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ABSTRACT

Many real-world systems can be represented as networks where the
different entities in the system are presented by nodes and their in-
teractions by edges. An important task in the study of networks
is community detection, where nodes in the same community are
more densely connected to each other than they are to the rest of the
network. While there has been a lot of work on community detec-
tion using the connectivity between the nodes, i.e., adjacency ma-
trix, many real-world networks also have attribute information for
each node. Community detection in attributed graphs requires joint
modeling of graph structures and node attributes to make full use
of available data. In this paper, we introduce a graph signal pro-
cessing based approach to community detection in attributed net-
works. The proposed algorithm uses spectral graph wavelets to filter
the attributes and constructs a new network from the graph filtered
attributes across different scales. In this manner, both the graph con-
nectivity information and the node attributes are taken into account
in the community detection task. The proposed method is evaluated
on multiple attributed social networks and is shown to perform well
on networks with both binary and numerical attributes.

Index Terms— Community Detection, Graph Spectral Wavelets,
Attributed networks

1. INTRODUCTION

Networks provide a powerful tool for representing real-world sys-
tems such as social networks, citation and coauthor networks, bio-
logical systems, among others [1]. An important aspect of analyzing
networks is the discovery of communities. In most real-world net-
works, both the graph connectivity and node attributes are available.

Classical clustering methods focus on detecting communities us-
ing the attributes of the nodes [2] ignoring the relationships between
the nodes and creating communities only based on their similarities.
Another group of methods focus only on the topology of the network
[3, 4]. However, these methods usually fall short in attributed graph
clustering, as they do not exploit informative node features such as
user profiles in social networks and document contents in citation
networks. Therefore, in recent years, several methods have been
proposed to detect communities by combining the node attributes
and link information [5, 6, 7], such that the nodes in a community
are more densely connected to each other than they are to the rest of
the network, but also share some similar attributes.

The first class of methods for attributed graph clustering focus
on combining link and node information by defining a new objective
function that integrates the two types of similarity. In particular, the
adjacency matrix that captures link information and the similarity
matrix that quantifies the affinity between the attributes are com-
bined in formulating the objective function. For example, authors in
[8] proposed a method based on non-negative matrix factorization
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(NMF) combining graph connectivity and attributes. Authors in [9]
propose a modified label propagation algorithm that uses both link
strength and node attribute information to improve the quality of the
detected communities. In [7], authors propose two methods to com-
bine link and node information. The first method uses a weighting
strategy to use a graph constructed from the attributes, G, to create a
new graph that combines attributes and edge information. The sec-
ond method linearly combines two similarity matrices, one created
from the attributes and the other from the edges. In [5], authors pro-
pose a method where they obtain a k-NN graph by using a set of
node attributes. The k-NN graph is then combined with the original
network to strengthen the community structure of the network.

A second group of methods uses graph neural networks for com-
munity detection. In [10], authors propose a two phase method based
on graph convolution network (GCN) to detect communities based
on nodes and link information. A label sampling model is proposed
to generate labels to validate and train the GCN. They use structural
centers as initial labels and then update these labels using the nodes
attributes information. Authors in [6] propose an adaptive graph con-
volution method for attributed networks using k-order low-pass fil-
ters. In general, GCN based methods rely on prior knowledge and
a large number of labels. Since labels are often not available, these
methods have limited applicability in practice.

In this paper, we propose a framework for detecting commu-
nities using spectral graph wavelets [11]. Following the approach
in [11], we define the graph wavelets and scaling functions across
multiple scales. By construction, a wavelet associated to a node is
centered at this node and captures the structure of local connectivity
in the neighborhood of this node. These graph wavelets were ini-
tially used for community detection in [3], where authors propose
a method for multi-scale community detection (MS-CD). However,
their method is based only on structural information as the wavelet
basis is used to construct a graph for the subsequent community dis-
covery, without taking the attributes of the network into considera-
tion. In this work, we propose to filter the attributes using the wavelet
basis at different scales to construct new graphs that will contain
both link and node information. This approach is a more general-
ized way of implementing a graph filter since multiple filters corre-
sponding to different scales are applied, allowing us to select the one
that gives the best community structure. As the scale increases the
spanned neighborhood increases and we might detect communities
with larger number of nodes. In other words, wavelets on graphs
provide a view of how a node sees the network.

