IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

22737

IoTInfer: Automated Blackbox Fuzz Testing

of IoT Network Protocols Guided by
Finite State Machine Inference

Zhan Shu

Abstract—The popularity of Internet of Things (IoT) devices
calls for effective yet efficient methods to assess the security and
resilience of IoT devices. In this work, we explore a new heuristic
based on finite state machine (FSM) inference to guide gener-
ation of test cases for blackbox fuzzing tests of IoT network
protocol implementations. Our method, which is called IoTInfer,
balances exploration and exploitation by continuously monitoring
how likely mutation of an input message leads to counterexam-
ples conflicting with the prediction by the current FSM. IoTInfer
also applies clustering techniques to coarsen the FSM inferred
when there are limited computational resources provisioned for
fuzzing tests. We implement IoTInfer for both Bluetooth and
Telnet protocols, which are widely used by existing IoT devices.
Our experimental results with a variety of IoT devices reveal
that IoTInfer is efficient at generating meaningful test cases,
some of which can expose previously unknown vulnerabilities or
implementation deviations from protocol specifications. We also
compare loTInfer with two other state-of-the-art blackbox IoT
device fuzzing tools and find that IoTInfer is better at eliciting
different types of responses from the fuzzing targets.

Index Terms—Device security, security and privacy.

I. INTRODUCTION

ECENT analysis of the cyber threat landscape has sug-
Rgested that vulnerable Internet of Things (IoT) devices
have become a primary attack target. Among the 1.2 million
IoT devices analyzed by Palo Alto Networks, 57% of them
were vulnerable to medium- or high-severity attacks [1]. These
vulnerable IoT devices are low hanging fruits for cyber attack-
ers, as evidenced by F-Secure’s recent report that the increase
in attack activities captured by its global honeynet in the first
half of 2019 from a year ago was largely driven by loT-related
traffic [2].

There is thus an urgent need for techniques that can assess
the security and resilience of IoT devices effectively yet effi-
ciently. Since IoT devices are essentially computing devices
with networking capabilities, they are not immune to attacks
from the Internet as long as they are externally accessi-
ble through some network protocols. This motivates us to
explore how to perform fuzzing tests for network protocols

Manuscript received 3 April 2022; accepted 7 June 2022. Date of publi-
cation 13 June 2022; date of current version 7 November 2022. This work
was supported in part by the U.S. National Science Foundation under Award
CNS-1943079. (Corresponding author: Guanhua Yan.)

The authors are with the Department of Computer Science, Binghamton
University, State University of New York, Binghamton, NY 13902 USA
(e-mail: zshulbinghamton.edu; ghyanbinghamton.edu).

Digital Object Identifier 10.1109/JI0T.2022.3182589

and Guanhua Yan

, Member, IEEE

implemented by IoT devices. As these devices are commonly
shipped to the market with few implementation details (e.g.,
lack of source code or difficulty in extracting firmware),
blackbox fuzz testing is often the only practical approach to
understanding their security and resilience issues.

However, blackbox fuzzing can be extremely inefficient for
vulnerability discovery because the test cases randomly gener-
ated from blackbox fuzzing often fail to pass validation tests
by the fuzzing targets [3], [4]. Against this backdrop, this
work explores a new heuristic based on finite state machine
(FSM) inference to guide generation of test cases for black-
box fuzzing of IoT network protocols. Our intuition behind
this new approach builds upon the observation that implemen-
tations of network protocols usually follow FSMs defined in
their specifications. In contrast to random mutations of mes-
sage fields values widely used in network protocol fuzzing,
blackbox fuzzing guided by FSM inference aims to prioritize
test cases that are more likely to cause state transitions in the
fuzzing targets.

There has been a large body of research dedicated to
FSM inference of network protocols [5]. Many protocol FSM
inference algorithms, such as the L* algorithm [6], gradu-
ally approach the correct FSM of a target protocol through
a sequence of membership queries and equivalence queries.
Our hypothesis is that, when feeding new inputs to the tar-
get protocol in hope of eliciting counterexamples for FSM
improvement, some of them may be unexpected by a specific
implementation of the target protocol, thus exposing its abnor-
mal behaviors with potential security risks. After the fuzzing
tests, the FSM inferred can also be compared against the proto-
col’s standard specifications, if they exist, to find questionable
deviations.

Straightforward applications of existing FSM inference
methods such as the L* algorithm [6] usually require
predefined abstractions for input alphabets (i.e., sets of input
messages accepted by the target protocols) and output alpha-
bets (i.e., sets of output messages observed from the target
protocols). However, ad hoc workarounds of these issues can
lead to undesirable results. For example, using a small set of
valid seed input messages may undershoot the input alpha-
bet, while random generation of input messages according
to predefined message formats is likely to produce a large
fraction of invalid ones immediately rejected by the target.
Moreover, if the output alphabet is assumed to include all pos-
sible output messages from the target protocol, its size may

2327-4662 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9600-9517
https://orcid.org/0000-0001-7482-4043

22738

be too large, making fuzz testing guided by FSM inference
intractable.

Inspired by multiarmed bandit reinforcement learning [7],
we propose a new method called IoTInfer to strike a bal-
ance between exploration and exploitation in generation of
fuzzing tests. It mutates the fields in an input message ran-
domly chosen from the current input alphabet (exploration)
and monitors the responses from the target protocol. If the
new message variants lead to counterexamples that conflict
against the predictions by the current FSM, IoTInfer increases
the likelihood of choosing the same message for mutation in
the future; otherwise, if mutation of an existing valid message
does not aid FSM improvement, IoTInfer lowers its chance of
getting selected for future mutation (exploitation). Moreover,
when there are only limited computational resources provi-
sioned for fuzzing tests, loTInfer can cluster both the input
and output alphabets to coarsen the FSM inferred.

In a nutshell, our key contributions include the following.

1) We develop a new heuristic based on FSM inference to
improve efficiency of blackbox fuzzing tests of network
protocol implementations by COTS IoT devices.

2) We propose to dynamically adjust both the input and
output alphabets with clustering methods in FSM infer-
ence to address lack of prior knowledge about acceptable
input messages by the target IoT devices and also reduce
the complexity of FSMs inferred due to various output
messages observed from them.

3) We implement IoTInfer as a generic blackbox fuzzing
tool and evaluate its performance on the implementa-
tions of Bluetooth and Telnet protocols in various IoT
devices. Our experiments show that IoTInfer is not only
efficient at generating meaningful fuzzing test cases but
also able to find previously unknown security issues in
some of them.

4) We compare the performance of IoTInfer against those
of two other state-of-the-art blackbox IoT device fuzzing
tools and find that IoTInfer is better at eliciting different
types of responses from the fuzzing targets.

The remaining of this article is organized as follows.
Section II discusses related work. Section III presents the
problem formulation and explains the key methodology of
this work. Section IV introduces the general methodology
applied by this work. Section V presents the key data struc-
tures and workflow of IoTInfer and Section VI discusses the
algorithm details of its key components. Section VII elabo-
rates on the implementation details. We show experimental
results in Section VIII. We discuss the limitations of our work
in Section IX and draw concluding remarks in Section X.

II. RELATED WORK

In this section, we review related works in the literature.

A. Generic loT Security

Many techniques have been developed to enhance IoT secu-
rity due to its rising importance. They include, among many
others, software defined networking (SDN)-assisted hardening

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

of IoT architecture [8], IoT security enforcement through wire-
less context analysis [9], secure configurations for IoT [10],
secure thing-centered IoT communications [11], conflict detec-
tion in IoT systems based on formal methods [12], behavioral
fingerprinting of IoT devices [13], graph-based IoT malware
detection [14], record and replay that facilitate security testing
of IoT devices [15], sensitive information tracking for com-
modity IoT devices [16], and context-aware security hardening
for smart home systems [17]. These techniques have been sum-
marized within multiple comprehensive surveys on the topic of
IoT security, including potential solution to IoT security [18],
IoT security from CISCO’s seven-level reference model [19],
legal aspects of IoT security [20], access control for IoT [21],
IoT security taxonomy in the contexts of application, archi-
tecture, and communication [22], IoT vulnerabilities [23], and
IoT fuzzing [4]. IoTInfer adopts a proactive approach to IoT
security, which aims to discover and patch vulnerabilities in
IoT devices before they are shipped to the market.

B. Fuzzing Methodology

Existing fuzzing test methods can be classified into three
types: 1) blackbox fuzzing; 2) whitebox fuzzing; and 3) gray-
box fuzzing. A blackbox fuzzer like zzuf [24] does not need
to access the source code or know the internal implemen-
tation details of the fuzzing target. Although it is easy to
perform blackbox fuzzing through random generation of test
cases, it can be extremely inefficient if most of these test
cases cover only a small fraction of code branches in the tar-
get (e.g., rejection due to wrong formats). Whitebox fuzzing
techniques [25]-[27] take advantage of the source code of
the fuzzing target and use dynamic symbolic execution tech-
niques to optimize test case generation. Graybox fuzzing does
not require the source code, which makes it more practical
than whitebox fuzzing in many real-world scenarios; balanc-
ing practicality and efficiency, graybox fuzzing tools, such as
AFL [28] often instrument the fuzzing targets and collect use-
ful information such as code coverage to guide generation of
new test cases dynamically.

For many COTS IoT devices whose internal implementa-
tion details are unavailable, it is difficult to perform whitebox
or even graybox fuzzing tests on them. However blackbox
fuzzing through random generation of test cases can be ineffi-
cient at discovering their vulnerabilities. This work explores a
new heuristic based on FSM inference to guide generation of
test cases for blackbox fuzzing of IoT devices. As the nature
of IoT devices suggests that they must communicate with the
external world through some network protocols, IoTInfer aims
to find the sequences of network packets that allow the fuzzing
target to enter previously unexplored states.

