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Explainability in Graph Data Science

Interpretability, replicability, and reproducibility
of community detection

n many modern data science problems, data are represented

by a graph (network), e.g., social, biological, and communi-

cation networks. Over the past decade, numerous signal pro-
cessing and machine learning (ML) algorithms have been intro-
duced for analyzing graph structured data. With the growth of
interest in graphs and graph-based learning tasks in a variety of
applications, there is a need to explore explainability in graph
data science. In this article, we aim to approach the issue of ex-
plainable graph data science, focusing on one of the most funda-
mental learning tasks, community detection, as it is usually the
first step in extracting information from graphs. A community is
a dense subnetwork within a larger network that corresponds to
a specific function. Despite the success of different community
detection methods on synthetic networks with strong modular
structure, much remains unknown about the quality and signifi-
cance of the outputs of these algorithms when applied to real-
world networks with unknown modular structure. Inspired by
recent advances in explainable artificial intelligence (AI) and
ML, in this article, we present methods and metrics from net-
work science to quantify three different aspects of explainabil-
ity, i.e., interpretability, replicability, and reproducibility, in the
context of community detection.

Introduction
Modern data analysis involves large sets of structured data,
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where the structure carries critical information about the nature
of the data. Typically, graphs are used as mathematical tools to
describe the structure of such data. Graphs are ubiquitous in the
real world, representing objects and their relationships in var-
ied domains, including social networks, e-commerce networks,
biological networks, traffic networks, and brain networks [1]. As
a result, numerous signal processing and ML tasks have been
extended for analyzing graph structured data, e.g., graph signal
processing (GSP), graph topology inference, node classification,
link prediction, community detection, and supervised learning
with graphs [2]. Among these tasks, community detection is

fundamental for uncovering links between structure and func-
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challenging, in part, because it is not very well posed. For this
reason, researchers have proposed a variety of definitions of what
constitutes a community and an array of algorithms correspond-
ing to these definitions [3]. While the success of these algorithms
has been quantified for synthetic networks with ground truth in-
formation, it is harder to evaluate the accuracy, significance, and
meaning of the obtained community structure for real networks.
For these results to be useful in a variety of scientific and tech-
nological studies, there is a need to provide transparency to the
community detection algorithms and their outputs.

Over the past decade, the explainability of data-driven meth-
ods, e.g., Al and ML, has been a focus of research in the ML and
data mining communities. While the ML community is mostly
focused on describing how black boxes work, data mining is
more interested in explaining the decisions, without even under-
standing how the opaque decision systems work. Recent survey
articles on the topic offer a multitude of terminologies, such
as interpretability, accountability, responsibility, transparency,
comprehensibility, accuracy, and understandability, to evaluate
different dimensions of explainability [4], [5]. Along with these
different terminologies, a variety of methods, including black-
box input—output analysis, sensitivity analysis, saliency maps,
attention heat maps, and approximation of the predictions using
simple proxy models, have been introduced [4].

Although there has been growing interest in explainable
ML models, most of the existing work focuses on explainable
predictive models and interpretable neural networks. Thus, the
focus has been on making black-box models commonly encoun-
tered in deep learning more interpretable and transparent. These
methods inherently assume the existence of large-scale labeled
training samples. However, in many applications, such as com-
munity detection, ground truth data may be missing due to the
structural complexity of the data, limits of human knowledge,
and significant volumes that complicate the categorization pro-
cess. Unsupervised learning techniques, including clustering,
are commonly used to offer a solution to this lack of ground
truth. The interpretability of the clusters is critical in high-impact
domains since decision makers need to understand a solution
beyond how the data are grouped into clusters: what character-
izes a cluster, and how it is different from other clusters?

To date, there has been only a handful of papers that study
the issue of explainability for unsupervised learning and, in
particular, for clustering methodologies. In [6], the application
of interpretable algorithms based on decision tree principles is
proposed as a guideline for clustering. Corral et al. [7] develop
a system to explain and describe the results of unsupervised
learning by looking at the attributes common to most of the
points in a cluster. In Explain-It [8], a generic framework for
unsupervised and self-explainable learning is introduced. In
this framework, clustering results are modeled using a super-
vised learning model, which is then explained through the
application of explainable Al approaches. More recently, inter-
pretable clustering algorithms, such as tree-based approaches
[9], and algorithms that try to achieve a balance between the
quality and interpretability of clusters by jointly optimizing the
homogeneity and quality of clusters [10] have been proposed.

With the growth of interest in graphs and graph-based
learning tasks in a variety of applications, there is a need to
explore explainability in graph data science. Explainability can
be particularly helpful for graphs, even more than for images,
as it is harder for nonexpert humans to intuitively determine
the relevant context within a graph. Recent work in this area
has focused on the explainability of graph neural networks
(GNNp) [11]. Several approaches, such as saliency maps, class
activation mapping, and excitation backpropagation, have been
proposed to explain the predictions of GNNs and provide dif-
ferent levels of explanation. In addition to these efforts, in the
area of GSP, algorithm unrolling approaches have been extend-
ed to the graph domain to implement an interpretable network
for graph signal denoising [12].

In this article, we aim to approach the issue of explainable
graph data science, focusing on one of the most fundamental
learning tasks, community detection, as it is usually the first step
in extracting information from graphs. In ML literature, several
descriptive terms have been introduced to define the different
aspects of explainability. In this article, we focus on three terms:
interpretability, replicability, and reproducibility. In the context
of community detection, interpretability relates to the commu-
nity detection model and the comprehensibility of the resulting
communities; replicability relates to the transparency and sta-
bility of the algorithm, and reproducibility relates to the scien-
tific consistency of the obtained results. The different aspects of
these terms are explored in the following sections.

Dimensions of explainability

In this section, we provide an overview of the three dimensions
of explainability: interpretability, replicability, and reproduc-
ibility. In the following, these three terms are defined in the
context of general ML algorithms.

Interpretability

In the context of ML, interpretability relates to the capabil-
ity of making sense of a learned ML model. Thus, the aim
of interpretability is to map an abstract concept, such as a
predicted class label, into a domain that humans can make
sense of. Different desired properties, including trust, causal-
ity, transferability, and informativeness, have been proposed to
evaluate the interpretability of ML models [13], [14]. Coupled
with these properties, various techniques have been proposed
to confer interpretability. These fall broadly into two catego-
ries. The first relates to transparency (i.e., how does the model
work?). The second consists of post hoc explanations (i.e.,
what else can the model tell me?) Transparency is considered
at the level of the entire model (simulatability); at the level of
individual components, such as parameters (decomposability);
and at the level of the training algorithm (algorithmic trans-
parency). Some common approaches to evaluate transparency
include approximations using understandable proxy models,
such as local linear models and decision trees, and visual ap-
proaches, including saliency maps and heat maps, based on
sensitivity analysis and relevance scores that help to explain
model decisions [15].
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Post hoc interpretability represents a distinct approach to
extracting information from learned models. While post hoc
interpretations often do not elucidate precisely how a model
works, they may nonetheless confer useful information for
practitioners and end users of ML. Some common approaches
to post hoc interpretations include natural language explana-
tions, visualizations of learned representations and models,
and explanations by example. Visualization methods for the
post hoc interpretability of ML models aim to render visual-
izations in the hope of determining qualitatively what a model
has learned. Some examples include t-distributed stochastic
neighbor embedding [16] to visualize high-dimensional dis-
tributed representations and perturbation-based methods,
where the input is altered through gradient descent to enhance
the activation of certain nodes in the network [17]. Local expla-
nation approaches focus on explaining what a neural network
depends on locally, e.g., saliency maps. Finally, explanation
by example focuses on reporting which other examples are
most similar with respect to the model [18]. For any example,
in addition to generating a prediction, one can use the activa-
tions of the hidden layers to identify the k-nearest neighbors
based on the proximity in the space learned by the model.

