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Abstract. We construct nonlinear entire solutions in R to equations of minimal surface type that
correspond to parametric elliptic functionals.
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1. Introduction

A well-known theorem of Bernstein says that entire minimal graphs in R3 are planes.
Building on work of Fleming [5], De Giorgi [4], and Almgren [1], Simons [13] extended
this result to minimal graphs in R”*! for n < 7. In contrast, there are nonlinear entire
solutions to the minimal surface equation in dimension » > 8 due to Bombieri, De Giorgi
and Giusti [2] and Simon [12].

In this paper we study the Bernstein problem for a more general class of parametric
elliptic functionals. These assign to an oriented hypersurface ¥ C R"*! the value

Ao(S) = /E S(v), ()

where v is a choice of unit normal to ¥ and ® € C2%(S") is a positive even function.
We say ® is uniformly elliptic if its one-homogeneous extension to R”*! has uniformly
convex level sets. The case & = 1 corresponds to the area functional. In the general case,
the minimizers of A model crystal surfaces (see [9] and the references therein). Below
we assume P is uniformly elliptic unless otherwise specified.

When a critical point of Ag can be written as the graph of a function # on a domain
Q C R”, we say that u is ®-minimal. It solves an elliptic equation of minimal surface
type (see Section 2). Jenkins [8] proved that global ®-minimal functions are linear in
dimension n = 2. Simon [11] extended this result to dimension n = 3, using an important

Connor Mooney: Department of Mathematics, University of California Irvine, Rowland Hall,
Irvine, CA 92697, USA; mooneycr @math.uci.edu

Mathematics Subject Classification (2020): 35]93, 35B08


https://creativecommons.org/licenses/by/4.0/
mailto:mooneycr@math.uci.edu

C. Mooney 4354

regularity theorem of Almgren, Schoen and Simon [10] for minimizers of the parametric
problem. He also showed that the result holds up to dimension » = 7 when @ is close in
an appropriate sense to the area integrand.

The purpose of this paper is to construct a nonlinear entire ®-minimal function on R,
for an appropriate uniformly elliptic integrand (which is necessarily far from the area
integrand). Our main theorem is:

Theorem 1.1. There exists a quadratic polynomial u on R that is ®-minimal for a uni-
formly elliptic integrand ® € C%1(S°).

Theorem 1.1 settles the Bernstein problem for equations of minimal surface type in
dimension n > 6, leaving open the cases n = 4, 5. It also answers the question whether
or not there exists a nonlinear polynomial that solves such an equation. It remains an
interesting open question whether or not there exists a nonlinear polynomial that solves
the minimal surface equation.

Our approach to constructing entire solutions is different from the one taken by
Bombieri, De Giorgi and Giusti, which is based on constructing super- and sub-solutions.
We instead fix u, which reduces the problem to solving a linear hyperbolic equation for ®.
It turns out that in R®, we can choose a quadratic polynomial  such that the solutions to
this hyperbolic equation are given by an explicit representation formula. By prescribing
the Cauchy data carefully we obtain an integrand with the desired properties.

As a consequence of Theorem 1.1 we show that the cone over S? x S? in R® mini-
mizes the functional A, where ® is the restriction of the integrand ® from Theorem 1.1
to S° N {x7 = 0} (see Remark 3.4). In fact, each level set of the function u from Theo-
rem 1.1 minimizes Ag,. (This observation is what guided us to the example). Morgan [9]
previously showed that the cone over S¥ x S¥ in R?*+2 minimizes a parametric elliptic
functional for each k > 1, using the method of calibrations.

Finally, we remark that the analogue of the quadratic polynomial u from Theorem 1.1
in dimension n = 4 is not ®-minimal for any uniformly elliptic integrand ® (see for
instance Remark 3.5). However, it is feasible that our approach could produce entire
®-minimal functions in the lowest possible dimension n = 4, that have sub-quadratic
growth (see Remark 3.6).

2. Preliminaries

2.1. Legendre transform

Let w be a smooth function on a domain Q C R”, and assume that Vw is a diffeo-
morphism with inverse X. We define the Legendre transform w* on the image of Vw
by

w*(p) == p- X(p) — w(X(p)).

