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Abstract— Hurricanes are natural weather events that cause 
recurring and prolonged power outages in the U.S. This paper 
shows how ensemble weather forecast can be utilized to estimate 
the extent of temporal and spatial damages that a hurricane can 
inflict on the power system infrastructure. The line outage 
estimations, from ensemble members, can be used to compute 
optimal preventive scheduling for generators, for the duration of 
the event. The various schedules, can then, be used as alternative 
plans to choose from, depending on the actual path and wind force 
of the hurricane, closer to the event. Ensemble forecast for 
Hurricane Harvey, in the leading days to the landfall, is used to 
assess the impacts on the 2000 bus synthetic grid (ACTIVSg2000) 
on the footprint of Texas.  

Keywords—Ensemble forecast, hurricane, efficient emergency 
response planning, outage prediction, preventive operation, 
transmission system. 

I. INTRODUCTION 
Severe weather events threaten the security of power 

systems by impacting various elements simultaneously and 
causing widespread power outages [1], [2]. The subsequent 
socioeconomical disturbances are significant for people 
depending on electricity for various day to day tasks [3]. In the 
United States alone, natural events are responsible for an annual 
cost of around $20 billion to $55 billion dollars [4]. Having 
reliable information about the severity and the location of these 
events would allow for the rapid recovery of the affected areas, 
prepare the system operator to come up with contingency plans 
and if necessary change the operation plan in response to the 
event [5]. These measures subsequently help restrict the 
imposed costs to the system and improve the reliability of the 
grid.  

Majority of the recent research on the prediction of 
occurrence and intensity of outages due to severe natural events 
benefits from various machine learning techniques [6]–[11]. The 
key concept in these models is learning from the previous 
outages and historical weather data and implementing it for the 
upcoming events. The wind speed, duration of the event, rainfall 
and lightning strike counts are among features of these models 
used to learn the number of outages and the failure rate. In [12], 
the probability of outage happening in a grid cell is predicted, 
although authors do not provide a specific value for how well 
the models work. In [3], logistic regression is used for predicting 
the outage probability of elements in the path of an approaching 
hurricane. The two factors influencing this probability are the 
forecasted wind speed and the distance of the element from the 

center of the storm. The results are promising as the F1 score 
calculated is 0.9027, but it should be noted that the weather 
forecast is assumed exact.  

As the predictive system in weather forecast is a non-linear 
system, the presence of uncertainties in weather variables makes 
the prediction more challenging [13]. These uncertainties 
include the initial state, as a small change in the initial state 
would create significant changes in the trajectory of the weather 
event [14], [15], and the parameterization of physical 
phenomena [16], [17]. As such, the accuracy of the forecast 
drops significantly within one to two days [18]. Taking into 
account the limitations in accurate prediction of the weather that 
plays a key role in the complex system of meteorological 
phenomena and infrastructure is necessary for efficient response 
from power system operators in face of severe weather events.  

Hurricanes are one of the most impactful and recurrent 
natural event that cause prolonged power outages in the U.S. 
[19]. The high winds typical of hurricanes can damage the 
overhead transmission and distribution lines and even lead to 
collapse of transmission towers. The generation facilities are 
protected in enclosed spaces and consequently are not 
susceptible to as much damage as the transmission systems [20]. 
As the transmission system outages impact larger areas and can 
restrict the customers’ ability to access power even though that 
area’s distribution system has remained intact, the focus of this 
paper is on predicting transmission system outages.  

There are limited options at the operating stage to minimize 
the consequences of simultaneous element outages in the 
system. In [21], it is explained that employing microgrid 
technology enabled the residents of a tower in Greenwich 
Village, NY to maintain access to power and other utilities for 
the duration of one week outage caused by Hurricane Sandy. 
The other viable option that can be employed to benefit people 
across-the-board is the preventive unit commitment (UC) 
scheduling with the goal of minimizing load shedding and total 
cost [22]. The challenge that this solution faces is that solving 
stochastic unit commitment with numerous line outages is 
computationally burdensome. The solution time required might 
not be compatible with the available time. The number of 
scenarios studied can be reduced to overcome this difficulty, but 
there is a chance that the hurricane would not follow any of the 
more probable scenarios. To overcome this possibility, we allow 
for the inaccurate weather forecast by generating 20 models with 
different initial time stamps and each an ensemble model of 20 
forecasting models. The difficulty in employing an effective 
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response to natural events like hurricane is the limited time 
available when the path and severity of the event has been 
solidified. By employing the more probable forecasting analyses 
and solving the preventive UC for those weather data, we 
generate various UC schedules in place which can be readily 
modified or employed at time of the event.  

