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Abstract. We construct nonlinear entire solutions in R6 to equations of minimal surface type that
correspond to parametric elliptic functionals.
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1. Introduction

A well-known theorem of Bernstein says that entire minimal graphs in R3 are planes.
Building on work of Fleming [5], De Giorgi [4], and Almgren [1], Simons [13] extended
this result to minimal graphs in RnC1 for n  7. In contrast, there are nonlinear entire
solutions to the minimal surface equation in dimension n � 8 due to Bombieri, De Giorgi
and Giusti [2] and Simon [12].

In this paper we study the Bernstein problem for a more general class of parametric
elliptic functionals. These assign to an oriented hypersurface † ⇢ RnC1 the value

Aˆ.†/ WD
Z

†

ˆ.⌫/; (1)

where ⌫ is a choice of unit normal to † and ˆ 2 C 2;˛
.Sn

/ is a positive even function.
We say ˆ is uniformly elliptic if its one-homogeneous extension to RnC1 has uniformly
convex level sets. The case ˆ D 1 corresponds to the area functional. In the general case,
the minimizers of Aˆ model crystal surfaces (see [9] and the references therein). Below
we assume ˆ is uniformly elliptic unless otherwise specified.

When a critical point of Aˆ can be written as the graph of a function u on a domain
� ⇢ Rn, we say that u is ˆ-minimal. It solves an elliptic equation of minimal surface
type (see Section 2). Jenkins [8] proved that global ˆ-minimal functions are linear in
dimension n D 2. Simon [11] extended this result to dimension n D 3, using an important

Connor Mooney: Department of Mathematics, University of California Irvine, Rowland Hall,
Irvine, CA 92697, USA; mooneycr@math.uci.edu

Mathematics Subject Classification (2020): 35J93, 35B08

https://creativecommons.org/licenses/by/4.0/
mailto:mooneycr@math.uci.edu


C. Mooney 4354

regularity theorem of Almgren, Schoen and Simon [10] for minimizers of the parametric
problem. He also showed that the result holds up to dimension n D 7 when ˆ is close in
an appropriate sense to the area integrand.

The purpose of this paper is to construct a nonlinear entireˆ-minimal function on R6,
for an appropriate uniformly elliptic integrand (which is necessarily far from the area
integrand). Our main theorem is:

Theorem 1.1. There exists a quadratic polynomial u on R6 that is ˆ-minimal for a uni-
formly elliptic integrand ˆ 2 C 2;1

.S6
/.

Theorem 1.1 settles the Bernstein problem for equations of minimal surface type in
dimension n � 6, leaving open the cases n D 4; 5. It also answers the question whether
or not there exists a nonlinear polynomial that solves such an equation. It remains an
interesting open question whether or not there exists a nonlinear polynomial that solves
the minimal surface equation.

Our approach to constructing entire solutions is different from the one taken by
Bombieri, De Giorgi and Giusti, which is based on constructing super- and sub-solutions.
We instead fix u, which reduces the problem to solving a linear hyperbolic equation forˆ.
It turns out that in R6, we can choose a quadratic polynomial u such that the solutions to
this hyperbolic equation are given by an explicit representation formula. By prescribing
the Cauchy data carefully we obtain an integrand with the desired properties.

As a consequence of Theorem 1.1 we show that the cone over S2 ⇥ S2 in R6 mini-
mizes the functionalAˆ0

, whereˆ0 is the restriction of the integrandˆ from Theorem 1.1
to S6 \ πx7 D 0º (see Remark 3.4). In fact, each level set of the function u from Theo-
rem 1.1 minimizes Aˆ0

. (This observation is what guided us to the example). Morgan [9]
previously showed that the cone over Sk ⇥ Sk in R2kC2 minimizes a parametric elliptic
functional for each k � 1, using the method of calibrations.

Finally, we remark that the analogue of the quadratic polynomial u from Theorem 1.1
in dimension n D 4 is not ˆ-minimal for any uniformly elliptic integrand ˆ (see for
instance Remark 3.5). However, it is feasible that our approach could produce entire
ˆ-minimal functions in the lowest possible dimension n D 4, that have sub-quadratic
growth (see Remark 3.6).

2. Preliminaries

2.1. Legendre transform

Let w be a smooth function on a domain � ⇢ Rn, and assume that rw is a diffeo-
morphism with inverse X . We define the Legendre transform w

⇤ on the image of rw
by

w
⇤
.p/ WD p �X.p/ � w.X.p//:

Differentiating two times, we obtain

rw⇤
.p/ D X.p/; D

2
w

⇤
.p/ D .D

2
w/

�1
.X.p//: (2)
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2.2. Euler–Lagrange equation

Assume that ˆ 2 C 2;˛
.Sn

/ is a positive, uniformly elliptic integrand. Here and below
we will identify ˆ with its one-homogeneous extension to RnC1, and uniform ellipticity
means that πˆ < 1º is uniformly convex.

