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ABSTRACT

Inspired by Waddington’s illustration of an epigenetic landscape, cell-
fate transitions have been envisioned as bifurcating dynamical
systems, wherein exogenous signaling dynamics couple to the
enormously complex signaling and transcriptional machinery of a cell
to elicit qualitative transitions in its collective state. Single-cell RNA
sequencing (scRNA-seq), which measures the distributions of
possible transcriptional states in large populations of differentiating
cells, provides an alternate view, in which development is marked by
the variations of a myriad of genes. Here, we present a mathematical
formalism for rigorously evaluating, from a dynamical systems
perspective, whether scRNA-seq trajectories display statistical
signatures consistent with bifurcations and, as a case study,
pinpoint regions of multistability along the neutrophil branch of
hematopoeitic differentiation. Additionally, we leverage the geometric
features of linear instability to identify the low-dimensional phase
plane in gene expression space within which the multistability
unfolds, highlighting novel genetic players that are crucial for
neutrophil differentiation. Broadly, we show that a dynamical
systems treatment of scRNA-seq data provides mechanistic insights
into the high-dimensional processes of cellular differentiation, taking a
step toward systematic construction of mathematical models for
transcriptomic dynamics.

KEY WORDS: Differentiation, Bifurcation, Single-cell RNA-seq,
Pseudotime, Waddington

INTRODUCTION

During development and tissue regeneration, it is envisioned that
cells progress through multiple transitions to ultimately adopt a
distinguishable function. Although each transition en route to a
terminal fate involves the coordination of myriads of molecules and
complex gene regulatory networks interacting with external factors,
there is a common view that they depend on significantly fewer
control parameters. This view was notably explicated by Conrad
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Waddington in an illustration of an epigenetic space as a tilted,
bifurcating landscape, where a vast number of nodes (genes)
provide the scaffold for the smooth hills and valleys (cell state)
down which a pebble (cell) can reliably roll until it finds a resting
position (terminal fate) (Fig. 1A) (Waddington, 1957).

Many of the characteristics of Waddington’s landscape have been
codified into the language of dynamical systems, including that
cell fates resemble valleys (attractors) in gene expression or
transciptomic space (Huang et al., 2005; Corson and Siggia, 2012;
Slack et al., 1991; Camacho-Aguilar et al., 2021), that a small
amount of stable states can emerge from large interconnected
Boolean networks (Kauffman, 1969), and that known genetic
interactions can yield multiple cell fates (bistability) (Huang et al.,
2007; Weston et al., 2018). Waddington’s illustration has also
motivated analysis of the wealth of data captured in single-cell RNA-
sequencing (scRNA-seq), in which the transcriptome of individual
cells are measured, often at multiple time-points, as they
differentiate. For example, fitting a mathematical model of a
pitchfork bifurcation to scRNA-seq data yields predictions for
developmental perturbations (Marco et al., 2014), reducing the
dimensionality of large transcriptomic matrices can enhance the
resolution of bifurcations to precisely determine the genes enabling a
cell fate decision (Setty et al., 2016; Tusi et al., 2018), and well
characterized cell-lineage relationships can be used to extract
predictive models of gene regulation (Furchtgott et al., 2017; Qiu
et al., 2020; Wang et al., 2022). While these studies generally
characterize cell fate decisions as bifurcations of an underlying
developmental landscape, other studies formulate cell fate transitions
as stochastic jumps between co-existing states of a multimodal cell-
fate landscape that can occur even in the absence of bifurcations, to
infer lineage relationships and state transition probabilities (Weinreb
et al., 2018a; Zhou et al., 2021; Lange et al., 2022).

In the face of these contrasting views, it remains unclear when,
during development, transcriptomes undergo bifurcations and
whether they can be identified purely from statistical analyses of
single-cell expression data alone. To address these unknowns, we
note that as a bifurcation is a qualitative augmentation of the steady
state solutions, or branches, of a dynamical system that occurs as a
control parameter varies, detecting bifurcations from transcriptomic
data requires that steady states and control parameters exist, and that
their dynamics can be identified from the data. We hypothesized
an association between cell fates and transcriptomic steady states
in scRNA-seq data, as the dynamic molecular processes that lead
to transcriptomic changes, such as signal transduction and
transcription, generally occur in the order of seconds and minutes
(Shamir et al., 2016), whereas cell fates change over the course of
hours or days (Slack et al., 1991), yielding a significant separation
between the time scales of molecular mechanisms and data
collection. We also hypothesized that inferred developmental time
(pseudotime) could be used as a high resolution readout of a
biological control parameter to pinpoint developmental bifurcations,
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Fig. 1. Cell type differentiation as a dynamical process.

(A) Reimagination of Waddington’s landscape of cell fate commitment in
which cell fates are represented as valleys, commitment barriers as hills and
gene activity as pegs underneath that control the heights of hills and valleys.
(B) Schematic cell-population snapshots of maturation (top), in which one
cell fate transitions to a different one, and a cell fate decision (bottom), in
which a pluripotent cell differentiates to either of two lineages. Cell type
images by A. Rad and M. Haggstrom. CC-BY-SA 3.0 license. (C) Gene
expression trajectories for cells (dots) at varying levels of a differentiating
stimuli for cases where the differentiation landscape does not bifurcate (top),
undergoes a saddle-node bifurcation (middle) or undergoes a pitchfork
bifurcation (bottom).

as it coincides well with intrinsic cellular dynamics, and may
therefore correlate with known biological control parameters, such as
morphogen concentration (Trapnell et al., 2014; Setty et al., 2016;
Street et al., 2018).

Here, we use these hypotheses to lay out and demonstrate a statistical
formalism for detecting and interrogating bifurcations in
developmental fate transitions directly from transcriptomic
pseudotime trajectories. Contrasting previous studies (Marco et al.,
2014; Setty etal., 2016; Huang et al., 2007; Weston et al., 2018), we do
not assume any specific mathematical form for the underlying genetic
interactions, nor do we assume the shape, or even existence, of an
underlying cell-fate landscape (Fig. 1B) (Chen et al., 2012; Mojtahedi
etal., 2016) as it is not our goal to discern a specific model. Instead we
rigorously query whether the necessary statistical signatures of
bifurcations are present in a developmental timecourse. We build on
and compare with similar styles of approach, which use correlation
structure to detect signatures and molecular mechanisms of disease
(Chenetal.,2012; Liu et al., 2012), analyze differentiation processes in
temporal and pseudotemporal gene expression trajectories (Mojtahedi
etal., 2016; Chen et al., 2018), and characterize reversibility in saddle-
node bifurcations (Li et al., 2019). We show that our dynamical
systems-driven approach enables us to distinguish between three
different types of transcriptomic variation directly from systems-level
data: a non-bifurcative cell fate change that is due to continuous
changes in gene expression (Fig. 1C, top); a cell fate change that is due
to a one-to-one state transition (Fig. 1C, middle), such as those that
may occur during terminal-fate maturation (Ferrell, 2012); and a cell
fate change that is due to a one-to-many state transition, e.g. those that
occur when pluripotent cells decide between multiple cell lineages
(Fig. 1C, bottom). We apply our framework to a class of in silico high-
dimensional genetic networks to demonstrate its ability to recover the
salient features of a bifurcating dynamical system, and examine the

effects of high dimensionality and noise. We demonstrate the utility of
our framework in the context of a recently published scRNA-seq
exploration of hematopoiesis (Weinreb et al., 2020), and show that
cell-fate bifurcations can be pinpointed and analyzed in scRNA-seq
data, even without detailed knowledge of the dynamics and controls of
the underlying system. Finally, we demonstrate that our framework
allows us to identify a low-dimensional phase plane in which the
dynamics unfolds, and can be used to distinguish new cellular clusters
and extract genetic relationships that are pivotal to the bifurcative cell-
fate change.

RESULTS

In this section, we show how the Continuous Time Lyapunov (CTL)
equation (Appendix S1, section 1) can be used to investigate
bifurcations in transcriptomic trajectories. An advantage of this
framework is that we do not have to posit any specific functional
form for the dynamical processes that yields a transcriptomic state or
a shape, or even the existence of an underlying developmental
landscape, only that the dynamical processes are (1) stochastic and
Markovian (Rosenfeld et al., 2005; Raj and Van Oudenaarden, 2008;
Gregor et al., 2007; Tkacik et al., 2008; Weinreb et al., 2018b; Zhou
etal.,2021); and (2) occur at significantly faster timescales (seconds
to minutes) than the timescales over which transitions in cellular
fates are observed (hours to days) (Shamir et al., 2016; Slack et al.,
1991). A consequence of these two assumptions (see details in the
Materials and Methods section ‘Continuous time Lyapunov equation
for transcriptomic matrices’) is that the local time evolution of the
transcriptomic profile of a cell is controlled by a single matrix,
the Jacobian (J), where J; = 0g;/0g; is the effect of the amount
of gene j on the dynamics of gene i. Generically, the local geometry
of a dynamical system can be obtained from its diagonalization,
J=PAP~'  where A is a diagonal matrix of eigenvalues
{2y )\ng} and PT is the square matrix of eigenvectors
{P\,Py---.P,,}. If the system has a single stable transcriptomic
state, then A; < 0V i, in the same way that highly convex curvature
is associated with a single fixed point (see Appendix S1, section 1
and Fig. S1, foran example). Conversely, if the system is undergoing
a bifurcation, than the largest Jacobian eigenvalue, which we refer to
as A, and points in the p,; direction, must approach 0 from below, in
the same way that flat curvature enables a fixed point exchange
(Appendix S1, section 1). In the absence of a model, the eigenvalues
and eigenvectors of the Jacobian are generally inaccessible from the
CTL equation, even if the stochasticity is parameterized, as the
covariance is a symmetric matrix and the Jacobian is asymmetric,
yielding twice as many unknowns as there are equations. However,
at a bifurcation, the CTL simplifies considerably, such that