Replicability

In natural sciences, replicability refers to measurements being
obtained with stated precision by a different team using the same
measurement procedure and the same measuring system, under
the same operating conditions and in the same or a different lo-
cation in multiple trials. Based on the standards established by
experimental scientists, the Association for Computing Machin-
ery [19] has adopted the following definition for replicability in
computational sciences. For computational sciences, including
ML, replicability means that an independent group can obtain
the same result using the author’s own artifacts, e.g., code, data,
and so on [19]. Major issues that impede the replicability of ML
algorithms include random initializations, hyperparameter selec-
tion and tuning, and reliance on benchmark data sets that may
not be transferable to real-life data. ML methods use procedures
such as resampling and k-fold cross validation to estimate the
replicability of a given model and to avoid overfitting.

Reproducibility

Reproducibility refers to the ability of an independent re-

searcher to obtain the same results using the same methodol-

ogy with his or her own artifacts, e.g., software and data [19].

Goodman et al. [20] propose the following definitions for vari-

ous types of reproducibility:

® Method reproducibility: Provide sufficient detail about
procedures and data so that the same processes can be
exactly repeated.

B Results reproducibility: Obtain the same results from an
independent study with procedures as closely matched to
the original study as possible.

m [nferential reproducibility: Draw qualitatively similar con-
clusions from either an independent replication of a study
or a reanalysis of the original study.

The major challenges regarding reproducibility in ML are a
lack of proper documentation of the information, e.g., the code
and experimental set up, to reproduce the results and insuffi-
cient exploration of the variables that might affect the conclu-
sions of a study. Different statistical tools, such as the intraclass
correlation coefficient and coefficient of variation, have been
employed to quantify the reproducibility of ML algorithms.

Modularity-based community detection

Background on graphs

In this article, without a loss of generality, we focus on un-
directed and weighted graphs, as they are commonly used to
model different types of networks. Mathematically, a graph
G = (V,E) is described by a vertex set V ={1,2,...,n} of car-
dinality n and an edge set E€V XV, A € R"" denotes the
adjacency matrix of a graph, where A;; is nonzero and equal to
the weight of the edge between nodes i and j if (i,j) € E. For
an undirected graph, A is symmetric; i.e., A= A". The degree
of node i is defined as k; = X ;#;A;; and quantifies the number
of edges connected to node i for binary graphs and the total
strength of edges connected to node i for weighted graphs. The
degree matrix is a diagonal matrix D, with D;; = k;, and the
sum of degrees across all nodes is denoted by 2 m.

The community structure of G can be one of the follow-
ing: nonoverlapping, overlapping, hierarchical, or local [21].
Numerous methods have been proposed for detecting the com-
munity structure of networks [3]. Among these, the most com-
monly used ones are spectral clustering [22], methods based
on statistical inference [23], approaches based on optimization
[24], and techniques based on network dynamics [25]. In addi-
tion to these classical approaches focusing on nonoverlapping
community structure, extensions for overlapping communities
have also been considered [26]. In this article, we focus on the
explainability of nonoverlapping community detection, which
is the partitioning of node set V as C={Ci,...,Ck}, where
K is the number of communities. The community assign-
ment vector corresponding to the partition C is s € R", where
si€{1,2,...,K} denotes the community membership of node
i. In particular, we study the explainability of modularity opti-
mization-based methods, as they are data driven and still the
most widely used community detection method.

Definition of modularity

The most popular approach to detect communities in graphs
relies on the optimization of the modularity function (Q). The
modularity function compares the observed pattern of connec-
tions in a network against the pattern that would be expected
under a specified null model and is calculated as

Q = Z [Aij - Pij]aszs,,

ij

6]

where P;; is the expected connection between nodes i and j in
the null model and &5, is the Kronecker delta function that
is equal to one when s; = s5;. Depending on the graph under
study, different expressions for P; can be assumed. The most
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commonly used null models are the configuration and Erdés—
Rényi null models. Further discussion of null models is given
in detail in the “Model Explainability” section.

Despite its popularity, modularity is known to suffer from
a resolution limit that restricts the size of detectable communi-
ties; communities smaller than some size are mathematically
indiscernible. To detect communities of all sizes, modularity
has been extended to include a resolution parameter, ¥, that can
be tuned to uncover communities of different sizes [27]:

Q)= 2[4y = YPil8ss. @
L]
By varying the value of 7, one can highlight communities of
different sizes; i.e., when 7 is big or small, maximizing modu-
larity will return small or large communities, respectively, re-
sulting in a multiscale community structure.

The modularity function can be either positive or negative,
with positive values indicating the possible presence of com-
munity structure. Thus, one can search for community structure
by maximizing the modularity function. An exhaustive optimi-
zation of modularity is impossible due to the huge number of
ways in which it is feasible to partition a graph. However, there
are several algorithms that are fairly good at approximately
maximizing modularity in a reasonable time. The most com-
monly used techniques for modularity optimization are greedy
algorithms, simulated annealing, extremal optimization, and
spectral clustering [3]. While there are still some questions
about the optimality of greedy algorithms [22], the approaches
are the most widely used modularity optimization methods for
community detection and are the focus of this article.

Greedy algorithms for modularity maximization

One of the most popular greedy algorithms for modularity
maximization is the Louvain algorithm [24], due to its low
computational complexity. The Louvain algorithm is an ag-
glomerative greedy algorithm consisting of two stages, as de-
picted in Figure 1. The first stage starts by assigning each node

Move Nodes

~—
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\/

(a)

Aggregate Nodes

~—

to a different community. Next, the algorithm iterates through
each node in a random order to calculate the gain of modular-
ity, AQ, that would be obtained if the node were moved from
its own community to another. The node is then placed in the
community that yields the largest AQ > 0. This process iter-
ates over all the nodes until no further improvement of modu-
larity is possible with node movements. In the second stage of
the algorithm, all nodes of a community are aggregated to a
single “metanode”; with an edge from each metanode to itself,
where the weight of the edge is the sum of all the intracommu-
nity edge weights within that community; and an edge between
two metanodes, where the weight of the edge is the sum of all
intercommunity edge weights among the corresponding com-
munities. These two stages of the algorithm are then repeated
until maximum modularity is attained.

Recently, modified versions of the Louvain algorithm, such
as the Leiden algorithm, have been proposed to address some
of the shortcomings of the Louvain algorithm [28]. In par-
ticular, it has been shown that the Louvain algorithm might
move a node that acts as a bridge between two components
of a community to another community. Moving this node to
another community causes the old community to become dis-
connected. To overcome this problem, the Leiden algorithm
applies a refinement stage after the first stage of the Louvain
algorithm to ensure that the communities found in the first
stage are internally well connected.

Interpretability
In this section, we present the different aspects of interpret-
ability in the context of modularity optimization-based com-
munity detection.

Model explainability

An important aspect of interpretable data science is model ex-
plainability, which requires an elucidation of the overall model
and its components. In the context of modularity-based com-
munity detection, model explainability can be divided into

@

(b)

FIGURE 1. The two stages of the Louvain algorithm. () In the first, the algorithm passes through each node in a random order and calculates the gain of
modularity AQ; the nodes are moved to their new communities to obtain the largest AQ. (b) In the second, all nodes of a community are merged, and

the first stage is repeated.
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three parts: 1) the physical meaning of the modularity func-
tion, 2) the meaning of the selected null model and its inter-
pretation, and 3) the interpretation of the resolution parameter.
To bring transparency and interpretation to these three parts,
the modularity function can be analyzed from two different
perspectives: the dynamic viewpoint of modularity and the
relationship between the modularity function and stochastic
blockmodels (SBMs).

Meaning of the modularity function

One explanation for the modularity function comes from the
dynamic viewpoint of networks. This approach relates com-
munity structure to dynamic processes taking place on the
network, such as information spread. Random walks are used
to model these dynamic processes. A random walk on a graph
is defined as a Markov chain, where at each step the random
walker arbitrarily jumps from the current node to a neighbor-
ing node. In [29], modularity is studied by considering the clus-
tered autocovariance matrix of random walks:

RMH) =H"IIM' - z"7)H, 3)

where He R™™¥ is the community membership matrix,
M € R"*" is the transition matrix, and IT € R"*" is the diago-
nal matrix of the stationary distribution of random walk 7 € R";
R; € R¥*F is defined with R;; being the probability of a random
walker starting at the ith community and ending at the jth com-
munity after taking ¢ steps. If communities are well defined in the
sense that they can trap random walks for ¢ steps, then R, is approx-
imately diagonal. The Markov stability of the community structure
is then defined as r;(H) = tr(R;) and can be used to measure the
quality of communities. By relating the Markov stability of a com-
munity structure to modularity, one can explain the modularity
function as follows: 71 (H) is equal to the original modularity func-
tion with the configuration model. Thus, the modularity function
quantifies the quality of communities, based on whether a random
walker can escape a community in one time step.