If† is the graph of a smooth function u on a domain� ⇢ Rn then we can rewrite the
variational integral (1) as

Aˆ.†/ D
Z

�

'.ru/ dx;

where
'.p/ WD ˆ.�p; 1/: (3)

Thus, if † is a critical point of Aˆ, then u solves the Euler–Lagrange equation

div.r'.ru// D 'ij .ru/uij D 0 (4)

in �. The function ' is locally uniformly convex (by the uniform ellipticity of ˆ), but
the ratio of the minimum to maximum eigenvalues of D2

' degenerates at infinity. Thus
equation (4) is a quasilinear degenerate elliptic PDE for u, known in the literature as
a variational equation of minimal surface or mean curvature type (see e.g. [6, Chapter 16]
and the references therein).

Our approach is to rewrite (4) as a linear equation for '. Assume that ru is a smooth
diffeomorphism. Then using the relations in (2), we can rewrite equation (4) as

.u
⇤
/
ij
.y/'ij .y/ D 0 (5)

for y in the image of ru. Below we will fix u⇤, and then solve equation (5) for '.

Remark 2.1. In parametric form, the Euler–Lagrange equation (4) for a critical point †
of Aˆ is

tr.D2
ˆ.⌫

†
.x// � II†

.x// D ˆij .⌫
†
.x//II†

ij .x/ D 0; (6)

where ⌫† is the Gauss map of † and II† is the second fundamental form of †. We note
that (6) is invariant under dilations of †. Equation (4) can be viewed as the projection of
equation (6) onto a hyperplane.

Remark 2.2. The graph † of an entire solution to (4) is not only a critical point, but
a minimizer of Aˆ. One way to see this is to observe that the translations of† in the xnC1

direction foliate either side of†. Another way is to extend the unit normal ⌫ on† to RnC1

by letting it be constant in the xnC1 direction, and then show that rˆ.⌫/ is a calibration.
Indeed, rˆ.⌫/ is divergence-free in RnC1 by equation (6), and by viewing ˆ as the
support function of the uniformly convex hypersurface K WD rˆ.Sn

/ we see that

rˆ.⌫/ � Q⌫  ˆ. Q⌫/

for any ⌫; Q⌫ 2 Sn, with equality if and only if ⌫ D Q⌫.

Remark 2.3. One can show in the same way as in Remark 2.2 that the graph† of a solu-
tion to (4) on a bounded domain � ⇢ Rn minimizes Aˆ among hypersurfaces in RnC1
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with boundary @† that are contained in � ⇥ R. If in addition � is convex, or more gen-
erally, � D �1 can be obtained by starting with a convex domain �0 and continuously
deforming through a path of disk-type domains �t for t 2 Œ0; 1ç whose boundaries have
nonnegative mean curvature with respect to Aˆ (that is, ˆij .⌫

@�t /II@�t

ij � 0 where ⌫@�t

is the inward unit normal) in a way that � ⇢ �t for all t 2 Œ0; 1ç, then † minimizes Aˆ

among all hypersurfaces in RnC1 with the same boundary (see e.g. [7, Theorem C]).

3. Proof of Theorem 1.1

We denote points in R6 by .p; q/, with p; q 2 R3. The polynomial u from Theorem 1.1
is

u.p; q/ WD 1

2
.jpj2 � jqj2/: (7)

We note that u D u
⇤. Below we let ⇤ denote the wave operator @2

x � @2
y on R2.

Lemma 3.1. To prove Theorem 1.1 it suffices to find an analytic function  .x; y/ on R2

that is even in x and y, solves the PDE

⇤ C 2r �
✓
1

x
;� 1
y

◆
D 0 (8)

in the positive quadrant, and satisfies that the one-homogeneous function

‰.x; y; z/ D jzj 
✓
x

z
;
y

z

◆

on R3nπz D 0º has a continuous extension to R3 that is positive and locally C 2;1 on
R3nπ0º, and has uniformly convex level sets.

Proof. Suppose we have found such a function  , and denote points in R7 by .p; q; z/
with p; q 2 R3 and z 2 R. Then the function

ˆ.p; q; z/ WD ‰.jpj; jqj; z/

satisfies the desired regularity and convexity conditions. Furthermore, if we define ' by
the relation (3), that is,

'.p; q/ WD ˆ.�p;�q; 1/ D  .jpj; jqj/;

then by the definition (7) of u and equation (8) for  we have

.u
⇤
/
ij
'ij D 0

on R6. Hence equation (5) holds and the function u is ˆ-minimal.