A, G Ny m
where Cj; is the covariance of gene i with gene j (Oku and Aihara,
2018). This simplification yields three key insights into the eigen-

decomposition of the Jacobian directly from the eigen-decomposition
g o

of the covariance, C; = ) 5[5}, where {, @, ..., w, } are its
k=1

eigenvalues and {51, 5, .. ., 5, } are its eigenvectors. First, as all 5;, by
definition, normalize to 1, for at least one covariance eigenvalue (@,
without loss of generality):

lim w; = oo, )

q—

i.e. the covariance diverges along the principal direction ;. Second, it
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can be shown (see Materials and Methods section ‘Bifurcation
eigenvector equivalence’) that

lim 3:l = ipdv (3)

meaning the direction of maximal covariance is identical to the
direction of the bifurcation! Third, a direct result of Eqn. 1 is that

C.
lim ——2— = +1, 4
N v

meaning the Pearson’s correlation coefficient R; = C;;//C;Cj; of

the data along axes i and j becomes maximal, provided that their

corresponding loadings on the eigen-vector (p, ) are non-zero.

The correlation structure and expansion of correlation coefficients at
a bifurcation (Eqn. 4) has been used previously in the theory of
Dynamical Network Biomarkers, or DNB (Chen et al., 2012), to
explore bifurcations in cases where it can be determined which state
variables are mechanistically involved in the bifurcation, including
single-cell data (Mojtahedi et al., 2016). In our analysis, we analytically
(Appendix S1, section 2) and empirically compare with this method,
but note that unlike DNB analysis, it is not necessary to delineate which
genes drive the bifurcation, as Eqn. 2 is a global feature of the
covariance. Additionally, in contrast to previous studies that focus on
correlation coefficients, we explore how covariance eigenvectors
(Eqn. 3) provide direct insight into the underlying mechanisms driving
developmental bifurcations.

Thus, three specific changes to the transcriptomic covariance data,
Eqns. 2-4, that can be determined from observations of state variables,
can inform us of the salient features of the system, its bifurcations, even
when we have no direct access to the generative model for the
dynamics or to its corresponding underlying geometry. Notably, these
features rely only on the transcriptomic data being sampled from the
vicinity of a steady state, and do not rely on special circumstances, such
as the Jacobian being symmetric, or on the noise being of a particular
nature. We first use theoretical models of noisy, high-dimensional
genetic networks to demonstrate how this approach can be leveraged to
detect and assess bifurcations of an underlying dynamical system from
observations of state-variables alone (for a procedural outline, see
Materials and Methods section ‘Analysis pipeline”). Following this, we
emphasize the power of this approach by directly applying it to
scRNA-seq data for the neutrophil lineage in the hematopoietic system.

Covariance analysis recovers salient features of a
high-dimensional in silico gene regulatory network
To better understand our mathematical framework in the context of
scRNA-seq data, where the large number of discordant genes and
biological noise may obfuscate the predicted covariance signal that is
indicative of a bifurcation, and cell fate changes may take different
geometric forms, we tested the framework on a noisy, high-
dimensional, gene-regulatory network (GRN), illustrated in
Fig. 2A. The deterministic aspects of this GRN are governed by a
set of explicit ordinary differential equations, G = F(G), and
stochasticity is incorporated by simulating the GRN with Poissonian
noise (see Materials and Methods section ‘Simulation methodology’).
In the GRN, cell fate transitions result from two mutually inhibiting
‘driver’ genes, g; and g», via their dynamics:

. my

&g 7(1+g%) kDgh (5)
where kp, are their degradation rate, and m; , determine the scales of
their synthesis (Gardner et al., 2000). Varying the control parameter 1,

;
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Fig. 2. Analysis of a gene regulatory network around a saddle-node
bifurcation. (A) Schematic of the GRN for 5 of the 102 genes. Undisplayed
nodes have a unidirectional arrow stemming from either g, or g».

(B) Distributions of g4 at steady state (see Materials and Methods section
‘Simulation methodology’) for three values of m4. (C-G) GRN observations
as a function of the bifurcating variable m4 evaluated over a distribution of
100 cells (see Materials and Methods section ‘Simulation methodology’).
(C) Average final expression for each gene. Expression of driver genes, g4 »
(bottom and top rows, respectively), are min-max normalized. Response
genes are sorted by their corresponding driver [d(i)] and activation level («;).
(D) Black and gray indicate largest eigenvalue of covariance matrix shifted to
have 0 min. Purple dashed line indicates DNB order parameter for gene
expression matrix, where driver genes and tightly coupled responders
|ai—0.5|<0.25 are in the DNB (Chen et al., 2012). (E) Distribution of
normalized gene expression for each cell projected onto the bifurcating axis.
(F) Red squares indicate the largest eigenvalue of the Jacobian matrix. Error
bars are s.e.m. Blue circles indicate Euclidean distance from the
corresponding Jacobian eigenvector (B4) to the principle covariance
eigenvector s;. (G) Distribution of Pearson’s correlation coefficients for all
gene pairs. (H) Correlation coefficients between responding genes and their
driver as a function of the coupling coefficient & (Egn. 6) at three values of
my. Each column in E and G integrates to 1.

yields a saddle-node bifurcation in gene-expression while varying kp,
yields a pitchfork bifurcation (see Appendix SI, section 3 and
Fig. S2). Similar networks have been analyzed to provide insight
into gene inhibition and activation (Gallivan et al., 2020), and into a
diversity of biological systems, such as the lac-operon (Ozbudak
et al., 2004) and cell-cycle control (Novak and Tyson, 1993).
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As GRNSs typically involve hundreds of genes, we include an
additional n,—2 genes in the network that respond variably to one of
the two driver genes, according to

2
) aigyy t+1—a
g=—2 ke,

(6
1+ gj,(i) )

where i€[3, ng), k; is the degradation rate of /™ gene, g is its expression,
d(i) indicates the driver (d(i)=1 if g; responds to g; and d(i)=2 if it
responds to g») and ¢;€[0, 1] is the strength of the connection with its
driver (=0 yields full inhibition and a~=1 yields full activation).
Although this GRN can be made more complex, by including
feedback from the responding genes to the two driver genes or by
increasing the number of driver genes themselves, this simple model
provides an interpretable demonstration of our proposed scheme.

We simulated this model for a fixed number of genes (1),
statistical replicates or cells (n.), noise scale (s), duration (V) and
timestep (67) for different values of the control parameters (m,, kp)
(see Materials and Methods section ‘Simulation methodology’). We
define the [1.xn,] transcriptomic matrix G(m,, kp) once the system
has reached steady state in the simulation. We observed that the
steady-state distributions for individual genes (e.g. g;, shown in
Fig. 2B) shift their mean as the control parameter, 7, is varied and
exhibit bimodality at the bifurcation point, m;=m,.=3, as expected
for saddle-node bifurcations.

Having verified that our model simulates a system that undergoes a
high dimensional saddle-node bifurcation driven by a two-gene driver
core, we used it to examine the effects of noise and a large number of
responding genes on the theoretical predictions (Eqns 2-4). As
predicted, we found that w,(m;), the largest eigenvalue of the
covariance of G(m,), is maximal at the critical value m, .. (darker line
in Fig. 2D), and the increase is significantly larger than can be
obtained from a null distribution (lighter line in Fig. 2D) that lacks
the correlations between genes of the model (see Appendix Sl1,
section 4). This contrast between the data and the null can be
understood by considering the bimodality of the transcriptomic
distribution at the bifurcation. Far from the bifurcation, the
transcriptomic distribution is unimodal, and all @, values scale
with the noise scale s, which is undirected and therefore unaffected
by resampling, yielding w; ~ (&) (Fig. S3, left and right panels).
However, at the saddle-node bifurcation, the transcriptomic
distribution is bimodal, so w; scales with the distance between the
two modes (Fig. S3, center top); marginal resampling of
transcriptomes at the bifurcation yields new modes and the
increased dimensionality of the bifurcation diminishes ",
compared with w; (Fig. S3, center bottom). While Fig. S3 only
demonstrates the bifurcation bimodality in g;,, the full
transcriptomic  bimodality can be visualized by computing
g(my) - 51 (mc), the normalized projection of the transcriptome of
each cell along the principal covariance eigenvector. The
distribution of this projection is densely centered around different
fixed points to the right and left of m, ., but widens significantly at
my. as there is non-zero probability for both transcriptomic modes
(Fig. 2E).