C. IoT Device Fuzzing Tools

More related to IoTInfer are those tools that also apply
fuzz testing to improve IoT device security. IoTFuzzer finds
memory corruption vulnerabilities in an IoT device by modi-
fying the program logic in its companion mobile application to
mutate messages sent to the device [29]. Snipuzz is a recent
blackbox fuzzing technique that infers the message snippets

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

SHU AND YAN: IoTInfer: AUTOMATED BLACKBOX FUZZ TESTING

accepted by the target IoT devices and mutates message fields
based on these snippets to generate test messages for vul-
nerability discovery [30]. Firm-AFL uses augmented process
emulation, which leverages the high-fidelity of full-system
emulation and high-performance of user-mode emulation, to
achieve high-throughput greybox fuzzing of IoT firmware [31].
SweynTooth is a fuzzing platform for testing bluetooth low
energy (BLE) device security [32]; it adopts a mutation strat-
egy based on particle swarming to generate test cases and
depends upon manually constructed protocol state machines to
capture invalid responses. IoTInfer differs from these previous
efforts as it is applicable to IoT devices without companion
mobile apps and guides generation of fuzzing tests through
FSM inference. As IoTFuzzer and Snipuzz are two other state-
of-the-art generic blackbox fuzzing tools for IoT devices, we
shall compare the performances of their fuzzing strategies
against that of IoTInfer later in Section VIIIL.

III. PROBLEM FORMULATION AND ASSUMPTIONS

This work considers the following problem: given the tar-
get protocol of an IoT device, how can we identify its security
vulnerabilities or questionable implementation deviations from
protocol specifications? We assume that the inputs include
authentication credentials to interact with the target protocol,
request message formats, and a set of seed request messages.
Each message format is abstracted as a list of tuples; each ele-
ment in the list can be represented as a tuple (field name, field
len, and field type), meaning the name, length, and type of the
field, respectively. All the message formats from the input are
abstracted as an ordered list F = {f;}, where f; is a particu-
lar message format represented as a list of tuples described
above. The inputs also include a set of seed request messages,
M, each of which instantiates one of the message formats in F.

We assume that the network protocol in the target [oT device
can be modeled as a reactive system which processes incom-
ing requests from an external party and then sends back its
responses, if there are any. Like other protocol fuzzers [33],
[34], the IoT protocol fuzzer continuously performs the fol-
lowing steps: generate a new request message, send the request
message to the [oT device, and wait for the response message
from the IoT device (or time out if there is no response from
the IoT deivce after a certain period of time).

Sometimes the network protocol in the IoT device needs
to authenticate the requesting party in order to continue the
protocol. The availability of such an authentication credential
to the fuzzer affects the exploitability of the vulnerabilities
exposed by fuzzing tests. When configuring the fuzzer, the
authentication credential provided to the fuzzer should mirror
the threat model taken to exploit the vulnerabilities exposed
from the fuzzing tests.

We assume that some prior knowledge is available to speed
up fuzzing tests. First, the request message formats should
be known to the fuzzer. Such formats usually can be found
from the protocol specifications if the IoT device implements a
standard protocol, or through reverse engineering efforts (e.g.,
Discoverer [35] and Polyglot [36]) when proprietary protocols
are used. Second, some seed request messages should also

22739

be available to bootstrap the fuzzing tests. The seed request
messages can be obtained by passively monitoring the traffic
destined to an operational IoT device. Third, sometimes know-
ing the meaning of a specific field in the request message can
be instrumental in speeding up fuzzing tests.

Regarding the response messages from the IoT device, our
work does not assume any prior knowledge because different
IoT devices may implement the same network protocol in dif-
ferent manners, including what responses should be sent back
to the fuzzer.

IV. METHODOLOGY

We propose a new heuristic to guide blackbox fuzzing
tests of IoT network protocols based on FSM inference. In
our method, fuzzing test cases are continuously generated to
explore the unknown behaviors of an IoT device through its
network protocols, in hope of finding abnormal ones. As FSMs
are widely used to design and implement network protocols,
our method uses FSM inference to assist with test case gen-
eration. Moreover, the FSM inferred can be compared against
the standard protocol specifications, if they exist, to expose
questionable deviations implemented by the device.

For reactive systems such as network protocols, which do
not have accepting or rejecting states, it is desirable to repre-
sent their FSMs as Mealy machines [37]. A Mealy machine
is a sextuple (Q, qo, 2, A, 8, 1), where Q is a finite set of
states, go represents the initial state of the system, X is the
input alphabet, A is the output alphabet, the transition rela-
tion § : O x ¥ — Q maps the pair of a current state and an
input symbol to the corresponding next state, and the output
relationship A : O x ¥ — A maps the pair of a current state
and an input symbol to the corresponding output symbol.

A. L* Algorithm

The classical L* algorithm proposed by Shahbaz and
Groz [6], [38] can be used to learn the Mealy machine of
a reactive system. The L* algorithm operates on a data struc-
ture called an observation table. Assuming set concatenation
A - B = {abla € A, b € B}, the observation table is a tuple
(S, E,T) with function T : (SUS-X)-E) — AT, where
S denotes a prefix-closed set of strings from ¥* and E a
nonempty suffix-closed set of strings from %*. Note that X*
is the set of all possible strings over the input alphabet ¥
while ¥ = ©* — {¢} where € is the empty string.

The FSM can be constructed from the observation table
(S, E, T) as follows. Each unique row in S represents a state.
A transition from state g; to g due to input symbol a exists
if and only if for the row representing g; in S, denoted by
s1, we have a row in the bottom part of the table, s; - a, that
equals the row representing state g» in S.

The L* algorithm relies on two operations offered by an
imaginary teacher to infer the FSM of a target protocol P.

1) Membership Query: Given a sequence of requests,
denoted by R (i.e., each r € R is a request message
in ¥), a membership query returns a sequence of out-
puts from protocol P, denoted by O, where each o € O
is an output symbol in A.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

22740

2) Equivalence Query: Given a hypothesis model H, an
equivalence query either acknowledges that H and P are
equivalent or returns a counterexample C. Due to limited
space we refer the readers to [6] for the details of the
L* algorithm.

B. IoTInfer Methodology

Before we can apply the L* algorithm to infer the Mealy
machine of an IoT network protocol, we need to define the
input alphabet ¥ and the output alphabet A. Based on the
algorithm inputs discussed in Section III, there are two ways of
initializing X: we can treat M, the list of seed input messages,
as X, or randomly generate a list of input messages based on
message formats in F. If M is small with respect to the entire
set of valid input messages accepted by the target protocol,
the first method explores only a small portion of the FSM. On
the other hand, random generation of input messages based on
message formats in F' produces many invalid input messages
that are immediately rejected by the target IoT device, making
them useless to explore their protocol behaviors from deep
program branches.

To overcome these challenges, IoTInfer strikes a balance
between exploitation and exploration. It mutates fields in
an existing message, monitors the responses from the target
during a fuzzing campaign, evaluates the reward based on
counterexamples conflicting with the current FSM inferred,
and uses it to further improve the FSM. Applying a similar
idea as multiarmed bandit reinforcement learning [7], loTInfer
uses these reward signals to adjust the likelihood of choosing
the same message for mutation in the future.

As we do not assume any prior knowledge about output
messages from the IoT device, we can let the output alphabet
A of the L* algorithm include all possible message values.
This naive approach, however, may incur high computational
burden when the output message space is large. To make the
problem tractable, IoTInfer uses clustering schemes to coarsen
the FSM inferred. It groups similar output messages from
the IoT device into the same output symbol; when necessary,
it also merges multiple input messages into the same input
symbol if they cause identical state transitions in the FSM.

V. DATA STRUCTURES AND WORKFLOW

IoTInfer operates on two key data structures, Structure Tree
(STree) and Value Tree (VTree), which are defined as follows.
An illustrating example will be given in Section VI

STree: The STree is derived from user inputs. Each node
in the STree is called an SNode. In addition to the structural
information (e.g., node ID, parent node, and children nodes),
each SNode also stores the following: 1) Length: the length of
the field represented by this node and 2) Type: the type of the
node, which is used to decide how the field should be mutated.

VTree: The VTree stores intermediate state information dur-
ing the fuzzing process. Each node in the VTree is called a
VNode. In addition to the structural information (e.g., node ID,
parent node, and children nodes), each VNode stores the fol-
lowing information: 1) snode: the pointer to the corresponding
SNode in the STree. Hence each VNode also corresponds to

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

a field in the request message; 2) Ranges: the value ranges
represented by this VNode. Each range should be continuous
but there may be multiple ranges stored in the same VNode;
3) Futility: a performance counter characterizing how futile
fuzzing this node is for improving the FSM.

Each leaf node of the VTree also stores the following:
4) Sample: a representative request message; 5) Cleader: the
cluster leader. If the cleader field points to this VNode itself,
it means that the node represents a list of other leaf VNodes;
otherwise, it points to another VNode, which is a cluster leader
representing this node; and 6) (init_pos, init_neg, Freshness):
these performance counters, along with futility, are used by a
Beta distribution to determine the likelihood of picking this
leaf node for mutation.

For ease of presentation we define the following func-
tions related to the VTree: PATH(VTree, 1), which returns
the list of nodes from the root to node u in the VTree, and
LEAVES(VTree), which returns the entire set of leaf nodes
whose cleader fields point to themselves in the VTree.

Workflow: The workflow of IoTInfer is illustrated in
Algorithm 1. From inputs F (request message formats) and
M (seed messages), loTInfer first initializes STree, VTree, and
FSM (line 2). The termination criterion of IoTInfer is decided
by global variable fries. A fuzzing experiment is finished if
there are at least 6 rounds of fuzzing tests without any coun-
terexample found against the current FSM inferred. IoTInfer
performs fuzzing tests in an iterative fashion. In each iteration,
it randomly picks one leaf node from the VTree using a Beta
sample scheme and gets a representative request message from
its sample field (line 7). Let list L denote the sequence of nodes
on the path from the root to the leaf node picked. Note that
each node in the VTree (except the root node) represents a
specific field in a request message. For every node v on list L,
if its type suggests that the corresponding field is mutable, a
set of request messages, denoted by R, is randomly generated
by mutating the message field represented by v while keeping
the other fields in the sample request message intact (line 17).