A second approach to interpret modularity is to relate it to a
generative network model. This relationship can be established
by showing that maximizing the modularity function is equiva-
lent to maximizing the likelihood of a planted partition version
of an SBM/degree-corrected SBM (DCSBM) [30]. SBMs are
statistical network models used to generate networks with com-
munity structure [31]. In SBMs, each node is assigned to a com-
munity s; €{1,...,K}, and nodes i and j are connected with an
edge probability of 6y,s;. A planted partition SBM is a restrict-
ed version of an SBM, where 6,5, = 0in if s;=5; and s.5; = Qout,
otherwise. For networks with heterogeneous degree distribu-
tion, the DCSBM is proposed [23], where edge probabilities are
not only determined by 6,; but also by node degrees.

More formally, an edge between nodes i and j is drawn from
a Poisson distribution with mean Aj; = (8y;s,kik; / 2m). For a
planted partition DCSBM, the log likelihood can be written
as follows [30]:

Oin — Oout kikj
log Oin — 10g Oout 2m

logP(G16.5)= 33| Ay~ ]5”,, @
ij

where terms that do not depend on the community structure
are ignored. This form of the log likelihood function is equal
to modularity with the configuration model [see (2)], where the
resolution parameter is set as

Oin — Oout

Y
This equivalence between modularity and the planted partition
model indicates that the modularity function has the same as-
sumption as an SBM in that the communities are statistically
similar; i.e., their intra- and intercommunity edge densities are
all proportional to 6;, and 0, respectively.

Null models

The modularity function quantifies the quality of the commu-
nity structure by comparing intracommunity edge densities in
an observed graph to expected intracommunity edge density
under a null hypothesis. Two widely used null models are the
configuration null model and the Erd&s—Rényi null model.
The former preserves the degree distribution of the observed
graph while randomizing everything else, which leads to
Pjj = (kikj/2m). The latter preserves the edge density of the
graph, resulting in P; = (2m/n(n — 1)). Hereafter, modularity
with the configuration and Erd6s—Rényi null models is denot-
ed as Q¢ and Qgg, respectively. Ideally, it is desirable for the
null models to preserve all properties of the observed graph
that are unrelated to community structure. Since this is not the
case for Qcy and Qgg, it is hard to interpret the specific choice
of the null model. This ambiguity reduces the model explain-
ability of the modularity function. The dynamic viewpoint and
the equivalence between modularity and an SBM/DCSBM can
be used to explain these null models.

From the dynamic point of view, the two null models are
related to the two different random walks [29]. In particular,
Qcwm corresponds to simple random walks, in which the ran-
dom walker waits at each node for the same amount of time.
On the other hand, Qg corresponds to random walkers that
wait at each node for a time period inversely proportional to
its degree. Such random walks can, for example, be related
to information spread where high-degree nodes spread infor-
mation faster. In terms of the detected communities, Qgg
balances communities with respect to their size, while Qcy
balances their volume, i.e., the sum of the node degrees in a
community. Thus, Q¢ tends to assign high-degree nodes to
different communities. When modularity is interpreted using
an SBM/DCSBM, maximizing Qcy; is equivalent to fitting a
planted partition DCSBM, while maximizing Qg is equiva-
lent to fitting a planted partition SBM [30]. High-degree nodes
are assigned to different communities when communities are
detected by fitting a DCSBM, whereas there is no such ten-
dency when fitting an SBM.

In Figure 2, we illustrate the difference in the detected
communities for the two null models for a biological network.
To see how high-degree nodes are distributed across com-
munities, nodes are ordered along the vertical axis according
to their degrees. When the community structure is found by
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FIGURE 2. The community structures of C. Elegans frontal neural network
[32] is found by maximizing (a) Qgx and (b) Qcy by using the Leiden
algorithm followed by consensus clustering to improve replicability.
Resolution parameters are set such that the community structure mainly
consists of four large communities. Nodes are ordered along the vertical
axis according to their degrees. The experiment is based on [29] and
illustrates how high-degree nodes are distributed across communities
for Qg and Qe
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FIGURE 3. The community structure of the network of network scientists
[34]. (a) The number of communities versus the time of the random walker
(or 1/y). (b) The community structure with 17 and four communities: node
colors indicate the community structure with 17 and four communities,
and shaded polygons indicate the community structure with four com-
munities. The communities are detected by maximizing Q. through the
Leiden algorithm followed by consensus clustering to improve replicability.

maximizing Qg [Figure 2(a)], it can be seen that high-degree
nodes are mostly shared by two communities. On the other
hand, nodes with a high degree are distributed across all com-
munities when Qcy; is maximized [Figure 2(b)].

Resolution parameter
The last element of model explainability for modularity optimi-
zation is the choice of the resolution parameter in (2). Based on
the dynamic viewpoint, the resolution parameter measures the
quality of a community based on the duration of the random
walk. If the resolution parameter is set to v, the quality of the
community is defined based on whether it can trap the random
walker for a duration of 1/y or not [29], [33]. Thus, smaller
values of the resolution parameter lead to larger communities
since when the random walker wanders longer, it covers more
nodes. From Figure 3, it can be seen that as the resolution pa-
rameter decreases, i.e., the time for the random walker increas-
es, the number of communities decreases, and communities
become larger. Figure 3(b) demonstrates the multiscale nature
of the communities detected by setting y to two different values
corresponding to K =4 and K = 17. The most relevant resolution
parameters are the ones that lead to partitions that are optimal
for longer periods of time [33]. In Figure 3(a), this corresponds
to community structures with two and four communities.
Alternatively, the resolution parameter can be interpreted
by the equivalence between the modularity function and SBM/
DCSBM. In (5), the resolution parameter is related to the
parameters of the planted partition model, i.e., 6in and Oou.
In the planted partition model, the difference between 6, and
Oout indicates how modular the graph is. The resolution param-
eter as found in (5) is proportional to this difference. In particu-
lar, large values of y imply “stronger” community structures
corresponding to small but densely connected communities,
while small y values imply “weaker” community structures
yielding larger and less densely connected communities.

Comprehensibility of the output

An important aspect of interpretable data science is to evaluate
the comprehensibility of the output. In the context of commu-
nity detection, it is important to determine whether the extract-
ed communities are meaningful. Existing measures and meth-
ods that can be employed to quantify the comprehensibility of
detected communities include extrinsic and intrinsic measures
of what constitutes a good community and statistical approach-
es to quantify the significance of detected communities [35].

Extrinsic measures

In unsupervised learning, such as data clustering and community
detection, it is very common to quantify the comprehensibility
of obtained communities through an extrinsic measure. These
measures usually assume the existence of ground truth com-
munity structure and evaluate an algorithm with respect to this
ground truth. Some commonly used metrics in this context are
the adjusted Rand index (ARI), normalized mutual informa-
tion (NMI), purity, and the F-score. However, this approach
for evaluating the output of community detection algorithms is
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problematic. First, metrics such as NMI have a computational
complexity that is quadratic in the number of communities
of the network, which makes them unsuitable on large-scale
complex networks. Second, in most cases, there is a lack of
reliable ground truth, as identifying ground truth communities
requires some metadata. Finally, evaluating community struc-
ture with respect to some node metadata as if they were ground
truth communities can lead to incorrect scientific conclusions.
Therefore, conventional methods that quantify the comprehen-
sibility of a community structure by using extrinsic measures
fall short of fully explaining the outputs [36].

