
25

Selin Aviyente and Abdullah Karaaslanli

EXPLAINABILITY IN DATA SCIENCE: INTERPRETABILITY, 
REPRODUCIBILITY, AND REPLICABILITY

IEEE SIGNAL PROCESSING MAGAZINE   |   July 2022   |1053-5888/22©2022IEEE

I n many modern data science problems, data are represented 
by a graph (network), e.g., social, biological, and communi-
cation networks. Over the past decade, numerous signal pro-

cessing and machine learning (ML) algorithms have been intro-
duced for analyzing graph structured data. With the growth of 
interest in graphs and graph-based learning tasks in a variety of 
applications, there is a need to explore explainability in graph 
data science. In this article, we aim to approach the issue of ex-
plainable graph data science, focusing on one of the most funda-
mental learning tasks, community detection, as it is usually the 
first step in extracting information from graphs. A community is 
a dense subnetwork within a larger network that corresponds to 
a specific function. Despite the success of different community 
detection methods on synthetic networks with strong modular 
structure, much remains unknown about the quality and signifi-
cance of the outputs of these algorithms when applied to real-
world networks with unknown modular structure. Inspired by 
recent advances in explainable artificial intelligence (AI) and 
ML, in this article, we present methods and metrics from net-
work science to quantify three different aspects of explainabil-
ity, i.e., interpretability, replicability, and reproducibility, in the 
context of community detection.

Introduction
Modern data analysis involves large sets of structured data, 
where the structure carries critical information about the nature 
of the data. Typically, graphs are used as mathematical tools to 
describe the structure of such data. Graphs are ubiquitous in the 
real world, representing objects and their relationships in var-
ied domains, including social networks, e-commerce networks, 
biological networks, traffic networks, and brain networks [1]. As 
a result, numerous signal processing and ML tasks have been 
extended for analyzing graph structured data, e.g., graph signal 
processing (GSP), graph topology inference, node classification, 
link prediction, community detection, and supervised learning 
with graphs [2]. Among these tasks, community detection is 
fundamental for uncovering links between structure and func-
tion in complex networks. The community detection problem is 
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challenging, in part, because it is not very well posed. For this 
reason, researchers have proposed a variety of definitions of what 
constitutes a community and an array of algorithms correspond-
ing to these definitions [3]. While the success of these algorithms 
has been quantified for synthetic networks with ground truth in-
formation, it is harder to evaluate the accuracy, significance, and 
meaning of the obtained community structure for real networks. 
For these results to be useful in a variety of scientific and tech-
nological studies, there is a need to provide transparency to the 
community detection algorithms and their outputs.

Over the past decade, the explainability of data-driven meth-
ods, e.g., AI and ML, has been a focus of research in the ML and 
data mining communities. While the ML community is mostly 
focused on describing how black boxes work, data mining is 
more interested in explaining the decisions, without even under-
standing how the opaque decision systems work. Recent survey 
articles on the topic offer a multitude of terminologies, such 
as interpretability, accountability, responsibility, transparency, 
comprehensibility, accuracy, and understandability, to evaluate 
different dimensions of explainability [4], [5]. Along with these 
different terminologies, a variety of methods, including black-
box input–output analysis, sensitivity analysis, saliency maps, 
attention heat maps, and approximation of the predictions using 
simple proxy models, have been introduced [4].

Although there has been growing interest in explainable 
ML models, most of the existing work focuses on explainable 
predictive models and interpretable neural networks. Thus, the 
focus has been on making black-box models commonly encoun-
tered in deep learning more interpretable and transparent. These 
methods inherently assume the existence of large-scale labeled 
training samples. However, in many applications, such as com-
munity detection, ground truth data may be missing due to the 
structural complexity of the data, limits of human knowledge, 
and significant volumes that complicate the categorization pro-
cess. Unsupervised learning techniques, including clustering, 
are commonly used to offer a solution to this lack of ground 
truth. The interpretability of the clusters is critical in high-impact 
domains since decision makers need to understand a solution 
beyond how the data are grouped into clusters: what character-
izes a cluster, and how it is different from other clusters?

To date, there has been only a handful of papers that study 
the issue of explainability for unsupervised learning and, in 
particular, for clustering methodologies. In [6], the application 
of interpretable algorithms based on decision tree principles is 
proposed as a guideline for clustering. Corral et al. [7] develop 
a system to explain and describe the results of unsupervised 
learning by looking at the attributes common to most of the 
points in a cluster. In Explain-It [8], a generic framework for 
unsupervised and self-explainable learning is introduced. In 
this framework, clustering results are modeled using a super-
vised learning model, which is then explained through the 
application of explainable AI approaches. More recently, inter-
pretable clustering algorithms, such as tree-based approaches 
[9], and algorithms that try to achieve a balance between the 
quality and interpretability of clusters by jointly optimizing the 
homogeneity and quality of clusters [10] have been proposed.

With the growth of interest in graphs and graph-based 
learning tasks in a variety of applications, there is a need to 
explore explainability in graph data science. Explainability can 
be particularly helpful for graphs, even more than for images, 
as it is harder for nonexpert humans to intuitively determine 
the relevant context within a graph. Recent work in this area 
has focused on the explainability of graph neural networks 
(GNNs) [11]. Several approaches, such as saliency maps, class 
activation mapping, and excitation backpropagation, have been 
proposed to explain the predictions of GNNs and provide dif-
ferent levels of explanation. In addition to these efforts, in the 
area of GSP, algorithm unrolling approaches have been extend-
ed to the graph domain to implement an interpretable network 
for graph signal denoising [12].

In this article, we aim to approach the issue of explainable 
graph data science, focusing on one of the most fundamental 
learning tasks, community detection, as it is usually the first step 
in extracting information from graphs. In ML literature, several 
descriptive terms have been introduced to define the different 
aspects of explainability. In this article, we focus on three terms: 
interpretability, replicability, and reproducibility. In the context 
of community detection, interpretability relates to the commu-
nity detection model and the comprehensibility of the resulting 
communities; replicability relates to the transparency and sta-
bility of the algorithm, and reproducibility relates to the scien-
tific consistency of the obtained results. The different aspects of 
these terms are explored in the following sections.

