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Abstract— Hurricanes are natural weather events that cause
recurring and prolonged power outages in the U.S. This paper
shows how ensemble weather forecast can be utilized to estimate
the extent of temporal and spatial damages that a hurricane can
inflict on the power system infrastructure. The line outage
estimations, from ensemble members, can be used to compute
optimal preventive scheduling for generators, for the duration of
the event. The various schedules, can then, be used as alternative
plans to choose from, depending on the actual path and wind force
of the hurricane, closer to the event. Ensemble forecast for
Hurricane Harvey, in the leading days to the landfall, is used to
assess the impacts on the 2000 bus synthetic grid (ACTIVSg2000)
on the footprint of Texas.

Keywords—Ensemble forecast, hurricane, efficient emergency
response planning, outage prediction, preventive operation,
transmission system.

1. INTRODUCTION

Severe weather events threaten the security of power
systems by impacting various elements simultaneously and
causing widespread power outages [1], [2]. The subsequent
socioeconomical disturbances are significant for people
depending on electricity for various day to day tasks [3]. In the
United States alone, natural events are responsible for an annual
cost of around $20 billion to $55 billion dollars [4]. Having
reliable information about the severity and the location of these
events would allow for the rapid recovery of the affected areas,
prepare the system operator to come up with contingency plans
and if necessary change the operation plan in response to the
event [5]. These measures subsequently help restrict the
imposed costs to the system and improve the reliability of the
grid.

Majority of the recent research on the prediction of
occurrence and intensity of outages due to severe natural events
benefits from various machine learning techniques [6]-[11]. The
key concept in these models is learning from the previous
outages and historical weather data and implementing it for the
upcoming events. The wind speed, duration of the event, rainfall
and lightning strike counts are among features of these models
used to learn the number of outages and the failure rate. In [12],
the probability of outage happening in a grid cell is predicted,
although authors do not provide a specific value for how well
the models work. In [3], logistic regression is used for predicting
the outage probability of elements in the path of an approaching
hurricane. The two factors influencing this probability are the
forecasted wind speed and the distance of the element from the
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center of the storm. The results are promising as the F; score
calculated is 0.9027, but it should be noted that the weather
forecast is assumed exact.

As the predictive system in weather forecast is a non-linear
system, the presence of uncertainties in weather variables makes
the prediction more challenging [13]. These uncertainties
include the initial state, as a small change in the initial state
would create significant changes in the trajectory of the weather
event [14], [15], and the parameterization of physical
phenomena [16], [17]. As such, the accuracy of the forecast
drops significantly within one to two days [18]. Taking into
account the limitations in accurate prediction of the weather that
plays a key role in the complex system of meteorological
phenomena and infrastructure is necessary for efficient response
from power system operators in face of severe weather events.

Hurricanes are one of the most impactful and recurrent
natural event that cause prolonged power outages in the U.S.
[19]. The high winds typical of hurricanes can damage the
overhead transmission and distribution lines and even lead to
collapse of transmission towers. The generation facilities are
protected in enclosed spaces and consequently are not
susceptible to as much damage as the transmission systems [20].
As the transmission system outages impact larger areas and can
restrict the customers’ ability to access power even though that
area’s distribution system has remained intact, the focus of this
paper is on predicting transmission system outages.

There are limited options at the operating stage to minimize
the consequences of simultaneous element outages in the
system. In [21], it is explained that employing microgrid
technology enabled the residents of a tower in Greenwich
Village, NY to maintain access to power and other utilities for
the duration of one week outage caused by Hurricane Sandy.
The other viable option that can be employed to benefit people
across-the-board is the preventive unit commitment (UC)
scheduling with the goal of minimizing load shedding and total
cost [22]. The challenge that this solution faces is that solving
stochastic unit commitment with numerous line outages is
computationally burdensome. The solution time required might
not be compatible with the available time. The number of
scenarios studied can be reduced to overcome this difficulty, but
there is a chance that the hurricane would not follow any of the
more probable scenarios. To overcome this possibility, we allow
for the inaccurate weather forecast by generating 20 models with
different initial time stamps and each an ensemble model of 20
forecasting models. The difficulty in employing an effective
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response to natural events like hurricane is the limited time
available when the path and severity of the event has been
solidified. By employing the more probable forecasting analyses
and solving the preventive UC for those weather data, we
generate various UC schedules in place which can be readily
modified or employed at time of the event.