Differentiating two times, we obtain

Vw*(p) = X(p), D*w*(p) = (D*w)~ (X(p)). 2
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2.2. Euler-Lagrange equation

Assume that ® € C%%(S") is a positive, uniformly elliptic integrand. Here and below
we will identify ® with its one-homogeneous extension to R”*!, and uniform ellipticity
means that {® < 1} is uniformly convex.

If X is the graph of a smooth function u on a domain 2 C R” then we can rewrite the
variational integral (1) as

Ao(E) = /Q o(Vu) dx,

where
@(p) := @(—p, ). 3)

Thus, if X is a critical point of A, then u solves the Euler—Lagrange equation
div(Ve(Vu)) = ¢ij (Vu)u;; = 0 4

in . The function ¢ is locally uniformly convex (by the uniform ellipticity of ®), but
the ratio of the minimum to maximum eigenvalues of D2?¢ degenerates at infinity. Thus
equation (4) is a quasilinear degenerate elliptic PDE for u, known in the literature as
a variational equation of minimal surface or mean curvature type (see e.g. [6, Chapter 16]
and the references therein).

Our approach is to rewrite (4) as a linear equation for ¢. Assume that Vu is a smooth
diffeomorphism. Then using the relations in (2), we can rewrite equation (4) as

@*)7 (y)gij (y) = 0 (5)
for y in the image of Vu. Below we will fix u*, and then solve equation (5) for ¢.

Remark 2.1. In parametric form, the Euler—Lagrange equation (4) for a critical point £
of Ag is
(D2 O (x)) - ¥ (x)) = & (V= ()L (x) = 0, (6)

where v¥ is the Gauss map of X and II” is the second fundamental form of . We note
that (6) is invariant under dilations of X. Equation (4) can be viewed as the projection of
equation (6) onto a hyperplane.

Remark 2.2. The graph ¥ of an entire solution to (4) is not only a critical point, but
a minimizer of Ag. One way to see this is to observe that the translations of X in the x, 1
direction foliate either side of ¥. Another way is to extend the unit normal v on X to R"*+!
by letting it be constant in the x,4; direction, and then show that V®(v) is a calibration.
Indeed, V®(v) is divergence-free in R”*! by equation (6), and by viewing ® as the
support function of the uniformly convex hypersurface K := V®(S") we see that

Vo) -1 < &)
for any v, b € S”, with equality if and only if v = V.

Remark 2.3. One can show in the same way as in Remark 2.2 that the graph ¥ of a solu-
tion to (4) on a bounded domain 2 C R” minimizes A among hypersurfaces in R”*1
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with boundary dX that are contained in © x R. If in addition  is convex, or more gen-
erally, 2 = €27 can be obtained by starting with a convex domain £2¢ and continuously
deforming through a path of disk-type domains €2, for ¢ € [0, 1] whose boundaries have
nonnegative mean curvature with respect to Ag (that is, ®;; (v‘ml )H?jg’ > () where 9
is the inward unit normal) in a way that 2 C Q; for all 7 € [0, 1], then ¥ minimizes A
among all hypersurfaces in R”*! with the same boundary (see e.g. [7, Theorem C]).

3. Proof of Theorem 1.1

We denote points in R® by (p, q), with p, ¢ € R3. The polynomial u from Theorem 1.1
is

1
u(p.q) == 5 (Ip* — lgI*). (7
We note that u = u*. Below we let O denote the wave operator % — 35 on R2.

Lemma 3.1. To prove Theorem 1.1 it suffices to find an analytic function V¥ (x, y) on R?
that is even in x and y, solves the PDE

Oy + 29 - G _é) —0 ®)

in the positive quadrant, and satisfies that the one-homogeneous function

W(x.y.2) = |z|w(§, ;)

on R3\{z = 0} has a continuous extension to R* that is positive and locally C*' on
R3\{0}, and has uniformly convex level sets.

