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Abstract

A challenge in the constitutive modeling of time dependent, non-linear solids is the identification of

potentially large numbers of material parameters.. Here we present an efficient method to determine

these parameters using a machine learning algorithm based on Singular Value Decomposition (SVD)

and an adaptive neural network (NN). SVD compresses training data and provides outputs for

the NN. The trained network rapidly computes the material responses for a large set of material

parameters. These responses are then compared with experimental data to determine the optimal

parameters. We test our algorithm by performing uniaxial cyclic and relaxation tests on three

hydrogels with very different time dependent behaviors: a chemically and physically crosslinked

polyampholyte (c-PA) gel; a pure physically crosslinked PA gel, and a Poly(vinylalcohol) (PVA)

hydrogel with both chemical and physical crosslinks.

Keywords: parameters fitting, singular value decomposition, Neural network, PVA hydrogel, PA

hydrogel, viscoelastic model

1. Introduction

Soft polymeric materials such as elastomers and gels often exhibit complex time dependent

mechanical behavior [1, 2]. These time dependent behaviors can be controlled by crosslinking the

network by a combination of chemical and physical crosslinks, as well as controlling the density

of crosslinks [3]. Physical crosslinks can be formed using dynamic bonds such as dynamic covalent5

bonds, hydrogen bonds, ionic bonds, metal-ligand coordination, host-guest interactions, hydrophobic

interactions, and π − π stacking [4, 5, 6, 7, 8, 9, 10]. Experiments by different research groups have

shown that these dynamic networks can break and reform resulting in self-healing solids [11, 12, 13,

14, 15, 16, 17, 18]. More importantly, viscoelasticity associated with bond breaking and reforming

can significantly increase energy dissipation which results in enhance fracture toughness [19]. In10

comparison to networks crosslinked by physical bonds, those consisting of chemical bonds generally
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exhibit weaker time-dependent behavior. The time-dependent load-transfer between chemically

crosslinked and physically crosslinked networks remain a topic of active investigation [20].

Theory plays an important role in the development of constitutive models. In the past two-

decades, many rate-dependent constitutive models have been developed to study the time-dependent15

behavior of soft materials made of dynamic networks as well as the flow of solvent in polymer gels

[21, 22]. The complex micromechanics governing mechanical behavior requires many material pa-

rameters to construct a constitutive model with good predictive capability. For example, Mao et

al [23]. has developed a constitutive model for a hydrothermally activated malleable covalent net-

work polymer. This model has 24 material parameters. Lu et al. [24] developed a 12 parameter20

constitutive model which incorporates viscoelasticity and Mullins effect to study the time depen-

dent mechanical responses of four soft materials. Mao et al. [25] developed a large deformation

viscoelasticity model to study the behavior of a double network hydrogel consisting of a covalently

crosslinked polyacrylamide and an ionically crosslinked alginate network. This model has 18 material

parameters. Chester [21] has developed a 10 parameters constitutive model to study the coupling25

of poroelasticity and viscoelasticity in polymer gels. Tang et al. [26] have developed a micro-stress

based viscoelastic model to describe the viscoelasticity of polymers. This model has 9 material

parameters.

In physically based constitutive models, some material parameters can be determined based on

their physical significance, while others are typically calibrated manually or through an optimization30

process. For example, Crespo-Cuevas et al. [27] use transient network theory to develop a physical

based model to quantify the poro-viscoelasto-plasticity of a Agarose gel. To estimate the material

parameters in their model, they compare experimental creep and stress relaxation data with finite

element simulations. They start the finite element simulation with some initial guess of the material

parameters and then update the input values iteratively using a minimization algorithm in MATLAB.35

For complex constitutive models with a large number of parameters, fitting can be extremely

challenging since computation can be time consuming even with an efficient optimization scheme.

In this work, we highlight an alternative method that combines singular value decomposition (SVD)

and neural networks (NN) to address this challenge. In the past few years, there has been intensive

interest in using machine learning techniques to solve solid mechanics problems [28, 29, 30]. One40

approach is to train regression trees or neural networks to quickly solve a specific type of boundary

value problems in solid mechanics. For example, Liu et al. [31] have shown that machine learning can

rapidly determine the fracture toughness of a pre-notched pentagonal cross-section microcantilever

loaded at its end. The machine learning solutions for different cantilever geometries were found to

agree well with finite element results.45

A different approach is to use machine learning to construct constitutive models; that is, to

provide mechanical responses without the use of analytic constitutive equations. For example, Wang
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et al. [32] used temporal convolutional network to simulate the ultra-long-history-dependent stress-

strain relationship of reinforced concrete. Saharuddin et al. [33] used artificial neural network and

extreme learning machine to simulate the mechanical behavior of a magnetorheological elastomer.50

Masi et al. [34] proposed a thermodynamics-based artificial neural network and applied their model

to study the behavior of elasto-plastic solids.