Proof of Theorem 1.1. We note that a function  solves (8) in the positive quadrant if and
only if

⇤.x y  / D 0:
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The general solution to (8) is thus given by the formula

 .x; y/ D f .x C y/C g.x � y/
xy

:

We will show that the choice

f .s/ D �g.s/ D 2
� 5

2 .2C s
2
/

3
2

gives a function  satisfying the remaining conditions of Lemma 3.1.
After rotating the plane by ⇡

4 (and for ease of notation continuing to denote the
coordinates by x and y), we have for the above choices of f and g that

 .x; y/ D .1C x
2
/

3
2 � .1C y

2
/

3
2

x2 � y2

D A
2 C AB C B

2

AC B
;

where
A WD .1C x

2
/

1
2 ; B WD .1C y

2
/

1
2 :

Hence  is positive, analytic, and invariant under reflection over the axes and the diago-
nals. Furthermore,  is locally uniformly convex. Indeed, after some calculation (which
we omit) we arrive at

detD2
 D 3 .AC B/

�4

✓
2C 1

AB

◆
> 0;

and since
D

2
 .0; 0/ D 3

4
I;

we conclude that D2
 is everywhere positive definite.

Now let

‰.x; y; z/ WD jzj 
✓
x

z
;
y

z

◆

D .x
2 C z

2
/

3
2 � .y2 C z

2
/

3
2

x2 � y2

D D
2 CDE CE

2

D CE
;

where
D WD .x

2 C z
2
/

1
2 ; E WD .y

2 C z
2
/

1
2 :

By the local uniform convexity and analyticity of  and the one-homogeneity of ‰, we
just need to check that ‰ 2 C 2;1 in a neighborhood of the circle S2 \ πz D 0º, and that
on this circle the Hessian of ‰ restricted to any plane tangent to S2 is positive definite.

Restricting ‰ to the plane πx D 1º, we get a function of y and z that is C 2;1 in
a neighborhood of the origin (and analytic away from the origin), and at .1; 0; 0/ we have

‰yy D 2; ‰yz D 0; ‰zz D 3:
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By the symmetries of ‰ this gives the result in a neighborhood of the points .˙1; 0; 0/
and .0;˙1; 0/. We may thus restrict our attention to the region

�ı WD πjxj; jyj � ıº
for ı > 0 sufficiently small. In the region �ı \ πjzj < ı

2 º the function ‰ is analytic, and
has the expansion

‰.x; y; z/ D x
2 C jxyj C y

2

jxj C jyj C 3

2

z
2

jxj C jyj

� 1

jxj C jyj
X

k�2

ak

 
2k�4X

iD0

1

jxjiC1jyj2k�3�i

!
z

2k
;

(9)

where ak are the coefficients in the Taylor series of .1C s/
3
2 around s D 0. Thus, for any

unit vector e 2 πz D 0º we have on �ı \ πz D 0º that

‰ez D 0; ‰zz D 3

jxj C jyj :

It only remains to check that the first term in (9) is locally uniformly convex on lines in
πz D 0º that do not pass through the origin. By its one-homogeneity and symmetry in x
and y, it suffices to check this on the line πx D 1º. Since

‰.1; y; 0/ D jyj C 1

1C jyj
is locally uniformly convex, we are done.

Remark 3.2. The integrand from Theorem 1.1 is given explicitly by the formula

ˆ.p; q; z/ D ..jpj C jqj/2 C 2z
2
/

3
2 � ..jpj � jqj/2 C 2z

2
/

3
2

2
5
2 jpjjqj

; (10)

where p; q 2 R3 and z 2 R.

Remark 3.3. The convexity and regularity properties of‰ can also be efficiently checked
using the structure

‰.x; y; z/ D G.w.x; y; z//;
where

w.x; y; z/ D .j.x; z/j; j.y; z/j/
and

G.s; t/ D s C t � st

s C t
:

The key points are the convexity of the components of w, and the convexity and mono-
tonicity properties of G in the positive quadrant.

Remark 3.4. Theorem 1.1 implies that the cone C over S2 ⇥ S2 in R6 is a minimizer
of Aˆ0

, where

ˆ0.p; q/ D
ˇ̌
jpj C jqj

ˇ̌3 �
ˇ̌
jpj � jqj

ˇ̌3

2
5
2 jpjjqj
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is the restriction of ˆ (defined by (10)) to the hyperplane πz D 0º. In fact, every level
set of u is a minimizer of Aˆ0

. To show this, it suffices to show that the hypersurfaces
†˙ WD πu D ˙1º are critical points of Aˆ0

. Then all of the nonzero level sets of u,
which are dilations of †C or †�, would be critical points of Aˆ0

that foliate either side
of C D πu D 0º.