Dimensions of explainability
In this section, we provide an overview of the three dimensions 
of explainability: interpretability, replicability, and reproduc-
ibility. In the following, these three terms are defined in the 
context of general ML algorithms.

Interpretability
In the context of ML, interpretability relates to the capabil-
ity of making sense of a learned ML model. Thus, the aim 
of interpretability is to map an abstract concept, such as a 
predicted class label, into a domain that humans can make 
sense of. Different desired properties, including trust, causal-
ity, transferability, and informativeness, have been proposed to 
evaluate the interpretability of ML models [13], [14]. Coupled 
with these properties, various techniques have been proposed 
to confer interpretability. These fall broadly into two catego-
ries. The first relates to transparency (i.e., how does the model 
work?). The second consists of post hoc explanations (i.e., 
what else can the model tell me?) Transparency is considered 
at the level of the entire model (simulatability); at the level of 
individual components, such as parameters (decomposability); 
and at the level of the training algorithm (algorithmic trans-
parency). Some common approaches to evaluate transparency 
include approximations using understandable proxy models, 
such as local linear models and decision trees, and visual ap-
proaches, including saliency maps and heat maps, based on 
sensitivity analysis and relevance scores that help to explain 
model decisions [15].
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Post hoc interpretability represents a distinct approach to 
extracting information from learned models. While post hoc 
interpretations often do not elucidate precisely how a model 
works, they may nonetheless confer useful information for 
practitioners and end users of ML. Some common approaches 
to post hoc interpretations include natural language explana-
tions, visualizations of learned representations and models, 
and explanations by example. Visualization methods for the 
post hoc interpretability of ML models aim to render visual-
izations in the hope of determining qualitatively what a model 
has learned. Some examples include t-distributed stochastic 
neighbor embedding [16] to visualize high-dimensional dis-
tributed representations and perturbation-based methods, 
where the input is altered through gradient descent to enhance 
the activation of certain nodes in the network [17]. Local expla-
nation approaches focus on explaining what a neural network 
depends on locally, e.g., saliency maps. Finally, explanation 
by example focuses on reporting which other examples are 
most similar with respect to the model [18]. For any example, 
in addition to generating a prediction, one can use the activa-
tions of the hidden layers to identify the k-nearest neighbors 
based on the proximity in the space learned by the model.

Replicability
In natural sciences, replicability refers to measurements being 
obtained with stated precision by a different team using the same 
measurement procedure and the same measuring system, under 
the same operating conditions and in the same or a different lo-
cation in multiple trials. Based on the standards established by 
experimental scientists, the Association for Computing Machin-
ery [19] has adopted the following definition for replicability in 
computational sciences. For computational sciences, including 
ML, replicability means that an independent group can obtain 
the same result using the author’s own artifacts, e.g., code, data, 
and so on [19]. Major issues that impede the replicability of ML 
algorithms include random initializations, hyperparameter selec-
tion and tuning, and reliance on benchmark data sets that may 
not be transferable to real-life data. ML methods use procedures 
such as resampling and k-fold cross validation to estimate the 
replicability of a given model and to avoid overfitting.

Reproducibility
Reproducibility refers to the ability of an independent re-
searcher to obtain the same results using the same methodol-
ogy with his or her own artifacts, e.g., software and data [19]. 
Goodman et al. [20] propose the following definitions for vari-
ous types of reproducibility:

■■ Method reproducibility: Provide sufficient detail about 
procedures and data so that the same processes can be 
exactly repeated.

■■ Results reproducibility: Obtain the same results from an 
independent study with procedures as closely matched to 
the original study as possible.

■■ Inferential reproducibility: Draw qualitatively similar con-
clusions from either an independent replication of a study 
or a reanalysis of the original study.

The major challenges regarding reproducibility in ML are a 
lack of proper documentation of the information, e.g., the code 
and experimental set up, to reproduce the results and insuffi-
cient exploration of the variables that might affect the conclu-
sions of a study. Different statistical tools, such as the intraclass 
correlation coefficient and coefficient of variation, have been 
employed to quantify the reproducibility of ML algorithms.

Modularity-based community detection

Background on graphs
In this article, without a loss of generality, we focus on un-
directed and weighted graphs, as they are commonly used to 
model different types of networks. Mathematically, a graph 

( , )G V E=  is described by a vertex set { , , , }V n1 2 f=  of car-
dinality n and an edge set ;E V V#!  A Rn n! #  denotes the 
adjacency matrix of a graph, where Aij is nonzero and equal to 
the weight of the edge between nodes i and j if ( , ) .i j E!  For 
an undirected graph, A is symmetric; i.e., .A A= <  The degree 
of node i is defined as k Aiji j iR= !  and quantifies the number 
of edges connected to node i for binary graphs and the total 
strength of edges connected to node i for weighted graphs. The 
degree matrix is a diagonal matrix D, with ,D kii i=  and the 
sum of degrees across all nodes is denoted by 2 m.

The community structure of G can be one of the follow-
ing: nonoverlapping, overlapping, hierarchical, or local [21]. 
Numerous methods have been proposed for detecting the com-
munity structure of networks [3]. Among these, the most com-
monly used ones are spectral clustering [22], methods based 
on statistical inference [23], approaches based on optimization 
[24], and techniques based on network dynamics [25]. In addi-
tion to these classical approaches focusing on nonoverlapping 
community structure, extensions for overlapping communities 
have also been considered [26]. In this article, we focus on the 
explainability of nonoverlapping community detection, which 
is the partitioning of node set V as C { , , },C CK1 f=  where 
K is the number of communities. The community assign-
ment vector corresponding to the partition C  is ,s Rn!  where 

{ , , , }s K1 2i f!  denotes the community membership of node 
i. In particular, we study the explainability of modularity opti-
mization-based methods, as they are data driven and still the 
most widely used community detection method.

Definition of modularity
The most popular approach to detect communities in graphs 
relies on the optimization of the modularity function (Q). The 
modularity function compares the observed pattern of connec-
tions in a network against the pattern that would be expected 
under a specified null model and is calculated as

	 [ ] ,Q A P
i j

ij ij
,

s si jd= -/ � (1)

where Pij is the expected connection between nodes i and j in 
the null model and s si jd  is the Kronecker delta function that 
is equal to one when si = sj. Depending on the graph under 
study, different expressions for Pij can be assumed. The most 
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commonly used null models are the configuration and Erdős– 
Rényi null models. Further discussion of null models is given 
in detail in the “Model Explainability” section.