Although there are a few papers that discuss parameter determination using machine learning

[35, 36, 37], we have not found any published work using machine learning to determine material

parameters in complex constitutive models. As we will demonstrate later, machine learning provides55

an efficient means to determine these material parameters. Our method has certain advantages over

traditional nonlinear fitting methods such as the Levenberg-Marquardt algorithm [38, 39, 40]. This

method also preserves the physical meaning of analytic constitutive models. Our method is also

adaptive, the NN can adapt to a wide variety of constitutive models by automatically updating the

size of the neural network and training set size.60

The basic idea is to train a NN to determine the optimal material parameters given the consti-

tutive model and stress histories from several different types of loading histories. For each type of

load history, e.g., a relaxation test, our training set consists of many stress histories associated with

the loading history. Each stress history corresponds to a different parameter set. Note that these

stress histories are obtained from the constitutive model with given λ(t) and x⃗, so the experimental65

stress history curve is not required at this stage. These calculated stress histories are stored as rows

in a stress history matrix. We apply SVD to this stress matrix and use the dominant principal

components as outputs of the neural network (input to NN is the material parameters). Here we

note that SVD has been employed for many years to analyze and reduce the size of training or

experimental data [30, 41]. It has been successfully utilized by researchers in many fields, such as70

the analysis of spectroscopic data [42], of dynamics simulations [43], the genome-wide expression

data processing [44], and stress-strain curves compression [30]. SVD can also serve as a noise filter

and a small subset of singular values and vectors can effectively represent the experimental data [45].

We then use the trained network to generate a very large number of stress histories. We determine

the optimal parameter set by finding the stress history that best fits the experimental data.75

We test our adaptive algorithm on three different soft hydrogels with very different time depen-

dent behavior. Specifically, the constitutive model of these gels has 4, 9 and 13 material parameters

respectively. For each gel, we perform four uniaxial tension experiments (i.e. four loading histories).

Model curves generated from these loading histories are provided to train the NN.

The plan of this paper is as follows: The method is given in section 1. This section focuses on80

SVD and the input and output layer of the NN. Section 2 summarizes the constitutive model of the

three gels we use for validation of our algorithm. Section 3 focuses on the implementation of the

adaptive NN. Section 4 presents the main results. Here we compare the prediction of the constitutive
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models with experiments after using the adaptive NN to obtain the optimal material parameters.

Summary is presented in the last section.85

2. Parameter space, Singular value Decomposition, Input, and Output for Neural Net-

works

Constitutive models of complex materials usually contain many material parameters (say q),

many of which cannot be determined directly from experiments. In the following, material param-

eters are denoted by a q vector x⃗ = (x1, · · · , xq)
⊤ ∈ Rq. The parameter space Ω is a subset of Rq

90

which contains the parameter vectors x⃗. Let us consider a uniaxial test with a given stretch history.

For any parameter vector, say x⃗i, we can compute the stress history of this test by integrating the

constitutive model. The computed stress history can be stored as a row vector σ⃗⊤
i , where t is the

current time and the subscript i indicates that the stress vector is associated with x⃗i. The length

of the stress vector m typically increases with the observation time in the experiment. In principle,95

one can generate a very large number of stress histories (say n = 108), each corresponding to a

different, random parameter vector. If the constitutive model captures the correct physics, some of

these 108 stress vectors should be very close to the observed stress vector σ⃗⊤
exp in experiment. The

difficulty with this approach is the large amount of time required to generate a data set consisting

of 108 stress histories. For example, if it takes on the average of one second to compute one stress100

history, it will take about 27,000 hours to compute 108 histories. Here we note that the calculation

of stress history can be numerically challenging, depending on the constitutive model. Often, it

requires solving a set of differential and/or integral equations.