Intrinsic measures
Another common way to quantify the quality of the community
structure is to use intrinsic measures. In general, intrinsic met-
rics are classified into four classes [21]: 1) metrics considering
internal connections only (e.g., the internal density and average
degree), 2) metrics considering external connections only (e.g,
expansion and the cut ratio), 3) metrics considering internal
and external connections (e.g., conductance and the normal-
ized cut), and 4) model-based metrics (e.g., modularity, perma-
nence, surprise, and communitude). While a variety of intrin-
sic metrics have been proposed, there is still no consensus on
which metric explains the detected community structure better.
To compare the effectiveness of different intrinsic and
extrinsic measures in quantifying the quality of a detected
community structure, we generated Lancichinetti—Fortunato—
Radicchi (LFR) benchmark networks [37] with varying values
of mixing coefficient x, which is the ratio of the external
degree of a node with respect to its community to the total
degree. Thus, y controls the strength of the community struc-
ture such that smaller # values imply more modular networks.
For each network, 100 optimal and 400 suboptimal commu-
nity structures are detected. Intrinsic and extrinsic measures
for these 500 community structures are calculated. The Spear-
man’s rank correlation among different intrinsic and extrinsic

measures is calculated and reported in Figure 4. If an intrinsic
measure is highly correlated with the extrinsic measures, this
means that optimizing this intrinsic metric yields community
structures that are very close to ground truth. From Figure 4,
surprise is observed to be the best-performing intrinsic mea-
sure across all extrinsic measures and mixing coefficients,
which is in line with recent findings [38].

Significance of detected communities

While extrinsic and intrinsic measures try to explain community
structure, they cannot determine whether community structures
actually exist. Therefore, it is important to measure the “signifi-
cance of communities.” There are two approaches proposed in
the literature to tackle this problem: determining the significance
of the partition and determining the significance of individual
communities. The first approach tries to assess whether a given
graph has a significant modular structure or not. In recent work,
it has been argued that the concept of significance should be re-
lated to the robustness of a partition. Intuitively, if a network is
modular, its community structure should be robust to perturba-
tion [39]. In [39], a procedure to quantify robustness has been
proposed as follows. First, the community structure of the origi-
nal network is detected. Then, a fraction of the edges is rewired
to generate a perturbed network, and the community structure
of the perturbed network is found. The distance between the
community structure of the original and perturbed networks is
quantified using some partition similarity measure, such as NMI.
Large values of NMI indicate that the detected communities are
robust to perturbation, i.e., significant. In Figure 5, we illustrate
this concept for an LFR benchmark network for various levels of
mixing coefficient . The figure illustrates that for networks with
small x values, the community structure is robust against high
ratios of rewired edges, while the community structure detected
from a random network has low robustness. This difference indi-
cates how robustness can be used to assess the significance of the
community structure.
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FIGURE 4. The Spearman’s rank correlation among various intrinsic and extrinsic measures. LFR networks with 1,000 nodes and changing mixing coef-
ficient « were generated. For each «, we detected 100 community structures by running the Leiden algorithm, with Qcu(y =1), 100 times. To explore
the modularity landscape better, we also generated 400 suboptimal community structures by randomly shuffling 5% of the nodes’ community assign-
ments. Intrinsic and extrinsic measures for 500 community structures are calculated. (a) Adjusted mutual information. (b) ARI. (c) NMI. (d) Variation

of information.
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While the measures for assessing the statistical significance
of a network partition can provide a global view of the network
structure, they convey no information about the statistical signif-
icance of the individual communities. Recently, statistical meth-
ods that discriminate between a single community and structures
arising as topological fluctuations have been proposed [40]. The
statistical significance of a community has been quantified using
metrics such as the C-score and B-score [40], information-theo-
retic significance measure [41], network community profile [35],
and fast optimized community significance [42]. These methods
quantify the statistical significance of each cluster by computing
the likelihood of observing this cluster in a null model without
communities. Figure 6 demonstrates this notion of significance
for the detected communities of a biological metabolic network
[40]. The C-score quantifies the significance of a community by
assigning a rank to each node of the community based on its
internal and external connections. The score of the worst node
is then compared to the expected score under a null model to
measure the significance of the community.

More specifically, consider a community C in an observed
graph G and a configuration null model with the same degree
distribution as G. Let C be a random subgraph in the null net-
work with the same number of internal connections as C. Let
k™ be the internal degree of node i, i.e., the number of connec-
tions node i makes with nodes in C. Node i is then assigned a
score r;, which is the probability of observing a node in C with
an internal degree greater than or equal to k™. This probability
can be approximated by a hypergeometric distribution for the
configuration null model. If G were a random graph without
community structure, the 7;’s would be uniformly distributed
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FIGURE 5. The assessment of network modularity based on the robustness
of the community structure to edge perturbations. The LFR benchmark is
used to generate networks with different mixing coefficients x. Community
structures are detected by running the Leiden algorithm, with Qeu(y =1).
The community structure of the unperturbed network is compared to the
community structure of edge-perturbed networks to quantify robustness.
Results for a random network without modular structure are also reported.

in [0,1]. The C-score of C is then calculated by considering
its worst node w, which is the node with the highest-ranking
score r,,. The C-score is the probability of observing r, in the
uniformly distributed interval [ry, 1], where r, is the second-
highest score among all r;’s from C. Ideally, one would want to
find communities whose C-score is smaller than a significance
level, e.g., 0.05. The B-score is a refinement of the C-score and
evaluates the significance of a community based on a group
of nodes instead of using only the worst node of the cluster,
as considering only the worst node can be a very conservative
measure to assign community significance.

In Figure 6, only the pink community is found to be signifi-
cant based on the C-score. On the other hand, green and pink
communities are found to be significant based on the B-score.
These two scores can also be used to define community cores
[40], which are the set of nodes whose C- or B-scores are sig-
nificant. In particular, the worst node is removed from the com-
munity, and the C-score (or B-score) of the remaining nodes is
calculated. If the C-score is significant, the remaining nodes
are the core of the community. If it is not, the worst among the
remaining nodes is removed, and the C-score is recalculated.
This process is iteratively repeated until the core is found or all
nodes are removed. For example, based on the C-score, 19 out
of the 45 nodes in the brown community form the community
core, as indicated by the green nodes in Figure 6(b).

Algorithmic transparency
Algorithmic transparency in ML refers to the notion of under-
standing key concepts about the algorithm behavior, including
the shape of the error surface, convergence of the algorithm,
and uniqueness of the solution. In the context of modularity
optimization-based community detection, e.g., the Louvain
algorithm, there are some key algorithmic steps that are not
always transparent to the user. The first issue with the transpar-
ency of the Louvain algorithm is its initialization. Usually, the
Louvain algorithm starts from a singleton partition, in which
each node is its own community (see Figure 1). However, there
is no good justification for this choice. It is also possible to start
the algorithm from a different partition. In particular, in an at-
tempt to find better partitions, multiple consecutive iterations
of the algorithm can be performed using the partition identi-
fied in one iteration as the starting point for the next iteration.
The second issue with respect to the transparency of the
Louvain algorithm is in the first stage of the algorithm, where
for each node, the best community assignment is determined
based on the change in the modularity function. This pass
across all nodes of the graph is done in a random order. This
random pass affects the transparency of the detected commu-
nity structure, as different random orderings of the nodes may
lead to various results. The random initializations along with
the random pass bring up the question of the replicability of the
detected community structure (see the “Replicability” section).
Another issue that affects the transparency of an algo-
rithm is its convergence rate. In recent work, the convergence
and complexity of the Louvain algorithm have been studied
[43]. The algorithm’s time complexity is O(nlogn). While

Auﬁ?orized licensed use limited to: Michigan State University. BM%'AB@E%E%@ W\%% aL 1%&%0?23 LIITC from IEEE Xplore. Restrictions apply.



no upper bound has been established on the number of itera-
tions and the number of passes, the algorithm is guaranteed
to terminate with the use of a cutoff for the modularity gain
(because of modularity being a monotonically increasing func-
tion until termination). In practice, the method needs only tens
of iterations and fewer passes to terminate on most real-world
inputs. Recently, it has been argued that if the initial nodes
are selected based on their degree (in descending order) rather
than in a random manner, the algorithm converges faster with
comparable performance [44].