For every request messages r in set R, loTInfer tests what is
the output from protocol P if r is sent to the protocol at every
state g in the FSM learned so far (lines 19-25). Toward this
goal, for state g, the FSM is first used to derive a sequence of
request messages that can trigger the target protocol to reach
state g from its initial state go. During the test, all these request
messages are first sent to protocol P sequentially, followed by
message r. loTInfer further checks whether the output, o(q, r),
received from protocol P at state g, is the same as what is
predicted by the FSM, 0'(g, r). If the output differs, meaning
that this input is a counterexample, the correct output o(q, r)
is added to list Z (line 25), which is initialized to be empty
after the mutation step (line 18).

If for all the request messages created in set R and all the
states in the FSM, the prediction is always correct by the FSM
(i.e., Z =), then another set of request messages is generated
by mutating the next node on list L (line 15). Otherwise, the
failures variable is increased by one (line 27). Next, given the
new outputs from the tests, IoTInfer performs output clustering
to simplify the output alphabet and then updates the VTree
accordingly (lines 28-31).

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

SHU AND YAN: IoTInfer: AUTOMATED BLACKBOX FUZZ TESTING

Algorithm 1: Fuzzing Test Guided by FSM Inference

Input: F: request message formats, M: seed messages,
P: target protocol
Output: FSM
1 Begin (loTInfer(F, M))

2 Initialize STree, VTree, and FSM based on inputs F
and M

3 X<«0 > X: masking rule set

4 tries < 0

5 while tries < 6 do

6 failures <— 0

7 f < a leaf node randomly chosen from
LEAVES(VTree) based on a Beta sampling
scheme using leaf nodes’ init_pos, init_neg,
freshness, and futility fields

8 f.init_neg++

9 f.freshness <— 0

10 for each node u € LEAVES(VTree)

11 if u #~ f then

12 ‘ u.freshness++

13 L < PATH(VTree, f)

14 while L is not empty do

15 v < head node extracted from list L

16 if v is mutable then

17 R <« set of request messages generated

by mutating v in message sample stored
in leaf node f

18 Z <0

19 while R is not empty do

20 r < a message extracted from R

21 for each state q in FSM

22 Send message r to target protocol

P to obtain o(q, r)

23 Use FSM to predict output o'(q, r)

24 if o(q, r) # 0'(q, r) then

25 | Z<ZU{(g.n}

26 if Z # ¢ then

27 failures ++

28 for each tuple (q,r) € Z

29 | Cluster output o(q, r)

30 Update output masking rule set X

31 Update VTree

32 if failures > O then

33 Rebuild FSM with the L* algorithm

34 tries < 0

35 Perform input clustering if necessary

36 else

37 tries++

38 for each node u € PATH (VTree,)

39 | wfutility++

40 return FSM

After all the nodes on List L have been considered to
generate mutated request messages, loTInfer checks whether
there have been failures in predicting the output by the current

22741

FSM (line 32). If there are, the FSM is retrained with the new
observations, using the standard L* algorithm (line 33), and
the tries variable is reset to be O (line 34); if the new FSM
is too large, the input symbols are clustered to reduce the
complexity (line 35). Otherwise, the fries variable is increased
by one (line 37). If the number of tries without any failures
exceeds a given threshold 6, the current FSM is returned by
IoTInfer (line 40). Otherwise, IoTInfer chooses another leaf
node and the whole process stated above repeats.

VI. ALGORITHM DETAILS

In this section, we explain some key steps of the algorithm
shown in Algorithm 1 through a walking example.

A. Initialization (Line 2)

STree: The conversion from input F (the list of message
formats) to an STree is straightforward. We first create a root
node for the STree, whose length and type fields are set to be
0 and ROOT, respectively. Next for each format f € F, we
add a new path from the root node. The ith node on the path
is created based on the ith tuple in f: its length and type fields
are set to be the same as field len and field type in the tuple,
respectively. Fig. 1(a) shows a simplified STree derived from
three message formats of the Bluetooth logical link control
and adaptation protocol (L2CAP) protocol (more details will
be given in Section VII-A).

VTree: The VTree is initialized to have the same structure as
the STree, except that each VNode in it has different fields. In
a VNode, its snode field points to the corresponding SNode in
the STree. The ranges field of a VNode is initialized to cover
the complete range for a given length. For each leaf VNode, its
cleader field is initialized to be the node itself and its sample
message is randomly chosen from the seed request messages of
the same format (if there is no such seed message, the sample
message is created by setting each of its fields with a random
value uniformly chosen from the corresponding range). The
init_pos, init_neg, freshness, and futility fields of each VNode
are initialized to be 1, 1, 0, and 0, respectively. Following the
same example, Fig. 1(b) presents the VTree after initialization,
whose VNodes have one-to-one correspondences with those in
the STree.

FSM: The initial FSM is learned using the standard L*
algorithm [6], assuming that the input alphabet is M which
contains all the input seed request messages and the output
alphabet includes all the raw outputs from the target protocol.

B. Leaf Node Selection (Line 7)

A leaf node is randomly chosen from the VTree at line 7
based on Beta sampling scheme. The representative request
message given by its sample field is mutated into a number
of variants to test the prediction accuracy of the current FSM
in each of its states. As such tests may be time consuming,
it is desirable to select a leaf node that feeding its mutated
messages to the target protocol is likely to produce coun-
terexamples for further FSM refinement. Motivated by this
intuition, we sample each leaf node in the VTree with a Beta

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

22742

S1 S2 S3

length: 8 length: 16 length: 16
type: ID type: GENERIC type: GENERIC
So Sa Ss S6

length: 0 length: 8 length: 16 length: 16 ‘
type: ROOT type: ID type: PORT type: PORT
S7 Sg So S10
length: 8 length: 16 length: 16 length: 16
type: ID type: GENERIC type: GENERIC type: PORT
(@)
Vi V2 V3
snode: s, snode: s, snode: s3 0A:02:00:01:00,
ranges: [10,10] | »| ranges: [0,65535] | »| ranges: [0,65535] | this,
futility: 0 futility: 0 futility: 0 (1,1,0)
Vo / Vg Vs Vg
snode: so snode: s, snode: sg snode: sq 06:04:00:40:00:40:00,
ranges: - |—» ranges: [6,6] || ranges: [0,65535] [* ranges: [0,65535] | this,
futility: 0 futility: 0 futility: 0 futility: 0 (1,1,0
\ Vs Vg Vg Vio
snode: s, snode: sg snode: sq snode: sq 02:04:00:01:00:40:00,
ranges: [2,2] || ranges: [0,65535]*|ranges: [0,65535] [*| ranges: [0,65535] | this,
futility: 0 futility: 0 futility: 0 futility: 0 (1,1,0)
(b)
Vi V2 V3
snode: s, snode: s, snode: s3 0A:02:00:01:00,
ranges: [10,10] > ranges: [0,65535] |—>| ranges: [0,65535] | self,
futility: 0 futility: 0 futility: 0 (1,1,1)
Vo Vq Vg Vg
snode: s, snode: sg snode: sg 06:04:00:40:00:40:00,
snode: sy |~ ranges: [6,6]| ranges: [0,65535] [—*{ ranges: [0,65535] [v”y,
ranges: - futility: 0 futility: 0 futility: 0 (1,1,4)
futility: 0
l Vg Vg Vio
V7 snode: sg snode: s snode: sy 02:04:00:01:00:40:00,
snode: s; ,|ranges: [4,4] [*|ranges:[1,1] |~*|ranges: [0,65535]| self,
ranges: [2,2]| |futility: 0 futility: 0 futility: 0 (1,2,0)
futility: 0 ’ ’
L Vo Viio
5"°de:‘59 snode: s 02:04:00:02:00:40:00,
ranges: [0,01,2,2], |- ranges: [0,65535] | self,
4,14], [16,65535] | | siliey: 0 (1,1,0)
futility: 0
V”g v’l 10
snode: sg snode: s1o 02:04:00:03:00:40:00,
ranges: [3,3],[15,15] [”| ranges: [0,65535] | self,
futility: 0 futility: 0 (1,1,0)
J 27 2
Vs Vo V10
snode: sg snode: sg snode: sy 02:02:00:01:00:40:00,
ranges: [0,0],[2,3] | ranges: [0,65535]|—* | ranges: [0,65535] | self,
futility: 0 futility: 0 futility: 0 (1,1,0)
,7 oy "0
V' v’ V 10
snode: sg snode: sg snode: sy 02:AB:07:01:00:40:00,
ranges: [1,1],[5,65535) | ranges: [0,65535] [—|ranges: [0,65535] | vs,
futility: 0 futility: 0 futility: 0 (1,1,0)
(©)
Fig. 1. Illustrating example. The right box of each leaf node includes

fields sample, cleader, and (init_pos, init_neg, freshness) in order. (a) STree.
(b) VTree after initialization. (c) VTree after one interation.

distribution and the one with the highest Befa score is picked
for mutation.

The Beta score of each leaf node is derived by sampling the
Beta distribution whose probability density function (PDF) is

I'ae + B)
C@)(B)

where « = init_pos + freshness, B = init_neg + futility, and
function I'(n) = (n — 1) .

The four performance counters used to compute the Beta
score are updated as follows: 1) init_pos: It is initialized to
be 1 and does not change; 2) init_neg: It is initialized to be

fa,pB) = 71— P! (1)

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

1 and if the leaf node has been selected at line 7, it increases
by one (line 8); 3) Freshness: It is initialized to be 0. If the
leaf node has been selected at line 7, it is reset to O (line 9);
otherwise, it increases by one (lines 10-12); and 4) Futility: It
is initialized to be 0. If the leaf node has been selected at line
7 and the check result at line 32 shows that variable failures
is 0, the futility field of every VNode on the path from the
root to the leaf node increases by one (lines 34 and 35).

