system’s performance. Hence, it should be exam-
ined during the calibration process. A round-trip time of a test
alert from a PPU to an EPU through the cloud server can be
measured as the latency, and it should be confirmed that the la-
tency is small enough to alert the workers and equipment oper-
ators. In the tests conducted in this study, it was found that the
round-trip communication between a PPU and EPU through
the server took up to 300 ms depending on the router setting.
This latency examination process takes up to 3 min.

* Inhot weather, the heat generated from the PPUs should be con-
tinuously monitored to prevent damage to devices.

*  When the BLE beacons are not used, their power configurations
should be changed to low-power modes to reduce power waste.

Conclusion

This study proposes a proximity warning system that provides an
alert to workers whenever they are close to heavy equipment by
using BLE sensors. Also, four full-scale case studies were con-
ducted on real construction sites to practically validate the system.
Through continuous improvement in the performance with the re-
peated tests, the system showed a precision, recall, and F1-score of
89.21%. 97.45%, and 0.931, respectively. The proposed system did
not interrupt any usual working conditions and workers’ working
routines. The users’ experiences were investigated through the
questionnaire survey in terms of the recognizability of the alert
and the effectiveness of the system. It showed that 91% of the work-
ers were able to recognize the alert properly in time, and the work-
ers positively answered the question about the effectiveness, which
was 6.83 points out of 10 points. With these findings, this study can
provide a practical solution to proximity hazards in dynamic and
congested construction sites by enhancing the workers’ abilities to
recognize the struck-by hazards.

The main contribution of this study is two folds. First, this study
thoroughly investigated the technical and practical feasibility of the
proximity warning system in real construction sites. This study ex-

plored performance improvement and learned practical lessons to
implement the system on an actual jobsite. Second, this study va-
lidated the system without any restricted or controlled settings and
environments that can affect the system’s performance. Unlike a lab
or controlled environment, real-world construction sites are unpre-
dictable, continuously change, and involve numerous entities such
as workers and equipment. The proposed system requires the work-
ers to wear only a safety vest with an embedded safety alert device
(PPU), which is a noninvasive approach, to perform the given ordi-
nary tasks. Hence, it is expected that this proposed system can prac-
tically improve the safety conditions in dynamic construction sites.
Future research will be conducted to address several limitations

of the proposed system. First, the automated BLE beacon charac-
terization and calibration methods will be developed to easily
deploy the system in a new jobsite with minimum manual effort.
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This will also help implement the system in large-scale and con-
gested construction sites and further examine its practical and tech-
nical feasibility in different types of construction projects. Second,
the functions of EPUs rely on WiFi or cell network availability.
If such networks are not available, only PPUs work properly.
However, the research team has been resolving this issue with an
improved communication structure in which PPUs and EPUs can
provide alerts regardless of the availability of WiFi or a cell net-
work and store the data internally until WiFi or a cell network is
available. Thus, the future system will not be affected by the avail-
ability of WiFi or cell network. Third, an in-depth questionnaire
survey and interview with a thorough analysis will be conducted
to investigate the impact of how different hardware configurations
of PPUs, e.g., PPU placement, PPU weight, and recognizability
under harsher conditions, affect the performance of the system and
the user’s experience. Last, the technology trust of workers will be
investigated by collaborating with relevant experts to further exam-
ine the usability of the system in real-world projects. With these
directions, the proposed system can be further improved as a jobsite
proximity hazard management solution.
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