Post hoc interpretability

In the context of community detection, the post hoc interpret-
ability of the detected community structure refers to the sensi-
tivity of the community detection algorithms to the input net-
work structure and is closely related to the comprehensibility of
the output discussed in the “Comprehensibility of the Output”
section. One way to quantify post hoc interpretability is pertur-
bation analysis, where a network is perturbed by removing each
node one at a time and finding the community structure of the
perturbed network. The similarity of the original community
structure to the community structure of the perturbed network
can then be quantified using extrinsic measures, such as NMI.
In Figure 7, we detail this concept for Zachary’s karate club
network, where the larger a node is, the greater the change in
community structure, due to its removal. For instance, remov-
ing node 2 causes a larger change to the community structure
compared to other nodes, as its removal substantially disturbs
the internal connectivity of the blue community. This is similar
to heat maps used for post hoc interpretability in ML and can
help us identify influential nodes for community formation.

In parallel to this perturbation analysis, different metrics from
network science literature can be adopted for post hoc interpret-
ability. Once the community structure is detected, nodes can be
classified into universal roles according to their intra- and inter-
module connection patterns to explain the resulting modules
[46]. Early approaches to summarizing the role of nodes in com-
munity formation are the within-module z-score (z;) and partici-
pation coefficient (P;), which define how a node is positioned in
its own module and with respect to other modules, respectively.
The within-module z-score z; measures how “well connected”
node i is to other nodes in the module and is defined as

Ki— Ksi
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(6)

where k; is the number of links of node i within its module
si, Ks; 18 the average of k;’s for all nodes in s;, and o, is the
standard deviation of k;’s in s;. High values of z; indicate high
within-module degrees and vice versa.

The participation coefficient P; measures how “well dis-
tributed” the links of node i are among different modules and
is defined as

N (K
P=1 ;( ). @)

ki
where Kis is the number of links of node i to nodes in module
s. The participation coefficient P; is close to one if the links of
node i are uniformly distributed among all the modules and
zero if all a node’s links are within its own module. These met-
rics can be used to interpret the contribution of different nodes
to the community structure, as depicted in Figure 8. Within-
module z-scores and participation coefficients are indicators of

[ J [ ] [ ] [ J [ ) [ ) [ ]
Size 113 110 71 59 50 45 5
Number of Edges | 549 1019 605 254 273 253 12
) Ocm 712.05 |1,155.69 | 879.80 | 433.59 | 462.30 | 404.41 | 23.92
\. | C-Score 0.947 | 0.928 0.883 | 0.939 | 0.967 | 0.829 | 1e-7
@ | B-Score 0.977 | 0.716 1e-4 0.939 | 0.880 | 0.602 | 1e-8
/ C-%5 Core 23 0 49 37 22 19 5
® B-%5 Core 23 0 71 39 47 29 5

(a)

(c)

FIGURE 6. The communities of C. Elegans metabolic network and analysis of significance. (a) The community structure detected by maximizing Qcwm using
the Leiden algorithm followed by consensus clustering to improve replicability. (b) Nodes of the brown community in (a) and its C-%5core highlighted by
green nodes. (c) The C- and B-scores of each community along with intrinsic measures and modularity values.
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nodes’ positioning in network topology and community struc-
ture [46]. These positionings are used to assign nodes to dif-
ferent roles: ultraperipheral nodes (R1), peripheral nodes (R2),
nonhub connectors (R3), nonhub kinless nodes (R4), provin-
cial hubs (R5), connector hubs (R6), and kinless hubs (R7).

Another class of network metrics that can be used for post
hoc interpretability is centrality measures that quantify the
importance of nodes. While most centrality measures do not
take community structure into account, recently, community-
aware centrality measures have been defined to quantify the
importance of nodes with respect to community structure
[47]. These measures reveal how influential nodes are for their
respective communities and overall community structure of
the network. One such measure, community centrality [34],
uses eigenvectors of the modularity matrix to determine the
contribution of nodes to their communities.

Replicability

In the context of community detection, replicability implies
that anyone that has access to the same network data can obtain
the same communities, given the code. For modularity-based
community detection, replicability is hindered by two major

factors: 1) the nonuniqueness of the optimum of the modular-
ity function and 2) the stochastic nature of the optimization
algorithms. First, despite the popularity of modularity maxi-
mization, there is a widespread misconception that empirical
networks with modular structure tend to exhibit a clear optimal
partition and that high-modularity partitions of an empirical
network are structurally similar to this optimal partition. Good
et al. [50] show that when modularity maximization is ap-
plied to networks with modular or hierarchical structure, these
assumptions do not necessarily hold. This is known as the ex-
treme degeneracies of the modularity function. The existence
of extreme degeneracies in the modularity function does not
depend on the detailed structure of the particular network or
on any external notion of a “true” module. Instead, these solu-
tions exist whenever a network is composed of many groups of
nodes with relatively few intergroup connections.

As the number of these modules increases, the number of
ways to combine them in these suboptimal ways grows expo-
nentially. Thus, as a network becomes more modular, the
globally optimal partition becomes harder to find among the
growing number of suboptimal but competitive alternatives.
Therefore, finding the partition with a guarantee of globally

®

FIGURE 7. Perturbation-based post hoc interpretability applied to Zachary’s karate club network [45]. Each node is removed from the network one at
a time, and the change in the community structure is quantified using NMI. The community structure is detected by maximizing Qcu(y = 1) via the
Leiden algorithm. Larger nodes indicate bigger changes to the community structure when those nodes are removed from the network.
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optimizing modularity is not computationally feasible except
in the smallest networks. For the multiresolution generalized
version of the modularity function, Q(y) (2), choosing y < 1
increases the severity of the degeneracy problem by reducing the
penalty for merging modules, while choosing y > 1 reduces it
by increasing the penalty. For any fixed y, however, there exist
many networks that will exhibit severe degeneracies, and more-
over, it remains unclear how to identify the “correct” value of y
without resorting to an external definition of a “true” module.

The second problem with respect to the replicability of
modularity optimization methods is the stochastic nature of
the optimization algorithms. Since identifying globally opti-
mal community structure is computationally intractable, these
algorithms are usually run stochastically and with random
initial conditions to account for entrapment in local extrema.
For example, in the Louvain algorithm, the first pass starts by
ordering the nodes in a random manner and then computing
the change in modularity when each node is moved to a dif-
ferent community. With each run of the Louvain method, this
random ordering of the nodes changes, resulting in variation
across the results. This variation across multiple runs can be
mitigated by using numerous consecutive iterations of the algo-
rithm through the partition identified in one iteration as the
starting point for the next iteration.

One common approach to address these issues related to
replicability is to obtain multiple partitions that achieve high
modularity and then acquire a single partition that is more
robust through consensus clustering [51]. The goal is to search
for the consensus partition, i.e., the partition that is most simi-
lar, on average, to all the input partitions. In its standard for-
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mulation, consensus clustering is a difficult combinatorial
optimization problem. Usually, an alternative greedy strategy
is used. The association matrix, i.e., a matrix based on the
co-occurrence of vertices in clusters of the input partitions,
is the input to the community detection method leading to a
new set of partitions. These partitions generate a new associa-
tion matrix until a unique partition, which cannot be altered
by further iterations, is finally reached. This procedure has
proved to quickly lead to consistent and stable partitions in real
networks. In Figure 9, we show this approach for a functional
connectivity brain network constructed from electroencepha-
logram (EEG) data discussed in [48].

Recently, it has been shown that if the different partitions
vary substantially, then the consensus partition may not capture
the full range of behaviors and will be a poor representation of
the community structure [52]. In cases like these, summarizing
the community structure may require not just one but several
representative partitions, which may themselves be consensus
partitions for a local cluster of network divisions.