Despite its popularity, modularity is known to suffer from 
a resolution limit that restricts the size of detectable communi-
ties; communities smaller than some size are mathematically 
indiscernible. To detect communities of all sizes, modularity 
has been extended to include a resolution parameter, c, that can 
be tuned to uncover communities of different sizes [27]:

	 ( ) [ ] .Q A P
i,j

ij ij s si jc c d= -/ � (2)

By varying the value of c, one can highlight communities of 
different sizes; i.e., when c is big or small, maximizing modu-
larity will return small or large communities, respectively, re-
sulting in a multiscale community structure.

The modularity function can be either positive or negative, 
with positive values indicating the possible presence of com-
munity structure. Thus, one can search for community structure 
by maximizing the modularity function. An exhaustive optimi-
zation of modularity is impossible due to the huge number of 
ways in which it is feasible to partition a graph. However, there 
are several algorithms that are fairly good at approximately 
maximizing modularity in a reasonable time. The most com-
monly used techniques for modularity optimization are greedy 
algorithms, simulated annealing, extremal optimization, and 
spectral clustering [3]. While there are still some questions 
about the optimality of greedy algorithms [22], the approaches 
are the most widely used modularity optimization methods for 
community detection and are the focus of this article.

Greedy algorithms for modularity maximization
One of the most popular greedy algorithms for modularity 
maximization is the Louvain algorithm [24], due to its low 
computational complexity. The Louvain algorithm is an ag-
glomerative greedy algorithm consisting of two stages, as de-
picted in Figure 1. The first stage starts by assigning each node 

to a different community. Next, the algorithm iterates through 
each node in a random order to calculate the gain of modular-
ity, ,QD  that would be obtained if the node were moved from 
its own community to another. The node is then placed in the 
community that yields the largest .Q 02D  This process iter-
ates over all the nodes until no further improvement of modu-
larity is possible with node movements. In the second stage of 
the algorithm, all nodes of a community are aggregated to a 
single “metanode”; with an edge from each metanode to itself, 
where the weight of the edge is the sum of all the intracommu-
nity edge weights within that community; and an edge between 
two metanodes, where the weight of the edge is the sum of all 
intercommunity edge weights among the corresponding com-
munities. These two stages of the algorithm are then repeated 
until maximum modularity is attained.

Recently, modified versions of the Louvain algorithm, such 
as the Leiden algorithm, have been proposed to address some 
of the shortcomings of the Louvain algorithm [28]. In par-
ticular, it has been shown that the Louvain algorithm might 
move a node that acts as a bridge between two components 
of a community to another community. Moving this node to 
another community causes the old community to become dis-
connected. To overcome this problem, the Leiden algorithm 
applies a refinement stage after the first stage of the Louvain 
algorithm to ensure that the communities found in the first 
stage are internally well connected.

Interpretability
In this section, we present the different aspects of interpret-
ability in the context of modularity optimization-based com-
munity detection.

Model explainability
An important aspect of interpretable data science is model ex-
plainability, which requires an elucidation of the overall model 
and its components. In the context of modularity-based com-
munity detection, model explainability can be divided into 

Move Nodes

(a) (b)

Aggregate Nodes Move Nodes

FIGURE 1. The two stages of the Louvain algorithm. (a) In the first, the algorithm passes through each node in a random order and calculates the gain of 
modularity ;QD  the nodes are moved to their new communities to obtain the largest .QD  (b) In the second, all nodes of a community are merged, and 
the first stage is repeated.
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three parts: 1) the physical meaning of the modularity func-
tion, 2) the meaning of the selected null model and its inter-
pretation, and 3) the interpretation of the resolution parameter. 
To bring transparency and interpretation to these three parts, 
the modularity function can be analyzed from two different 
perspectives: the dynamic viewpoint of modularity and the 
relationship between the modularity function and stochastic 
blockmodels (SBMs).

Meaning of the modularity function
One explanation for the modularity function comes from the 
dynamic viewpoint of networks. This approach relates com-
munity structure to dynamic processes taking place on the 
network, such as information spread. Random walks are used 
to model these dynamic processes. A random walk on a graph 
is defined as a Markov chain, where at each step the random 
walker arbitrarily jumps from the current node to a neighbor-
ing node. In [29], modularity is studied by considering the clus-
tered autocovariance matrix of random walks:

	 ( ) ( ) ,R H H M Ht
t r rP= - << 	 (3)

where H Rn K! #  is the community membership matrix, 
M Rn n! #  is the transition matrix, and Rn n!P #  is the diago-
nal matrix of the stationary distribution of random walk ;Rn!r  
R Rt

K K! #  is defined with Rij being the probability of a random 
walker starting at the ith community and ending at the jth com-
munity after taking t steps. If communities are well defined in the 
sense that they can trap random walks for t steps, then Rt is approx-
imately diagonal. The Markov stability of the community structure 
is then defined as ( ) tr ( )H Rrt t=  and can be used to measure the 
quality of communities. By relating the Markov stability of a com-
munity structure to modularity, one can explain the modularity 
function as follows: ( )r H1  is equal to the original modularity func-
tion with the configuration model. Thus, the modularity function 
quantifies the quality of communities, based on whether a random 
walker can escape a community in one time step.

A second approach to interpret modularity is to relate it to a 
generative network model. This relationship can be established 
by showing that maximizing the modularity function is equiva-
lent to maximizing the likelihood of a planted partition version 
of an SBM/degree-corrected SBM (DCSBM) [30]. SBMs are 
statistical network models used to generate networks with com-
munity structure [31]. In SBMs, each node is assigned to a com-
munity { , , },s K1i f!  and nodes i and j are connected with an 
edge probability of .s si ji  A planted partition SBM is a restrict-
ed version of an SBM, where ins si ji i=  if si = sj and ,outs si ji i=  
otherwise. For networks with heterogeneous degree distribu-
tion, the DCSBM is proposed [23], where edge probabilities are 
not only determined by s si ji  but also by node degrees.