The basic idea is to train a NN to integrate the constitutive model. As we shall see, this reduces

the computation time dramatically. The training set ΩT is a small subset of Ω. Let n denote

the number of parameter vectors in ΩT . For a given stretch history, we numerically integrate the

constitutive model and store the stress history as a row vector σ⃗⊤
j in a n by m matrix S, which we

call the stress matrix. The SVD theorem states that

S =
r∑

i=1

eiu⃗iv⃗
⊤
i (1)

where r is the rank of S, and e1 > e2 > · · · > er > 0 are the singular values of S, Brow ≡ {v⃗⊤i , 1 ≤

i ≤ r} is an orthonormal basis of the row space of S, and Bcol = {u⃗i, 1 ≤ i ≤ r} is an orthonormal

basis for the column space of S. These bases and singular values can be determined by finding

eigenvalues and eigenvectors of the symmetric m by m matrix S⊤S. Eq. (1) states that the jth row

of S, σ⃗⊤
j , is given by

σ⃗⊤
j =

r∑
i=1

eiuij v⃗
⊤
i j = 1, · · · , n (2)
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where uij is the jth component of the column vector u⃗i. Since Brow is an orthonormal basis of the

row space, pij = eiuij = v⃗⊤i · σ⃗⊤
j (no sum on i, · is the usual dot product of two row vectors in Rm)

is the ith component of σ⊤
j with respect to Brow. These components pij are called the principal

components of σ⃗⊤
j . Because the stress vectors are obtained using the same constitutive model, one

expects that all but a few of the singular values (say r∗ << r) will be very small (relative to e1)

[30, 46]. If we neglect these, we should get a good approximation for any of the stress vectors, i.e.,

σ⃗⊤
j ≈

r∗∑
i=1

eiuij v⃗
⊤
i j = 1, · · · , n (3)

Since v⃗⊤i is fixed for a given experiment, any row vector or stress history can be represented by r∗

principal components pij = eiuij = v⃗⊤i · σ⃗⊤
j , i = 1, · · · , r∗. For example, for the PA gels studied105

in this work, r∗ = 4. In the following, we denote the vector containing these r∗ components as the

principal vector p⃗j .

Once the NN is trained, we input the parameters in a parameter set Ωp which is much larger

than the training set ΩT . We then use the NN to compute the stress histories of all vectors in Ωp.

By comparing these stress histories with experiments, we will be able to select the parameter vectors110

that best fit the data. Details of this procedure will be given below.

3. Three nonlinear viscoelastic solids: Summary of theories and experiments

Our algorithm is applied to study three hydrogel systems subjected to large deformation. The

first two systems are highly nonlinear viscoelastic polyampholyte (PA) hydrogels [7]. These gels are

synthesized by radical copolymerization of oppositely charged ionic monomers around zero-net charge115

composition at very high concentration. The first is a physical gel with only dynamic bonds formed

by p-styrenesulphonate (NASS) and 3-(methacryloylamino) propyl-trimethylammonium chloride

(MPTC). This pure physical (p-PA) gel phase separates into water rich and water poor domains

with different dynamic bond strengths. The second gel has the same dynamic bonds but is lightly

chemically crosslinked by N,N ′ -methylenebisacrylamide (MBAA). This chemical crosslinked gel120

(c-PA) does not phase separate and has much lower toughness than the p-PA gel [47].

The third system is a dual crosslinked Poly(vinylalcohol) (PVA) hydrogel with PVA chains

chemically crosslinked by glutaraldehyde and physically crosslinked by borate ions [48, 49]. We

have previously developed a three-dimensional (3D) constitutive model which combines the finite

strain elasticity of elastomers with the kinetics of bond breaking and reattachment [16, 50] and125

demonstrated that our model can accurately capture the behavior of both uniaxial tension and

shear (cyclic, small strain torsion) tests with complex loading histories at different temperatures

[51].

The synthesis of these gels and experimental procedure for tension tests have been reported in

5



[48, 49] and will not be repeated here. Here we report the results of four tension tests for each gel.130

These test results are used to determine the parameters in the constitutive model.

3.1. Constituive models

In the following we summarize the constitutive model governing a uniaxial tension test where

the stretch ratio λ(t) in the loading direction is prescribed for the three gels used in this work. The

multi-axial version of these constitutive models were developed and fully explained in our previous135

works [22, 52]. We start with the c-PA gel (intermediate complexity with q = 9), this is followed by

the p-PA gel (q = 13) and ends with the PVA gel (q = 4). In the following, stretching commence at

t = 0, before this time the sample is in its virgin unstressed state.