Reproducibility

In the context of community detection, reproducibility refers
to the ability to obtain similar community structures by using
the procedures provided by the original researchers. In terms of
method reproducibility, one big obstacle in community detection
is the selection of the number of communities. To be able to ob-
tain consistent results across different data sets, how the number
of communities is selected must be specified clearly. For modu-
larity optimization, this corresponds to the appropriate selection
of the resolution parameter y. As discussed in the “Resolution
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FIGURE 8. The roles of the nodes in the airport transportation network among cities in the mainland United States [46]. (a) The participation coefficients
and z-scores of each node are plotted. Regions indicated as R1-7 show the different roles that can be assigned to nodes based on which intervals the
participation coefficient and within-module z-score fall into. (b) The cities are plotted, where node colors indicate their communities, which are detected
by maximizing Qcu(y = 1) by using the Leiden algorithm followed by consensus clustering to improve replicability. Nodes in R6 (connector hubs) are
highlighted, as they correspond to big cities that are mostly hubs of various airlines, such as Chicago; Detroit; and Atlanta.
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Parameter” section, different y values result in various numbers
of communities. While the equivalence of modularity maximiza-
tion and fitting an SBM in (5) provide a systematic way of choos-
ing v, they require empirical estimation of 0i, and 6ou, Which is
not guaranteed to converge to the optimal y value [30]. In prac-
tice, the selection of a resolution parameter usually involves run-
ning modularity maximization algorithms with various y values,
selecting the partition with the greatest modularity at that specific
value of v and comparing the partitions.

To determine whether the obtained community structures
are “robust” to the y selection, one might look for stable pla-
teaus in the number of communities [see Figure 3 (a)]; consider
another metric, such as significance [41]; directly visualize the
different community assignments across parameters; and com-
pare obtained communities with ground truth labels using one
of the extrinsic measures. A more computationally demanding
approach that directly addresses this problem is to compare
the obtained best modularity at each y with the distribution of
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modularities obtained by running community detection across
some selected random graph model, repeating this process for
different y’s to identify parameter values where the obtained
communities are strongest relative to the random cases [49].
Additionally, one may use a given set of partitions to generate
a new partition by ensemble learning and consensus cluster-
ing [51]. Recently, a different approach, called the Convex Hull
of Admissible Modularity Partitions (CHAMP) [53], that uses
the union of all computed partitions to identify the CHAMP
in the parameter space, has been proposed. CHAMP identi-
fies the domains of optimality across a set of partitions by
ignoring the y that was used to compute each partition, finding
instead the full domain in y for which each partition is optimal
relative to the rest of the input partitions.

The second type of reproducibility is results reproducibil-
ity, implying that the same or similar community structures
are obtained from an independent study with procedures as
closely matched to the original study as possible. One metric

10 20 30 60

FIGURE 9. The replicability for a functional connectivity brain network from [48], using the consensus clustering approach described in [49]. Given the
functional connectivity graph, multiple partitions are found by running the Louvain algorithm 100 times. From these partitions, an association matrix,
whose entries indicate the number of times a pair of nodes is assigned to the same community across all partitions, is constructed. The association
matrix is noisy and needs to be thresholded. The threshold is set to the expected number of times two nodes will be assigned to the same community if
the partitions are randomly generated. Arbitrary partitions are found by randomizing the original partitions. From the thresholded association matrix, the
consensus community structure is detected by applying the Louvain algorithm. (a) The adjacency matrix. (b) The partitions. (c) The association matrix.
(d) The consensus community structure. (e) The thresholded association matrix. (f) The randomized partitions. FCZ: frontal central electrode.
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to quantify results reproducibility is scaled inclusivity (SI) [54],
which is a method to quantify the change in community struc-
ture across networks. SI independently evaluates the consisten-
cy of the classification of every node in a network. This method
identifies the nodes that tend to remain in the same community
across different networks’ partitions, forming a “core” of that
community. Likewise, the method also enables the identifica-
tion of transient nodes that become part of different communi-
ties across various networks’ partitions. For example, if a node
i is part of module A in network / and module B in network m,
then the SI between the two modules is calculated as
_18SanSpl1San Sl

Si="25 0 1Ssl ®)

where Sx and Sp denote sets of nodes in modules A and B and
I | denotes the cardinality of a set.

Different versions of SI, global SI, and module-specific SI
have been implemented in prior reproducibility studies. A global
SI map demonstrates the consistency of modules at each node
across networks. To compute the global SI, first, the community
structure of each network is detected. Next, one network is chosen
as the reference, and any overlap among that network’s modules
and any other modules from the other networks is determined.
This process results in maps of overlapping nodes among mod-
ules along with SI values summarizing the fidelity of the overlaps.
A weighted sum of the overlap maps, with the SI values as the
weights, is calculated, yielding a network-specific SI map. This
process is repeated for all networks, and a weighted average of the
network-specific SI maps, with the Jaccard indices as weights, is
then calculated, resulting in the global SI map summarizing the
consistency of the modular organization across networks at the
nodal level. The module-specific SI, on the other hand, shows
the consistency of the representative module across multiple net-
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works. From the network-specific SI maps, it is possible to deter-
mine the most representative network with the highest SI for a
particular node of interest. The module containing the node of
interest is identified as the representative module. Next, modules
with any overlap with the representative module are identified, and
the corresponding SI values are calculated. A weighted sum of the
overlapping modules is calculated with the SI values as weights,
summing modules centered around the representative module.

In Figure 10, we illustrate the reproducibility of commu-
nity detection for EEG functional connectivity networks con-
structed from 91 subjects performing the same task, i.e., error
monitoring [48]. For each subject, the community structure is
detected, and the global SI and module-specific SI are calcu-
lated. From Figure 10(a), we can see that frontal-central and
occipital brain regions tend to preserve their community struc-
ture across subjects, while temporal brain regions do not. This
is consistent with prior studies that show increased synchro-
nized activity within these regions for error monitoring tasks
[48]. In Figure 10(b), we provide the module-specific SI for
the brain region corresponding to the frontal central electrode
(FCz) electrode. In particular, module-specific SI computes
how many times across 91 subjects this node’s community
structure includes any of the other nodes. From the figure, it
can be seen that FCz consistently falls in the same community
with other frontal and central electrodes, consistent with prior
community detection results for the same data set [48].

Condlusions and future directions

In this article, we explored the issue of explainability in the
context of community detection methods for graphs. While
the different aspects of explainability have been previously
studied in detail for various ML black-box models, the issue
of explainability has not been addressed for unsupervised
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FIGURE 10. The reproducibility of community detection in a study of functional connectivity EEG networks constructed from 91 subjects [48]. (a) The
global SI. (b) The module-specific Sl for the frontal central electrode’s (FCZ's) representative community.
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learning algorithms, such as clustering. In this article, we il-
lustrated how metrics and concepts from network science can
be adapted to study the explainability of community detection
algorithms. While the availability of benchmark networks and
open source code have enabled reproducible research in com-
munity detection, there are still some key issues that prevent
complete transparency in community detection. These issues
can be summarized as the degeneracy of the modularity func-
tion, the stochastic nature of the algorithms, and the selection
of different parameters, e.g., the resolution parameter. The
methods described in this article can be used to address some
of these issues and provide guidelines to reduce the opacity
of community detection algorithms and their outputs. While
the focus of this article has been on modularity optimization-
based community detection algorithms, the approaches and is-
sues that were outlined can be extended to other community
detection and data clustering algorithms as well as different
learning tasks on graphs, as in the following:

m Extensions to GSP tasks: While the primary task consid-
ered in this article is graph-based clustering, there are other
GSP tasks, such as graph signal regression and graph
learning, that can be studied in terms of their explainabili-
ty. GSP-based graph learning frameworks have the advan-
tage of enforcing certain desirable representations of the
signals, including the smoothness and diffusion via fre-
quency-domain analysis, and filtering operations on
graphs, making them interpretable. Moreover, recently,
GSP tools have been used to better understand complex
metalearning tasks by enabling users to incorporate rich
semantic information [55]. In particular, high-pass graph
filtering reveals which nodes can maximally describe the
variations in the label agreement signal, which can be
translated into an interpretable explanation.