Although this toy model has an explicit bifurcation parameter,
often the controls for specific developmental transitions are
unknown in scRNA-seq data and the developmental time for each
cell is inferred (pseudotime). To verify that similar spikes are
expected even when the covariance is measured as a function of an
indirect measure of a control parameter, such as pseudotime, we
performed a pseudotime analysis on our toy model (Fig. S4A). In
particular, we reduced the dimensionality of G using the SPRING

method (Weinreb et al., 2018a), in which the (x, y) coordinates of
each cell are determined by optimally placing each cell closest to its
4 nearest neighbors in the space of the top 10 gene-wise principal
components (PC) of highly variable genes (Weinreb et al., 2018a),
and computed their pseudotime using Slingshot (Street et al., 2018),
in which pseudotime is approximated by the distance of the
reduced-dimension data to a spline fit from one end of the data to the
other (see Appendix S1, section 7.2 for details). We then binned
the replicates (cells) by their pseudotime rank in 100 cell bins, and
computed the principal covariance eigenvalue in each bin. We
found that w; exhibited a statistically significant spike precisely
where the distance between the average control parameter in the
pseudotime bin was closest to the critical parameter m; (Fig. S4B).
This result suggests that our analytical framework may be directly
applicable to detecting similar bifurcations in pseudotime-sorted
scRNA-seq data.

Because, in this example, we have an explicit generative model
(F(G), given by Eqns 5 and 6), we can validate that just as m;,
resembles a bifurcation from analysis of the covariance matrix, it
also resembles a bifurcation of the full noisy GRN, from analysis of
the Jacobian. We show that the maximum negative eigenvalue (1,)

. og .
of the Jacobian (J(m;) = —=| gm)) for this network approaches 0

g
from below as m;—m;. (Fig. 2F). We also show that at m,,, the

direction of maximal covariance, is given by the corresponding
eigenvector of the Jacobian (7,), as the Euclidean distance between
51, the principal eigenvector of the covariance, and j; approaches 0,
as my—mj, (Fig. 2F). Thus, although the finite system size (n.)
prevents, or regularizes, @, from diverging, and |5; — p,;| > 0, o, is
still at its largest and the eigenvectors are in closest correspondence
at the bifurcation.

To empirically benchmark the principal covariance eigenvalue as
a bifurcation indicator, we selected genes with strong connections
(la;—0.5/>0.25) and computed the DNB order parameter as a
function of m; (see Appendix S1, section 2) (Liu et al., 2012; Chen
et al., 2012; Li et al., 2019; Chen et al., 2018). We found that the
variation of @; matched the variation of the DNB order parameter
(Fig. 2D), providing empirical support for using @; to identify
bifurcations. Importantly, computing @; did not require
preprocessing, while computing the DNB order parameter requires
a preprocessing step to select the DNB genes (Chen et al., 2018).
Additionally, @, is computationally more efficient, as it is obtained
via the singular value decomposition of the gene expression matrix,
whereas the DNB order parameter is obtained via the correlation
matrix across tens of thousands of genes (Hastie et al., 2009).

Although the covariance eigen-decomposition provides insight
into the timing and direction of a bifurcation, Eqn. 4 predicts that the
(Pearson) correlation coefficients between genes may help
determine which genetic relationships are most critical for the
dynamics at the bifurcation. We found that, for low and high m,
when the network only has one fixed point, the distribution of
correlation coefficients R;; is strongly centered around 0 (Fig. 2G).
However, at the bifurcation, this distribution spreads out to + 1, as
predicted in Eqn. 4 (Fig. 2G). To determine whether the gene pairs
that yielded large R;; corresponded with critical gene relationships in
our network, we plotted R; 4): the correlation between all responder
genes and their drivers, sorted by their connection strength ;. We
found that these correlation coefficients were much more strongly
indicative of the responder-driver dependency () at bifurcation
(Fig. 2H, green) rather than far away from the bifurcation (Fig. 2H,
red and blue). Again, the GRN model makes it explicit that,
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although the correspondence between geometry and dynamics is
not universal, owing to the high-dimensionality of the system, in the
vicinity of a bifurcation, a form of dimensionality reduction emerges
that enables the gleaning of geometric characteristics directly from
the dynamics. Thus, entries of a correlation matrix with high
magnitude at a bifurcation may be reliable indicators of mechanistic
gene-regulatory features.

We further used our GRN model to probe a pitchfork bifurcation
induced by varying kp, (Fig. S5A). Unlike the example of a saddle-
node bifurcation, we observed that @, does not peak at the bifurcation
parameter kp=0.5, but rather begins to increase (Fig. S5B). This
feature directly follows our interpretation that @; corresponds to the
distance between the two modes of transcriptomic distribution.
Whereas the bimodality of the saddle-node bifurcation results from the
discontinuous transition between states, the bimodality of pitchfork
bifurcation emerges continuously from its root and becomes more
pronounced as the control parameter is increased. Therefore, the
distance between the modes (1) increases with the control parameter.
By clustering the cells according to their transcriptomic mode, or
branches, we are able to recover the bifurcation signature predicted by
Eqn. 2 (Fig. S5C), but we note that precise clustering requires prior
knowledge (e.g. how many clusters there are).

As developmental decisions are often modeled as noise-induced
state transitions between co-existing transcriptomic states (Weinreb
etal., 2018b; Zhou et al., 2021), rather than bifurcations, we sought
to determine whether our framework could distinguish these two
possibilities. We used our model gene network (Fig. 2A) to explore
the noise-induced transition possibility by varying the noise scale s
of the network at fixed values of the bifurcation parameters (see
Appendix S1, section 5 for details). We found that the principal
covariance eigenvalue exhibited unique step-like dynamics as the
stochasticity was varied (Fig. S6), which was unlike either the one-
to-one (Fig. 2D) or one-to-many (Fig. S5B) bifurcation examples
explored, demonstrating that analysis of the covariance dynamics in
transcriptomics should enable distinguishing between noise-
induced transitions and bifurcations.
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In this example, we have demonstrated the applicability and power
of the theoretical infrastructure outlined above to analyze a high-
dimensional and noisy dynamical system undergoing a variety of
bifurcations, by uncovering its crucial aspects, including its location,
direction in gene space and influential genetic relationships. These
calculations are also computationally simple; although covariance
matrices can be cumbersome to compute for large numbers of genes
and cells, reduced singular value decomposition can be used to
determine quickly its largest eigenvalue and eigenvector, which is all
our approach requires. Notably, our results apply only if the system is
measured at steady state, otherwise there is no reason to anticipate clear
divergences in the distribution of eigenvalues, transient bimodality or
equivalence between the covariance and Jacobian principal directions
(Fig. STB-D).

Covariance analysis pinpoints a bifurcation in neutrophil
development

Having verified that gene-gene covariance can be used to provide
insight into transitions in a simulated genetic context, we applied our
analysis framework to a recently published scRNA-seq data set of
mouse hematopoietic stem cell (HSC) differentiation (Weinreb et al.,
2020). In this experiment, HSCs were isolated in vitro, barcoded,
plated in a media that supports multilineage differentiation (day 0) and
subsequently sampled for single-cell sequencing using inDrops (Klein
etal., 2015 ; Plasschaert et al., 2018) on days 2, 4 and 6. The resultant
transcriptomic matrix (25,289 genes in 130,887 individual cells) was
visualized in 2D using the SPRING method (Weinreb et al., 2018a)
(Fig. 3A), using 4 nearest neighbors in the top 50 PC space for highly
variable, non-cell cycle genes (Weinreb et al., 2018a). Each cell was
then associated with one of 11 different cell types (annotations in
Fig. 3A) based on its position in the SPRING plot and expression of
cell type-specific marker genes (Weinreb et al., 2020). Cells that
belonged to the developmental transition from multipotent progenitor
(MPP) to neutrophil were identified by recategorizing cells as a cell-
label distribution, and ranking cells by their similarity to fully
committed neutrophils (see details in Appendix S1, section 7.1). The

Fig. 3. Covariance analysis of temporal scRNA-seq data
shows signatures of developmental bifurcations.

(A) SPRING visualization for each cell (point) in an in vitro
scRNA-seq experiment of mouse hematopoeitic stem cell
differentiation (Weinreb et al., 2020). Cells in the pseudotime
trajectory analyzed are colored accordingly (blue to yellow),
whereas others are gray. SPRING coordinates, cluster labels,
pseudotimes and a similar visualization were first reported by
Weinreb et al. (2020). (B,C) Observations of neutrophil
trajectory as a function of pseudotime calculated for each of 121
bins of pseudotemporally adjacent cells. All bins had 1000 cells
except for the last one, which had 1310 cells, and had a 50%
overlap with neighboring bins. (B) Average gene expression in
pseudotemporal bins for highly expressed [max ({expr))>1] and
highly varying [coeff. of var.({expr))>0.5] genes. (C) Principal
covariance eigenvalue (black) compared with a statistical null
(gray, details in Appendix S1, section 4), shifted to have 0 min.
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Error bars of null are +1s.d. DNB order parameter also shown,
where the DNB comprises neutrophil marker genes (purple
dashed line) or is the average of many random gene sets
(purple solid line, see Fig. S9 for details). Green and yellow
dashed lines indicate the developmental transition times z4
and 7.
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61,310 cells identified as belonging to the neutrophil transition were
sorted into a neutrophil pseudotime trajectory (Fig. 3A) by ranking
cells according to their similarity with the earliest pluripotent cells
(see Appendix S1, section 7.1). This data-specific pseudotime
algorithm was validated via the clonal barcodes of the cell, by
ensuring that the MPP cells in the trajectory included neutrophil
clones, and via the sequencing time, by ensuring that cells collected
earlier were ranked earlier in the trajectory. Thus, several features of
this trajectory make it ideal for applying our analysis framework: it
includes a large number of cells, enabling statistically reliable
covariance measurements; it is robust to the systematic, temporal
controls of sequencing -time and cellular barcodes; and it is part of
hematopoiesis, a well-characterized developmental process that
enables the comparison of our findings with past work. We found
that this trajectory was extremely dynamic, as the expression of
hundreds of highly expressed genes is temporally variable, with
large groups of genes either monotonically increasing or decreasing
(Fig. 3B).