The nominal stress for the c-PA gel is [52]

σ(t) = ωchem × 2
dW0

dI1

∣∣∣∣
I1(t)

+ 2ρ
dW0

dI1

∣∣∣∣
I1(t)

ϕB(τ = 0, t,H0→t)
(
λ(t)− λ−2(t)

)
+

∫ t

0

[
χ(τ)ϕB(τ, t,H

τ→t) 2
dW0

dI1

∣∣∣∣
I1=Hτ→t

[
λ(t)

λ2(τ)
− λ(τ)

λ2(t)

]]
dτ

(4a)

where ωchem is the molar fraction of chemical bonds, W0 is the strain energy density function for

the network, I1 is the trace of the deformation gradient tensor evaluated at t, ρ is the molar fraction

of connected physical cross-links at t = 0 and

ϕB(τ, t,H
τ→t) =

[
1 +

αB − 1

tB

∫ t

τ

f(Hτ→t)ds

] 1
1−αB

(4b)

is the survivability function, it is the fraction of physical cross-links that survive from the time

of their formation τ to the current time t. In Eq. (4b), tB is the characteristic breaking time

of physical crosslinks, αB ∈ (1, 2) is a material parameter that controls the rate of decay of the

survivability function and f is a function which measures the dependence of breaking rate on the

stretch experienced by a physical bond from its formation at time τ to the current time t > τ . Hτ→t

is the trace of the deformation tensor at t using the configuration at τ as the reference state. In

uniaxial tension, it is

Hτ→t =
λ2(t)

λ2(τ)
+

2λ(τ)

λ(t)
(4c)

Finally, χ(τ) in Eq. (4a) is the fraction of broken physical bonds divided by the characteristic healing

time tH . This healing rate χ(τ) is history dependent and is given by the solution of the nonlinear

Volterra integral equation

1− ωchem = χ(t)tH +

∫ t

−∞
ϕB(τ, t,H

τ→t)χ(τ)dτ (4d)

Here we note that ρ is related to the other parameters by ρ = (1−ωchem)tB
(2−αB)tH+tB

; W0 is given by a 3 term

Yeoh’s model, i.e.,

W0(I1) =

3∑
i=1

ci(I1 − 3)i (4e)
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where ci are material constants and the breaking function f is

f(I1) =

(
1 +

I1 − 3

Ic − 3

)m

(4f)

where Ic > 3 and m > 0 are material constants. Ic represents an effective stretch ratio where

breaking accelerates, and m measures the severity of accelerated bond breaking. Eq. (4) implies140

that this model has 9 unknown material parameters {c1, c2, c3, αB , tB , tH ,m, Ic, ωchem}.

The physical meaning of Eq. (4a) is as follows: the first term is the stress carried by the chemically

crosslinked network, the second term is the stress carried by the physical cross-links that remain

connected from t = 0 to the current time t, the third integral is the stress carried by the healed

chains in the physical network which survives to the current time.145

The constitutive model for the p-PA gel is similar, except it has no chemical network. However,

due to phase separation, there are two physical networks, each with their survivability and breaking

functions. The material parameters associated with these networks have the same physical meaning

as the physical network in c-PA gel and are labelled by the subscript i(i = 1, 2). For example,

characteristic breaking times and healing times are denoted by tBi, tHi respectively. The nominal

stress σ(t) is related to the stretch history λ(t) by:

σ(t) =

 2∑
i=1

ρi

[
1 +

αBi − 1

tBi
fi(Ii(t))t

] 2−αBi
1−αBi

 2
dW0

dI1

∣∣∣∣
I1(t)

(
λ(t)− λ−2(t)

)
+

2∑
i=1

∫ t

0

χi(τ)ϕBi(τ, t,H
τ→t) 2

dW0

dI1

∣∣∣∣
I1=Hτ→t

[
λ(t)

λ2(τ)
− λ(τ)

λ2(t)

]
dτ

(5a)

where ρi =
ωitBi

(2−αBi)tHi+tBi
. Similar to Eq. (4d), the healing rate χi(t) for each network is obtained

by solving the integral equation

ωi − ρi [ϕBi(0, t)]
2−αBi = χi(t)tHi +

∫ t

0

ϕBi(τ, t)χi(τ)dτ (5b)

The survivablity functions have the same form as Eq. (4b) except that the breaking function Eq. (4f)

is replaced by

fi(I1) = exp

{(
1 +

I1 − 3

Ic − 3

)mi

− 1

}
(5c)

There is a total of 13 independent material parameters in this model, i.e., a parameter vector x⃗ has

components {c1, c2, c3, αB1, tB1, tH1,m1, αB2, tB2, tH2,m2, Ic}.