The rest of this paper is organized as follows: the model used
for forecasting hurricane is introduced in section II. The impact
of hurricane on failure rate of transmission system components
is described in section III. The preventive UC is explained in
section I'V. The case study is presented and discussed in section
V. Section VI concludes the paper.

II.  FORECASTING HURRICANE EVENTS

To forecast weather events like hurricanes, meteorologists
use the Weather Research and Forecasting (WRF), an
atmospheric model, that is widely used in numerical weather
prediction (NWP) at governmental centers and also by private
companies [23], [24]. The atmospheric modeling has intrinsic
errors due to the initial conditions, boundary and surface
conditions, numerical approximations, and parameterization of
physical processes that is generally divided into initial condition
error and modeling error.

Ensemble prediction attempts to compensate the imperfect
data and methods available by providing parallel forecasts while
introducing perturbations in the initial conditions. Combining
forecast produces superior forecasts than the best individual
forecaster [25]. What is more, ensemble forecast provides
reliability estimation of the forecast [26]. Each model in
ensemble modeling samples the uncertainty space of modeling
process. As a result, the impact of each uncertainty introduced
can be tracked in the forecast uncertainty. The initial conditions
are adjusted by adding dynamic perturbation to them using the
breeding growing singular or Lyapunov vector perturbations
[27]. The lead time also impacts the model performance for
forecasting and adds variation on the trajectory.

In this paper, the wind speed and angle of hurricane are
predicted with different initial conditions, which are the changes
in the start date for performing prediction and also the added
perturbations to each initial data. Thus, the trajectory of each
prediction and the starting points are varied. The forecasted data
is then applied to the infrastructure of power system to
investigate the impact of the predicted hurricane on the
transmission system components.

III. IMPACT OF HURRICANE ON FAILURE RATE OF
TRANSMISSION SYSTEM COMPONENTS

The failure rate of power system components specially the
transmission lines is vastly impacted by their environment. The
longer transmission lines span over larger areas that might
experience different weather conditions. These lines can be
modeled as series connected segments of the original line, with
each segment being located in different weather region. The
failure rate of the line is calculated as a function of failure rate
of each segment. The failure rate of each segment is derived
from the failure stress factor for that weather condition [28],
[29]. The failure probability and the weather conditions causing
the failures are linked through the fragility curves [5], [30].

Wind speed and wind direction are used for hurricane event
studied in this paper.

The wind speed and angle of the forecasted hurricane differ
depending on the time and regional characteristics of the
transmission component’s location. Given the maximum wind
speed and wind angle forecasted, the trajectory of hurricane is
outlined. Based on the standard distance of transmission towers,
the number of towers in a transmission line is estimated. The
latitude and longitude of each tower is recorded.

The failure probability of each transmission tower and
consequently the transmission line is a function of the wind
speed, the finite-element model of transmission tower and the
physical attributes of the wind and terrain. The location of
transmission towers in relation to the center of hurricane at each
time stamp (determined by the wind intensity), is acknowledged
by implementing the change in the wind speed [31]. Also, the
dynamic wind loading which is comprised of steady and
fluctuating wind is implemented to better model the wind [32].
The fragility curve is developed by conducting fragility analysis
using the model described in [22], [32]. Fragility curves indicate
the likelihood of failure. Based on the limit state defined, the
component is considered as damaged if its failure likelihood
exceeds the limit.

IV. OPTIMAL POWER SYSTEM OPERATION

The day-ahead security-constrained unit commitment
(SCUC) is employed to provide preventive optimal operation to
minimize load shedding and the total operation cost in the
predicted hurricane conditions. The load shedding and over
generation are heavily penalized to limit these options to only
when there is no other viable option. The mathematical
formulation of this problem for each weather prediction is a
deterministic mixed-integer linear programming problem. This
model is based on DC power flow as used by the power system
operators in North America [33]. The linear sensitivity factors
are used for the network constraints: thermal power flow limit
of lines.