To determine whether the transitions from HSC to neutrophil
were due to bifurcations in transcriptomic space, we split the
neutrophil trajectory into overlapping bins of 1000 cells (last bin
had 1310) and applied our covariance analysis to the full, row (cell)-
normalized transcriptomic matrix at each bin G(r). We found that
the largest eigenvalue of the covariance of the full gene expression
matrix [@(7), dark line in Fig. 3C] exhibited very little variation for
7<7,~85, but began to increase at 7, and exhibited a significant spike
at 7,=109, which is indicative of a bifurcation. To determine
whether @, changes were statistically significant, we computed the
corresponding statistical null (w'l“‘”, lighter line in Fig. 3C; details in
Appendix S1, section 4) and found that the large peak at 7,, was
easily distinguishable from the null. To benchmark our result
against established bifurcation identification methodologies, we
computed the DNB order parameter (Chen et al., 2012) across
pseudotime, using known marker genes for neutrophils and
neutrophil progenitors (Weinreb et al., 2020) as the DNB (see
details in Appendix S1, section 2). We found that the DNB order
parameter (Fig. 3C, purple dashed line) exhibited similar dynamics
to ®1(7), but we emphasize that, unlike the computation of w;(7),
computing the DNB requires gene filtering, as random sets of genes
did not exhibit bifurcation signatures (Fig. 3C, purple solid line;
Fig. S9). We also verified that bin size did not generally impact the
dynamics of w;(7) (Fig. S10).

We first focus our attention at the dynamics at z,,,, after which we
will address those observed at 7, As this pattern of a statistically
significant spike following near-constant @, echoed the observed
behavior of a saddle-node bifurcation in our toy model (Fig. 2D), we
speculated that at 7,, there was a one-to-one transcriptomic state
transition. Additionally, to verify that the temporal trend in Fig. 2D
was not limited to the diffusion-based pseudotime algorithm used
by Weinreb et al. (2018a), we recalculated pseudotime using
Slingshot (Street et al., 2018), and found the same rise and peak of
o, (see Appendix S1, section 7.2 and Fig. S11A,B).

We focus now on our observations in proximity to 7, As the
increase in ; at 7, strongly resembled the pitchfork bifurcation of
our toy model (Fig. S5B), as well as the proliferation of cell fates
seen in high-resolution time-course scRNA-seq experiments
(Nitzan and Brenner, 2021), we hypothesized that the increase of
o, at 7, was also due to transcriptomic state changes. Further
evidence of a developmental transition is that, at 7, the distribution
of expression of each gene across cells begins to significantly shift
toward higher values (Fig. S10C). However, the precise nature of
this developmental transition is unclear, because, in contrast to our

toy model, 0% is nearly indistinguishable from ™! during the
increase.

To determine whether the transcriptomic state transitions we
identified had biological significance, we compared our findings
against the tree of cell fates for neutrophil development (Fig. 4A).
We found (Fig. 4B) that 7,; the moment @, begins to increase,
corresponded well with the moment in pseudotime that cells switch
between the endpoints of this tree: from not expressing any terminal-
fate marker genes to primarily expressing neutrophil cell-fate
markers (Weinreb et al., 2020). At a more granular developmental
level, the pseudotimes highlighted by our covariance analysis align
with specific transitions between intermediate neutrophil progenitor
states (Fig. 4A). These transitions include: (1) one-to-many cell fate
changes (i.e. decisions), such as the transition between a granulocyte
monocyte progenitor (GMP, or myeloblast) and any of its four
terminal fates (neutrophil, monocyte, eosonophil and basophil); and
(2) one-to-one cell fate changes (i.e. maturation), such as the
transition between promyelocyte and myelocyte (Weinreb et al.,
2020; Borregaard, 2010; Ostuni et al., 2016). 7, corresponds well
with the pseudotime at which promeylocyte marker genes are
maximal (Fig. 4C and Fig. S11C), suggesting a connection between
7, and the one-to-many change from GMP to promyelocyte. This can
perhaps be understood in light of other one-to-many state transitions,
such as a pitchfork bifurcation (Fig. S5A), where ©; increases
steadily if different branches are left unclustered (Fig. S5B).
Although the null and signal were significantly closer in the
neutrophil trajectory than in the toy model, this discrepancy may be
related to the difficulty in identifying one-to-many transcriptomic
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Fig. 4. Detected bifurcations correspond to biologically characterized
developmental transitions. (A) Schematic of neutrophil development,
beginning from hematopoietic stem cells and ending at the neutrophil
myelocyte — a committed neutrophil progenitor. Lines indicate naturally
occurring progeny, other than the cell type itself. Subsequent neutrophil-
committed fates (neutrophil metamyelocyte, band cells and neutrophils) are
not shown. Cell type images by A. Rad and M. Haggstrém. CC-BY-SA 3.0
license. (B) Fraction of cells in each cell type, based on annotated clustering
in Weinreb et al. (2020). (C) Average expression of promyelocyte (blue) and
myelocyte (gold) marker genes (Weinreb et al., 2020). Error bars (s.e.m.)
are smaller than symbols.
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changes in non-ideal conditions, compared with one-to-one
transitions (see Appendix S1, section 6 and Fig. S8 for details).
Accordingly, the increase of w; at 7, suggests that, although cells in
the neutrophil trajectory are expected to include only the neutrophil
lineage branch of GMP, they may in fact include other GMP
lineages, such as eosonophils or basophils.

Conversely, 7,, corresponds well with the pseudotime when
myelocyte marker genes are maximal and promyelocyte genes have
reduced expression (Fig. 4C and Fig. S11C), suggesting that 7,
indicates the transition point between these two cell fates. Although
the myelocyte marker genes begin increasing earlier than 7, in the
trajectory, this may be because of additional cellular processes that
smooth out their dynamics over the course of a cell-fate transition.
Alternatively, the marker gene dynamics may indicate that the
transition at 7, is connected to the transition at 7,; e.g. the
eigenvalue dynamics at 7, may hint at an early bias toward
the ultimate myelocyte transition, similar to other developmental
biases that have recently been identified in hematopoiesis (Wang
et al., 2022).

Thus, by using Eqn 2 to quantify the geometry of neutrophil
development, we were able to recover the known GMP-neutrophil
cell fate decision, qualify the trajectory as likely including other
lineages and pinpoint a maturation step in neutrophil development.
Importantly, this analysis also highlights the difficulties in using the
principal covariance eigenvalue alone to characterize bifurcations,
as one-to-many bifurcations in particular may be extremely
sensitive to small errors or biases. To address these difficulties,
and provide additional insights into possible dynamical transitions,
we now leverage a key feature of the covariance analysis outlined
above: that signatures of the underlying mechanisms driving a

system through a bifurcation are evident in its principal covariance
eigenvector.

Covariance eigenvectors provide interpretable low
dimensional representations of neutrophil bifurcations
Perhaps the most surprising consequence of the Continuous Time
Lyapunov equation, encapsulated in Eqn. 3, is that a high-
dimensional bifurcation eigenvector, which is a characteristic of
the underlying Jacobian of the system, is directly calculable from the
transcriptomic-state data, as it equals, up to a sign, the principal
covariance eigenvector 7. This result motivated us to probe 5 (7),
the principal eigenvectors of the covariance matrix as a function of
pseudotime, and in particular its structure in the vicinity of 7, and 7,,,,
to glean further insight into the biological nature of our detected
transition points.

We first sought to determine the uniqueness of 5,(7), as it is
extremely high dimensional, by measuring how it varies across
pseudotime, compared with average gene expression. We found that
the correlation of average gene expression across pseudotime
exhibits an approximate two-block structure throughout the
trajectory, in which expression is well correlated in z€[0, 80] and
again in 7€[90, 121¢] (Fig. 5A), hinting at the existence of two gene
expression states. Interestingly, the correlation of §; was
significantly more detailed, exhibiting as many as six distinct
blocks, with higher positive correlation and lower negative
correlation than seen in expression (Fig. 5B). Importantly, 7, and
7,, align well with transitions between blocks, further bolstering
their significance as markers of developmental transitions. Thus, the
variation of §)(7), even when it is high dimensional, may reveal
significant detail in the structure of a developmental trajectory.
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Fig. 5. Analysis of high-dimensional bifurcation directions. (A) Pairwise correlation of average normalized gene expression in each pseudotime bin.