The intuition of the Beta score for leaf node selection can be
explained as follows. If a leaf node has not been selected for
a long time, it should be given a higher priority to be selected
(increasing freshness and thus o). On the other hand, if the
leaf node has been selected but mutation based on this leaf
node does not improve the FSM through counterexamples, it
should be given a lower priority to be selected (increasing both
init_neg and futility and thus also). For the Beta distribution,
when o > B, the sampled value tends to have a higher value,
thus increasing the chance of selecting the leaf node; other-
wise, the sampled value tends to be smaller, thus lowering the
chance of choosing the leaf node for future mutation.

Following the previous example, the three leaf nodes shown
in Fig. 1(b) (i.e., v3, vg, and vio) have the same o and B
parameter values in (1), both of which are 1. Hence, they
have an equal chance to be selected for mutation. Supposing
that vy is chosen, its init_neg field is updated to be 2 and
its freshness field is reset to be 0. For both v3 and vg, their
freshness fields increase by 1.

C. Mutation (Line 17)

After a leaf node has been chosen at line 7 in Algorithm 1,
the representative message stored in its sample field is mutated
to create variants for fuzzing tests. For each field in this mes-
sage, if it is mutable, it is randomly mutated by Apy/(1 +
futility) times to generate that many variants, where Apy is
a configurable parameter for the maximum number of muta-
tions per field, while keeping the other fields intact. The futility
value used here is the one stored in the futility field of the cor-
responding VNode. Hence, if selection of a leaf node at line
7 does not help improve the FSM, the number of mutations is
reduced for all the nodes on its path. The ranges field stores
the current value ranges for the VNode. When this node is
under mutation, a variant is created by uniformly choosing a
value from all the ranges stored at the VNode.

The fype stored in the SNode determines whether the cor-
responding field is mutable. In the current implementation
we rule out the following types for mutation: IDENTIFIER,
ROOT, PORT, and ECHO. The reason for the first two is
straightforward. Fuzzing the destination port number loses the
network connection, and fuzzing an ECHO field (the same
contents are returned from the target protocol) expands the
FSM rapidly without new useful information.

Following the previous example, only nodes vg and vg on
the path from the root to the chosen leaf node vo are mutable.

D. Prediction (Lines 28 and 29)

The message variants created from mutation (stored in set R
in Algorithm 1) are used to find counterexamples with outputs

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

SHU AND YAN: IoTInfer: AUTOMATED BLACKBOX FUZZ TESTING

contradicting with the predictions made by the current FSM.
For each message r € R, it is used to test every state in the
FSM. That is to say, for every pair (s, r) where s is a state
in the FSM and r € R, if the output observed from the tar-
get protocol o(s, r) differs from that predicted by the FSM,
0'(s, r), we add (s, r) to list Z. If list Z is empty, meaning that
message variants created from mutation of the current VNode
do not yield any counterexample, the next VNode on the path
is considered to generate new fuzzing test cases.

It is noted that for the observation table of the L* algorithm,
a state is represented as a prefix string in input alphabet S.
Each input symbol in a prefix string corresponds to an instan-
tiated request message. Hence, to derive o(s, r), we can append
message r to the prefix string, which is sent to the target pro-
tocol sequentially to get its output. This output is compared
against the FSM’s prediction o'(s, r) to see if they are the
same. However, we may not be able to find o'(s, r) directly
from the observation table, because it is possible that the new
message r, which is a variant of the sample message stored
at the chosen leaf node at line 7, may not belong to the input
alphabet ¥ for the FSM learned. Recall that the FSM is ini-
tialized only with input symbols representing seed messages
from the input. Therefore, for output prediction, we always
use the sample message stored at the chosen leaf node, ry,
to look up the observation table and find the corresponding
output o’ (s, rg) for comparison.

In our example, if no counterexamples are found after
mutating either vg or vg, the futility fields of both vg and vg
should increase by 1. Supposing that this is not the case, we
do not need to update the futility values.

E. Output Clustering (Lines 28 and 29)

A fine-grained FSM trained with all the raw request mes-
sages as the input alphabet and all possible outputs from the
target protocol as the output alphabet may be large and dense,
incurring high computational overhead. Therefore, IoTInfer
coarsens the resolution of the FSM with a clustering approach,
which groups similar outputs and input messages to reduce the
output alphabet A and the input alphabet X, respectively.

IoTInfer uses a simple method to cluster outputs based on
set Z. IoTInfer decides to merge some outputs of the same
length together when the number of distinct outputs exceeds
threshold Agutput, Where Agueput is @ configurable parameter. It
is noted that all the outputs in set Z are observed by mutating
a single field in the same sample message stored at the leaf
node selected at line 7. The algorithm for output clustering is
given as follows. For each distinct length / of outputs in Z, if
the number of distinct outputs exceeds threshold Aguput, We
search k continuous bytes replacing which with wildcard * can
reduce the number of distinct outputs the most. We start with
single byte replacement (i.e., k = 1). If replacing none of any k
continuous bytes with wildcard * makes the number of distinct
outputs below threshold Agygput, We consider replacement of
k + 1 continuous bytes with wildcard = that can reduce the
number of distinct outputs the most. The process repeats until
the number of distinct outputs is reduced to below threshold
Aoutput~

22743

The result of output clustering is a set of masking rules,
each of which is represented as a tuple (I, x) where [is the
length of an output message and x a regular expression with
k continuous bytes masked with wildcard *. IoTInfer keeps
a global rule set X, which contains all the masking rules dis-
covered. Set X is accumulative: for each output observed from
the target protocol (line 22 or 33), it is first matched against
each masking rule in X. If it matches rule (/, x), the output is
replaced with x for comparison at line 24 or used by the L*
algorithm at line 33.

F. Updating VTree (Line 31)

After output clustering, the VTree is updated as follows.
Based on the masked outputs, we can partition the original
ranges stored at the VNode under mutation into continuous
ranges, each producing the same output regardless of the state.
For each input cluster derived, we create a sibling VNode,
whose ranges field is assigned to the ranges covered by the
input cluster. We also remove these ranges from the ranges
field of the VNode under mutation. The new node’s snode
is the same as that of the current one. Moreover, from this
sibling VNode, new descendant VNodes are also created to
mirror the path to the leaf node chosen at line 7; for each
of these descendant VNodes, its ranges field is set to cover
the full range dictated by its length and its snode field points
to the same one stored in the corresponding VNode. For the
newly created leaf node, its sample field can store any mes-
sage variant leading to the input cluster and its cleader field
points to this new leaf node itself. For each VNode created,
its init_pos, init_neg, freshness, and futility fields are always
initialized to be 1, 1, 0, and O, respectively.

In our example, mutation of node vy leads to two counterex-
amples with conflicting observations from the sample stored
in node vio. As seen in Fig. 1(c), we create two sibling paths
starting at node vy and vy, respectively, move value ranges
with different observations from node v, to either v or vg, and
choose a representative mutated message as the sample stored
for each of the new leaf nodes (i.e., v}, and v{,). Similarly,
mutation of node vg also causes different observations and cor-
respondingly, two respective sibling paths starting at node vg
and vg are added to the VTree.

G. Rebuilding the FSM (Line 33)

We rebuild the FSM using the L* algorithm [6]. The input
alphabet ¥ includes all the sample messages stored at those
leaf nodes of the VTree whose cleader fields point to them-
selves. The output alphabet includes all the masked output
messages from the target protocol.

H. Input Clustering (Line 35)

When the FSM trained at line 33 is so complex that further
fuzzing tests based on it become computationally prohibitive,
IoTInfer applies input clustering, which merges multiple input
symbols in X into a single one to coarsen the FSM. Note
that the input alphabet of the FSM consists of those sample
messages at the leaf nodes in the VTree whose cleader fields

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

22744

point to themselves. Hence, the effect of input clustering is to
make the cleader fields of some leaf nodes point to others.

The precondition for performing input clustering is that
the number of input symbols X exceeds a user-configurable
threshold, Aj;pu:. Two input symbols a and b are merged
together if the following two conditions are satisfied: 1) The
two columns corresponding to suffix string a and b are exactly
the same in the observation table, which means that at any
state, the target protocol returns the same output, no matter
whether request message a or b is received and 2) for any
row corresponding to prefix s in the upper part of the obser-
vation table (i.e., s € S), the two rows corresponding to s - a
and s-b in the observation table must be exactly the same; that
is to say, the target at any state must go to the same next state
if a or b is received. When two input symbols represented by
two leaf nodes are merged together in the VTree, the cleader
field of one leaf node is modified to be the other.

In the same example, suppose that input clustering merges
leaf node vg with v{, and v with v3. Their cleader fields
are updated accordingly as seen in Fig. 1(c). Hence, the FSM
constructed after this iteration includes five sample messages
stored at those leaf nodes with their cleader fields being self;
they are used as the input alphabet in the next round.

VII. IMPLEMENTATIONS

This section presents implementation details for the
Bluetooth and Telnet network protocols widely used in IoT
devices.

A. Bluetooth

L2CAP Fuzzing: The Implementation of IoTInfer for fuzz
testing Bluetooth devices is illustrated in Fig. 3. For Bluetooth,
IoTInfer currently focuses on fuzzing its LZCAP on the target
device. LZCAP deals with data multiplexing, segmentation and
reassembly of packets, and Quality of Service (QoS) control
for upper layer protocols. The operation of L2CAP is based
on channels, whose endpoints are identified with Channel IDs
(CIDs). According to the Bluetooth Specification [39], a few
fixed CIDs should be supported by each Bluetooth device,
including L2CAP Signaling channel (CID = 0 x 0001) and
L2CAP LE Signaling channel (CID = 0 x 0005). The L2CAP
signaling packets transmitted in control frames (C-frames)
over these two channels, whose formats are shown in Fig. 2.
A signaling packet includes a basic L2CAP header and an
information payload. The code field of the information pay-
load decides the command type and its id field is used to
match request and response commands transmitted between
two L2CAP entities.