More formally, an edge between nodes i and j is drawn from 
a Poisson distribution with mean .k k m2ij s s i ji jm i= ^ h  For a 
planted partition DCSBM, the log likelihood can be written 
as follows [30]:

	 ( | , ) ,slog
log log

P G A
m

k k
2
1

2in out

in out
ij

i,j

i j
s si ji

i i
i i

d= -
-
-; E/ � (4)

where terms that do not depend on the community structure 
are ignored. This form of the log likelihood function is equal 
to modularity with the configuration model [see (2)], where the 
resolution parameter is set as

	 .
log login out

in outc
i i
i i=

-
- � (5)

This equivalence between modularity and the planted partition 
model indicates that the modularity function has the same as-
sumption as an SBM in that the communities are statistically 
similar; i.e., their intra- and intercommunity edge densities are 
all proportional to iin and iout, respectively.

Null models
The modularity function quantifies the quality of the commu-
nity structure by comparing intracommunity edge densities in 
an observed graph to expected intracommunity edge density 
under a null hypothesis. Two widely used null models are the 
configuration null model and the Erdős–Rényi null model. 
The former preserves the degree distribution of the observed 
graph while randomizing everything else, which leads to 

.( / )P k k m2ij i j=  The latter preserves the edge density of the 
graph, resulting in ( ) ./( )P m n n2 1ij = -  Hereafter, modularity 
with the configuration and Erdős–Rényi null models is denot-
ed as QCM and QER, respectively. Ideally, it is desirable for the 
null models to preserve all properties of the observed graph 
that are unrelated to community structure. Since this is not the 
case for QCM and QER, it is hard to interpret the specific choice 
of the null model. This ambiguity reduces the model explain-
ability of the modularity function. The dynamic viewpoint and 
the equivalence between modularity and an SBM/DCSBM can 
be used to explain these null models.

From the dynamic point of view, the two null models are 
related to the two different random walks [29]. In particular, 
QCM corresponds to simple random walks, in which the ran-
dom walker waits at each node for the same amount of time. 
On the other hand, QER corresponds to random walkers that 
wait at each node for a time period inversely proportional to 
its degree. Such random walks can, for example, be related 
to information spread where high-degree nodes spread infor-
mation faster. In terms of the detected communities, QER 
balances communities with respect to their size, while QCM 
balances their volume, i.e., the sum of the node degrees in a 
community. Thus, QCM tends to assign high-degree nodes to 
different communities. When modularity is interpreted using 
an SBM/DCSBM, maximizing QCM is equivalent to fitting a 
planted partition DCSBM, while maximizing QER is equiva-
lent to fitting a planted partition SBM [30]. High-degree nodes 
are assigned to different communities when communities are 
detected by fitting a DCSBM, whereas there is no such ten-
dency when fitting an SBM.

In Figure 2, we illustrate the difference in the detected 
communities for the two null models for a biological network. 
To see how high-degree nodes are distributed across com-
munities, nodes are ordered along the vertical axis according 
to their degrees. When the community structure is found by 
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maximizing QER [Figure 2(a)], it can be seen that high-degree 
nodes are mostly shared by two communities. On the other 
hand, nodes with a high degree are distributed across all com-
munities when QCM is maximized [Figure 2(b)].

Resolution parameter
The last element of model explainability for modularity optimi-
zation is the choice of the resolution parameter in (2). Based on 
the dynamic viewpoint, the resolution parameter measures the 
quality of a community based on the duration of the random 
walk. If the resolution parameter is set to c, the quality of the 
community is defined based on whether it can trap the random 
walker for a duration of /1 c  or not [29], [33]. Thus, smaller 
values of the resolution parameter lead to larger communities 
since when the random walker wanders longer, it covers more 
nodes. From Figure 3, it can be seen that as the resolution pa-
rameter decreases, i.e., the time for the random walker increas-
es, the number of communities decreases, and communities 
become larger. Figure 3(b) demonstrates the multiscale nature 
of the communities detected by setting c to two different values 
corresponding to K = 4 and K = 17. The most relevant resolution 
parameters are the ones that lead to partitions that are optimal 
for longer periods of time [33]. In Figure 3(a), this corresponds 
to community structures with two and four communities.

Alternatively, the resolution parameter can be interpreted 
by the equivalence between the modularity function and SBM/
DCSBM. In (5), the resolution parameter is related to the 
parameters of the planted partition model, i.e., ini  and outi . 
In the planted partition model, the difference between ini  and 
outi  indicates how modular the graph is. The resolution param-

eter as found in (5) is proportional to this difference. In particu-
lar, large values of c imply “stronger” community structures 
corresponding to small but densely connected communities, 
while small c values imply “weaker” community structures 
yielding larger and less densely connected communities.

Comprehensibility of the output
An important aspect of interpretable data science is to evaluate 
the comprehensibility of the output. In the context of commu-
nity detection, it is important to determine whether the extract-
ed communities are meaningful. Existing measures and meth-
ods that can be employed to quantify the comprehensibility of 
detected communities include extrinsic and intrinsic measures 
of what constitutes a good community and statistical approach-
es to quantify the significance of detected communities [35].

Extrinsic measures
In unsupervised learning, such as data clustering and community  
detection, it is very common to quantify the comprehensibility 
of obtained communities through an extrinsic measure. These 
measures usually assume the existence of ground truth com-
munity structure and evaluate an algorithm with respect to this 
ground truth. Some commonly used metrics in this context are 
the adjusted Rand index (ARI), normalized mutual informa-
tion (NMI), purity, and the F-score. However, this approach 
for evaluating the output of community detection algorithms is 
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FIGURE 2. The community structures of C. Elegans frontal neural network 
[32] is found by maximizing (a) QER and (b) QCM by using the Leiden 
algorithm followed by consensus clustering to improve replicability. 
Resolution parameters are set such that the community structure mainly 
consists of four large communities. Nodes are ordered along the vertical 
axis according to their degrees. The experiment is based on [29] and 
illustrates how high-degree nodes are distributed across communities  
for QER and QCM.
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FIGURE 3. The community structure of the network of network scientists 
[34]. (a) The number of communities versus the time of the random walker 
(or / ).1 c  (b) The community structure with 17 and four communities: node 
colors indicate the community structure with 17 and four communities, 
and shaded polygons indicate the community structure with four com-
munities. The communities are detected by maximizing QCM through the 
Leiden algorithm followed by consensus clustering to improve replicability.
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problematic. First, metrics such as NMI have a computational 
complexity that is quadratic in the number of communities 
of the network, which makes them unsuitable on large-scale 
complex networks. Second, in most cases, there is a lack of 
reliable ground truth, as identifying ground truth communities 
requires some metadata. Finally, evaluating community struc-
ture with respect to some node metadata as if they were ground 
truth communities can lead to incorrect scientific conclusions. 
Therefore, conventional methods that quantify the comprehen-
sibility of a community structure by using extrinsic measures 
fall short of fully explaining the outputs [36].