Proof. Suppose we have found such a function v, and denote points in R” by (p. ¢, z)
with p,q € R3 and z € R. Then the function

®(p.q.z) :=¥(pl.lql.2)

satisfies the desired regularity and convexity conditions. Furthermore, if we define ¢ by
the relation (3), that is,

9(p.q) := ®(=p.—q. 1) =¥ (Ipl.lq).
then by the definition (7) of u and equation (8) for 1 we have
)i =0
on R®. Hence equation (5) holds and the function u is ®-minimal. [

Proof of Theorem 1.1. We note that a function ¥ solves (8) in the positive quadrant if and
only if
Oxyy)=0.
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The general solution to (8) is thus given by the formula

fx+y)+gx—y)
Xy '

V(x,y) =
We will show that the choice
f(6)=—g(s) =273 2 + 573

gives a function ¥ satisfying the remaining conditions of Lemma 3.1.
After rotating the plane by 7 (and for ease of notation continuing to denote the
coordinates by x and y), we have for the above choices of f and g that

(1+x2)3 —(14y%)3
= X2 y2
_ A% + AB + B?
o A+ B ’

V(x,y)

where . .
A=0+x32, B:=(+y?»2.
Hence v is positive, analytic, and invariant under reflection over the axes and the diago-

nals. Furthermore, v is locally uniformly convex. Indeed, after some calculation (which
we omit) we arrive at

1
det D2y =3 (A4 + B)—4(2 + E) >0,

and since
5 3
Dy (0,0) = Z[,

we conclude that D2 is everywhere positive definite.

Now let
Xy
Wi, y.2) = |z|w(—, —)
zZ Z
(2 4223 — (32 4223

= X2 _y2

_ D?>+4 DE 4 E?

- D+ FE ’

where

D:=(x>+ 22)%, E:=(*+ 22)%.
By the local uniform convexity and analyticity of i and the one-homogeneity of W, we
just need to check that ¥ € C?:! in a neighborhood of the circle S N {z = 0}, and that
on this circle the Hessian of W restricted to any plane tangent to S? is positive definite.
Restricting W to the plane {x = 1}, we get a function of y and z that is C?! in
a neighborhood of the origin (and analytic away from the origin), and at (1, 0, 0) we have

Wy, =2, W,, =0 W, =3
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By the symmetries of W this gives the result in a neighborhood of the points (%1, 0, 0)
and (0, 1, 0). We may thus restrict our attention to the region

Qs = {lx|. |ly] = &}

for 6 > O sufficiently small. In the region Q5 N {|z| < 85} the function W is analytic, and
has the expansion

72

x|+ |y]

2 2
xX“ 4+ |xyl+y 3

v D) = -
=TT T2

1 2k—4 | 9
2k
EERE Z“k( 2 |x|,.+1|y|2k_3_,.)z |

k>2 i=0

where ay, are the coefficients in the Taylor series of (1 4 s)% around s = 0. Thus, for any
unit vector e € {z = 0} we have on Q5 N {z = 0} that

3
x| + Iyl
It only remains to check that the first term in (9) is locally uniformly convex on lines in
{z = 0} that do not pass through the origin. By its one-homogeneity and symmetry in x
and y, it suffices to check this on the line {x = 1}. Since

W, =0, ¥;;,=

W(l,y.0) =yl +

1+ 1yl

is locally uniformly convex, we are done. ]

Remark 3.2. The integrand from Theorem 1.1 is given explicitly by the formula

3 3
((Ipl + 1gD* +222)2 — ((Ip] — 1q])? + 22%)2
S s

22|pllq|

®(p.q,2) = (10)

where p,q € R3 and z € R.

Remark 3.3. The convexity and regularity properties of W can also be efficiently checked
using the structure
Y(x,y.z) = G(w(x,y.z2)),

where
w(x,y,z) = (|(x,2)[. |(y,2)])
and
G(s,t)=s+1— St .
s+t

The key points are the convexity of the components of w, and the convexity and mono-
tonicity properties of G in the positive quadrant.

Remark 3.4. Theorem 1.1 implies that the cone C over S? x S? in R® is a minimizer
of Ag,, where

_ el +1al]” = lipl = laI?