The rest of the paper is organized as follows. Section 2 pro-
vides background on graph convolution, Graph Fourier transform
and graph wavelets. Section 3 presents the proposed community
detection algorithm while Section 4 illustrates results on real-world
attributed networks. Finally, Section 5 provides conclusions and dis-
cussion on future work.
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2. BACKGROUND

In this section, we review the basics of graph Fourier transform
(GFT), graph convolution, and spectral graph wavelets.

2.1. Graph Fourier Transform

Given a graph, G = {V, E, A}, where V, E and A are the set of
nodes, edges, and adjacency matrix of the graph, respectively, the
graph Laplacian is £ = D — A, where D is the diagonal degree
matrix defined as D;; = > ; Aij. The normalized Laplacian matrix
L., isdefined as £,, = D™/2(D-A)D~Y/2 = In—D~1/2AD /2,
where In is the identity matrix of size N. The spectrum of L is
composed of its set of eigenvalues, {\1 < A2 < ... < Ay}, and
by the matrix U of its normalized eigenvectors U = (u1|uz]...|un)
[12]. In graph signal processing, U is considered as the matrix of the
graph’s Fourier modes, and (v/A;)i=1,..,~ as the set of associated
frequencies [13]. The graph Fourier transform of a signal f defined
on the nodes of the graph is then defined as f = U f.

2.2. Graph Convolution

A graph signal matrix can be represented as a vector f € RYXP,
where N is the number of nodes in the graph and p is the number
of attributes for each node. The symmetrically normalized graph
Laplacian can be eigen-decomposed as £, = UAU™, where A =
diag(A1, ..., An) are the eigenvalues in increasing order, and U =
(u1|uz|...lun) are the associated orthogonal eigenvectors. A lin-
ear graph filter can be represented as a matrix G = Up(A)U™?,
where p(A) = diag(p(A1), ..., p(An)) is called the frequency re-
sponse function of G. Graph convolution is defined then as the prod-
uct of a graph signal f with a graph filter G, f = Gf, where f is the
filtered graph signal.

2.3. Spectral Graph Wavelets

Spectral graph wavelets were defined in [11] using the graph
Fourier modes, U. The wavelet at scale s centered at node a is
denoted as v5,,. The construction of s, is based on band-pass
filters defined in the graph Fourier domain, generated by stretch-
ing a band-pass wavelet filter kernel g(-) with a scale parameter
s > 0. The matrix representation of the kernel filter at a scale
s is given by a diagonal filter applied to the N eigenvalues of L,
G; = diag(g(sA1),g(sA2),...,g(sAn)). The wavelet basis at a
scale s is then given by

W, = {s1|thsa|...[tbs v} = UG,U".

The wavelet coefficients at scale s for a graph signal f are de-
fined as fy = W/ f. This wavelet transform will be used later in
Section 3.

By this definition, a wavelet associated to a node a is centered
around this node, i.e., wavelets on graphs provide a view of the
network from the node perspective. At small scales, the filter is
stretched out and lets through high frequency modes. Therefore, the
corresponding wavelet extends only to the close neighborhood of the
node in the graph. At large scales, the filter function is compressed
around low frequency modes and the corresponding wavelet spans
a larger neighborhood. The parameters and the shape of the kernel
filter g(-) used in this work are defined in the next section.

Similarly, the scaling basis can be generated using a low-pass
scaling filter kernel A(+) as
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(b)

Fig. 1: (a) Band-pass wavelet filter and (b) Low-pass scaling filter
functions for different scales. The eigenvalues of the example net-
work are indicated with crosses on the x-axis.

&, = Udiag(h(sA1), h(sXa), ..., h(sAn))U" = UH,U"

and thus, we can obtain the scaling coefficients, fq> = & f. The
scaling function kernel h(-) is a low-pass filter designed to smoothly
represent the low frequency content on the graph.

2.4. Graph Wavelet Filter

We use the band-pass filter kernel proposed in [11, 3] defined as
follows,

z; “x* forx < z1,
g(x; 0, B, 21, 22) = 4 p(x) forz; <z <z, (1)
acgm*ﬂ for x > x2,

where p(z) is a cubic spline such that g and g’ are continuous. The
filter g is parametrized by the integers « and 3, and z; and x5 are
the transition points. These parameters were set in [3] following the
argument that the eigenvector associated with the smallest non-zero
eigenvalue (Fiedler vector) is important for community detection as
it contains information on the coarsest description of the graph [14].
Following the analysis of authors in [3], these parameters are set to
a=208= 1/log10(§—§), x1 = 1, z2 = x1 /A2, and the minimum
and maximum scales t0 Smin = 21/A1 and Smaz = T2/ A2, respec-
tively. The wavelet scales s are selected to be logarithmically spaced
between the minimum and maximum scales Smin and Smax, since, in
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Fig. 2: Framework of the Proposed Attributed Network Community Detection Method

general, the density of the eigenvalues on the interval [0, 2] is not
uniform.