IoTInfer performs fuzzing tests on seven types of L2CAP
signaling commands shown in Fig. 2. Only request com-
mands are considered because they can trigger internal state
changes in the other L2CAP entity on the target Bluetooth
device. Moreover, the ECHO request command is not included
because it causes state explosion in FSM inference without
producing meaningful results for security analysis. For the
configuration request command, the Bluetooth Specification

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

C-frame (Control frame)

Basic L2CAP header Information payload

—
Payload | Channel Data
tength | 1D |“*®| " | Length e
S— —
,,,,,,,,,,, 2octets loctet N

! 1. Command reject (Code = 0x01)

Reason bata
| (optional)

! 2. Connection request (Code = 0x02)

Source

3. Configuration request (Code = 0x04)
! | Destination
' CID

5. Information request (Code = 0x0A)

InfoType

6. Create channel request (Code = 0x0C)§
Source Ctrl
‘ PsM CID 1D

7. Move channel request (Code = OxOE)

Initiator
CID

CID: Channel ID, Ctrl: Controller,

! 4. Disconnection request (Code = 0x06)
PSM: Protocol service multiplexer,
DCID: Destination controller ID,

i | Destination | Source
: cip CID
i InfoType: Information type

Flags Configuration options DCID

Fig. 2. L2CAP signaling commands.

User loTinfer /’\ APP
space V) HOST
---------- T [y, s
Kernel| ™other [HCI L2CAP Sl T rcovm
space
rotocols | | socket layer
~ _p_ %\/E _______ 1 ________ YIE - Protocol L2CAG
imerface | |
Bluez BlueZ Core
Driver CONTROLLER
"_ﬁ-""ﬁ _____ H ______ @ "~ "7 Interface
VHCI || UART || USB || Other
driver | | driver || driver || drivers Host
--------- H- - -H— _——— {E ---- Controller
Interface N y
—
Bluetooth Hardware Bluetooth loT device
Fig. 3. IoTInfer implementation for Bluetooth L2CAP fuzzing.

Version 4.0 includes seven options, one or more of which can
be packed into the same command [39].

Implementation Details: loTInfer, which is implemented
as a C library with Python binding, builds upon the host-
controller interface (HCI) and L2CAP sockets provided by
BlueZ, the official Linux Bluetooth protocol stack [40]. To
initiate fuzzing tests on a Bluetooth device, loTInfer first estab-
lishes a Bluetooth L2CAP socket provided by BlueZ with
the target. This is done by providing PF_BLUETOOTH and
BTPROTO_L2CAP as the domain and protocol parameters,
respectively, to the standard C socket function. Using this
L2CAP socket, a sequence of request messages chosen from
the seven types of signaling commands shown in Fig. 2 is
sent to the target device. Between any two consecutive request
messages, there is a delay of 0.5 s for receiving the response
messages, which is implemented by calling the setsocketopt
function to set a delay value for option SO_RCVTIMEO. If
the corresponding response does not arrive within 0.5 s, it is
assumed that there is no response from the target protocol.
For each response message received, IoTInfer uses its Id field
(see Fig. 2) to match the request message; everything after Id
is deemed as the output of the target protocol.

After finishing each test case, IoTInfer resets the L2CAP
socket with the target device. This should not be done by
using the disconnect request command because this command,

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

SHU AND YAN: IoTInfer: AUTOMATED BLACKBOX FUZZ TESTING

TABLE I
LiST OF TELNET COMMANDS FUZZED BY IOTINFER
WHERE FIELD * IS MARKED AS MUTABLE

22745

TABLE II
LIST OF DEVICES TESTED

Protocol Device Type Vendor Device Model
Command Command Format: (field name, field length | RFC Bluetooth Laptop Dell Inspiron 15 7000
Type (octet)) Raspberry Pi CanaKit Raspberry Pi 3b+
WILL [(IAC, 1), (WILL, 1), (%, 1)] 854 Keyboard ARTECK HBO030B
WON'T [(TIAC, 1), (WON'T, 1), (%, 1)] 854 Android phone Samsung Galaxy 10
DO [(IAC, 1), (DO, 1), (x, 1)] 854 Speaker Sony SRS-XB12
DON’'T [(IAC, 1), (DON’T, 1), (%, 1)] 854 Telnet Laptop Dell Inspiron 15 7000
Data entry [dAC, 1), (SB, 1), (DET, 1), (%, 1), AC, | 732 Router NETGEAR R6230 (flashed with
terminal 1), (SE ,2)] a PandoraBox firmware)
Negotiate win- | [(IAC, 1), (SB, 1), (NEG, 1), (%, 1), (x, 1), | 1073
dow size (IAC, 1), (SE,1)]
Terminal [(IAC, 1), (SB, 1), (TERMINAL-SPEED, 1), 1079
speed O, D, dAC, 1), (SE.D)] VIII. EXPERIMENTS
X display | [TAC, 1), (SB, 1), (X-DISPLAY- 1096
location LOCATION, 1), (%, 1), (IAC, 1), (SE, This section presents our experimental results. Table I sum-
e [1()I]AC DB 1) (NEWENVION. 1. . [1572 marizes the devices used. In all our experiments, we have
w) s ’ ’ - 1) i) 9

Environment 1), IAC, 1), (SE, 1)] 0 =5, Amu = 100, Aqupue = 5, and Ajppue = 20. When
Terminal type | [(IAC, 1), (SB, 1), (TERMINAL-TYPE, 1), | 884 testing each Bluetooth device, for each L2CAP signaling com-

& D, dAG, 1), SE, D] mand shown in Fig. 2, the inputs fed to IoTInfer include its

which shuts down only the channel instead of the L2CAP
connection, can be part of a test case (see Fig. 2). Therefore,
ToTInfer resets the HCI connection as follows. First, IoTInfer
calls hci_open_dev(HCIO) to establish an HCI socket con-
nection with the microcontroller on the only local Bluetooth
adapter, which is identified as HCIO, of the machine where
IoTInfer runs. Next, using function ioctl, IoTInfer extracts
low-level connection information associated with the adapter.
Finally, IoTInfer calls function hci_disconnect to terminate the
low-level connection with the target device.

When malformed input messages freeze or crash the tar-
get device, we need to reboot the device so fuzzing tests can
continue. Toward this end, we use a smart plug to control the
power of the target device. In our current implementation, if
IoTInfer fails to establish an HCI connection with the target
three times in a row, it sends a control message to the smart
plug to reboot the device.

B. Telnet

Telnet, which is widely used for remote administration
of IoT devices, has caused severe security damages in the
past [41], [42]. The implementation of IoTInfer for Telnet
builds upon a TCP socket connection to port 23 on the tar-
get. We consider only Telnet commands, each of which starts
with an interpret as command (IAC) character, 0 x FF. Table I
summarizes the list of Telnet commands fuzzed by IoTInfer.

The meaning of each command can be found in the cor-
responding request for comments (RFC), which is given in
the last column of Table I. The first four command types
are used to negotiate options: the sender indicates its inten-
tion about the option given in the ensuing field as WILL
(willing to do), WON’T (unwilling to do), DO (agree to
accept), and DON’T (refuse to accept). The final six com-
mand types are used for particular subnegotiations, each of
which is enclosed between IAC+SB (Subnegotiation Begin)
and IAC + SE (Subnegotiation End). For each Telnet com-
mand, IoTInfer only mutates the option/suboption value fields,
which are marked as = in Table L.

format as well as one example as the seed. When testing the
Telnet protocol, we perform fuzzing experiments on the Telnet
commands listed in Table I with a seed example for each
command. For both Bluetooth and Telnet, IoTInfer does not
know any credentials for remote connections with the target
devices. We run IoTInfer on a Lenovo ThinkPad P50 laptop
with 2.6-GHz Intel i7-6700HQ CPU and 32-GB RAM.

A. Input Alphabet

In Section I'V-B, we argued that when applying the L* algo-
rithm, neither the seed messages nor randomly generated input
messages based on the message formats should be used as
the input alphabet. To support this argument, we perform two
experiments on the Bluetooth protocol of the Dell laptop.

In the first experiment, we use the seed messages pro-
vided from the input as the input alphabet and execute the
L* algorithm implemented by LearnLib, a comprehensive tool
for automata learning [43]. The FSM inferred includes only
two states, corresponding to the CLOSE and CONFIG states
in the Bluetooth specification [39], eight outputs, and ten
edges. By contrast, [oTInfer obtains a much larger FSM, which
includes five states, 121 edges, 25 input symbols, and 27 out-
put symbols after running the algorithm for 25 iterations. The
difference is because although LearnLib can try different com-
binations of input symbols (i.e., seed messages) from the input
alphabet to infer the FSM, it does not mutate the fields of these
seed messages to generate new input symbols.

In the second experiment, we randomly generate 6000
L2CAP signaling commands, each using a message format
uniformly chosen from the seven ones shown in Fig. 2 and
with values at mutable message fields uniformly chosen from
their corresponding ranges. We monitor the response from the
Dell laptop for each of these 6000 messages and find that only
three of them have triggered observable output messages from
the target. If we use these 6000 input messages as the input
alphabet and apply the L* algorithm, a great amount of com-
putation would be wasted on membership queries that do not
generate any responses from the target. If the W-method or the
partial W-method is used for equivalence testing, the number

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

22746

Fig. 4.

(b R

= >

K/@\\

0

aspberry Pi. (c) Keyboard. (d) Android phone. (e) Sony speaker.

TABLE III
POSSIBLE DOS ATTACKS AGAINST THE FIVE BLUETOOTH
DEVICES FOUND FROM THE FUZZING EXPERIMENTS

Device Temporary Permanent System
Disconnection | Disconnection | Freezing
Dell Laptop v v v
Raspberry Pi v X v
Keyboard ? X X
Android phone ? X X
Sony Speaker ? v X

of tests needed can also be affected because it includes a fac-
tor of |X|4@+D/2 where d is the difference in the number of
states between the FSM inferred and the target [44].

B. Effectiveness Results

1) Bluetooth: The Mealy machines inferred from the five
Bluetooth devices are shown in Fig. 4.