The time and failure probability of transmission system
components is used to generate contingency scenarios for the
day of hurricane event. By defining a probability threshold for
outage classification, lines are assigned working and failed
status. Consequently, the network topology is impacted which
might result in island formation in the system. As the linear
sensitivity factors are topology dependent for each island a new
power transfer distribution factor is produced. The line outages
that do not change the topology of the power systems are
addressed by employing flow cancelation method. Flow
canceling transaction are power injection and withdrawal from
two pseudo-buses close to the from and to buses of the failed
line so that the failed line flow would appear zero to the rest of
the system [34]. The framework used for solving the preventive
SCUC is shown in Fig. 1.

The total number of variables and constraints required for
SCUC for large scale networks, makes it computationally
complicated and time consuming to solve. To reduce the
solution time, an iterative approach has been employed in which,
for the first iteration, none of the lines thermal limit is taken into
consideration. The solution of this stage is then used to calculate
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Fig. 1. Preventive SCUC framework.

the line flows. If the flow if any of the transmission lines exceeds
its limit, those lines are added to the original problem and the
problem is solved again. This process is repeated until no lines’
thermal limit is violated [35], [36].

V. CASE STUDY

The implications of implementing this method on the
weather data of Hurricane Harvey are presented in this section.
The Hurricane weather data of 25 through 27" of August 2017
are forecasted using 20 sets of varying lead times from August
21% to 25" in 6 hours intervals as shown in Table 1. For each of
these starting dates, 20 models with added dynamic initial
perturbations are used to forecast the wind speed and angle for
132 geographical locations scattered over Texas.

The weather predictions of the ensemble model for hour 18
of 25% through 27" of August using two different prediction
starting date is shown in Fig. 2. The model performed on August
21, has 120 hours of lead time and predicts the hurricane landfall
would happen before 6 p.m. on August 25 and by then would

TABLE L. ENSEMBLE MODEL STRUCTURE USED IN WEATHER
FORECAST AND THEIR START-TIME
Prediction Start In(:;zlndsltl:lllcl\gzdels Output of Each
Time g Individual Model
Ensemble
Speed
Model 1 Angle
08/21/2017 — 0:00 :
Speed
Model 20 Angle
Speed
Model 1 Angle
08/25/2017 — 18:00 : :
Speed
Model 20 Angle

72 hours hurricane trajectory prediction-ensemble model
Perforemd at hour 18 - 07/25/2017
Perforemd at hour 0 - 07/21/2017
g T T T

predicted on 8/25/2017
predicted on 8/21/2017

35°N

Latitude

30°N B4

105°W 100°W 95°W
Longitude

Fig. 2. Predicted hurricane trajectory at 6:00 p.m. of 25" through 27" of
August 2017 using ensemble models with prediction performed at
0:00 a.m. of 21* of August and 6:00 p.m. of 25" of August.

72 hours hurricane trajectory prediction-ensemble model
Perforemd at hour 18 - 07/22/2017

Latitude

100°W
Longitude

Fig. 3. Predicted hurricane trajectory at 6:00 p.m. of 25" through 27" of
August 2017 using ensemble model performed at 6:00 p.m. on 22",

move further inland. The prediction performed on August 25,
with zero hour start date is concurrent with the time window of
interest for hurricane. There is limited leeway for system
operator to schedule units efficiently at this stage. We chose
prediction model performed on August 22, at hour 18 (Fig. 3) to
describe the impacts of weather prediction on power system
scheduling and load shedding.