Note that although the filter kernel function is defined as a con-
tinuous function in the graph Fourier domain, only the values on
the spectrum are needed. Thus, for each given scale parameter the
filter is discrete. Fig. 1a shows the proposed wavelet filters at differ-
ent scales and parameters for a toy example of a network with 300
nodes.

2.5. Graph Scaling Filter

The scaling functions in the definition of the graph scaling function
are used to represent the low frequency content on the graph. They
do not generate the wavelets by scale relation as in traditional or-
thogonal wavelets. Thus, the design of the scaling function is not
coupled to the choice of wavelet kernel g(-). In this paper, we use
the following low-pass filter kernel

(1 —27%%) +q(z1) forz <z,

h(z;a, B, x1,z2) = ¢ q(x) forz; <z < 22,
xgm’ﬁ for x > x2,

@
where g(z) is sixth order spline such that h and h’ are continuous.
The parameters are set as in the graph wavelet filter previously dis-
cussed. Fig. 1b shows the proposed scaling filters at different scales
and parameters for a toy example of a network with 300 nodes.

3. PROPOSED METHOD

In this work, we propose a community detection method for at-
tributed networks using graph wavelet transform (GWT) that takes
into account both the topology and the attributes of the network. We
propose to create a network using the filtered attributes f¢ = wlr
(fo = ® f). The scaling function coefficients and spectral graph
wavelet coefficients contain the approximate and detailed informa-
tion of the graph signal f defined on each node of the graph, re-
spectively. Given the nature of the wavelet and scaling basis func-
tions, the filtered attributes capture the topology information of the
network as well as the attribute information. A new graph is con-
structed from the filtered attributes using the k-nearest neighbors (k-
NN) method. Once the graphs are constructed we can use a clus-
tering algorithm to detect the communities. Fig. 2 illustrates the
proposed framework.
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3.1. k-NN Graph Construction

The k-Nearest Neighbor Graph (k-NNG) for a set of objects V' is
a undirected graph with an edge between two objects v;,v; € V,
if v; is in the set of the k-nearest neighbors of v; with respect to a
given similarity measure, denoted as Ny (v;), or v; is in the set of
the k-nearest neighbors of v;, Nk (v;).

This results in a graph for which every point is connected to its
k-th nearest neighbors capturing the local information. In this paper,
we constructed k-NN graphs from the filtered attributes fy and fo
for each scale s. The similarity measure used was the Euclidean
distance. And the similarity matrix is then defined as,

1 if fu, € Ni(fu,) or fu, € Ni(fu,),
0 otherwise.

W (i, j) = {

where fq;a is a p length vector of the filtered attributes corresponding
to node a.

3.2. Clustering

Once the graphs from the filtered attributes fq, and fq, are created,
we can find the communities. In this work, we use a well-known
community detection method based on modularity maximization,
Louvain [15], to cluster the nodes into communities. Louvain is a
method based on maximizing the modularity metric ) defined as

kik;
2m

1
Q= %Z[sz —v5—1d(cis c5),
ij

where W is the similarity matrix of the graph, k; is the sum of the
weights of the edges attached to vertex %, ¢; is the community to
which vertex ¢ is assigned, m = % ZZ j W;;, and -y is a resolution
parameter that needs to be set. In this work, we find partitions of
a network using a range of values for v € [0.1,1.5] and select the
value of ~y that gives us the partition with the highest evaluation met-
ric.

4. EXPERIMENTAL RESULTS ON REAL NETWORKS

In this section, we present the experimental results for our method
evaluated on four real-world datasets.
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Table 1: Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) results.