(B) Pairwise correlation of the principal covariance eigenvector of each pseudotime bin. (C) Projection of normalized gene expression along principal
eigenvectors at 79, 74 and z,,,. Each dot is a cell and its color indicates the pseudotime. Inset shows corresponding position of the cell in the SPRING plot
(Fig. 4A). (D) Average weight, per gene, of the highest weighted categories in the KEGG database for Mus musculus, for the principal covariance
eigenvectors at 7,74, and z,,,. (E) Distribution of gene expression projected onto Sy, near z4 (top), and distribution of gene expression projected onto Sy near
m (bottom). (F) As in C, but the color of points (cells) indicates their cluster in the GMM; insets are split by cluster.
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We next sought to examine whether 5|(7) contain axes of a
simplified space along which to examine the trajectory. As the
correlation between eigenvectors exhibited distinct blocks, two of
which had bifurcative dynamics, we used 57 near the beginning of
the trajectory and near 7, and 7,, to revisualize the neutrophil
trajectory. For 7, and 7, we used an s} toward the middle of its block
(at 7y and 7, respectively; see Appendix S1, section 8 for details) to
ensure that the direction had stabilized; however, for 7,, we used the
vector precisely at 7, as the direction of a one-to-one transition may
only be observable at the moment of bifurcation (Eqn. 3). We found
that for the majority of the trajectory, the variation was localized to
51(7o), but starting near 7, cells began to vary along both 5 (7,) and
51(7,) (Fig. 5C). As the variation along 5(7;) and 5|(7,)
coincided, and they had a high correlation of 0.67 (Fig. 5C),
while both being nearly completely orthogonal to 5 (7 ), we sought
to determine their differences. We found that whereas the fraction of
variation of gene expression along 5 (7;) begins to increase near 7,
and remains high even around 7, (Fig. S12A), highlighting the
importance of 5y (fau,) for the transition at 7, 1(7,,) accounts for
only a significant fraction of variation very close to 7,, (Fig. S12A),
suggesting additional features that are distinct from 5|(7y)
(Fig. S12A). Additionally, the projection of the vector tangent to
gene expression onto these eigenvectors appears high for both
bifurcation eigenvectors after 7, suggesting that they are
simultaneously involved in the gene expression dynamics
(Fig. S12B) and that, at least from 7, onward, the trajectory
appears multi-dimensional. We found hints of the distinctly 5 (7,,)
features in the gene expression projection (Fig. 5C), where towards
the end of the trajectory, when cells have already deviated far from
the 5y (7,,) = 0 plane, some of the cells appear closer to that plane.
Thus, the increased variance along 5 (7,,) reflects the spike of w; at
7,, (Fig. 4C), and further illuminates it by showing that the direction
of the bifurcation is toward the pluripotent state.

As these directions in transcriptomic space revealed new
dynamics, we probed the loadings of each eigenvector to
determine its functional relevance. To do so, we computed the
average weight of each functional category in the KEGG database
for Mus musculus in the eigenvector (Kanehisa, 2019), i.e.

1 2
“iG > s,
“lee{G.}

We(t) ()

where W,(t) is the average weight of category ¢ at pseudotime ¢, G..
is the set of genes in the transcriptomic matrix that map to category
¢, and s,(t) is the weight of gene g in the principal covariance
eigenvector at pseudotime 7. We show W(¢) for t € {7y, 7,4, 7, } in
Fig. 5D for the five categories with highest W, at each of those
pseudotimes. We found that W.(7,;) and W.(z,) were heavily
weighted for interleukin 17 (IL17) signaling, a key pathway for
controlling infection (Monin and Gaffen, 2018), which has been
shown to be activated by neutrophils (Li et al., 2010), to promote
neutrophil recruitment (Cua and Tato, 2010) and to aid in the
formation of neutrophil exctracellular traps (Lin et al., 2011).
Interestingly, ' (7,,) is also highly weighted for regulated cell death
mechanisms, including ferroptosis and necroptosis. The high
weight for these mechanisms may indicate that the transition at z,,
includes a functional gain, as ferroptosis has recently been
demonstrated as a mechanism that neutrophils use to combat
glioblastoma cells (Yee et al., 2020) and is also associated with
neutrophil extracellular traps (Chen et al., 2021). Alternatively,
these mechanisms may have resulted from the activation of cell
death within the neutrophil population itself, as necroptosis has been

suggested as a population-control mechanism to prevent tissue
damage that can occur from an overaccumulation of neutrophils at
an infection site (Wang et al., 2018).

Last, we used 5 (7) to examine whether the increased o, at 7, and
7,, 1s due to the emergence of a second distinct cellular population
or, alternatively, to an increase in the transcriptomic variance.
Concretely, if the increased w; is due to a second population of cells,
then the projection of gene expression at 7 along 5 (7) should appear
bimodal. We found that this projection widened near both 7, and z,,
(Fig. 5E and Fig. S12C), reflecting their increased @, and exhibited
bimodality at 7,,, suggesting the emergence of a second population
of cells. This bimodality is also apparent from the gene expression
distributions for many of the genes with highest weights in 5 (7,,),
including Fth1, Psap and Ccl6 (Fig. S13). To further disentangle the
two populations of cells, we fit a two-peak Gaussian Mixture Model
(GMM) to G(r,) (see Appendix S1, section 9 for details)
(Pedregosa et al., 2011). The GMM clearly distinguished the two
modes in bimodal gene expression distributions, and showed that
many other genes, such as S100a9 and Ngp, which appear initially
to have unimodal distributions, also exhibit bimodal structure
(Fig. S13).

To evaluate the dynamics of the two cellular populations, we used
the GMM to predict the cluster label for all cells in the full trajectory.
We found that, for 7<z,, all cells belonged to the same cluster
(GMM-a), and began to separate into two clusters (GMM-a and
GMM-b) near 7z, (Fig. S14). Additionally, the two clusters exhibit
contrasting @, dynamics: GMM-a has increasing @, while GMM-b
has a spike in @, at 7,, (Fig. S14). Importantly, the clustering split the
cells along 5/ (7,), such that cells that were late in pseudotime, but
close to the 51 (7,,) = 0 plane, are part of cluster GMM-a, indicating
that they are functionally earlier in the neutrophil specification path
(Fig. 5F).

Summarizing, we found that the geometry of the data in
transcriptomic space, explicated by the principal covariance
eigenvector, yielded significant insight into developmental
specification dynamics throughout pseudotime, especially at
bifurcations. Throughout pseudotime, correlations between
eigenvectors were able to pinpoint pivotal trajectory moments,
including, and in addition to, those indicated by the principal
covariance eigenvalue. Although the eigenvalue analysis alone did
not clearly distinguish between the two transitions, the eigenvector
analysis highlighted unique mechanistic features at each transition,
suggesting they represent distinct developmental events.
Eigenvectors at the bifurcations were also helpful in visualizing
the trajectory, and inferring the molecular and cellular processes that
reshape the developmental landscape. Furthermore, by viewing the
bifurcating data along its eigenvector, we were able to discern
bimodality and to distinguish between multiple cell fates within the
same lineage. Thus, eigenvector analysis appears to be a promising
new direction for analysis of pseudotime trajectories.

DISCUSSION

A singular challenge in understanding cellular fate transitions using
transcriptomics has been dimensionality: cell fates are a low-
dimensional functional description, a valley in Waddington’s
landscape, whereas gene-expression profiles are points in a
myriad-dimensional space — how can gene expression possibly
show the geometry of development? In this study, we have
leveraged the continuous-time Lyapunov equation to show that
the dynamics of state-variable covariance, even at high
dimensionality, are sufficient to assess a crucial aspect of
developmental geometry: when and how linear stability is lost to
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yield a bifurcation. Our central and novel result, based on a restricted
region of the transcriptomic trajectories present during the process
of hematopoiesis, is that the requisite statistical signatures of a
bifurcation are detectable and present during development, even
through the complex, high-dimensional lens of sequencing.
Although biases and imperfections in data may confound
developmental bifurcations, pairing analysis of both the principal
covariance eigenvalue and eigenvectors enable us to disentangle
multiple transition points, and elucidate mechanistic features that
are normally completely hidden in the absence of a candidate
mathematical model. Thus, our results have important
consequences for the theoretical understanding of developmental
transitions, the specific biology of neutrophil development and the
analysis of dynamic biological data.

Our finding that a transcriptomic trajectory can have
distinct geometric signatures, including durations during which
the principal covariance eigenvalue is constant or spikes, has
considerable consequences for the theoretical understanding of
developmental dynamics. That we saw any consistent behavior in
the principal covariance eigenvalue lends significant support to our
initial hypothesis that cell fate modifiers operate at a much slower
rate than transcriptomic modifiers, because if these occurred on
similar timescales, no such statistical signature would be evident,
let alone those that align well with current understanding.
Additionally, whereas previous statistical analyses of scRNA-seq
data found that developmental trajectories appear as monotonic
proliferations of cell fates (Nitzan and Brenner, 2021), our focus on
a single developmental trajectory enables the distinction of multiple
developmental epochs, including durations of development during
which cell fates do not undergo qualitative changes, but proliferate
(the GMP-to-promyelocyte transition) and change state (the
promyelocyte-to-myelocyte transition). Finally, our evidence of
bifurcations starkly contrasts with scRNA-seq visualizations that
show gene expression varying smoothly along a developmental
path, and underscores the importance of understanding both noise
and non-linear dependencies when using transcriptomic profiles to
classify the fate of a cell (Moris et al., 2016).