Intrinsic measures
Another common way to quantify the quality of the community 
structure is to use intrinsic measures. In general, intrinsic met-
rics are classified into four classes [21]: 1) metrics considering 
internal connections only (e.g., the internal density and average 
degree), 2) metrics considering external connections only (e.g, 
expansion and the cut ratio), 3) metrics considering internal 
and external connections (e.g., conductance and the normal-
ized cut), and 4) model-based metrics (e.g., modularity, perma-
nence, surprise, and communitude). While a variety of intrin-
sic metrics have been proposed, there is still no consensus on 
which metric explains the detected community structure better.

To compare the effectiveness of different intrinsic and 
extrinsic measures in quantifying the quality of a detected 
community structure, we generated Lancichinetti–Fortunato–
Radicchi (LFR) benchmark networks [37] with varying values 
of mixing coefficient n, which is the ratio of the external 
degree of a node with respect to its community to the total 
degree. Thus, n controls the strength of the community struc-
ture such that smaller n values imply more modular networks. 
For each network, 100 optimal and 400 suboptimal commu-
nity structures are detected. Intrinsic and extrinsic measures 
for these 500 community structures are calculated. The Spear-
man’s rank correlation among different intrinsic and extrinsic 

measures is calculated and reported in Figure 4. If an intrinsic 
measure is highly correlated with the extrinsic measures, this 
means that optimizing this intrinsic metric yields community 
structures that are very close to ground truth. From Figure 4, 
surprise is observed to be the best-performing intrinsic mea-
sure across all extrinsic measures and mixing coefficients, 
which is in line with recent findings [38].

Significance of detected communities
While extrinsic and intrinsic measures try to explain community 
structure, they cannot determine whether community structures 
actually exist. Therefore, it is important to measure the “signifi-
cance of communities.” There are two approaches proposed in 
the literature to tackle this problem: determining the significance 
of the partition and determining the significance of individual 
communities. The first approach tries to assess whether a given 
graph has a significant modular structure or not. In recent work, 
it has been argued that the concept of significance should be re-
lated to the robustness of a partition. Intuitively, if a network is 
modular, its community structure should be robust to perturba-
tion [39]. In [39], a procedure to quantify robustness has been 
proposed as follows. First, the community structure of the origi-
nal network is detected. Then, a fraction of the edges is rewired 
to generate a perturbed network, and the community structure 
of the perturbed network is found. The distance between the 
community structure of the original and perturbed networks is 
quantified using some partition similarity measure, such as NMI. 
Large values of NMI indicate that the detected communities are 
robust to perturbation, i.e., significant. In Figure 5, we illustrate 
this concept for an LFR benchmark network for various levels of 
mixing coefficient n. The figure illustrates that for networks with 
small n values, the community structure is robust against high 
ratios of rewired edges, while the community structure detected 
from a random network has low robustness. This difference indi-
cates how robustness can be used to assess the significance of the 
community structure.
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While the measures for assessing the statistical significance 
of a network partition can provide a global view of the network 
structure, they convey no information about the statistical signif-
icance of the individual communities. Recently, statistical meth-
ods that discriminate between a single community and structures 
arising as topological fluctuations have been proposed [40]. The 
statistical significance of a community has been quantified using 
metrics such as the C-score and B-score [40], information-theo-
retic significance measure [41], network community profile [35], 
and fast optimized community significance [42]. These methods 
quantify the statistical significance of each cluster by computing 
the likelihood of observing this cluster in a null model without 
communities. Figure 6 demonstrates this notion of significance 
for the detected communities of a biological metabolic network 
[40]. The C-score quantifies the significance of a community by 
assigning a rank to each node of the community based on its 
internal and external connections. The score of the worst node 
is then compared to the expected score under a null model to 
measure the significance of the community.

More specifically, consider a community C in an observed 
graph G and a configuration null model with the same degree 
distribution as G. Let Ct  be a random subgraph in the null net-
work with the same number of internal connections as C. Let 
kinti  be the internal degree of node i, i.e., the number of connec-
tions node i makes with nodes in C. Node i is then assigned a 
score ri, which is the probability of observing a node in Ct  with 
an internal degree greater than or equal to .kinti  This probability 
can be approximated by a hypergeometric distribution for the 
configuration null model. If G were a random graph without 
community structure, the ri’s would be uniformly distributed 

in [ , ]0 1 . The C-score of C is then calculated by considering 
its worst node w, which is the node with the highest-ranking 
score rw. The C-score is the probability of observing rw in the 
uniformly distributed interval [ , ],r 1wl  where rwl is the second-
highest score among all ri’s from C. Ideally, one would want to 
find communities whose C-score is smaller than a significance 
level, e.g., 0.05. The B-score is a refinement of the C-score and 
evaluates the significance of a community based on a group 
of nodes instead of using only the worst node of the cluster, 
as considering only the worst node can be a very conservative 
measure to assign community significance.

In Figure 6, only the pink community is found to be signifi-
cant based on the C-score. On the other hand, green and pink 
communities are found to be significant based on the B-score. 
These two scores can also be used to define community cores 
[40], which are the set of nodes whose C- or B-scores are sig-
nificant. In particular, the worst node is removed from the com-
munity, and the C-score (or B-score) of the remaining nodes is 
calculated. If the C-score is significant, the remaining nodes 
are the core of the community. If it is not, the worst among the 
remaining nodes is removed, and the C-score is recalculated. 
This process is iteratively repeated until the core is found or all 
nodes are removed. For example, based on the C-score, 19 out 
of the 45 nodes in the brown community form the community 
core, as indicated by the green nodes in Figure 6(b).