Cora Citeseer Sinanet Wiki

Algorithms NMI ARI NMI ARI NMI ARI NMI ARI

MS-CD 0.5072 0.3453 0.4064 0.3926 0.4064 0.1997 0.3548 0.2677
Louvain 0.5044 0.3433 0.3645 03457 0.2490 0.2044 0.4105 0.2369
k-means 0.2825 0.1621 0.3597 0.3279 0.6413 0.5828 0.3323 0.0578
SC 0.2856 0.1614 0.3244 0.2898 0.5395 0.3802 0.3974 0.0954
ARGA 0.4562 0.3865 0.2967 0.2781 0.4815 0.3781 0.3715 0.1129
ARVGA 0.4657 0.3895 0.3124 0.3022 0.4854 0.3993 0.3987 0.1084
Graph from f\p 0.5553 0.4068 0.4187 0.4015 0.5201 04732 0.4481 0.2978
Graph from fq, 0.5874 0.5426 0.4391 0.4500 0.6503 0.6406 0.4946 0.2929

4.1. Datasets

We evaluated our method on two groups of real networks. The first
group of networks have binary attributes, while those in the second
group have numerical attributes. The first group of data sets are:

e Cora is composed of 2,708 machine learning papers clas-
sified into seven classes: case based reasoning, genetic al-
gorithms, neural networks, probabilistic methods, reinforce-
ment learning, and rule learning theory. This network has
5,429 edges representing citations among the papers (nodes).
Each document is described by a binary vector of 1,433 di-
mensions indicating the presence or absence of 1,433 words.

* Citeseer is a citation network of 3,312 machine learning
publications classified into 6 classes: agents, artificial intel-
ligence, database, information retrieval, machine learning,
and human-computer interaction. This network has 4,732
links and each paper is described by a binary vector of 3,703
dimensions indicating the presence of 3,703 unique words.

The second group of datasets includes

 Sinanet is a microblogs users relationship network of 3,490
users from 10 major forums including finance and economics,
literature and arts, fashion and vogue, current events and pol-
itics, sports, science and technology, entertainment, parenting
and education, public welfare, and normal life. This network
has 30,282 links between the users representing the follow-
ers/followees relationships. Each user is described by a 10
dimensional numerical attribute vector describing the users’
interest distribution in 10 forums.

* Wiki contains 2,405 long text documents classified into 19
classes, and 17,981 links between them. Each document is
described by a weighted vector of length 4,973 indicating the
presence of words.

4.2. Results and Discussion

Normalized Mutual Information (NMI) [16] and Adjust Rand In-
dex (ARI) [17] are used as evaluation metrics to quantify the sim-
ilarity between the detected community structure and the known
ground-truth. In order to evaluate the performance of our method
and the importance of taking into account both the topology and the
attributes of a network, we compared the proposed method with six
community detection methods, Multi-Scale Community Detection
(MS-CD) [3], Louvain [15], k-means, Spectral Clustering (SC), ad-
versarially regularized graph autoencoder (ARGA) [18], and adver-
sarially regularized variational graph autoencoder (ARVGA) [18].
The first two only consider the edge information. MS-CD uses graph

wavelets while Louvain is a modularity maximization method. k-
means and SC are well-known clustering methods and both of them
only consider the attributes of the nodes. And, ARGA and ARVGA
are graph convolutional network based methods that use both node
attributes and graph structure.

Table 1 shows the results of these experiments. For our methods
and for MS-CD, the results from the scale s that gives the highest
evaluation metrics are reported. As we can see, taking into account
both the topology and the node attributes yields better NMI and ARI
results. For all datasets, the two versions of our method perform
better than the rest of the algorithms except on Sinanet where k-
means performs better than the proposed method using the band-
pass wavelet filtered coefficients, but still worse than using the low-
pass scaling filter. Since Sinanet is a network with 10 communities
and 10 attributes, methods that use only the attributes like k-means
may perform well as the attributes directly correspond to the differ-
ent communities. On the other hand, our method using the low-pass
scaling filtered coefficients fo outperforms the rest of the methods.
The low-pass filters are designed to smoothly represent the low fre-
quency content on the graph, which is related to the similarities of
nodes in the graph. Therefore, it is expected to perform better for
community detection since we want nodes in a same communities to
be similar.

5. CONCLUSIONS

In this paper, we proposed a community detection method for at-
tributed networks based on graph wavelets. The proposed method
detects communities taking into account both the node attributes and
the topology of the network. Two classes of graph filters based on
graph wavelet transform were implemented, a band-pass wavelet fil-
ter and a low-pass scaling filter. Experiments on several real-world
datasets with binary and numerical attributes were conducted. The
experiments show that using the attributes in addition to the topology
yields more accurate communities. Moreover, results show that the
low-pass scaling filter performs better than the band-pass wavelet
filter, but both of them outperform the conventional clustering al-
gorithms. Future work will consider other kernel functions and the
extension of this framework to detect multi-scale community struc-
ture.
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