D
type

enial of Service (DoS) Attacks: We have found three
s of DoS attacks against the Bluetooth devices, which are

summarized in Table III. The details are explained as follows.
1) Temporary Disconnection: Bluetooth is temporarily

unavailable on the target system through command
hciconfig HCIO, which prints the basic information
about the given Bluetooth adapter (HCIO). We have
found an L2CAP move channel request message (e.g.,
“0e:19:01:00:40:00:01”) that can disable Bluetooth for
about half a second on both the Dell laptop and the
Raspberry Pi. As we cannot run the hciconfig com-
mand on the other three Bluetooth devices, it is unclear
whether the same attack holds against them.

2) Permanent Disconnection: It is possible to disable

Bluetooth permanently on the target device through
some L2CAP command sequences unless the device is
rebooted. For the Dell laptop with kernel 4.14.97, if the
fuzzer first connects with and then disconnects from it,
the target machine allocates a new USB number for the

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

3)

Mealy machines inferred from the five Bluetooth devices. We have removed the input/output label on each edge for readability. (a) Dell laptop.

Bluetooth adapter; this operation is repeated for multiple
times to make the new number allocated exceed a max-
imum value so Bluetooth is disabled unless the target
machine is rebooted. When a newer kernel version is
used on the Dell laptop, this problem does not exist.
For the Sony speaker, the attack involves a sequence
of operations: a) set up a Bluetooth socket con-
nection to the speaker; b) send L2CAP command
“02:06:04:00:01:00:40:00” to the speaker, which means
an L2CAP connection request with the identifier to be
0x06 and the protocol and service multiplexer (PSM)
field to be 0 x 0001 (Service Discovery Protocol);
¢) send L2CAP command “02:07:04:00:03:00:40:00” to
the speaker, which means an L2CAP connection request
with the identifier to be 0 x 07 and the PSM field to
be 0 x 0003 (Radio Frequency Communication); and
d) call hci_disconnect to disconnect from the speaker. If
this sequence is repeated by at least 16 times within a
short period of time (around 40 s in our experiments),
it exhausts all the 16 CIDs available to the speaker and
therefore no other device can connect to it (although the
speaker can still be discovered).

System Freezing: We have observed two types of system
freezing scenarios for both the Dell laptop and the
Raspberry Pi.

a) CPU Fully Loaded: The CPU usage becomes
100%, and all USB devices are frozen. On the
Dell laptop, the touch screen does not work but
the keyboard is still functional, which allows us
to use the rop utility to check the system usage;
for the Raspberry Pi, the system’s CPU is fully
loaded for about 10-min before it becomes totally
unresponsive. Tracing the root cause of this issue,
we have found that the error occurs inside function
bt-sock-poll of file af-bluetooth.c, which is called
repeatedly on the target machine. To establish a
normal L2CAP socket connection, both entities

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

SHU AND YAN: IoTInfer: AUTOMATED BLACKBOX FUZZ TESTING

expect to get the configuration response from the
other side. In one test case, the fuzzer does not send
any configuration response to the target machine so
the socket is never established completely. Hence,
the L2CAP entity on the target is always in a listen-
ing state when calling function bz-sock-poll; when
a certain condition is satisfied, the target machine
gets into a freezing situation as mentioned above.

b) CPU Is Not Fully Loaded but the System Is
Freezing: This happens only to the Dell laptop. The
system becomes totally frozen unless it is rebooted.
From the system logs, we have found that the
CPU was not fully loaded before it became frozen.
Before the system became unresponsive, it called
printk to print out a large buffer of unprintable
characters to the log file.

Deviation From Bluetooth Specification:

1) The Bluetooth specification states that a device receiv-
ing an L2CAP_ConfigReq message in a CLOSE state
should go to the CLOSE state again [39]. For the Dell
laptop, however, if the message’s length field is 0 and
continuation flag is 1, the target goes to an unspeci-
fied state where it rejects any new packets. We have to
disconnect the device from the HCI layer to reset the
L2CAP connection.

2) In the Bluetooth specification, there are many substates
for a device in a CONFIG state. When state tran-
sitions are only driven by input messages from the
fuzzer, the device can only be in a substate of either
WAIT_CONFIG_REQ_RSP or WAIT_CONFIG_RSP.
Regardless of which substate the device is in, it
should respond to an L2CAP_ConfigReq message
with an L2CAP_ConfigRsp message of either suc-
cess or rejection. However, for both the Dell lap-
top and the Raspberry Pi, if the target receives an
L2CAP_ConfigReq message with a large nonmatching
length in its configuration options, it can enter a weird
state where it responds to some L2CAP_ConfigReq
messages but not others.

3) The Bluetooth specification states that a device receiv-
ing an L2CAP_ConnectReq message in a CLOSE state
should reply with an L2ZCAP_ConnectRsp message indi-
cating success, pending, or refused. For the Android
phone, however, if the connection request is for blue-
tooth network encapsulation protocol (BNEP) where the
PSM value is OxOF, the target device does not send
back any response; at this time, the target cannot be in
a CONFIG state because it does not respond to any fur-
ther L2ZCAP_ConfigReq messages or in a CLOSE state
because the CID is still occupied by the current L2ZCAP
connection.

2) Telnet: The Mealy machines inferred from the two
devices running Telnet are shown in Fig. 5. Although our
fuzzing experiments did not reveal any externally observable
failures (e.g., crashes) of the two devices, we observe some
implementation deviations from the Telnet specifications.

The Telnet server on the Dell laptop performs as expected
according to the specifications. When an IAC command is

22747

Fig. 5. Mealy machines inferred from the two devices running Telnet. Labels
are removed for readability. (a) Dell laptop. (b) NETGEAR router.

received, it either replies with another IAC command or does
not respond. For example, the target responds to command
“IAC DO 0 x 00”/“IAC WILL 0 x 00” with “IAC WILL
0 x 00”/“IAC DO 0 x 00” because the target can support
binary transmission (option 0 x 00), but for command “IAC
WILL 0 x 2e”/“IAC DO 0 x 2e,” it replies with “TAC DON’T
0 x 2e”/“IAC WON’T 0 x 2e” because it does not support
TLS (option 0 x 2e).

In contrast, the FSM inferred from the NETGEAR router is
much denser than that of the Dell laptop. For each received
command, the router’s reply, if there is any, may not be another
valid TAC command. The FSM includes four types of states:
1) starting state; 2) negotiation state; 3) user name state where
the router is expecting a user name for login; and 4) pass-
word state where the router is expecting a password. When the
first command is received, the router always sends back com-
mand “IAC DO ECHO IAC DO WINDOWSIZE IAC WILL
ECHO IAC WILL SGA,” which may or may not be followed
by a prompt for user name. From the starting state, the tar-
get may transition to a user name state with a prompt for
user name, or a negotiation state where the target’s behaviors
vary with the commands further received. Based on the FSM
inferred, it is clear that the implementation of the Telnet server
on the NETGEAR router does not follow strictly the Telnet
specifications listed in Table I.

C. Efficiency Results

1) Benefits of Input/Output Clustering: We measure the
execution time in seconds per iteration with and without
input/output clustering when IoTInfer is used to perform
fuzzing tests on the Bluetooth L2CAP protocol of the Dell
laptop and the Samsung Android phone. For the laptop, we
run each experiment for ten iterations and for the Android
phone, we stop each experiment after five iterations.

From Table IV, we observe the following: 1) the execu-
tion time per iteration shows high variation across different
runs. This results from the randomness in selecting a command
stored in a leaf node of the VTree at line 7 in Algorithm 1: it
takes much longer time to fuzz test some commands (e.g., con-
figuration request) than the others; 2) on average an iteration

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

22748 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022
TABLE IV
COMPARISON OF EXECUTION TIME IN SECONDS WITH AND WITHOUT INPUT/OUTPUT CLUSTERING. ITERATION -1 MEANS THE INITIALIZATION STEP.
AN ENTRY MARKED WITH “—” MEANS THAT THE TIME IS NOT MEASURED ANY MORE BECAUSE THIS ITERATION OR ANY OF ITS PREVIOUS ONES

TAKES MORE THAN 10 H TO FINISH, AND AN ENTRY MARKED WITH “x” MEANS THAT THE TIME IS NOT MEASURED AFTER FIVE ITERATIONS. THE
Two COLUMNS WITH CLUSTERING ENABLED SHOW THE MEAN EXECUTION TIME AND THE STANDARD DEVIATION OVER FIVE RUNS

Beta selection —e@—

Number of leaf nodes in V-Tree

0O 2 4 6 8 10 12 14 16 18
Iteration Id

Fig. 6.
selection.

Performance comparison between uniform selection and Beta

of fuzzing tests on the Android phone takes longer time to fin-
ish than the Dell laptop, suggesting that the execution time of
fuzzing tests varies with the IoT device under evaluation; and
3) most importantly, input/ouput clustering significantly accel-
erates the fuzzing tests. When clustering is disabled, none of
the five runs has finished ten iterations for the Dell laptop and
only one run has finished all five iterations for the Samsung
Android phone, because an experiment stops when an iteration
takes more than 10 h to finish. By contrast, when input/output
clustering is enabled, all the five runs in our experiments have
successfully finished ten (five) iterations for the Dell laptop
(the Samsung Android phone).

2) Benefits of Beta Sampling for Leaf Node Selection:
IoTInfer uses a Beta sampling scheme to select a leaf node.
For brevity, we call it a Beta selection scheme. To understand
its benefits, we compare the numbers of leaf nodes in the
VTree at the end of each iteration against those when a uni-
form selection scheme is used. As a new leaf node is created
only if there are mispredictions by the current FSM (i.e., lines
26-31 in Algorithm 1), having more leaf nodes in the VTree
implies better effectiveness in generating meaningful test
cases.