All the towers in this study are assumed to have a generic
design, with 55 m length, built from steel and have L-shape cross
section. The predicted wind speed changes over height for most
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TABLE II. CHANGE IN THE TOPOLOGY OF POWER TRANSMISSION
SYSTEM DURING THE 72 HOURS OF STUDY
Number of Buses in Main Number of 1 Bus
Hour
Segments Segment Segments
25 3 1998 2
28 9 1983 5
31 18 1972 13
34 26 1936 16
37 33 1913 21
40 34 1906 21
43 37 1903 22
46 39 1901 24

Line Outage
Probability
=)

W

1 21 41 61 81 101 121 141 161

Number of non-zero values

Fig. 4. The values of line outage probabilities based on prediction of hour
18 on 22" of August 2017.

transmission towers in open terrain, is a function of the constant
wind speed at 10 m height. By assuming that the ACTIVSg2000
system is mapped on Texas, the location of transmission lines
and towers are specified. Given the wind speed and angle
calculated for the location of transmission towers, the
probabilities of line outages can be calculated. For the prediction
performed on the 22" of August, the distribution of non-zero
line outage probabilities are shown in Fig. 4.

There are more than 3000 lines in this system, we limit the
portrayed probabilities to unique non-zero values. Majority of
the lines have outage probability of zero. For the remaining
lines, depending on when hurricane hits the surrounding area,
the lines outage probability will pick up and after the hurricane
passed those areas, their probability will drop to zero again.

To determine line outage status, a threshold value is chosen
based on which lines with outage probability higher would be
considered disconnected from the system. The outage
probability of these disconnected lines could be zero for the
following hours, but because the damages inflicted on the
transmission lines are not repaired until after the event, the lines
are considered down for the duration of simulation. The line
outages at the last hour of predicted hurricane with two threshold
values of 0.05 and 0.95 is shown in Fig. 5 and Fig. 6,
respectively. The number of failed lines for thresholds 0.05 and
0.95 are 125 and 78, respectively.

By choosing the prediction of August 22, at hour 18, and
with outage probability threshold of 0.05, the first line outage
happens on hour 16 on August 25 and the last line outages
happen on hour 17 of August 27. The preventive SCUC time
frame is set from hour 0 of 25" to hour 0 of 28" to include the
duration of the event. During this time, the line outages cause
changes in the topology of power system as shown in Table II.

The preventive SCUC for all the segments created is
formulated and simulated using Python 3.9 with a CPLEX MILP
solver. $7.44 E+8 is calculated as the total cost and the

Line outages at hour 72 with Threshold 0.05
7 & | ?

]
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Latitude
8
2
s _
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100"W 25"W
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Fig. 5. Line outages in the ACTIVSg2000 power transmission system
with probability threshold of 0.05.

Line outages at hour 72 with Threshold 0.95
7T | i E
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Fig. 6. Line outages in the ACTIVSg2000 power transmission system
with probability threshold of 0.95.
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Fig. 7. Total load shedding in various zones at hour 72 (a) and hour 58 (b).

simulation take 2 hours and 28 minutes to find a solution. 138
lines are added through iterative procedure to the constraints to
be monitored as their flow exceeded their thermal limit. The
high cost is due to the high penalty of load shedding and the
inevitable load shedding that happens because of line outages.
The total load shedding with probability threshold of 0.05 is
22,980 MW.

The load buses that are disconnected from the main network
and do not have generator attached to them will experience load
shedding for the duration of event. But due to inadequacy of the
generating power available in the main network or reduction in
system connectivity and lower power transfer capability, main
network also faces load shedding for few hours as shown in Fig.
7. Each of the ensemble weather prediction is similarly used to
predict load shedding and schedule generating units to operate
the distressed power system optimally. The predicted load
shedding for each bus is shown in Fig. 8.
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I.  CONCLUSION

The devastating impacts that hurricanes can have on the
power system infrastructure and subsequently affect people’
access to crucial services, can be managed to some extent with
thorough emergency response planning. These preprepared
responses are made using the weather forecast of leading days
to the hurricane event. To improve the accuracy and
comprehensiveness of the forecast, ensemble methods are used
in this paper. Their impact on the power system infrastructure is
estimated and accordingly the line outage probabilities are
calculated. Various scenarios are developed, and their
corresponding emergency response are planned based-on the
line outage probabilities provided. The emergency response can
then be improved upon the comparison of more updated weather
data and the scenarios available. The proposed method is applied
on the ACTIVSg2000 system mapped on Texas, with simulation
run time of near 150 minutes. The consecutive changes in the
network topology are also predicted that should be studied for
maintaining system security.
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