Algorithmic transparency
Algorithmic transparency in ML refers to the notion of under-
standing key concepts about the algorithm behavior, including 
the shape of the error surface, convergence of the algorithm, 
and uniqueness of the solution. In the context of modularity 
optimization-based community detection, e.g., the Louvain 
algorithm, there are some key algorithmic steps that are not 
always transparent to the user. The first issue with the transpar-
ency of the Louvain algorithm is its initialization. Usually, the 
Louvain algorithm starts from a singleton partition, in which 
each node is its own community (see Figure 1). However, there 
is no good justification for this choice. It is also possible to start 
the algorithm from a different partition. In particular, in an at-
tempt to find better partitions, multiple consecutive iterations 
of the algorithm can be performed using the partition identi-
fied in one iteration as the starting point for the next iteration.

The second issue with respect to the transparency of the 
Louvain algorithm is in the first stage of the algorithm, where 
for each node, the best community assignment is determined 
based on the change in the modularity function. This pass 
across all nodes of the graph is done in a random order. This 
random pass affects the transparency of the detected commu-
nity structure, as different random orderings of the nodes may 
lead to various results. The random initializations along with 
the random pass bring up the question of the replicability of the 
detected community structure (see the “Replicability” section).

Another issue that affects the transparency of an algo-
rithm is its convergence rate. In recent work, the convergence 
and complexity of the Louvain algorithm have been studied 
[43]. The algorithm’s time complexity is ( ) .logn nO  While 
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no upper bound has been established on the number of itera-
tions and the number of passes, the algorithm is guaranteed 
to terminate with the use of a cutoff for the modularity gain 
(because of modularity being a monotonically increasing func-
tion until termination). In practice, the method needs only tens 
of iterations and fewer passes to terminate on most real-world 
inputs. Recently, it has been argued that if the initial nodes 
are selected based on their degree (in descending order) rather 
than in a random manner, the algorithm converges faster with 
comparable performance [44].

Post hoc interpretability
In the context of community detection, the post hoc interpret-
ability of the detected community structure refers to the sensi-
tivity of the community detection algorithms to the input net-
work structure and is closely related to the comprehensibility of 
the output discussed in the “Comprehensibility of the Output” 
section. One way to quantify post hoc interpretability is pertur-
bation analysis, where a network is perturbed by removing each 
node one at a time and finding the community structure of the 
perturbed network. The similarity of the original community 
structure to the community structure of the perturbed network 
can then be quantified using extrinsic measures, such as NMI. 
In Figure 7, we detail this concept for Zachary’s karate club 
network, where the larger a node is, the greater the change in 
community structure, due to its removal. For instance, remov-
ing node 2 causes a larger change to the community structure 
compared to other nodes, as its removal substantially disturbs 
the internal connectivity of the blue community. This is similar 
to heat maps used for post hoc interpretability in ML and can 
help us identify influential nodes for community formation.

In parallel to this perturbation analysis, different metrics from 
network science literature can be adopted for post hoc interpret-
ability. Once the community structure is detected, nodes can be 
classified into universal roles according to their intra- and inter-
module connection patterns to explain the resulting modules 
[46]. Early approaches to summarizing the role of nodes in com-
munity formation are the within-module z-score (zi) and partici-
pation coefficient (Pi), which define how a node is positioned in 
its own module and with respect to other modules, respectively. 
The within-module z-score zi measures how “well connected” 
node i is to other nodes in the module and is defined as

	 ,zi i s

s

i

iv
l l

=
-
l

� (6)

where li is the number of links of node i within its module 
si, sil  is the average of li’s for all nodes in si, and sivl  is the 
standard deviation of li’s in si. High values of zi indicate high 
within-module degrees and vice versa.

The participation coefficient Pi measures how “well dis-
tributed” the links of node i are among different modules and 
is defined as
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where lis is the number of links of node i to nodes in module 
s. The participation coefficient Pi is close to one if the links of 
node i are uniformly distributed among all the modules and 
zero if all a node’s links are within its own module. These met-
rics can be used to interpret the contribution of different nodes 
to the community structure, as depicted in Figure 8. Within-
module z-scores and participation coefficients are indicators of 

FIGURE 6. The communities of C. Elegans metabolic network and analysis of significance. (a) The community structure detected by maximizing QCM using 
the Leiden algorithm followed by consensus clustering to improve replicability. (b) Nodes of the brown community in (a) and its C-%5core highlighted by 
green nodes. (c) The C- and B-scores of each community along with intrinsic measures and modularity values. 

(a) (c)

(b)

Size 113 110 71 59 50 45 5
Number of Edges 549 1019 605 254 273 253 12
QCM 712.05 1,155.69 879.80 433.59 462.30 404.41 23.92
C-Score 0.947 0.928 0.883 0.939 0.967 0.829 1e-7
B-Score 0.977 0.716 1e-4 0.939 0.880 0.602 1e-8
C-%5 Core 23 0 49 37 22 19 5
B-%5 Core 23 0 71 39 47 29 5
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nodes’ positioning in network topology and community struc-
ture [46]. These positionings are used to assign nodes to dif-
ferent roles: ultraperipheral nodes (R1), peripheral nodes (R2), 
nonhub connectors (R3), nonhub kinless nodes (R4), provin-
cial hubs (R5), connector hubs (R6), and kinless hubs (R7).

Another class of network metrics that can be used for post 
hoc interpretability is centrality measures that quantify the 
importance of nodes. While most centrality measures do not 
take community structure into account, recently, community-
aware centrality measures have been defined to quantify the 
importance of nodes with respect to community structure 
[47]. These measures reveal how influential nodes are for their 
respective communities and overall community structure of 
the network. One such measure, community centrality [34], 
uses eigenvectors of the modularity matrix to determine the 
contribution of nodes to their communities.

Replicability
In the context of community detection, replicability implies 
that anyone that has access to the same network data can obtain 
the same communities, given the code. For modularity-based 
community detection, replicability is hindered by two major 

factors: 1) the nonuniqueness of the optimum of the modular-
ity function and 2) the stochastic nature of the optimization 
algorithms. First, despite the popularity of modularity maxi-
mization, there is a widespread misconception that empirical 
networks with modular structure tend to exhibit a clear optimal 
partition and that high-modularity partitions of an empirical 
network are structurally similar to this optimal partition. Good 
et al. [50] show that when modularity maximization is ap-
plied to networks with modular or hierarchical structure, these 
assumptions do not necessarily hold. This is known as the ex-
treme degeneracies of the modularity function. The existence 
of extreme degeneracies in the modularity function does not 
depend on the detailed structure of the particular network or 
on any external notion of a “true” module. Instead, these solu-
tions exist whenever a network is composed of many groups of 
nodes with relatively few intergroup connections.