Lastly, we summarize the model for the PVA gel. The model is a simplified version of c-PA gel

where the chain breaking kinetics is independent of stretching, thus f = 1 and Eq. (4b) reduces to

ϕB(τ, t) =

[
1 +

αB − 1

tB
(t− τ)

] 1
1−αB

(6a)

Since chain breaking kinetics is independent of stretch, the system can reach steady state where

chain breaking rate equals chain healing rate, that is, there is a steady state solution χ = χss =
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(2− αB)t
−1
B ρ to the integral equation Eq. (4d). Assuming steady state, the integral equation is no

longer needed and χ(τ) in Eq. (4a) is replaced by χss. Finally, for the stretch ratios considered here,

strain hardening can be neglected, so c2 = c3 = 0 in (4e). In previous works, we use c1 = µ/2 where

µ is the small strain shear modulus of the network. Thus, Eq. (4a) reduces to

σ(t) = µ[ωchem + ρϕB(t)]
(
λ(t)− λ−2(t)

)
+ µχss

∫ t

0

[
ϕB(t− τ)

[
λ(t)

λ2(τ)
− λ(τ)

λ2(t)

]]
dτ (6b)

In this model, there are four independent parameters {µωchem, µχss, αB , tB} . Note ρ is not an

independent parameter since χss = (2− αB)t
−1
B ρ and ρ = (1−ωchem)tB

(2−αB)tH+tB
.

To be consistent with our previous work related to PVA constitutive model [50, 46], we use the150

four parameters {µρ, µγ∞, αB , tB} for model fitting, with γ∞ = 1−ρ
tH+tB/(2−αB) .

3.2. Experiments in this study

In this work, we choose these three different materials and their corresponding constitutive

models, from simple to complex, to test our algorithm.

Uniaxial tension tests are conducted on rectangular specimens of dimension 30 mm (length) x155

10 mm (width) x 2mm (thickness). Three cyclic tests and one relaxation test are carried out to

determine the parameters for different hydrogels. For PVA gels, we stretch the sample to a stretch

ratio of 1.3 with stretch rate 0.003/s (EXP A), 0.01/s (EXP B) and 0.03/s (EXP C) respectively

and then unload them to their original lengths (stretch ratio = 1) at the same rates. Then, we

stretch the sample to a stretch ratio of 1.3 with stretch rate 0.5/s and then hold for 200 seconds160

(EXP D). For PA gel, we stretch the sample to a stretch ratio of 2 with stretch rate 0.001/s (EXP

1), 0.01/s (EXP 2) and 0.1/s (EXP 3) respectively and then unload them to their original lengths

(stretch ratio = 1) at the same rates. Then we stretch the sample to a stretch ratio of 2 with stretch

rate 0.5/s and then hold for 300 seconds (EXP 4). To prevent those gels from drying or swelling, all

tests for PVA gels are done in mineral oil, and all tests for PA gels are done in deionized water.165

4. Neural network (NN): Implementation

4.1. NN for constitutive models

There are various types of NN [53, 54]. Here we choose the deep neural network (DNN) for its

simplicity. A DNN always contains three types of layers: input layer, hidden layer, and output layer.

For our parameter fitting problem, the input layer is the parameters of the constitutive model so170

the number of input nodes equals q; the output layer is the first r∗ principal components, so the

number of output nodes is r∗.

There can be many hidden layers. More layers or more nodes in each hidden layer means

greater ability to simulate complex models but usually requires larger training sets to reach the best

prediction result. In Fig. 1, we show an example of two hidden layers. Each node in the first hidden
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Figure 1: Schematics of DNN. The number of nodes in the input layer equals the number of modal parameters, q, and

the number of nodes in the output layer is the number of singular values needed to approximate the stress history,

r∗. The outputs are the principal components associated with a particular stress history. Only two hidden layers are

shown but more can be used.

layer (say node k) takes as input the q input values of a parameter vector x⃗ and computes its output

o1k(x⃗) as:

o1k(x⃗) = ln (1 + exp(w⃗1k · x⃗+ b1k)) (7a)

where ln(1+ exp()) is the Softplus activation function. Here the components of w⃗1k are the weights

of the kth node in the first hidden layer, · is the dot product of two vectors and b1k is the bias.

Similarly, the nodes of the 2nd hidden layer will take as input the outputs of the first hidden

layer o⃗1 = (o11, o12, · · · , o1h1
)⊤ (h1 denotes the total number of nodes in the first hidden layer), and

so on (using different weights and biases). For example, for the second hidden layer,

o2k(o⃗1) = ln(1 + exp(w⃗2k · o⃗1 + b2k)) (7b)

Finally, the output is given by

pi = w⃗3i · o⃗2 + b3i, i = 1, 2, · · · , r∗ (7c)

where w⃗3i and b3i are the weights (in our case the principal components) and bias of the last hidden175

layer. Here o⃗2 is the output vector of hidden layer 2.

We define the training error by

errtrain =
1

|ΩT |
∑

x⃗j∈ΩT

||p⃗j − p⃗SV D
j ||

||p⃗SV D
j ||

(8)
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where p⃗j is the output principal vector of the NN associated with x⃗j in the training set and p⃗SV D
j

is the computed principal vector obtain using SVD. ΩT is the training set, so |ΩT | is the number

of elements in the training set. Training means we tune all the weights and biases in the neural

network so errtrain is less than an assigned small number. The tuning process is done using gradient180

descent method. Details are given in SI.