Our analysis of the data of Weinreb et al. (2020) also yielded
intriguing implications regarding the specific geometry of
neutrophil development in mice. In particular, some of the known
cell fate changes in neutrophil development were not
distinguishable in the covariance eigenvalue trajectory [e.g. from
common myeloid progenitors (CMPs) to GMP], which indicates
that these changes are less bifurcative than the GMP-to-
promyelocyte or promyelocyte-to-myelocyte transitions. This
could mean, for example, that even when CMPs differentiate to
GMPs, the transition lacks commitment and is dependent on a
sustained developmental signal, whereas once cells transition from
GMP to promyelocyte, they are committed to becoming neutrophils
regardless of an external signal. Alternatively, these non-bifurcative
transitions may be driven by early fate biases (Wang et al., 2022),
and further research may be necessary to robustly determine which
progenitor cell fates are statistically stable. Additionally, in
comparing the principal covariance eigenvectors throughout
pseudotime (Fig. 5B), it became apparent that the direction along
which that fate change happened was well aligned with the direction
of the GMP-to-promyelocyte transition. This result may be a sign of
distinct, soft directions in transcriptomic space along which cell
fates are most likely to change. In addition, as the steady increase
and spike in the neutrophil trajectory (Fig. 3C) did not resemble the
covariance dynamics of noise-induced state transitions (Fig. S6B),
our results suggest that the promyelocyte and myelocyte transitions

likely occur due to a loss of stability between fixed points, rather
than stochasticity alone.

Aside from these geometric implications, pinpointing
bifurcations in pseudotime also enhances analysis of temporal
biological data, as it enables the efficient identification of the genes
and molecular mechanisms that drive a cell fate transition. At a
bifurcation, the principal covariance eigenvectors can aid
visualization and highlight critical mechanisms that distinguish
clusters (Fig. 5). As the principal covariance eigenvector is
equivalent to the Jacobian eigenvector at the bifurcation, and the
Jacobian directly reflects gene dynamics, the eigenvector may
also be useful for constraining an inferred global Jacobian (Nigele
et al., 2014). Additionally, the correlation matrix at a bifurcation
may aid in building regulatory network models when combined
with previous protein-interaction data or new experimental
perturbations (Sun et al., 2015). Furthermore, it may be possible
to incorporate our covariance analysis into other indications of
pseudotime rank, such as cellular barcodes and low-dimensional
distance, to constrain developmental trajectories along bifurcative
paths.

Although we focus here on scRNA-seq data, our approach is
broadly applicable, and could, in principle, aid in illuminating other
aspects of high-dimensional biological dynamics, such as the
relationship between development and evolution, or the genomic
structural modifications necessary for fate transitions (Buenrostro
et al., 2013; Jia et al., 2018). Our analysis was only possible
because scRNA-seq experiments can now measure the expression
of tens of thousands of genes in hundreds of thousands of cells,
enabling accurate covariance measurements. That we found
bifurcative events in these data implies that there are low-
dimensional, non-linear dynamical systems at play, and that
sufficient biological sampling, coupled with physics-based
analyses, can reveal the knobs to controllably tilt developmental
landscapes.

MATERIALS AND METHODS

Continuous time Lyapunov equation for transcriptomic matrices
Let G be the steady-state transcriptomic matrix at a single developmental
time with n, rows (cells) and n, columns (genes), and F be a set of
differential equations describing the molecular interactions that generate G,
such that

G =F(G), (8)

where G is the derivative of G with respect to time. As all cells (columns) in
G are at steady state at the same developmental time, 7, we assume (for the
purpose of contradiction) that they are all statistical replicates of the same
transcriptomic state, g*, and the full matrix, G, is therefore in the vicinity of
the hyperbolic fixed point:

EG)=G =g ®1,, ©)

where 1,_isavector of n. values and £ denotes the expectation operator. The
dynamics of G can be by linearized by the distance to the fixed point
X = G—G", such that

G =F(G"+X) ~F(G") + Za—ixi

i=1 i

= JX, (10)

dG
where J = G |+ is the Jacobian of G and we have used the fact that, at

steady state, F(G*) = 0.
If F is stochastic and Markovian, then the dynamics of X can be described
as a discretized Ornstein-Uhlenbeck (OU) process:

Xpaa = X, 4 AtJX, + VAL, (11)
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where At is the molecular interaction timescale and ;; is sampled from
N(0, 0;), where o; is the variance of gene i. The gene-gene covariance matrix
can then be defined as

C = E((G - £(G))"(G - E(G))

= E(XTX), (12)

where the superscript 7' denotes transpose and we have approximated

E(G) = G*. The stationary condition for an OU process (i.e. that
OC/0t = 0) then yields
€ _ i E (Xera X a) — E(XX])
ot A—0 At
=JC+CI +D=0, (13)
where D = E(£,{); we have used the fact that £(4),E(X,),E(£X,) and
E(X"{T) are all 0 (Oku and Aihara, 2018).
Covariance at bifurcation
If J is diagonalizable, such that
J=PAP", (14)

where A is a diagonal matrix of eigenvalues (A, Ay, ..., A, ) and P7 is the
square matrix of eigenvectors (51,2, - - . , P, ), then Eqn 13, often referred
to as the continuous-time Lyapunov (CL) equation, can be used to
qualitatively assess G. Left multiplying Eqn 13 by P~! and right multiplying

by (PT) 7, yields

AC+CA =0, (15)
where T indicates conjugate transpose, C = P*IC(P]L)f1 and
D=pP" 1D(PJ[)fl. As A is diagonal, Eqn 15 can be rewritten elementwise:

NGy + N Cyj+ Dy =0

- Cy= v (16)

which can be substituted to yield an expression for elements of the
covariance

(17)

P, Py,
Z: k(/\k+)\) g

asC = PCPT. Ata bifurcation, max (A)=1,—0, so the k=/=d term in Eqn 17

becomes dominant and
Ddd i

where p, is the d” column of P.

(18)

Bifurcation eigenvector equivalence
As C is real and symmetric, the eigenvalue decomposition can be written as
a single sum:

C =8sQs”
ng . .
= Cy=>_ oFF], (19)
k=1

where {w;, @, ..., ®, } are its eigenvalues, and {5,5,...,5,, } are its
eigenvectors, which are normalized to 1. For Eqn 19 to be equivalent to
Eqn 18 at a bifurcation, at least one eigenvalue w;—oco, which we may,
without loss of generality, refer to as ;. If @ ,>>w; fori€[2.. .n,4] then the k=1

dominates the sum in Eqn 19, and by equating with Eqn 18 we obtain

D\ s
=i j =i
S181 = (—ZAdwl)pdpd

SEAL .
s 200 (*1)2 *;)2 P

ng ki 2
in2 .
1= = (;Q:Q)
=1

— 5 =Ps\/Py = P

— 51 = +Pa, (20)

where we have used the fact that 5; and g, both normalize to 1. Importantly,
it is also computationally advantageous to analyze the eigen decomposition
of the covariance, rather than the covariance itself, because for large n,, Q
and .S can be obtained directly from the singular value decomposition of X.

Simulation methodology

To explore our analysis framework on a more biologically relevant gene
network (Fig. 2A) we used a Focker-Plank simulation method. For each of
the N.=100 cells (N, chosen by examining how many cells were necessary to
accurately detect bifurcations in the neutrophil data (Fig. S10A,B), the
expression of gene i [g;(t;my, ma, kp)] is initialized uniformly randomly in
the interval [0,4]. The expression at subsequent time steps [g;(++A7)] is
sampled from a Gaussian distribution N(u, o), where

(1)

.
W = gi(t) + g &i(t)At
i=1,2

At
( +k1gl> l:3ng
N

and bounded to be non-negative. The simulations ran for N =1e7 time steps,
with A=0.01, at a noise scale of 1/s=0.05, and the last timestep of each
simulation is the steady-state expression G. We verified that N, was
sufficiently large by averaging G(m;) across cells, and observing that
individual genes discontinuously, but predictably, switch their expression at
m. [Fig. 2C; genes sorted by d(g;) and ;] compared with the continuous and
unpredictable transitions observed with low N, (Fig. S7A). In the saddle-
node example (Fig. 2), the remaining parameters were kp=1, m,=3,
m€[2, 4], while in the pitchfork example (Fig. S5), m, ,=1, kp€[0.24, 5].

(22)
tgd (i) + 1 + «Q;

1+ gﬁ(,-))

Analysis pipeline
Eqns 2-4 imply an analysis pipeline characterizing bifurcations in high-
dimensional temporal data, which we use in this article:

(1) Obtain highly sampled temporal data. Caveat: for data types such as
scRNA-seq, where frequent sampling is difficult, and samples may include
realizations from many different times, time may be inferable, using, for
example, pseudotime inference (see Appendix S1, section 7.1).

(2) Bin the data along the temporal axis.

(3) Compute the largest eigenvalue of the covariance matrix (@) in each
bin (e.g. using an off-the-shelf PCA function).

(4) Evaluate whether a bifurcation occurs by comparing @, with a suitable
null (see Appendix S1, section 4): spike indicates a one-to-one bifurcation;
steady increase indicates a one-to-many bifurcation.