The performance comparisons are observed from fuzzing
tests on the Bluetooth L2CAP protocol of the Dell laptop.
Fig. 6 depicts the mean and standard deviation of the number

Iteration Dell laptop (Bluetooth) Samsung Android Phone (Bluetooth)
Id With clustering Without clustering With clustering Without clustering
(mean/std) Runl [Run2 [Run3 | Run4 | Run 5 (mean/std) Run 1 Run 2 Run 3 Run 4 Run 5
-1 (init) 221.4/106.2 170.7 427.2 171.7 448.1 172.1 1182.4/ 58.4 1080.3 1160.9 | 1328.3 | 1305.1 1221.4
0 2223/ 80.5 - 182.2 202.7 — 254.7 878.2/110.9 757.6 — 834.5 944.9 1164.7
1 127.1/122.8 - - 355.4 — 307.8 1839.6 / 1692.0 | 12909.7 — - - 48.6
2 230.4 / 130.5 - - 43.7 — - 4792.5 / 5888.9 — — 1055.0
3 186.3 /90.8 - - 184.7 — - 2280.7 / 2006.8 — — - 39.5
4 3565.3 /1 2943.6 - - 91.1 — - 3039.0 / 4192.7 — — — - 21605.8
5 2465.9 / 2303.5 - - 262.7 — - X X X X X X
6 1360.6 / 1356.1 — — — — - X X X X X X
7 2509.5 / 3858.2 — — — — - X X X X X X
8 881.9 /7529 — — — — — X X X X X X
9 1030.0 / 1238.1 — — — — — X X X X X X
40 | Uniform selection +—&— | of leaf nodes over five runs at the end of each iteration for

both uniform selection and Beta selection schemes. Clearly,
the Beta selection scheme enhances the chance of finding
conflicts between predictions by the FSM inferred and the
observations from the target protocol. After 19 iterations of
the algorithm, due to the Beta selection scheme, the average
number of leaf nodes in the VTree has increased from 29.4 to
35.4, an improvement of 20.4%.

D. Comparison Results

In another set of experiments we compare the fuzzing
performance of IoTInfer with those of two state-of-the-art
fuzzers for IoT devices, IoTFuzzer [29] and Snipuzz [30],
using the five Bluetooth devices shown in Table II. In our
experiments, we use our own implementations of IoTFuzzer
and Snipuzz in Python based on BlueZ [40], the official
Bluetooth implementation in Linux.

1) IoTFuzzer: As its code is not publicly available, we
derive our best knowledge about its implementation
details from the paper [29]. IoTFuzzer requires static
analysis of companion mobile apps to infer the formats
of packets sent to the target IoT device. In our experi-
ments, we assume that such packet formats are known
to the mutation algorithm of IoTFuzzer a priori.

2) Snipuzz: The code of Snipuzz released by its authors
was written in C# for Windows machines. As BlueZ
has not been ported to run on Windows systems yet, we
reimplement Snipuzz based on our understanding of its
mutation algorithm presented in the paper [30] as well as
its C# implementation code. For Snipuzz, the packet for-
mats are inferred from the communication packets and
are thus not given as its input in a fuzzing experiment.

We run each fuzzing experiment for an hour, using
IoTFuzzer, Snipuzz, or IoTInfer. Based on the Bluetooth pro-
tocol specification [39], we classify each Bluetooth device’s
responses into the following categories.

RI: The target device becomes frozen during the fuzzing
tests.

R2: The target device sends back a command reject packet
with the reason to be “Command not understood.”

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

SHU AND YAN: IoTInfer: AUTOMATED BLACKBOX FUZZ TESTING

22749

TABLE V
COMPARISON OF THREE FUZZERS FOR 10T DEVICES, IOTFUZZER, SNIPUZZ, AND IOTINFER. DIVERSITY MEASURES THE TOTAL NUMBER OF
DIFFERENT RESPONSE TYPES SEEN FROM THE TARGET IOT DEVICE IN A FUZZING EXPERIMENT

Device Fuzzer Response Type Diversity
R1 [R2 | R3 | R4 | RS | R6 | R7 | R8 | R9 | RIO | RIT | RI2 | RI3 | RI14 | RI5 | RI6

Dell IoTFuzzer | X v X v v X v X v X v X v v v v 10
Laptop Snipuzz X v X |V X X X X X X X X X v X 4
ToTInfer IV x| Vx| v v v v v v X 13
Raspberry | IoTFuzzer | X v X v v X v X v X v X v v v v 10
Pi Snipuzz X v X v v X X X X X X X X X v X 4
ToTInfer I vV X | V|V |Xx | V|V |V v v v v v v X 13
Keyboard | IoTFuzzer | X v X v v X v X v v v X X v v X 9
Snipuzz X v X v v X X X X X X X X v v X 5
ToTInfer X |V | X |V |V | X |V |/ |V v v X X v v X 10
Android | IoTFuzzer | X v X v v X v X X X X X v v v v 8
Phone Snipuzz X v 4 X v X X X X X X X X v v X 5
ToTInfer X v v v v v v X X v X v v v v X 11
Sony IoTFuzzer | X v X v v X v X X X X X X X v X 5
Speaker Snipuzz X | v | x| v | V| X X X X X X X X X v v 5
IoTInfer X v X v v X v X v X v X v v v X 9

R3: The target device sends back a command reject packet ~ which is the total number of response types seen in a fuzzing

with the reason to be “Signaling MTU exceeded.”
The target device sends back a command reject packet
with the reason to be “Invalid CID in request.”
The target device sends back a connection response
packet indicating “Connection successful.”
The target device sends back a connection response
packet indicating “Connection pending.”
The target device sends back a connection response
packet indicating “Connection refused—PSM not
supported.”
The target device sends back a connection response
packet indicating “Connection refused—security
block.”
The target device sends back a connection response
packet indicating “Connection refused—no resources
available.”
The target device sends back a configuration response
packet that indicates “Success” and includes an empty
list of configuration parameters.
The target device sends back a configuration response
packet that indicates “Success” and includes a
nonempty list of configuration parameters.
The target device sends back a configuration response
packet that indicates “Failure—unacceptable parame-
ters.”
The target device sends back a configuration response
packet that indicates ‘“Failure—unknown options.”
The target device sends back a disconnection response
packet.
The target device sends back an information response
packet indicating “Success.”
RI16: The target device sends back an echo response packet.
It is noted that the 16 categories are not exhaustive, but
they cover the different types of responses we have seen
from the five Bluetooth devices. Intuitively speaking, a good
fuzzing strategy should elicit as diverse responses from the tar-
get IoT device as possible. More importantly, these responses
may include unexpected ones with security consequences,
such as device crashes. Therefore, we use a diversity metric,

R4:

R5:

R6:

R7:

RS:

R9:

RI0:

RII:

RI2:

RI3:

RI4:

RI5:

experiment, to compare fuzzing performances.

Table V summarizes the observations about the different
types of responses seen from the target Bluetooth devices
with the three fuzzers used. We observe that for all the
five Bluetooth devices, IoTInfer leads to the highest diver-
sity measurements among the three fuzzers used. Moreover,
target devices are seen frozen (i.e., response type R1) only
in those fuzzing tests where IoTInfer is used. These observa-
tions result from IoTInfer’s fuzzing strategy guided by FSM
inference, which enables it to explore deep state transitions
of the target IoT devices with different sequences of input
packets. In contrast, both IoTFuzzer and Snipuzz consider
only stateless fuzzing, which does not optimize generation
of test packets to trigger new state changes in the target
devices.

From Table V it is also observed that none of the response
packets include echo responses (i.e., R16) when IoTInfer is
used. This is because the input packet formats provided to
IoTInfer do not include echo requests. L2CAP echo pack-
ets are used to test the link between two Bluetooth devices
without any mutual authentication. As the echo response
packet contains the same data from the echo request packet,
mutating these data in IoTInfer creates a large number of
different output observations from the target device, thus
causing a state explosion problem for the FSM inferred.
It is noted that even with echo request packets excluded
from the input formats fed to IoTlInfer, it still evokes more
response types than IoTFuzzer and Snipuzz in all the fuzzing
experiments.

Our implementations of IoTFuzzer, Snipuzz, and IoTInfer
have comparable memory usages in the experiments. For
instance, when used to fuzz-test the Galaxy Android phone
for an hour, their peak memory usages are 26.6, 38.2,
and 30.0 MB, respectively. Snipuzz uses the most memory
because our implementation uses the scipy.spatial.distance
module to calculate cluster distances, which requires approx-
imately 10.0-MB memory. Compared with IoTFuzzer, extra
memory is needed by IoTInfer to maintain the FSMs
inferred.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

22750

IX. LIMITATIONS

In this work we have only considered two network proto-
cols, Bluetooth and Telnet. However, IoT devices are usually
immersed within an IoT ecosystem with various other pro-
tocols deployed at different layers, such as point-to-point
communication layer (e.g., NFC and NB-IoT), multihop rout-
ing layer (e.g., ZigBee and 6LowPAN), and application layer
(e.g., MQTT and XMPP). Although in principle these proto-
cols can also be tested with input messages generated with
guidance of FSM inference, we have to extend the cur-
rent implementation of IoTInfer to further improve fuzzing
efficiency, such as dealing with messages sent in the flexi-
ble JSON format and inferring input message formats when
protocol specifications are unavailable.

With the protocol FSMs inferred from the target device,
manual analysis is required by IoTInfer currently to assess
whether they comply with the corresponding protocol specifi-
cations. Our own experiences with both the Bluetooth L2ZCAP
and Telnet protocols suggest that manual verification can be
ad hoc and error prone. It remains an interesting research
direction to automate verification of protocol FSMs inferred
from IoT devices against their specifications—if they are
available—or compare FSMs of the same protocol inferred
from different IoT devices.

In Section VIII, we have empirically evaluated the effec-
tiveness of IoTInfer in finding potential implementation-level
vulnerabilities in different IoT devices and also compared
its performance against those of IoTFuzzer and Snipuzz.
However, for blackbox fuzz testing which does not have access
to the source code or firmware of the target IoT device, it is dif-
ficult to theoretically quantify the effectiveness of any fuzzing
strategy. The heuristic adopted by IoTInfer, which uses FSM
inference to guide generation of test messages in blackbox
fuzzing, may also suffer the limitations implied by the no free
lunch theorem for optimization [45].