4.2. Verification and Adaptive Neural network

In the discussion above we show an example of two hidden layers. However, different constitutive

models require different number of hidden layers and training set sizes to achieve the best prediction.

For example, a constitutive model with fewer material parameters usually requires fewer hidden185

layers and a smaller training set, whereas a model with more parameters requires more hidden layers

and a larger training set. Our goal is to design an accurate and efficient algorithm to determine

material parameters for any constitutive model. In the following, we design an adaptive network to

update the neural network and training set automatically. The flow chart of our algorithm is given

in Fig. 2.190

In our NN, the input and output layers are fixed. For the hidden layers, we always start with

two hidden layers with the 32 nodes, denoted by {32, 32} (It means there are two hidden layers,

with 32 nodes in the first hidden layer and 32 nodes in the second hidden layer. If we have {32, 64},

it means there are two hidden layers, with 32 nodes in the first hidden layer and 64 nodes in the

second hidden layer), and 1000 sets of parameters in the training set. We then train this neural

network until the training error errtrain approaches an approximate constant minimum value. Our

strategy is as follows: if errtrain is smaller than the designated value (e. g., 3%), the program goes

to the validation part; if errtrain is larger than the designated value, the number of hidden layers

will be increased by one and the new NN is re-trained with the same training set. The number of

nodes in the new hidden layer is 64. We continue this process of adding new hidden layers if the

training error is larger than the designated value. The number of nodes in these hidden layers are

given in equation Eq. (9) below:

{32, 32}
two layers

→ {32, 64, 32}
three layers

→ {32, 64, 64, 32}
four layers

→ {32, 64, 128, 64, 32}
five layers

→ · · · · · · (9)

We continue this procedure until is less than the designated value. The strategy is summarized by

the flow chart in Fig. 2.

The structure of the neural network and the size of the training set are key factors controlling

the accuracy of the prediction. How to choose and optimize the neural network for specific problems

is still an open question. In this work, the neural network and the training set update logistics are195

based on a simple heuristic - build incrementally for more complex systems. Here the number of

layers, nodes, and training sets are doubled by a factor of two at each increment. These choices are
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Figure 2: Workflow of adaptive neural network. This framework automatically increases the number of layers and

training size according to training error and validation error

efficient enough for the problems in this work, and we believe they can be applied to a wide range

of constitutive models.

A small training error means the neural network can predict parameter vectors it has already

seen before, not necessarily new vectors. So, the next step is to validate that the trained neural

network can still give a small error for parameters that lie outside the training set. This step is

called validation. For this part, we uniformly randomly choose 1000 sets of new parameters, ΩV ,

from the parameter space Ω and determine their principal vectors using our constitutive model and

SVD (p⃗SV D
j ) and neural networks (p⃗j) respectively. The validation error is defined in the same way

as the training error, i.e.,

errvalidation =
1

|ΩV |
∑

x⃗j∈ΩV

||p⃗j − p⃗SV D
j ||

||p⃗SV D
j ||

(10)
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If the validation error is smaller than a pre-assigned value, we stop training and validation and go to200

the prediction phase; if the validation error is large, which means the NN makes bad predictions, we

will add these new parameter vectors and their principal components (computed using constitutive

model) to our training set and return to training.

When training and validation finally ends, the trained NN makes very good prediction of principal

components for any parameter vector in the parameter space. An example is shown in Fig. 3 for a205

c-PA gel subjected to cyclic loading (strain rate is 0.01/s for loading and unloading, and maximum

stretch is 2). After training, we randomly selected 1000 parameters from Ω and then determine their

principal components by calculating the c-PA model. We compare these principal components with

the predicted principal components using the trained NN. From Fig. 3, the predicted components

are practically identical to the components obtained by integrating the constitutive model, which210

demonstrates the effectiveness of our NN.

Figure 3: Calculated principal components using constitutive model for c-PA gel versus predicted principal components

using NN for cyclic loading. The straight line with slope 1 is used to guide the eye.

Here we briefly explain the mathematical strategy of our update logic. When the training error

is large, it means the neural network underfits the data due to simplicity, so we need to increase

the complexity of the neural network. When the validation error is large, the neural network does

not sample enough points in the parameter space to make a good prediction, so it is necessary to215

increase the size of the training set.