(5) If a bifurcation is detected (e.g. at 7,.), compute and examine the
principal covariance eigenvector at 7., as it reflects mechanistic aspects of
the underlying dynamical system.
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Fig. S1. The relationship between the covariance of a gene expression trajectory and its Jacobian. (A) Schematic of a single-cell
RNA-seq dataset arranged by each cell’s developmental (pseudo-) time. (Left) Visualization of dataset in two collective gene-
expression dimensions. Gene expression matrix at the pseudotime indicated by the rectangle, and its corresponding covariance matrix.
(Center) Schematic of a generative model (F”) that could yield the gene expression matrix in (A), and its connection to the Jacobian (J).
In this model, 8g is the deviation of the gene expression vector, g from the fixed point, g*. (Right) Snapshots of a collection of particles

at steady state following the dynamical process defined by x =-2x3

(center) and a = 1 (right).
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Fig. S2. Analysis of Eqn. 5. (A-B) Phase planes for different parameter sets yield a saddle-node bifurcation
(A) or pitchfork bifurcation (B). Solid red line is given by Eqn. S4 while dashed blue line is given by Eqn.
S5. Open squares are saddles while closed circles are nodes. Arrow angles are given by tan~'(g'1/g'2) and
are uniform length. (C-D) Solutions to Eqn. S3 while varying m1 (C) or kD (D). Solid lines are nodes and
dashed lines are saddles. In (A,C) kp =1, m2 =3 andin (B,D) m1 2 =1.
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bifurcation (right). Direction of the black lines corresponds to the principal eigenvector and length

corresponds to the principal eigenvalue.
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Fig. S4. Pseudotime analysis of saddle-node bifurcation. (A) Representation of simulated cells using
SPRING dimen-sionality reduction [1] (min 1 cell, 50 PCs, and 10 nearest neighbors) and Slingshot
pseudotime inference (sample size 2000 cells) [2]. (B) Principal covariance eigenvalue (w1) plotted as
a function of pseudotime (dark dots) as well as the distance of the bifurcation order parameter (m1

from its critical value (purple dashed line. DNB order parameter as functions of pseudotime. The
peak of w1 coincides with the minimum distance between m1 and its critical value.
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Fig. S11. Bifurcation characterization using Slingshot pseudotime algorithm. (A) Neutrophil development obtained
by applying Slingshot to hematopoiesis scRNA-seq data [3]. Principal curves were approximated to 1000 points
by setﬁng approx points = 1000 in the slingshot function as incféaﬁng approx points further did not affect
results. (B) Largest covariance eigenvalue (black) compared with a statistical null (gray, details in Section 4) in
each 1000 cell pseudotemporal bin, shifted to have 0 min, using the Slingshot pseudotime ordering. Error bars of
null are one SD. (C) Average expression of promyelocyte (blue) and myelocyte (gold) marker genes in Slingshot
pseudotemporal bins [3]. SEM error bars are smaller than symbols. Light green line in (B-C) indicates peak of
bifurcation window.
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Appendix S1

1 The relationship between the Jacobian and the Covariance

Here, we outline the methodological framework that enables characterizing cell-fate transitions directly from scRNA-seq
snapshots of a cell’s transcriptomic state. A scRNA-seq measurement yields a transcriptomic matrix, where each row is a
different cell and each column is a different gene (Fig. S1, left). This data is often visualized via dimensionality reduction
algorithms, that reduce the 25,000 dimensional gene space to two or three axes of variation, and sorted via parametric curve
fitting tools, that show how the cells vary as a function of a control parameter, such as developmental time (pseudotime).
Thus, one can compute statistics, such as the covariance C' of the genes at a given pseudotime window.

Assuming that the underlying biochemical processes (1) are stochastic and Markovian and (2) occur at significantly faster
timescales (seconds to minutes) than the timescales over which transitions in cellular fates are observed (hours to days),
then the local time evolution of a cell’s transcriptomic profile is controlled by a single matrix, the Jacobian (J), where
Jij = 0g;/0gj is the effect of the amount of gene j on the dynamics of gene i (Fig. S1, center). While J, in general, changes
with pseudotime, it relates to the covariance of gene expression at that pseudotime C through the continuous-time Lyapunov
equation [4],

JC+cCcI'+D=0 (S1)

where D is the expected noise amplitude for individual genes and their interactions (derivation in Methods: Continuous time
Lyapunov equation for transcriptomic matrices) [5]. An important result from this relationship is that in the vincinity of bifur-
cations, the most salient properties of J, corresponding to its eigen-decomposition, are inferrable from the eigendecomposition
of C.

We demonstrate the intuition behind the Eqn. S1 using a one-dimensional toy-model (Fig. S1, right). The slope of the
potential function, drawn in red, provides the deterministic features of the system’s dynamics. Parameter regimes (a < 0
and a > 0) where the potential has highly convex curvature exhibit stable fixed points, while parameter regimes near the
bifurcation (¢ ~ 0), that have much flatter curvature, exhibit instability. Stochastic simulations of the system (drawn as
open circles in Fig. S1— color corresponds to the value of the control parameter) demonstrate that owing to the reduction in
curvature of the underlying potential, the data is spread maximally near the bifurcation, and narrows on either side of it.

This simple one-dimensional toy model captures the essence of the ideas used in this paper. If a complex high-dimensional
dynamical system undergoes a bifurcation, then in its vicinity there must be, by definition, some direction in the high-
dimensional space with greatly enhanced fluctuations. Thus bifurcations, and regions of multistability, can be located
by finding the points along a developmental trajectory in transcriptomic space where the covariance eigenvalue spectrum is
dominated by a single principle mode. Moreover, the direction of those fluctuations (the corresponding covariance eigenvector)
is equivalient to the soft direction along which the system bifurcates (the corresponding eigenvector of the Jacobian), even
in the 25,000 dimension transcriptomic space.

2 Methodological relationship to Dynamical Network Biomarkers

Chen et al. [6], developed the concept of a dynamical network biomarker (DNB), a group of genes that drive a critical
transition and are detectable from high dimensional gene expression datasets. In particular, they define an indicator function

_ SDg - |PCCy|

I'=—1pca, (52)

where SD, is the average standard deviation of genes in the DNB, PCCy is the average correlation coefficient between genes
in the DNB, and PCC, is the average correlation coefficient between genes in the DNB and genes outside the DNB [6]. At
a critical state transition, or bifurcation, I is predicted to diverge, because SDy and |PCCy| become large, while |[PCC,|
becomes small. Mathematically, the genes in the DNB correspond to those that have non-zero weight in the direction of the
transition, i.e., p; # 0, where p; is the principal eigenvector of the Jacobian, while genes outside of the DNB have 5 = 0.
This prediction is qualitatively similar, but not the same as Eqn. 2. In particular, while both SDy and w; increase at a
bifurcation, they are not equivalent, as S Dy measures the variance of each individual gene, while w; measures the variance
across all genes, and therefore accounts for corrections to the total variance due to covariances between genes in the network.
Therefore, for bifurcation detection, we focus solely on wq, instead of incorporating correlations into the indicator as in
Eqn. S2.

As for determining which gene relationships are critical for the bifurcation, we take a similar approach to Refs. [6, 7], in
focusing on the correlations that approach %1 at the bifurcation. This is justified via Eqn. 4, which yields that R;; — %1 if
Py # 0 and ﬁfl # 0. Interestingly, while we derived Eqn. 4 via the eigendecomposition of the covariance matrix, Refs. [6, 7]
derived the same result form the covariance matrix itself, providing additional support to this method.
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3 Bifurcations possibilities from two mutually inhibiting genes

At steady state, Eqn. 5 satisfies the quintic polynomial
my/kp

2
ma/kp
(maiz) +1

g1 = (S3)

which, depending on the parameter values, can have one real solution that is an attractor (e.g., if m;o = 1 and kp = 1)
or three real solutions, two attractors (nodes) and one repellor (saddle) (e.g., mi12 = 1,kp = 1/3). By examining the null
clines,

my/kp

91(92) = g% T1 (34)
91(92) = kzb; - (S5)

it can be deduced that varying m;, while fixing 7 and ms can yield a saddle-node bifurcation, as Eqn. S4 moves vertically
while Eqn. S5 does not, allowing for either node to merge with the saddle (Fig. S2A).

Conversely, varying kp, while fixing m; o and ms, can yield a pitchfork bifurcation, as both null clines move, such that
above the bifurcation value, all three real solutions remain (Fig. S2B). Solving Eqn. S3 computationally via the Python
function numpy.roots and plotting the real solutions (Fig. S2C-D) yields the bifurcations used in Fig. 2 and Fig. S5 [8].

4 Resampling principal eigenvalue

Given the transcriptomic matrix G = {g’iT,gET, .. .gﬁgT}, where §; = {G14,G24,...,Gy, i} and G;; is the expression of
the j' gene in the i*" cell, we generate a null sample G™!! by drawing each of its entries G;‘,‘J‘-“ randomly, with replacement,
from g;. In Fig. S10Fig. 2,Fig. 3, we compute the principal covariance eigenvalue wi!! for each of n, = 20 samples, and
compare this null distribution against the principal covariance eigenvalue of the data w;. This resampling technique has
little impact on w; for unimodal distributions as the scale of w; is still determined by the system’s noise (Fig. S3 left and
right), but significantly decreases w; for multimodal distributions (Fig. S3 center) since the structure of the multimodality
is scrambled; thus we found it was an effective method for determining if a spike in w; is due to multimodality or increased
noise.

5 Noise induced transitions

To determine if a non-bifurcating noise-induced transition model [9, 10] could yield a similar covariance eigenvalue signature
to a bifurcation, we ran the 102 gene network model (Fig. 2A) in a regime of the dynamical system that had two fixed-points
(mi2 =1, kp = 1/3) at varying noise scales s (see Fig. S2 and Eqn. 22 for details). To ensure a transition, we initialized
all cells to populate the fixed point with higher g;. We found that for low noise values (1/s < 0.01) the cells stayed near
their initial fixed point, yielding a unimodal distribution for g; (Fig. S6A) and low principal covariance eigenvalue (Fig. S6B)
while for high noise values (1/s > 0.02) the cells visited both fixed points, yielding a bimodal distribution for g;, and a high
principal covariance eigenvalue.