X. CONCLUSION

The growing popularity of IoT devices has raised concerns
about their security and resilience in adversarial environments.
In this work we have developed a new method called IoTInfer,
which leverages FSM inference to guide fuzzing tests of
IoT network protocols. We have applied IoTInfer to evaluate
the Bluetooth and Telnet protocols implemented by various
IoT devices. Our experimental results have demonstrated both
its efficiency in generating meaningful test cases for IoT
devices and its effectiveness in finding previously unknown
security issues and implementation deviations from protocol
specifications. The comparison results with two other state-
of-the-art blackbox IoT device fuzzing tools have also shown
that IoTInfer is better at eliciting diverse responses from the
fuzzing targets.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

REFERENCES

[1] Palo Alto Networks. “2020 unit 42 IoT threat report.” 2020. [Online].
Available: https://unit42.paloaltonetworks.com/iot-threat-Rep.-2020/

[2] M. Michael. “Attack landscape H1 2019: IoT, SMB traffic abound.”
2019. [Online]. Available: https://blog.f-secure.com/attack-landscape-
h1-2019-iot-smb-traffic-abound/

[3] J.Li, B. Zhao, and C. Zhang, “Fuzzing: A survey,” Cybersecurity, vol. 1,
no. 1, pp. 1-13, 2018.

[4] M. Eceiza, J. L. Flores, and M. Iturbe, “Fuzzing the Internet of Things:
A review on the techniques and challenges for efficient vulnerability
discovery in embedded systems,” IEEE Internet Things J., vol. §, no. 13,
pp. 10390-10411, Jul. 2021.

[5] J. Narayan, S. K. Shukla, and T. C. Clancy, “A survey of automatic pro-
tocol reverse engineering tools,” ACM Comput. Surveys, vol. 48, no. 3,
pp. 1-26, 2015.

[6] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, pp. 87-106, 1987.

[7] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[8] K. K. Karmakar, V. Varadharajan, S. Nepal, and U. Tupakula, “SDN
enabled secure IoT architecture,” IEEE Internet Things J., vol. 8, no. 8,
pp. 6549-6564, Apr. 2021.

[91 T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra,
“IoTGAZE: IoT security enforcement via wireless context analysis,” in
Proc. IEEE Conf. Comput. Commun., 2020, pp. 884-893.

[10] H. Soroush et al., “SCIBORG: Secure configurations for the IoT based
on optimization and reasoning on graphs,” in Proc. IEEE Conf. Commun.
Netw. Security, 2020, pp. 1-10.

[11] C. Gao, Z. Ling, B. Chen, X. Fu, and W. Zhao, “SecT: A lightweight
secure thing-centered IoT communication system,” in Proc. IEEE Int.
Conf. Mobile Ad Hoc Sensor Syst., 2018, pp. 46-54.

[12] A. Al Farooq, E. Al-Shaer, T. Moyer, and K. Kant, “IoTC2: A formal
method approach for detecting conflicts in large scale IoT systems,”
in Proc. IFIP/IEEE Symp. Integr. Netw. Service Manag. (IM), 2019,
pp. 442-447.

[13] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and
I. Ray, “IoTSense: Behavioral fingerprinting of IoT devices,” 2018,
arXiv:1804.03852.

[14] H. Alasmary et al., “Analyzing and detecting emerging Internet of
Things malware: A graph-based approach,” IEEE Internet Things J.,
vol. 6, no. 5, pp. 8977-8988, Oct. 2019.

[15] K. Fang and G. Yan, “loTReplay: Troubleshooting COTS IoT devices
with record and replay,” in Proc. IEEE/ACM Symp. Edge Comput., 2020,
pp. 193-205.

[16] Z. B. Celik et al., “Sensitive information tracking in commodity IoT,”
in Proc. USENIX Security Symp., 2018, pp. 1687-1704.

[17] A. K. Sikder, L. Babun, H. Aksu, and A. S. Uluagac, “Aegis: A context-
aware security framework for smart home systems,” in Proc. 35th Annu.
Comput. Security Appl. Conf., 2019, pp. 28-41.

[18] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Comput. Netw.,
vol. 76, pp. 146164, Jan. 2015.

[19] A. Mosenia and N. K. Jha, “A comprehensive study of security of
Internet-of-Things,” IEEE Trans. Emerg. Topics Comput., vol. 5, no. 4,
pp. 586-602, Oct.—Dec. 2016.

[20] R. H. Weber and E. Studer, “Cybersecurity in the Internet of Things:
Legal aspects,” Comput. Law Security Rev., vol. 32, no. 5, pp. 715-728,
2016.

[21] A. Ouaddah, H. Mousannif, A. A. Elkalam, and A. A. Ouahman, “Access
control in the Internet of Things: Big challenges and new opportunities,”
Comput. Netw., vol. 112, pp. 237-262, Jan. 2017.

[22] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, “Internet of
Things security: A survey,” J. Netw. Comput. Appl., vol. 88, pp. 10-28,
Jun. 2017.

[23] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani,
“Demystifying IoT security: An exhaustive survey on IoT vulnerabilities
and a first empirical look on Internet-scale IoT exploitations,” /IEEE
Commun. Surveys Tuts., vol. 21, no. 3, pp. 2702-2733, 3rd Quart., 2019.

[24] “samhocevar.” [Online]. Available: https://github.com/samhocevar/zzuf
(Accessed: Aug. 1, 2021).

[25] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz
testing,” in Proc. Netw. Distrib. Syst. Security Symp., 2008, pp. 1-8.

[26] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proc. 29th ACM SIGPLAN Conf. Program. Lang. Design
Implement., 2008, pp. 1-9.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

SHU AND YAN: IoTInfer: AUTOMATED BLACKBOX FUZZ TESTING

(271
[28]

[29]

[30]

[31]

[32]

(33]

(34]

(351

(36]

(371

[38]

(391

[40]

[41]

[42]

P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox fuzzing
for security testing,” Commun. ACM, vol. 55, no. 3, pp. 40-44, 2012.
“American fuzzy lop.” [Online]. Available: https://lcamtuf.coredump.cx/
afl/ (Accessed: Aug. 1, 2021).

J. Chen et al., “IoTFuzzer: Discovering memory corruptions in IoT
through App-based fuzzing,” in Proc. Netw. Distrib. Syst. Security Symp.,
2018, pp. 1-8.

X. Feng et al., “Snipuzz: Black-box fuzzing of IoT firmware via mes-
sage snippet inference,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2021, pp. 337-350.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “FIRM-
AFL: High-throughput greybox fuzzing of IoT firmware via augmented
process emulation,” in Proc. USENIX Security Symp., 2019, p. 9.

M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and
E. Kurniawan, “SweynTooth: Unleashing mayhem over Bluetooth low
energy,” in Proc. USENIX Annu. Tech. Conf., 2020, pp. 911-925.

G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. A. Kemmerer, and
G. Vigna, “SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr,” in
Proc. Int. Conf. Inf. Security, 2006, pp. 343-358.

S. Gorbunov and A. Rosenbloom, “Autofuzz: Automated network pro-
tocol fuzzing framework,” Int. J. Comput. Sci. Netw. Security, vol. 10,
no. 8, p. 239, 2010.

W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol
reverse engineering from network traces,” in Proc. USENIX Security
Symp., 2007, pp. 1-8.

J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic
extraction of protocol message format using dynamic binary analysis,”
in Proc. ACM Conf. Comput. Commun. Security, 2007, pp. 317-329.
C. Y. Cho, D. Babic, E. C. R. Shin, and D. Song, “Inference and analysis
of formal models of botnet command and control protocols,” in Proc.
ACM Conf. Comput. Commun. Security, 2010, pp. 426—439.

M. Shahbaz and R. Groz, “Inferring mealy machines,” in Proc. Int.
Symp. Formal Methods, 2009, pp. 207-222.

“Bluetooth specification version 4.0.” [Online]. Available: https://www.
bluetooth.com/specifications/protocol-specifications/ (Accessed: Aug. 1,
2021).

“BlueZ: Official linux Bluetooth protocol stack.” [Online]. Available:
http://www.bluez.org/ (Accessed: Aug. 1, 2021).

“zdnet.” [Online]. Available: https://www.zdnet.com/article/Crit.-
vulnerabilities-impact-over-a-million-iot-radio-devices/ (Accessed:
Aug. 1, 2021).

“zdnet.” [Online]. Available: https://www.zdnet.com/article/hacker-

leaks-passwords—more-than-500000-servers-routers—iot-devices/
(Accessed: Aug. 1, 2021).

[43]

[44]

[45]

4

York,
interests span cybersecurity, networking, and large-scale modeling and
simulation. He has contributed about 80 articles in these fields.

22751

“LearnLib.” [Online]. Available: https://learnlib.de/ (Accessed: Aug. 1,
2021).
S. Fujiwara,

G. V. Bochmann, F. Khendek, M. Amalou, and

A. Ghedamsi, “Test selection based on finite state models,” IEEE Trans.
Softw. Eng., vol. 17, no. 6, pp. 591-603, Jun. 1991.

D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82,
Apr. 1997.

Zhan Shu received the B.E. degree in network engi-
neering from Jinan University, Jinan, Shangdong,
China, in 2006, and the M.S. degree in computer sci-
ence from Binghamton University, State University
of New York, Binghamton, NY, USA, in 2016,
where he is currently pursuing the Ph.D. degree in
computer science.
His research focuses on proactive cybersecurity.

Guanhua Yan (Member, IEEE) received the
Ph.D. degree in computer science from Dartmouth
College, Hanover, NH, USA, in 2005.

From 2003 to 2005, he was a visiting graduate
student with the Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign,
Champaign, IL, USA. After working with Los
Alamos National Laboratory, Los Alamos,
NM, USA, for nine years, first as a Research
Associate and then a Research Scientist, he joined
Binghamton University, State University of New
Binghamton, NY, USA, in 2014, as a Faculty Member. His research

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on July 01,2023 at 16:04:00 UTC from IEEE Xplore. Restrictions apply.