12



4.3. Fitting Experiments

After training and validation, the neural network can predict the principal components of any

parameters in the parameter space Ω precisely. Here we utilize our neural network to determine

material parameters quickly from experiments.220

Let us suppose we carried out a uniaxial experiment with some loading history. We first take the

stress history from this experiment to form a vector and then calculate its projection on the basis

v⃗⊤i to determine its principal components. Then, we uniformly randomly select a large number of

new parameter vectors in a subset ΩP of the parameter space Ω and predict their principal vectors

using the trained neural network. If ΩP is large enough, there should exist some parameter vectors

which fit the experimental data well. To ensure good fitting, we choose |ΩP | = 1000|ΩT |, so the size

of the prediction set is larger than 1 million. It is very time-consuming to calculate the constitutive

model 1 million times (time is roughly 1s per calculation). However, as we shall see below, it is very

fast for the neural network to predict principal components for 1 million parameter vectors. The

optimal set of parameters should have principal components closest to the experimental principal

components, as defined by Eq. (11a) below.

x⃗opt = argmin
x⃗j∈ΩP

||p⃗j − p⃗exp||
||p⃗exp||

(11a)

Often, one can obtain a set of parameters which fits one experiment extremely well. A more stringent

test of a constitutive model is to find a set of parameters which works for a wide variety of loading

histories. This situation is more complicated since the basis v⃗⊤i and principal components are

different for different loading histories. Here we adopt one of the most straightforward methods, that

is, we train different neural networks independently for different loading histories, and then make

predictions for different loading histories, using the same prediction set. The optimal parameter

vector x⃗opt is the one with the smallest average error among all experiments, i.e.,

x⃗opt = argmin
x⃗j∈ΩP

1

L

L∑
l=1

||p⃗(l)j − p⃗
(l)
exp||

||p⃗(l)exp||
(11b)

where L means there are L experiments in total, and l means the lth loading history.

5. Results and Discussion

For each material, we first choose 1000 sets of parameters from their parameter space, calculate

the stress matrix and then get the singular values to determine how many singular values we need to

approximate an experimental curve. All the results are summarized in figure 4. For all the models225

and loading histories, the singular value becomes negligible after the 4th term, which means r∗ = 4

is enough in this work.
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Figure 4: Singular values for different models and loading histories. These results show that 4 singular values are

sufficient to well approximate all our experiments.

5.1. PVA model fitting

For PVA gel, the training results are shown in Table 1. The PVA constitutive model has 4

parameters, so it is relatively simple to fit. A neural network with two hidden layers and 1000

training size is good enough to predict the principal components extremely well. In our algorithm,

|ωP | = 1000|ΩT | = 1× 106. This is a large number of parameters, and the last row in Table 1 shows

that a brute force calculation will cost 23.4 hours in total to calculate the PVA constitutive model

2 million times for all the four experiments. However, the neural network needs less than 2 seconds

to predict the principal components for all parameters in ΩP . Even if we include the training time,

less than 5 minutes is needed to perfectly fit all the experimental curves. The best parameters are

(µρ, αB , tB .µγ∞) = (4.319kPa, 1.648, 0.2206s, 63.85kPa) (12)

The fitting plots using Eq. (6b) are shown in Fig. 5
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Table 1: Training results for PVA constitutive model

EXP A EXP B EXP C EXP D

Hidden layers {32, 32} {32, 32} {32, 32} {32, 32}

Training size 1000 1000 1000 1000

Training error 0.3% 0.4% 0.2% 0.3%

Validation error 3.4% 4.5% 2.8% 2.8%

Training Time 72s 72s 45s 110s

Prediction time 0.34s 0.34s 0.32s 0.34s

Compared to model 4.6h 4.6h 4.6h 9.6h

Figure 5: Comparison of prediction using best fitted parameters (Eq. (12)) from NN (orange) and experiment data

(blue) for a PVA gel sample subjected to four loading histories.

5.2. c-PA model fitting230

For c-PA gel, the training results are shown in Table 2. The c-PA model is more complex than

the PVA model since it has 9 parameters. The adaptive neural network captures this complexity,

and a good prediction can be achieved with three hidden layers and about 3000 training size. The

c-PA model is much more complex as it involves solving an integral equation for each parameter

vector input. For |ΩP | = 1000|ΩT | = 3 × 106, roughly 210 hours in total are needed to determine235

the principal components for all the four loading histories without the use of neural network (last
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Table 2: Training results for c-PA constitutive model

EXP 1 EXP 2 EXP 3 EXP 4

Hidden layers {32, 64, 32} {32, 64, 32} {32, 64, 32} {32, 64, 32}

Training size 3000 3000 3000 3000

Training error 1.3% 1.5% 1.3% 1.2%

Validation error 4.2% 4.4% 3.2% 4.1%

Training Time 477s 487s 452s 592s

Prediction time 1.03s 0.98s 1.02s 0.99s

Compared to model 42h 42h 42h 84h

row of Table 2).