To see, e.g., that †C is a critical point of Aˆ0
, we first note that Ru is ˆ-minimal for

all R > 0 by the invariance of equation (4) under the rescalings u ! R
�1
u.Rx/ and the

2-homogeneity of u. Let IIR and ⌫R denote the second fundamental form and upper unit
normal to the graph ofRu in RnC1, and let II†C denote the second fundamental form and
⌫

†C D �ru=jruj the unit normal to †C in Rn. At any point on †C, we may choose
a system of coordinates where en D ⌫

†C , so that an orthonormal basis of the tangent
plane in RnC1 to the graph of Ru over this point contains the vectors e1; : : : ; en�1. With
respect to this basis we have

IIR
ij D O.R

�1
/C

´
II†C

ij ; i; j < n;

0; otherwise:

We also have that
⌫

R D .⌫
†C ; 0/CO.R

�1
/:

One concludes by writing equation (6) for the graph ofRu over points in†C, and passing
to the limit as R ! 1, that †C is a critical point of Aˆ0

. This argument can in fact be
used to show that the level sets of any homogeneous entire solution to (4) in Rn are critical
points of Aˆ0

.

Remark 3.5. The analogue of the quadratic polynomial (7) in R4, where p; q 2 R2, is
notˆ-minimal for any uniformly elliptic integrandˆ on S4. To see this, we first note that
by the invariance of u under rotations in p and in q, we may assume after averaging over
these rotations that ˆ depends only on jpj; jqj and z. By the argument in Remark 3.4,
it thus suffices to show that the level set πu D 1

2 º is not a critical point of Aˆ0
for any

uniformly elliptic integrand ˆ0 on S3 that depends only on jpj and jqj. When we fix
† D πu D 1

2 º, equation (6) reduces to an ODE for ˆ0. By analyzing this ODE, one can
show that one eigenvalue of D2

ˆ0 will tend to infinity on the Clifford torus S1 ⇥ S1.
More explicitly, we can write † D πjpj D �.jqj/º, where

�.t/ WD
p
1C t2;

and let
'.s/ WD ˆ0.1; s/:

When p; q 2 RkC1, equation (6) reduces to the ODE

'
00

.�⇤/00
C k

s'
0 � '

s.�⇤/0 � �⇤ C k
'

0

.�⇤/0
D 0 (11)

on .�1; 1/, where
�

⇤
.s/ D �

p
1 � s2
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is the Legendre transform of � . In the case k D 2 one checks directly that the even
solutions to (11) are multiples of

'.s/ D 1C 1

3
s

2
:

This agrees with our construction from Theorem 1.1. However, in the case k D 1 one can
see, e.g., by expanding ' in a Taylor series that '00 blows up near s D ˙1. (In fact, for all
even k, the even solutions to (11) are polynomials, and when k � 2 the second derivatives
are bounded up to the endpoints.)

The cone over S1 ⇥ S1 in R4 is known to minimize a parametric elliptic functional
(see [9]). It is natural to ask for a proof of this fact by foliation, and this remark shows
that one cannot use level sets of the quadratic polynomial u, unlike in higher dimensions.
However, it seems feasible that one can use surfaces that behave like level sets of func-
tions that are homogeneous of degree smaller than two (see Remark 3.6). We intend to
investigate this in future work.

Remark 3.6. If we take

u
⇤
.p; q/ D 1

m
.jpjm � jqjm/ and '.p; q/ D  .jpj; jqj/

with p; q 2 RkC1, then equation (5) is equivalent to the hyperbolic PDE

1

m � 1x
2�m

 xx C k x
1�m

 x D 1

m � 1y
2�m

 yy C k y
1�m

 y

for  in the positive quadrant. The Cauchy problem for this equation can be solved in
terms of certain hypergeometric functions (see [3] and the references therein). In special
cases the representation formula is particularly simple, e.g. when k D m D 2 (treated
above), or when k D 1 and m D 4, in which case the general solution is

 .x; y/ D f .x
2 C y

2
/C g.x

2 � y2
/

x2y2
:

The corresponding integrand ˆ (constructed as in the proof of Lemma 3.1) is not uni-
formly elliptic for any choice of f and g, because the maximum and minimum principal
curvatures of the graph of

u D 3

4

�
jpj 4

3 � jqj 4
3
�

are not of comparable size near πjpj jqj D 0º. However, it is feasible that for a judicious
choice of f and g, one could make a small perturbation of the corresponding integrand
and then use the method of super- and sub-solutions to construct an entire solution to
a variational equation of minimal surface type in R4 that grows at the same rate as u.
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