The rest of this paper is organized as follows: the model used 
for forecasting hurricane is introduced in section II. The impact 
of hurricane on failure rate of transmission system components 
is described in section III. The preventive UC is explained in 
section IV. The case study is presented and discussed in section 
V. Section VI concludes the paper. 

II. FORECASTING HURRICANE EVENTS 
To forecast weather events like hurricanes, meteorologists 

use the Weather Research and Forecasting (WRF), an 
atmospheric model, that is widely used in numerical weather 
prediction (NWP) at governmental centers and also by private 
companies [23], [24]. The atmospheric modeling has intrinsic 
errors due to the initial conditions, boundary and surface 
conditions, numerical approximations, and parameterization of 
physical processes that is generally divided into initial condition 
error and modeling error.  

Ensemble prediction attempts to compensate the imperfect 
data and methods available by providing parallel forecasts while 
introducing perturbations in the initial conditions. Combining 
forecast produces superior forecasts than the best individual 
forecaster [25]. What is more, ensemble forecast provides 
reliability estimation of the forecast [26]. Each model in 
ensemble modeling samples the uncertainty space of modeling 
process. As a result, the impact of each uncertainty introduced 
can be tracked in the forecast uncertainty. The initial conditions 
are adjusted by adding dynamic perturbation to them using the 
breeding growing singular or Lyapunov vector perturbations 
[27]. The lead time also impacts the model performance for 
forecasting and adds variation on the trajectory.  

In this paper, the wind speed and angle of hurricane are 
predicted with different initial conditions, which are the changes 
in the start date for performing prediction and also the added 
perturbations to each initial data. Thus, the trajectory of each 
prediction and the starting points are varied. The forecasted data 
is then applied to the infrastructure of power system to 
investigate the impact of the predicted hurricane on the 
transmission system components.  

III. IMPACT OF HURRICANE ON FAILURE RATE OF 
TRANSMISSION SYSTEM COMPONENTS 

The failure rate of power system components specially the 
transmission lines is vastly impacted by their environment. The 
longer transmission lines span over larger areas that might 
experience different weather conditions. These lines can be 
modeled as series connected segments of the original line, with 
each segment being located in different weather region. The 
failure rate of the line is calculated as a function of failure rate 
of each segment. The failure rate of each segment is derived 
from the failure stress factor for that weather condition [28], 
[29]. The failure probability and the weather conditions causing 
the failures are linked through the fragility curves [5], [30]. 

Wind speed and wind direction are used for hurricane event 
studied in this paper.  

The wind speed and angle of the forecasted hurricane differ 
depending on the time and regional characteristics of the 
transmission component’s location. Given the maximum wind 
speed and wind angle forecasted, the trajectory of hurricane is 
outlined. Based on the standard distance of transmission towers, 
the number of towers in a transmission line is estimated. The 
latitude and longitude of each tower is recorded.  

The failure probability of each transmission tower and 
consequently the transmission line is a function of the wind 
speed, the finite-element model of transmission tower and the 
physical attributes of the wind and terrain. The location of 
transmission towers in relation to the center of hurricane at each 
time stamp (determined by the wind intensity), is acknowledged 
by implementing the change in the wind speed [31]. Also, the 
dynamic wind loading which is comprised of steady and 
fluctuating wind is implemented to better model the wind [32]. 
The fragility curve is developed by conducting fragility analysis 
using the model described in [22], [32]. Fragility curves indicate 
the likelihood of failure. Based on the limit state defined, the 
component is considered as damaged if its failure likelihood 
exceeds the limit.  