¢ )
o(p-) 2 1plldl
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is the restriction of @ (defined by (10)) to the hyperplane {z = 0}. In fact, every level
set of u is a minimizer of Ag,. To show this, it suffices to show that the hypersurfaces
¥4+ = {u = %1} are critical points of Ag,. Then all of the nonzero level sets of u,
which are dilations of ¥ or X_, would be critical points of Ag, that foliate either side
of C = {u = 0}.

To see, e.g., that ¥ is a critical point of Ag,, we first note that Ru is ®-minimal for
all R > 0 by the invariance of equation (4) under the rescalings u — R~ 'u(Rx) and the
2-homogeneity of u. Let IIR and v® denote the second fundamental form and upper unit
normal to the graph of Ry in R”*1, and let II*+ denote the second fundamental form and
pE+ = —Vu/|Vu| the unit normal to X in R”. At any point on X, we may choose
a system of coordinates where e, = v>+, so that an orthonormal basis of the tangent
plane in R to the graph of Ru over this point contains the vectors ey, . .., e,_1. With
respect to this basis we have

 y ..
IIf; — O(RY) + {Hij , 1, ] <fl,
’ 0, otherwise.
We also have that
R = vE+,0) + O(R7Y).

One concludes by writing equation (6) for the graph of Ru over points in X, and passing
to the limit as R — oo, that X is a critical point of Ag,. This argument can in fact be
used to show that the level sets of any homogeneous entire solution to (4) in R” are critical
points of Ag,,.

Remark 3.5. The analogue of the quadratic polynomial (7) in R*, where p,q € R2, is
not ®-minimal for any uniformly elliptic integrand ® on S*. To see this, we first note that
by the invariance of u under rotations in p and in g, we may assume after averaging over
these rotations that ® depends only on |p]|, |¢| and z. By the argument in Remark 3.4,
it thus suffices to show that the level set {u = %} is not a critical point of Ag, for any
uniformly elliptic integrand ®( on S3 that depends only on |p| and |g|. When we fix
Y={u= %}, equation (6) reduces to an ODE for ®,. By analyzing this ODE, one can
show that one eigenvalue of D?®, will tend to infinity on the Clifford torus S* x S!.
More explicitly, we can write ¥ = {|p| = o(|q|)}, where

o(t) = vV1+12,
and let

(p(S) = q>0(17s)'
When p,q € R¥*!, equation (6) reduces to the ODE

"

@ 5" — ¢ @
k k -
(O—*)// s(o—*)/ _ O—* (0-*)/

/

0 (11)

on (—1, 1), where

o*(s) = —~1—s2
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is the Legendre transform of o. In the case k = 2 one checks directly that the even
solutions to (11) are multiples of

1
o(s) =1+ gsz.

This agrees with our construction from Theorem 1.1. However, in the case k = 1 one can
see, e.g., by expanding ¢ in a Taylor series that ¢” blows up near s = +1. (In fact, for all
even k, the even solutions to (11) are polynomials, and when k > 2 the second derivatives
are bounded up to the endpoints.)

The cone over S! x S! in R* is known to minimize a parametric elliptic functional
(see [9]). It is natural to ask for a proof of this fact by foliation, and this remark shows
that one cannot use level sets of the quadratic polynomial u, unlike in higher dimensions.
However, it seems feasible that one can use surfaces that behave like level sets of func-
tions that are homogeneous of degree smaller than two (see Remark 3.6). We intend to
investigate this in future work.

Remark 3.6. If we take

1
u*(p.q) = Z(Ipl’” —lgI™) and o(p.q) =¥ (pl.lql)

with p,g € R¥*1, then equation (5) is equivalent to the hyperbolic PDE

1 _ _ 1 _ _
m—lxz "ex + kXY, = —m—1y2 "y +ky! "y

for ¥ in the positive quadrant. The Cauchy problem for this equation can be solved in
terms of certain hypergeometric functions (see [3] and the references therein). In special
cases the representation formula is particularly simple, e.g. when k = m = 2 (treated
above), or when k = 1 and m = 4, in which case the general solution is

f(x? 4+ y?) + g(x? — y?)
x2y2

V(x,y) =

The corresponding integrand ® (constructed as in the proof of Lemma 3.1) is not uni-
formly elliptic for any choice of f and g, because the maximum and minimum principal
curvatures of the graph of

w="2(pl* ~lal)

are not of comparable size near {|p| |¢g| = 0}. However, it is feasible that for a judicious
choice of f and g, one could make a small perturbation of the corresponding integrand
and then use the method of super- and sub-solutions to construct an entire solution to
a variational equation of minimal surface type in R* that grows at the same rate as u.