m Extensions to general unsupervised learning: Unsupervised
learning, e.g., clustering and outlier detection, is commonly
encountered in a variety of applications where ground truth
data are not available. Analyzing and interpreting results
obtained through clustering is a cumbersome and challenging
task, often requiring time and sophisticated, expert-based
manual inspection. Unsupervised quality metrics provide
only structural insights into the obtained results, and they do
not explain why the clustering methodology grouped points
in the same cluster. The approaches and techniques described
in this article, such as quantifying the significance of the
detected communities, perturbation analysis for determining
the importance of each node to community formation, con-
sensus clustering for replicability, and reproducibility met-
rics, can be easily adapted to data clustering and used to
evaluate the explainability of different unsupervised learning
algorithms. Moreover, these metrics can be incorporated into
the objective functions of existing unsupervised learning
methods to obtain clusters with better explainability.

m Extensions to other data-driven community detection
approaches: Even though this article focuses on modularity-
based community detection algorithms, the approaches out-
lined here can be extended to study the explainability of

different data-driven community detection algorithms,
including GNNs [56]. While the metrics introduced in this
article can be employed to evaluate the comprehensibility,
replicability, and reproducibility of the detected community
structure, new tools will be required to capture model
explainability. Recent work on the explainability of GNNs
employs tools such as gradient-based methods, perturbation-
based methods, surrogate methods, and decomposition meth-
ods [11]. However, most of these approaches are suitable for
supervised learning tasks on graphs, including node classifi-
cation and link prediction, and need to be extended for unsu-
pervised learning tasks, such as community detection.

m Extensions to higher-order graphs: More recently, multilayer
graphs, where each layer records a certain kind of interaction
among entities, have become popular in a variety of applica-
tions. Community detection methods have been introduced
for bipartite, temporal, multiplex, and multilayer graphs,
where there is little consensus on what constitutes a commu-
nity. For example, in the case of multiplex graphs, while
some methods focus on extracting common communities
across layers, others aim to uncover the heterogeneity across
layers by defining common and private communities across
layers. This ambiguity in what constitutes a community in
these more complex graphs brings a need for new explain-
ability tools.

Authors
Selin Aviyente (aviyente@msu.edu) received her Ph.D. degree
in electrical engineering: systems from the University of
Michigan, Ann Arbor. She joined the Department of Electrical
and Computer Engineering, Michigan State University, East
Lansing, Michigan, 48824, USA, in 2002, where she is current-
ly a professor. Her research interests include statistical and non-
stationary signal processing, network science, and applications
to neuronal signals. She serves on several technical committees
of the IEEE Signal Processing Society and is an associate editor
for multiple journals. She is a Senior Member of IEEE.
Abdullah Karaaslanli (karaasll @msu.edu) received his
B.S. degree in electrical and electronics engineering from
Bogazici University, Istanbul, Turkey, in 2017 and is working
toward his Ph.D. degree in electrical and computer engineer-
ing at Michigan State University, East Lansing, Michigan,
48824, USA. His research interests include community detec-
tion in dynamic and multilayer networks and graph signal pro-
cessing for graph learning and graph signal recovery. He is a
Student Member of IEEE.

References

[1] A.-L. Barabasi, “Network science,” Philos. Trans. Roy. Soc. A, Math., Phys.
Eng. Sci., vol. 371, no. 1987, p. 20,120,375, 2013, doi: 10.1098/rsta.2012.
0375.

[2] A. Ortega, P. Frossard, J. Kovacevi¢, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proc. IEEE, vol.
106, no. 5, pp. 808—828, 2018, doi: 10.1109/JPROC.2018.2820126.

[3] S. Fortunato and D. Hric, “Community detection in networks: A user guide,”
Phys. Rep., vol. 659, pp. 1-44, Nov. 2016, doi: 10.1016/j.physrep.2016.09.002.

[4] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi,
“A survey of methods for explaining black box models,” ACM Comput. Surv., vol.
51, no. 5, pp. 1-42, 2018, doi: 10.1145/3236009.

Au%rized licensed use limited to: Michigan State University. BM%'AB@E%E%@ W\%% aL 1%&%0?23 LIITC from IEEE Xplore. Restrictions apply.



[5] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable machine learn-
ing for scientific insights and discoveries,” IEEE Access, vol. 8, pp. 42,200-42,216,
Feb. 2020, doi: 10.1109/ACCESS.2020.2976199.

[6] J. Basak and R. Krishnapuram, “Interpretable hierarchical clustering by con-
structing an unsupervised decision tree,” IEEE Trans. Knowl. Data Eng., vol. 17,
no. 1, pp. 121-132, 2005, doi: 10.1109/TKDE.2005.11.

[7] G. Corral, E. Armengol, A. Fornells, and E. Golobardes, “Explanations of unsu-
pervised learning clustering applied to data security analysis,” Neurocomputing, vol.
72, nos. 13-15, pp. 2754-2762, 2009, doi: 10.1016/j.neucom.2008.09.021.

[8] A. Morichetta, P. Casas, and M. Mellia, “EXPLAIN-IT: Towards explainable Al for
unsupervised network traffic analysis,” in Proc. 3rd ACM CoNEXT Workshop Big
Data, Mach. Learn. Artif. Intell. Data Commun. Netw., 2019, pp. 22-28, doi:
10.1145/3359992.3366639.

[9] D. Bertsimas, A. Orfanoudaki, and H. Wiberg, “Interpretable clustering: An opti-
mization approach,” Mach. Learn., vol. 110, no. 1, pp. 89-138, 2021, doi: 10.1007/
$10994-020-05896-2.

[10] S. Saisubramanian, S. Galhotra, and S. Zilberstein, “Balancing the tradeoff
between clustering value and interpretability,” in Proc. AAAI/ACM Conf. Al, Ethics,
Soc., 2020, pp. 351-357, doi: 10.1145/3375627.3375843.

[11] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural networks: A
taxonomic survey,” 2020, arXiv:2012.15445.

[12] S. Chen, Y. C. Eldar, and L. Zhao, “Graph unrolling networks: Interpretable
neural networks for graph signal denoising,” IEEE Trans. Signal Process., vol. 69,
pp. 3699-3713, Jun. 2021, doi: 10.1109/TSP.2021.3087905.

[13] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable
machine learning,” 2017, arXiv:1702.08608.

[14] A. A. Freitas, “Comprehensible classification models: A position paper,” ACM
SIGKDD Explorations Newslett., vol. 15, no. 1, pp. 1-10, 2014, doi: 10.1145/
2594473.2594475.

[15] G. Montavon, W. Samek, and K.-R. Miiller, “Methods for interpreting and
understanding deep neural networks,” Digit. Signal Process., vol. 73, pp. 1-15, Feb.
2018, doi: 10.1016/j.dsp.2017.10.011.

[16] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.” J. Mach.
Learn. Res., vol. 9, no. 86, pp. 2579-2605, 2008.

[17] A. Mordvintsev, C. Olah, and M. Tyka, “Inceptionism: Going deeper into neu-
ral networks,” 2015. [Online]. Available: https:/research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html

[18] R. Caruana, H. Kangarloo, J. D. Dionisio, U. Sinha, and D. Johnson, “Case-
based explanation of non-case-based learning methods,” in Proc. Amer. Med.
Inform. Assoc. Symp., 1999, pp. 212-215.

[19] H. E. Plesser, “Reproducibility vs. replicability: A brief history of a confused
terminology,” Frontiers Neuroinform., vol. 11, p. 76, Jan. 2018, doi: 10.3389/
fninf.2017.00076.

[20] S. N. Goodman, D. Fanelli, and J. P. Ioannidis, “What does research reproduc-
ibility mean?” Sci. Transl. Med., vol. 8, no. 341, p. 341psl12, 2016, doi: 10.1126/sci-
translmed.aaf5027.

[21] T. Chakraborty, A. Dalmia, A. Mukherjee, and N. Ganguly, “Metrics for com-
munity analysis: A survey,” ACM Comput. Surv., vol. 50, no. 4, pp. 1-37, 2017, doi:
10.1145/3091106.

[22] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486, nos. 3-5,
pp. 75-174, 2010, doi: 10.1016/j.physrep.2009.11.002.

[23] B. Karrer and M. E. Newman, “Stochastic blockmodels and community struc-
ture in networks,” Phys. Rev. E, vol. 83, no. 1, p. 016107, 2011, doi: 10.1103/
PhysRevE.83.016107.