Figure 6: Comparison of prediction using best fitted parameters (Eq. (13)) from NN (orange) and experiment data

(blue) for a c-PA gel sample subjected to four loading histories.

The best parameters for c-PA model are

c1 = 2.298MPa c2/c1 = 0.2827 c3/c1 = 0.0011 λc = 1.2302

ωchem = 0.0023 αB = 1.7030 tB = 0.0984s m = 1.2823 tH = 0.5638s
(13)

The comparison between the prediction of constitutive model using the parameters obtained by

NN and experiments is shown in Fig. 6
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Table 3: Training results for p-PA constitutive model

EXP 1 EXP 2 EXP 3 EXP 4

Hidden layers {32, 64, 128, 64, 32} {32, 64, 128, 64, 32} {32, 64, 64, 32} {32, 64, 64, 32}

Training size 7000 7000 6000 5000

Training error 2.8% 2.3% 2.7% 2.4%

Validation error 3.9% 3.3% 3.8% 4.9%

Training Time 1851s 1551s 1226s 1208s

Prediction time 5.62s 3.96s 3.03s 4.12s

Compared to model 128h 128h 110h 240h

5.3. p-PA model fitting240

For p-PA gel, the training results are shown in Table 3. The p-PA model has 13 parameters,

so it is very complicated and difficult to fit. To get good prediction results, the adaptive neural

network chooses five hidden layers and a training set size of 6000. The p-PA model requires solving

two integral equations so it takes even more time to integrate the model than the c-PA model. For

|ΩP | = 1000|ΩT | = 6× 106, about 600 hours in total are needed without the help of neural network245

(last row of table 3), but only less than 2 hours of training and 20 seconds of prediction are needed

using our adaptive neural network approach.

The best parameters for p-PA model are

c1 = 3.459MPa c2/c1 = 0.4223 c3/c1 = 0.0506 λc = 1.1166

ω1 = 0.5611 αB1 = 1.7868 tB1 = 0.0032s m1 = 0.3940 tH1 = 0.3850s

ω2 = 0.4389 αB2 = 1.7268 tB2 = 0.0566s m2 = 0.4722 tH2 = 0.3542s

(14)

The comparison between the prediction of constitutive model using the parameters (Eq. (14))

obtained by NN and experiments is shown in Fig. 7.
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Figure 7: Comparison of prediction using best fitted parameters from NN (orange) and experiment data (blue) for a

c-PA gel sample subjected to four loading histories.

6. Summary250

A machine learning algorithm based on singular value decomposition and deep neural network

are used in this paper to build metamodels for constitutive models, without relying on experimental

data. Principal components of stress histories in the training set are extracted using SVD. Deep

neural network is trained to simulate the relationship between model parameters and principal

components of stress histories. After training, the neural network can predict the stress histories255

not in the training set very well. This allows us to generate a large number of stress histories based

on different parameter sets to fit experiments precisely and quickly. An important feature of our

algorithm is its ability to adapt to a wide variety of constitutive models. This method not only

aids in parameter fitting but also advances the understanding and analysis of constitutive models.

The trained neural network can be stored and distributed, allowing users to quickly obtain optimal260

parameters without the need for repeated optimization processes. This is in contrast to traditional

optimization algorithms, which require new optimization processes for different materials and test

batches. Our adaptive neural network method updates the size of the neural network and training

size automatically. Three different time dependent constitutive models, from simple to complex, are

used as examples to validate this adaptive neural network framework. Both the training results and265

the fitting results show that our method can automatically capture the complexity of the constitutive

model and find one precise and efficient neural network. No extra operation is needed for neural
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network building, training, validation, and prediction to accommodate this method for different

constitutive models. With the number of parameters in the examples ranging from 4 to 13, our

approach in this work shows universality and scalability, thus can be applied to almost any parametric270

models. In other words, it is not necessary to restrict to rate dependent material models. One of

the advantages of our method is that for each type of experiment, one can find a large number

of parameter sets that fit the experimental data well. This means that there is a high probability

that there are many parameter sets which works well for all experiments (4 in our case). If such

a parameter set does not exist, one would conclude that the constitutive model is flawed. The one275

limitation of our method is that we need different neural networks for different loading histories since

the basis is not included in the neural network. Future work may consider possible solutions like

including loading conditions in the training set or using some recurrent neural networks to study

the time series.
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