6 Effect of small errors

To better understand why the difference between w; and its corresponding null was significantly more apparent at 7, than
74 (Fig. 3C), we exmained how small errors in the model parameters effect bifurcations. Specifically, we simulated the GRN
model (Eqn. 5) with different amounts of error in other parameters. For the saddle-node bifurcation, in which m; is varied
while 7p and mg remain fixed, we perturbed mq by small amounts from its bifurcation value mg, = 3. We found (Fig. S8A)
that the bifurcation was still largely detectable, and its eigenvalue still well distinguished from its null (Fig. S8B), at these
small errors. For the pitchfork bifurcation, in which kp is varied while m; and msy remain fixed, we perturbed m; by small
amounts from its bifurcation value of m;, = 1. In this case, we found that the small perturbations biased the bifurcation
toward one of the branches (Fig. S8C). This bias significantly reduces the difference w; and its corresponding null (Fig. S8D).
Our analysis suggests that small errors in the one-to-many bifurcating dynamical systems that appears present at 7p may
prevent it from being easily detectable, even when similar sized errors do not obscure the one-to-one bifurcation at ws.

7 Pseudotime inference

7.1 Algorithm for generating the pseudotime labels in Weinreb et al

SPRING (x-y) positions, cell type annotations, and pseudotime ranks for the data presented in Fig. 3A-B were downloaded
from https://github.com/AllonKleinLab/paper-data/tree/master/Lineage_tracing_on_transcriptional_landscapes_
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links_state_to_fate_during_differentiation. The algorithms to generate these values are described in detail in Ref.
[3] (Supplementary Materials) and recapitulated here for completeness. Given the full in-vitro hematopoiesis transcriptomic
matrix (all cells and all genes), the SPRING positions in Fig. 3A plot were generated using the following procedure.

1. A filtered transcriptomic matrix was generated which did not include genes that

(a) had low variability as determined via the filter_genes function with parameters (85,3,3) from https://github.
com/AllonKleinLab/SPRING_dev/blob/master/data_prep/spring_helper.py [1].

(b) correlated highly (R > 0.1) across all cells with any of the following cell cycle genes: Ube2c, Hmgbh2, Hmgn2,
Tubalb,Ccnbl, Tubbb, Top2a, and Tubb4b.

2. The top 50 principal components (PC) of the filtered transcriptomic matrix were computed.

3. 40,000 of the cells were selected randomly, and a k-nearest-neighbors (KNN) graph between those cells was constructed
using the top 50 PC of the filtered transcriptomic matrix and k=4.

4. X-Y positions of these 40,000 cells were generated using the ForceAtlas2 algorithm with 500 steps [11].

5. Positions for each of the remaining 90,887 cells were computed as the average position of their 40 nearest neighbors (in
the 50-PC space) among the initial 40,000 cells.

Cells were annotated with their cell types (cluster annotation in Fig. 3A) based on their position in the SPRING plot and
their expression (terminal cell fates) or lack of expression (pluripotent) of pre-selected marker genes. Specifically the marker
genes used to determine if cells were neutrophils were S100a9, Itgbh2l, Elane, Fenb, Mpo, Prtn3, S100a6, S100a8, Lcn2, and
Lrgl.

Neutrophil pseudotime rank was then determined by smoothly interpolating between cells in the pluripotent and neutrophil
clusters. The interpolation method used throughout this procedure is an iterative, diffusive process defined as

SO (X7 b7 iﬂ k) :fl (86)
Sn(X, b, i, k) =bSp—1(X, b1, k)
1-b .
+ T ‘ Z ' Sn_l(X,b,j,k)
JEKK (1)
where Z; is a vector quantity defined for cell i, X = {&, %, ..., &y, } is the matrix of this quantity for all cells, Kj(i) are the

cell indices of the k nearest neighbors of cell i, n > 0 is the number of iterations, and b is the neighbor weight (low b and
high n both yield high diffusion) [12]. The pseudotime ranking procedure is:

1. Cells are identified to be part of the neutrophil trajectory
(a) Let t; be an indicator vector for the cell type of i; i.e. tij = 1if cell 7 is type j and 0 otherwise. Let T =
{t1,%2,...,ty.} be the corresponding matrix for all cells.
(b) Let Kigo be the k-nearest-neighbor graph between cells for £ = 100 using the top 50 PC.
(c) Let £; = Sa50(T,0.1,4,100) be the smooth cell type indicator.
(d) Let z; =}, a;t;; be the weighted average cell type #; where the weights for each cell type (j) are

0.1 if neutrophil or pluripotent
a; = ¢ —2 if megakaryocyte (S7)
—1 otherwise

(e) Let & be a neutrophil trajectory indicator such that ¢ = {1} if z; > Qo.6(z) and {0} otherwise, where Qo ¢(z) is
the 60*® quantile of 2. Let C = {1, a,...,¢n,}.

(f) Let ¢ = S50(C,0.1,7,100) be the smoothed neutrophil trajectory indicator.
(g) Cells were considered part of the neutrophil trajectory if & > Qo.¢(¢) where Qg.6(¢) is the 60" percentile of é.

2. The 61, 310 cells identified as part of the neutrophil trajectory are sorted

(a) Let p; = {1} if a cell in the trajectory is pluripotent and 0 otherwise; i.e., it is an indicator for pluripotency.
P = {p1,P2,...,Dn,} is the corresponding matrix for all cells in the trajectory.
(b) Let p; = S300(P,0.1,4,100) be the smoothed pluripotency indicator.

(¢) The pseudotime of cell ¢ is the rank (largest to smallest) of p; among all p.

(-
o
)

©

&

(-
qg
£

>

|
©
)

(e

()

&
9

Q.

Q

>
(7p]

[ )
-

C

()

£

Q
o

()

>

(V)
(@)



https://github.com/AllonKleinLab/paper-data/tree/master/Lineage_tracing_on_transcriptional_landscapes_links_state_to_fate_during_differentiation
https://github.com/AllonKleinLab/paper-data/tree/master/Lineage_tracing_on_transcriptional_landscapes_links_state_to_fate_during_differentiation
https://github.com/AllonKleinLab/SPRING_dev/blob/master/data_prep/spring_helper.py
https://github.com/AllonKleinLab/SPRING_dev/blob/master/data_prep/spring_helper.py

Development: doi:10.1242/dev.201280: Supplementary information

7.2 Pseudotime inference in the absence of metadata

To test if the neutrophil bifurcation characterization was dependent on the choice of pseudotime algorithm, we used the
Slingshot algorithm [2] to compute the pseudotime of each cell for its trajectory from the undifferentiated cluster to each
of the terminal fate clusters. The input to Slingshot were the cells’ cluster labels and their SPRING coordinates, and the
output was a probability, or weight, that a cell belonged to each undifferentiated-to-terminal-fate trajectory, as well as its
pseudotime along that trajectory. In Fig. S11A, we show the pseudotime of all cells that had weight > 0 for belonging to the
trajectory that led from undifferentiated cells toward neutrophils. Unlike the pseudotime method described in Section 7.1,
the origin of the trajectory does not coincide with the earliest sequenced cells, as time of sequencing and clonal barcode data
could not be input to Slingshot. Nevertheless, we obtain a clear bifurcation signature in the principal covariance eigenvalue
(Fig. S11B) at the point where promyelocyte gene expression decreases to 0 and myelocyte marker gene expression become
maximal (Fig. S11C). This result supports our belief that the bifurcation characterization does not depend on the specific
pseudotime calculation.

8 Determining the eigenvectors for analysis

In order to analyze the neutrophil trajectory in a native-space, we chose eigenvectors that were characteristic of the dynamics.
Since T, coincides with a well defined eigenvalue peak in the neutrophil trajectory, it was natural to use §(7,,) to aid in
visualizing the trajectory and further probe mechanisms. However, 7 = 0 and 74 coincide with transition points between
states (Fig. 5B), and mark the beginning of specific dynamics (i.e., the eigenvalue remaining constant, or increasing), and it
the lower correlation on the edges of the blocks in Fig. 5B suggests that the eigenvectors at those points had not equiilibrated
to their new positions. Therefore, we define 7y and 7,4 as the pseudotime bins with the eigenvector closest to the eigenvector
at all other pseudotimes in that range, i.e.,

Tq—1
Top = arg min s(r) — 3| S8
o= grmin 32 |5t 0 (s9)
Tm —1
74 = argmin Z ||5(1) — 5(t)||? (S9)

Td<=T<Tm t=74

and use these pseudotimes for downstream analysis.

9 Identifying clusters via Gaussian Mixture Models

As the distribution of gene expression projected onto §(7,,) exhibited bimodality (Fig. 5E, Fig. S12B), we used a Gaussian
Mixture Model to separate the two modes. Specifically, we fit G(7,,), the normalized gene expression matrix at 7,, to a two
component Gaussian Mixture Model using the mixture.GaussianMixture function from the Python package scikit—
learn with n_components = 2 and all other parameters set to their default [13]. We then used the predict function of
our trained model to generate cluster labels for cells at all pseudotimes. We found that cells were predicted to belong to the
same cluster (GMM-a) for 7 < 74 (purple in Fig. 5F and Fig. S14). For T > 74, cells were split between the two clusters (red
and blue in Fig. 5F and Fig. S14).
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