[24] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfold-
ing of communities in large networks,” J. Statistical Mech., Theory Exp., vol. 2008,
no. 10, p. P10008, 2008, doi: 10.1088/1742-5468/2008/10/P10008.

[25] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks
reveal community structure,” Proc. Nat. Acad. Sci., vol. 105, no. 4, pp. 1118-1123,
2008, doi: 10.1073/pnas.0706851105.

[26] J. Eustace, X. Wang, and Y. Cui, “Overlapping community detection using
neighborhood ratio matrix,” Physica A, Statistical Mech. Appl., vol. 421, pp. 510—
521, Mar. 2015, doi: 10.1016/j.physa.2014.11.039.

[27] J. Reichardt and S. Bornholdt, “Statistical mechanics of community detection,”
Phys. Rev. E, vol. 74, no. 1, p. 016110, 2006, doi: 10.1103/PhysRevE.74.016110.

[28] V. A. Traag, L. Waltman, and N. J. Van Eck, “From Louvain to Leiden:
Guaranteeing well-connected communities,” Scientific Rep., vol. 9, no. 1, p. 5233,
2019, doi: 10.1038/s41598-019-41695-z.

[29] R. Lambiotte, J.-C. Delvenne, and M. Barahona, “Random walks, Markov pro-
cesses and the multiscale modular organization of complex networks,” IEEE Trans.
Netw. Sci. Eng., vol. 1, no. 2, pp. 76-90, 2014, doi: 10.1109/TNSE.2015.2391998.

[30] M. E. Newman, “Equivalence between modularity optimization and maximum
likelihood methods for community detection,” Phys. Rev. E, vol. 94, no. 5, p.
052315, 2016, doi: 10.1103/PhysRevE.94.052315.

Authorized licensed use limited to: Michigan State University. BMMBE&%FF%% 'M%% aL Wlﬁ@% L|JTC from IEEE Xplore. Restrictions apply.

[31] A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M. Airoldi, “A survey of
statistical network models,” 2010, arXiv:0912.5410v1.

[32] M. Kaiser and C. C. Hilgetag, “Nonoptimal component placement, but short
processing paths, due to long-distance projections in neural systems,” PLoS
Comput. Biol., vol. 2, no. 7, p. €95, 2006, doi: 10.1371/journal.pcbi.0020095.

[33] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona, “Stability of graph communi-
ties across time scales,” Proc. Nat. Acad. Sci., vol. 107, no. 29, pp. 12,755-12,760,
2010, doi: 10.1073/pnas.0903215107.

[34] M. E. Newman, “Finding community structure in networks using the eigenvec-
tors of matrices,” Phys. Rev. E, vol. 74, no. 3, p. 036104, 2006, doi: 10.1103/
PhysRevE.74.036104.

[35]1]. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Statistical proper-
ties of community structure in large social and information networks,” in Proc. 17th
Int. Conf. World Wide Web, 2008, pp. 695-704, doi: 10.1145/1367497.1367591.

[36] L. Peel, D. B. Larremore, and A. Clauset, “The ground truth about metadata
and community detection in networks,” Sci. Adv., vol. 3, no. 5, p. €1602548, 2017,
doi: 10.1126/sciadv.1602548.

[37] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing
community detection algorithms,” Phys. Rev. E, vol. 78, no. 4, p. 046110, 2008, doi:
10.1103/PhysRevE.78.046110.

[38] V. A. Traag, R. Aldecoa, and J.-C. Delvenne, “Detecting communities using
asymptotical surprise,” Phys. Rev. E, vol. 92, no. 2, p. 022816, 2015, doi: 10.1103/
PhysRevE.92.022816.

[39] B. Karrer, E. Levina, and M. E. Newman, “Robustness of community structure
in networks,” Phys. Rev. E, vol. 77, no. 4, p. 046119, 2008, doi: 10.1103/
PhysRevE.77.046119.

[40] A. Lancichinetti, F. Radicchi, and J. J. Ramasco, “Statistical significance of
communities in networks,” Phys. Rev. E, vol. 81, no. 4, p. 046110, 2010, doi:
10.1103/PhysRevE.81.046110.

[41] V. A. Traag, G. Krings, and P. Van Dooren, “Significant scales in community
structure,” Scientific Rep., vol. 3, no. 1, p. 2930, 2013, doi: 10.1038/srep02930.

[42] J. Palowitch, “Computing the statistical significance of optimized communities in net-
works,”” Scientific Rep., vol. 9, no. 1, p. 18,444, 2019, doi: 10.1038/s41598-019-54708-8.

[43] V. A. Traag, “Faster unfolding of communities: Speeding up the Louvain algo-
rithm,” Phys. Rev. E, vol. 92, no. 3, p. 032801, 2015, doi: 10.1103/PhysRevE.
92.032801.

[44] C. Wickramaarachchi, M. Frincu, P. Small, and V. K. Prasanna, “Fast parallel
algorithm for unfolding of communities in large graphs,” in Proc. 2014 IEEE High
Perform. Extreme Comput. Conf. (HPEC), pp. 1-6, doi: 10.1109/HPEC.2014.7040973.

[45] W. W. Zachary, “An information flow model for conflict and fission in small
groups,” J. Anthropological Res., vol. 33, no. 4, pp. 452—473, 1977, doi: 10.1086/
jar.33.4.3629752.

[46] R. Guimera and L. A. N. Amaral, “Cartography of complex networks:
Modules and universal roles,” J. Statistical Mech., Theory Exp., vol. 2005, no. 2, p.
P02001, 2005, doi: 10.1088/1742-5468/2005/02/P02001.

[47] Z. Ghalmane, M. El Hassouni, C. Cherifi, and H. Cherifi, “Centrality in mod-
ular networks,” EPJ Data Sci., vol. 8, no. 1, p. 15, 2019, doi: 10.1140/epjds/s13688-
019-0195-7.

[48] A. Ozdemir, M. Bolanos, E. Bernat, and S. Aviyente, “Hierarchical spectral
consensus clustering for group analysis of functional brain networks,” IEEE Trans.
Biomed. Eng., vol. 62, no. 9, pp. 2158-2169, 2015, doi: 10.1109/TBME.2015.
2415733.

[49] D. S. Bassett, M. A. Porter, N. F. Wymbs, S. T. Grafton, J. M. Carlson, and P. J.
Mucha, “Robust detection of dynamic community structure in networks,” Chaos,
Interdisciplinary J. Nonlinear Sci., vol. 23, no. 1, p. 013142, 2013, doi: 10.1063/1.4790830.
[50] B. H. Good, Y.-A. D. Montjoye, and A. Clauset, “Performance of modularity
maximization in practical contexts,” Phys. Rev. E, vol. 81, no. 4, p. 046106, 2010,
doi: 10.1103/PhysRevE.81.046106.

[51] A. Lancichinetti and S. Fortunato, “Consensus clustering in complex net-
works,” Scientific Rep., vol. 2, no. 1, p. 336, 2012, doi: 10.1038/srep00336.

[52] T. P. Peixoto, “Revealing consensus and dissensus between network partitions,”
Phys. Rev. X, vol. 11, no. 2, p. 021003, 2021, doi: 10.1103/PhysRevX.11.021003.
[53] W. H. Weir, S. Emmons, R. Gibson, D. Taylor, and P. J. Mucha, “Post-
processing partitions to identify domains of modularity optimization,” Algorithms,
vol. 10, no. 3, p. 93, 2017, doi: 10.3390/a10030093.

[54] M. Steen, S. Hayasaka, K. Joyce, and P. Laurienti, “Assessing the consistency
of community structure in complex networks,” Phys. Rev. E, vol. 84, no. 1, p.
016111, 2011, doi: 10.1103/PhysRevE.84.016111.

[55] X. Dong, D. Thanou, L. Toni, M. Bronstein, and P. Frossard, “Graph signal
processing for machine learning: A review and new perspectives,” I[EEE Signal
Process. Mag., vol. 37, no. 6, pp. 117-127, 2020, doi: 10.1109/MSP.2020.3014591.

[56] F. Liu et al., “Deep learning for community detection: Progress, challenges and
opportunities,” 2020, arXiv:2005.08225. m

39