IV. OPTIMAL POWER SYSTEM OPERATION 
The day-ahead security-constrained unit commitment 

(SCUC) is employed to provide preventive optimal operation to 
minimize load shedding and the total operation cost in the 
predicted hurricane conditions. The load shedding and over 
generation are heavily penalized to limit these options to only 
when there is no other viable option. The mathematical 
formulation of this problem for each weather prediction is a 
deterministic mixed-integer linear programming problem. This 
model is based on DC power flow as used by the power system 
operators in North America [33]. The linear sensitivity factors 
are used for the network constraints: thermal power flow limit 
of lines.  

The time and failure probability of transmission system 
components is used to generate contingency scenarios for the 
day of hurricane event. By defining a probability threshold for 
outage classification, lines are assigned working and failed 
status. Consequently, the network topology is impacted which 
might result in island formation in the system. As the linear 
sensitivity factors are topology dependent for each island a new 
power transfer distribution factor is produced. The line outages 
that do not change the topology of the power systems are 
addressed by employing flow cancelation method. Flow 
canceling transaction are power injection and withdrawal from 
two pseudo-buses close to the from and to buses of the failed 
line so that the failed line flow would appear zero to the rest of 
the system [34]. The framework used for solving the preventive 
SCUC is shown in Fig. 1.  

The total number of variables and constraints required for 
SCUC for large scale networks, makes it computationally 
complicated and time consuming to solve. To reduce the 
solution time, an iterative approach has been employed in which, 
for the first iteration, none of the lines thermal limit is taken into 
consideration. The solution of this stage is then used to calculate 
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the line flows. If the flow if any of the transmission lines exceeds 
its limit, those lines are added to the original problem and the 
problem is solved again. This process is repeated until no lines’ 
thermal limit is violated [35], [36].  

V. CASE STUDY 
The implications of implementing this method on the 

weather data of Hurricane Harvey are presented in this section. 
The Hurricane weather data of 25th through 27th of August 2017 
are forecasted using 20 sets of varying lead times from August 
21st to 25th in 6 hours intervals as shown in Table I. For each of 
these starting dates, 20 models with added dynamic initial 
perturbations are used to forecast the wind speed and angle for 
132 geographical locations scattered over Texas.  

The weather predictions of the ensemble model for hour 18 
of 25th through 27th of August using two different prediction 
starting date is shown in Fig. 2. The model performed on August 
21, has 120 hours of lead time and predicts the hurricane landfall 
would happen before 6 p.m. on August 25 and by then would 

move further inland. The prediction performed on August 25, 
with zero hour start date is concurrent with the time window of 
interest for hurricane. There is limited leeway for system 
operator to schedule units efficiently at this stage. We chose 
prediction model performed on August 22, at hour 18 (Fig. 3) to 
describe the impacts of weather prediction on power system 
scheduling and load shedding.  

All the towers in this study are assumed to have a generic 
design, with 55 m length, built from steel and have L-shape cross 
section. The predicted wind speed changes over height for most 

 

Fig. 1. Preventive SCUC framework.   

TABLE I.  ENSEMBLE MODEL STRUCTURE USED IN WEATHER 
FORECAST AND THEIR START-TIME 

Prediction Start 
Time  

Individual Models 
Constructing 

Ensemble 

Output of Each 
Individual Model 

   

08/21/2017 – 0:00 

Model 1 Speed  
Angle . . . 

. . . 

Model 20 Speed  
Angle 

 . . . 

08/25/2017 – 18:00 

Model 1 Speed  
Angle . . . 

. . . 

Model 20 Speed  
Angle 

 

 

Fig. 2. Predicted hurricane trajectory at 6:00 p.m. of 25th through 27th of 
August 2017 using ensemble models with prediction performed at 
0:00 a.m. of 21st of August and 6:00 p.m. of 25th of August. 

 

Fig. 3. Predicted hurricane trajectory at 6:00 p.m. of 25th through 27th of 
August 2017 using ensemble model performed at 6:00 p.m. on 22nd.  
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transmission towers in open terrain, is a function of the constant 
wind speed at 10 m height. By assuming that the ACTIVSg2000 
system is mapped on Texas, the location of transmission lines 
and towers are specified. Given the wind speed and angle 
calculated for the location of transmission towers, the 
probabilities of line outages can be calculated. For the prediction 
performed on the 22nd of August, the distribution of non-zero 
line outage probabilities are shown in Fig. 4. 