Acknowledgments. The author is grateful to Richard Schoen, Brian White, and Yu Yuan for inspir-
ing discussions on topics related to this research. He would also like to thank the referee for useful
comments related to Remarks 2.3, 3.3, 3.4 and 3.5.

Funding. This research was supported by NSF grant DMS-1854788.



Entire solutions to equations of minimal surface type 4361

References

(1]

(2]
(3]
(4]
(5]

(6]

(7]
(8]
(9]

[10]

(1]
[12]

[13]

Almgren, F. J., Jr.: Some interior regularity theorems for minimal surfaces and an extension
of Bernstein’s theorem. Ann. of Math. (2) 84, 277-292 (1966) Zbl 0146.11905
MR 200816

Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent.
Math. 7, 243-268 (1969) Zbl 0183.25901 MR 250205

Copson, E. T.: On the Riemann-Green function. Arch. Ration. Mech. Anal. 1, 324-348 (1958)
Zbl 0081.08901 MR 97620

De Giorgi, E.: Una estensione del teorema di Bernstein. Ann. Sc. Norm. Super. Pisa Cl. Sci. (3)
19, 79-85 (1965) Zbl 0168.09802 MR 178385

Fleming, W. H.: On the oriented Plateau problem. Rend. Circ. Mat. Palermo (2) 11, 69-90
(1962) Zbl 0107.31304 MR 157263

Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order.
Grundlehren Math. Wiss. 224, Springer, Berlin, 2nd ed. (1983) Zbl 0562.35001
MR 737190

Hardt, R., Lau, C. P, Lin, F.-H.: Nonminimality of minimal graphs. Indiana Univ. Math. J. 36,
849-855 (1987) Zbl 0637.49008 MR 916746

Jenkins, H. B.: On two-dimensional variational problems in parametric form. Arch. Ration.
Mech. Anal. 8, 181-206 (1961) Zbl 0143.14804 MR 0151906

Morgan, F.: The cone over the Clifford torus in R%is ®-minimizing. Math. Ann. 289, 341-354
(1991) Zbl 0725.49013 MR 1092180

Schoen, R., Simon, L., Almgren, F. J., Jr.: Regularity and singularity estimates on hyper-
surfaces minimizing parametric elliptic variational integrals. I, II. Acta Math. 139, 217-265
(1977) Zbl 0386.49030 MR 467476

Simon, L.: On some extensions of Bernstein’s theorem. Math. Z. 154, 265-273 (1977)
7Zbl 0388.49026 MR 448225

Simon, L.: Entire solutions of the minimal surface equation. J. Differential Geom. 30, 643-688
(1989) Zbl 0687.53009 MR 1021370

Simons, J.: Minimal varieties in riemannian manifolds. Ann. of Math. (2) 88, 62—-105 (1968)
Zbl 0181.49702 MR 233295


https://zbmath.org/?q=an:0146.11905&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=200816
https://zbmath.org/?q=an:0183.25901&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=250205
https://zbmath.org/?q=an:0081.08901&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=97620
https://zbmath.org/?q=an:0168.09802&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=178385
https://zbmath.org/?q=an:0107.31304&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=157263
https://zbmath.org/?q=an:0562.35001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=737190
https://zbmath.org/?q=an:0637.49008&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=916746
https://zbmath.org/?q=an:0143.14804&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0151906
https://zbmath.org/?q=an:0725.49013&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1092180
https://zbmath.org/?q=an:0386.49030&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=467476
https://zbmath.org/?q=an:0388.49026&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=448225
https://zbmath.org/?q=an:0687.53009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1021370
https://zbmath.org/?q=an:0181.49702&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=233295

	1. Introduction
	2. Preliminaries
	2.1. Legendre transform
	2.2. Euler–Lagrange equation

	3. Proof of Theorem 1.1
	References