As the number of these modules increases, the number of 
ways to combine them in these suboptimal ways grows expo-
nentially. Thus, as a network becomes more modular, the 
globally optimal partition becomes harder to find among the 
growing number of suboptimal but competitive alternatives. 
Therefore, finding the partition with a guarantee of globally 
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optimizing modularity is not computationally feasible except 
in the smallest networks. For the multiresolution generalized 
version of the modularity function, ( )Q c  (2), choosing 11c  
increases the severity of the degeneracy problem by reducing the 
penalty for merging modules, while choosing 12c  reduces it 
by increasing the penalty. For any fixed c, however, there exist 
many networks that will exhibit severe degeneracies, and more-
over, it remains unclear how to identify the “correct” value of c 
without resorting to an external definition of a “true” module.

The second problem with respect to the replicability of 
modularity optimization methods is the stochastic nature of 
the optimization algorithms. Since identifying globally opti-
mal community structure is computationally intractable, these 
algorithms are usually run stochastically and with random 
initial conditions to account for entrapment in local extrema. 
For example, in the Louvain algorithm, the first pass starts by 
ordering the nodes in a random manner and then computing 
the change in modularity when each node is moved to a dif-
ferent community. With each run of the Louvain method, this 
random ordering of the nodes changes, resulting in variation 
across the results. This variation across multiple runs can be 
mitigated by using numerous consecutive iterations of the algo-
rithm through the partition identified in one iteration as the 
starting point for the next iteration.

One common approach to address these issues related to 
replicability is to obtain multiple partitions that achieve high 
modularity and then acquire a single partition that is more 
robust through consensus clustering [51]. The goal is to search 
for the consensus partition, i.e., the partition that is most simi-
lar, on average, to all the input partitions. In its standard for-

mulation, consensus clustering is a difficult combinatorial 
optimization problem. Usually, an alternative greedy strategy 
is used. The association matrix, i.e., a matrix based on the 
co-occurrence of vertices in clusters of the input partitions, 
is the input to the community detection method leading to a 
new set of partitions. These partitions generate a new associa-
tion matrix until a unique partition, which cannot be altered 
by further iterations, is finally reached. This procedure has 
proved to quickly lead to consistent and stable partitions in real 
networks. In Figure 9, we show this approach for a functional 
connectivity brain network constructed from electroencepha-
logram (EEG) data discussed in [48].

Recently, it has been shown that if the different partitions 
vary substantially, then the consensus partition may not capture 
the full range of behaviors and will be a poor representation of 
the community structure [52]. In cases like these, summarizing 
the community structure may require not just one but several 
representative partitions, which may themselves be consensus 
partitions for a local cluster of network divisions.

Reproducibility
In the context of community detection, reproducibility refers 
to the ability to obtain similar community structures by using 
the procedures provided by the original researchers. In terms of 
method reproducibility, one big obstacle in community detection 
is the selection of the number of communities. To be able to ob-
tain consistent results across different data sets, how the number 
of communities is selected must be specified clearly. For modu-
larity optimization, this corresponds to the appropriate selection 
of the resolution parameter c. As discussed in the “Resolution 
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Parameter” section, different c values result in various numbers 
of communities. While the equivalence of modularity maximiza-
tion and fitting an SBM in (5) provide a systematic way of choos-
ing c, they require empirical estimation of ini  and outi , which is 
not guaranteed to converge to the optimal c value [30]. In prac-
tice, the selection of a resolution parameter usually involves run-
ning modularity maximization algorithms with various c values, 
selecting the partition with the greatest modularity at that specific 
value of c and comparing the partitions.

To determine whether the obtained community structures 
are “robust” to the c selection, one might look for stable pla-
teaus in the number of communities [see Figure 3 (a)]; consider 
another metric, such as significance [41]; directly visualize the 
different community assignments across parameters; and com-
pare obtained communities with ground truth labels using one 
of the extrinsic measures. A more computationally demanding 
approach that directly addresses this problem is to compare 
the obtained best modularity at each c with the distribution of 

modularities obtained by running community detection across 
some selected random graph model, repeating this process for 
different c’s to identify parameter values where the obtained 
communities are strongest relative to the random cases [49]. 
Additionally, one may use a given set of partitions to generate 
a new partition by ensemble learning and consensus cluster-
ing [51]. Recently, a different approach, called the Convex Hull 
of Admissible Modularity Partitions (CHAMP) [53], that uses 
the union of all computed partitions to identify the CHAMP 
in the parameter space, has been proposed. CHAMP identi-
fies the domains of optimality across a set of partitions by 
ignoring the c that was used to compute each partition, finding 
instead the full domain in c for which each partition is optimal 
relative to the rest of the input partitions.

The second type of reproducibility is results reproducibil-
ity, implying that the same or similar community structures 
are obtained from an independent study with procedures as 
closely matched to the original study as possible. One metric 
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FIGURE 9. The replicability for a functional connectivity brain network from [48], using the consensus clustering approach described in [49]. Given the 
functional connectivity graph, multiple partitions are found by running the Louvain algorithm 100 times. From these partitions, an association matrix, 
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to quantify results reproducibility is scaled inclusivity (SI) [54], 
which is a method to quantify the change in community struc-
ture across networks. SI independently evaluates the consisten-
cy of the classification of every node in a network. This method 
identifies the nodes that tend to remain in the same community 
across different networks’ partitions, forming a “core” of that 
community. Likewise, the method also enables the identifica-
tion of transient nodes that become part of different communi-
ties across various networks’ partitions. For example, if a node 
i is part of module A in network l and module B in network m, 
then the SI between the two modules is calculated as

	
| |

| |
| |

| | ,SI
S

S S
S

S S
i

A

A B

B

A B+ += � (8)

where SA and SB denote sets of nodes in modules A and B and 
| · | denotes the cardinality of a set.