There are more than 3000 lines in this system, we limit the 
portrayed probabilities to unique non-zero values. Majority of 
the lines have outage probability of zero. For the remaining 
lines, depending on when hurricane hits the surrounding area, 
the lines outage probability will pick up and after the hurricane 
passed those areas, their probability will drop to zero again. 

To determine line outage status, a threshold value is chosen 
based on which lines with outage probability higher would be 
considered disconnected from the system. The outage 
probability of these disconnected lines could be zero for the 
following hours, but because the damages inflicted on the 
transmission lines are not repaired until after the event, the lines 
are considered down for the duration of simulation. The line 
outages at the last hour of predicted hurricane with two threshold 
values of 0.05 and 0.95 is shown in Fig. 5 and Fig. 6, 
respectively. The number of failed lines for thresholds 0.05 and 
0.95 are 125 and 78, respectively.  

By choosing the prediction of August 22, at hour 18, and 
with outage probability threshold of 0.05, the first line outage 
happens on hour 16 on August 25 and the last line outages 
happen on hour 17 of August 27. The preventive SCUC time 
frame is set from hour 0 of 25th to hour 0 of 28th to include the 
duration of the event. During this time, the line outages cause 
changes in the topology of power system as shown in Table II.  

The preventive SCUC for all the segments created is 
formulated and simulated using Python 3.9 with a CPLEX MILP 
solver. $7.44 E+8 is calculated as the total cost and the 

simulation take 2 hours and 28 minutes to find a solution. 138 
lines are added through iterative procedure to the constraints to 
be monitored as their flow exceeded their thermal limit. The 
high cost is due to the high penalty of load shedding and the 
inevitable load shedding that happens because of line outages. 
The total load shedding with probability threshold of 0.05 is 
22,980 MW.  

The load buses that are disconnected from the main network 
and do not have generator attached to them will experience load 
shedding for the duration of event. But due to inadequacy of the 
generating power available in the main network or reduction in 
system connectivity and lower power transfer capability, main 
network also faces load shedding for few hours as shown in Fig. 
7. Each of the ensemble weather prediction is similarly used to 
predict load shedding and schedule generating units to operate 
the distressed power system optimally. The predicted load 
shedding for each bus is shown in Fig. 8. 

 

TABLE II.  CHANGE IN THE TOPOLOGY OF POWER TRANSMISSION 
SYSTEM DURING THE 72 HOURS OF STUDY 

Hour Number of 
Segments 

Buses in Main 
Segment 

Number of 1 Bus 
Segments  

25 3 1998 2 
28 9 1983 5 
31 18 1972 13 
34 26 1936 16 
37 33 1913 21 
40 34 1906 21 
43 37 1903 22 
46 39 1901 24 

 

 
Fig. 4. The values of line outage probabilities based on prediction of hour 

18 on 22nd of August 2017. 

 
Fig. 5. Line outages in the ACTIVSg2000 power transmission system 

with probability threshold of 0.05. 

 
Fig. 6. Line outages in the ACTIVSg2000 power transmission system 

with probability threshold of 0.95. 

 
(a) 

 
(b) 

Fig. 7. Total load shedding in various zones at hour 72 (a) and hour 58 (b).  
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Fig. 8. Hourly load shedding during the hurricane predicted at 6 p.m. 22nd of August at each bus. 

I. CONCLUSION 
The devastating impacts that hurricanes can have on the 

power system infrastructure and subsequently affect people’ 
access to crucial services, can be managed to some extent with 
thorough emergency response planning. These preprepared 
responses are made using the weather forecast of leading days 
to the hurricane event. To improve the accuracy and 
comprehensiveness of the forecast, ensemble methods are used 
in this paper. Their impact on the power system infrastructure is 
estimated and accordingly the line outage probabilities are 
calculated. Various scenarios are developed, and their 
corresponding emergency response are planned based-on the 
line outage probabilities provided. The emergency response can 
then be improved upon the comparison of more updated weather 
data and the scenarios available. The proposed method is applied 
on the ACTIVSg2000 system mapped on Texas, with simulation 
run time of near 150 minutes. The consecutive changes in the 
network topology are also predicted that should be studied for 
maintaining system security.  
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