Different versions of SI, global SI, and module-specific SI 
have been implemented in prior reproducibility studies. A global 
SI map demonstrates the consistency of modules at each node 
across networks. To compute the global SI, first, the community 
structure of each network is detected. Next, one network is chosen 
as the reference, and any overlap among that network’s modules 
and any other modules from the other networks is determined. 
This process results in maps of overlapping nodes among mod-
ules along with SI values summarizing the fidelity of the overlaps. 
A weighted sum of the overlap maps, with the SI values as the 
weights, is calculated, yielding a network-specific SI map. This 
process is repeated for all networks, and a weighted average of the 
network-specific SI maps, with the Jaccard indices as weights, is 
then calculated, resulting in the global SI map summarizing the 
consistency of the modular organization across networks at the 
nodal level. The module-specific SI, on the other hand, shows 
the consistency of the representative module across multiple net-

works. From the network-specific SI maps, it is possible to deter-
mine the most representative network with the highest SI for a 
particular node of interest. The module containing the node of 
interest is identified as the representative module. Next, modules 
with any overlap with the representative module are identified, and 
the corresponding SI values are calculated. A weighted sum of the 
overlapping modules is calculated with the SI values as weights, 
summing modules centered around the representative module.

In Figure 10, we illustrate the reproducibility of commu-
nity detection for EEG functional connectivity networks con-
structed from 91 subjects performing the same task, i.e., error 
monitoring [48]. For each subject, the community structure is 
detected, and the global SI and module-specific SI are calcu-
lated. From Figure 10(a), we can see that frontal-central and 
occipital brain regions tend to preserve their community struc-
ture across subjects, while temporal brain regions do not. This 
is consistent with prior studies that show increased synchro-
nized activity within these regions for error monitoring tasks 
[48]. In Figure 10(b), we provide the module-specific SI for 
the brain region corresponding to the frontal central electrode 
(FCz) electrode. In particular, module-specific SI computes 
how many times across 91 subjects this node’s community 
structure includes any of the other nodes. From the figure, it 
can be seen that FCz consistently falls in the same community 
with other frontal and central electrodes, consistent with prior 
community detection results for the same data set [48].

Conclusions and future directions
In this article, we explored the issue of explainability in the 
context of community detection methods for graphs. While 
the different aspects of explainability have been previously 
studied in detail for various ML black-box models, the issue 
of explainability has not been addressed for unsupervised 
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FIGURE 10. The reproducibility of community detection in a study of functional connectivity EEG networks constructed from 91 subjects [48]. (a) The 
global SI. (b) The module-specific SI for the frontal central electrode’s (FCz’s) representative community. 
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learning algorithms, such as clustering. In this article, we il-
lustrated how metrics and concepts from network science can 
be adapted to study the explainability of community detection 
algorithms. While the availability of benchmark networks and 
open source code have enabled reproducible research in com-
munity detection, there are still some key issues that prevent 
complete transparency in community detection. These issues 
can be summarized as the degeneracy of the modularity func-
tion, the stochastic nature of the algorithms, and the selection 
of different parameters, e.g., the resolution parameter. The 
methods described in this article can be used to address some 
of these issues and provide guidelines to reduce the opacity 
of community detection algorithms and their outputs. While 
the focus of this article has been on modularity optimization-
based community detection algorithms, the approaches and is-
sues that were outlined can be extended to other community 
detection and data clustering algorithms as well as different 
learning tasks on graphs, as in the following:

■■ Extensions to GSP tasks: While the primary task consid-
ered in this article is graph-based clustering, there are other 
GSP tasks, such as graph signal regression and graph 
learning, that can be studied in terms of their explainabili-
ty. GSP-based graph learning frameworks have the advan-
tage of enforcing certain desirable representations of the 
signals, including the smoothness and diffusion via fre-
quency-domain analysis, and filtering operations on 
graphs, making them interpretable. Moreover, recently, 
GSP tools have been used to better understand complex 
metalearning tasks by enabling users to incorporate rich 
semantic information [55]. In particular, high-pass graph 
filtering reveals which nodes can maximally describe the 
variations in the label agreement signal, which can be 
translated into an interpretable explanation. 

■■ Extensions to general unsupervised learning: Unsupervised 
learning, e.g., clustering and outlier detection, is commonly 
encountered in a variety of applications where ground truth 
data are not available. Analyzing and interpreting results 
obtained through clustering is a cumbersome and challenging 
task, often requiring time and sophisticated, expert-based 
manual inspection. Unsupervised quality metrics provide 
only structural insights into the obtained results, and they do 
not explain why the clustering methodology grouped points 
in the same cluster. The approaches and techniques described 
in this article, such as quantifying the significance of the 
detected communities, perturbation analysis for determining 
the importance of each node to community formation, con-
sensus clustering for replicability, and reproducibility met-
rics, can be easily adapted to data clustering and used to 
evaluate the explainability of different unsupervised learning 
algorithms. Moreover, these metrics can be incorporated into 
the objective functions of existing unsupervised learning 
methods to obtain clusters with better explainability.

■■ Extensions to other data-driven community detection 
approaches: Even though this article focuses on modularity-
based community detection algorithms, the approaches out-
lined here can be extended to study the explainability of 

different data-driven community detection algorithms, 
including GNNs [56]. While the metrics introduced in this 
article can be employed to evaluate the comprehensibility, 
replicability, and reproducibility of the detected community 
structure, new tools will be required to capture model 
explainability. Recent work on the explainability of GNNs 
employs tools such as gradient-based methods, perturbation-
based methods, surrogate methods, and decomposition meth-
ods [11]. However, most of these approaches are suitable for 
supervised learning tasks on graphs, including node classifi-
cation and link prediction, and need to be extended for unsu-
pervised learning tasks, such as community detection.

■■ Extensions to higher-order graphs: More recently, multilayer 
graphs, where each layer records a certain kind of interaction 
among entities, have become popular in a variety of applica-
tions. Community detection methods have been introduced 
for bipartite, temporal, multiplex, and multilayer graphs, 
where there is little consensus on what constitutes a commu-
nity. For example, in the case of multiplex graphs, while 
some methods focus on extracting common communities 
across layers, others aim to uncover the heterogeneity across 
layers by defining common and private communities across 
layers. This ambiguity in what constitutes a community in 
these more complex graphs brings a need for new explain-
ability tools.
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