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Temporal dynamics of faculty hiring in
mathematics
Cody FitzGerald 1,2✉, Yitong Huang2,3✉, Katelyn Plaisier Leisman1 & Chad M. Topaz4,5,6

University faculty hiring networks are known to be hierarchical and to exacerbate various

types of inequity. Still, a detailed, historical understanding of hiring dynamics lacks in many

academic fields. We focus on the field of mathematics, analyzing over 120,000 records from

150 institutions over seven decades to elucidate the temporal dynamics of hiring doctoral-

granting (DG) faculty at the individual and departmental levels. We demonstrate that the

disparity between the number of mathematics Ph.D.s awarded and the number of DG faculty

positions filled has grown over time. Even institutions with the best records of DG faculty

placement have experienced a temporal decline in the probability of their graduates obtaining

a DG faculty position. By quantifying the mathematical prestige of each department with a

network statistic, authority centrality, we find an approximately linear relationship between

the log of the prestige of one’s Ph.D. institution and the log of the probability of obtaining a

faculty position. Moreover, we observe associations suggesting that the probability of DG

faculty placement has decreased over time and is smaller for women than for men. On the

departmental level, a group of 14 elite departments dominated the authority centrality of the

entire network between 1950 and 2019. Strikingly, one department within this elite group

increased its centrality scores consistently, which hints at the possibility for a department to

improve its prestige. This analysis highlights the challenges of transitioning from Ph.D. holder

to faculty member in mathematics.
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Introduction

An estimated two thousand mathematics Ph.D.s are awar-
ded annually in the United States (Reys et al., 2022). At
the same time, only around 300 tenure-track positions in

doctoral degree-granting mathematics departments are under
recruitment each cycle. Moreover, upwards of 70% of these
positions are filled by faculty who are not new Ph.D.s (Jahan
et al., 2019). The hiring process is not just competitive but is
opaque and poorly understood by applicants (Fernandes et al.,
2020). The result of a search is eventually known publicly, but the
list of applicants and the selection criteria used are not revealed.
Success in acquiring a faculty position may not only depend on
an individual scholar’s research productivity and academic cre-
dentials (Fernandes et al., 2020), but also on demographic factors
such as race, gender, and childhood socioeconomic status
(Clauset et al., 2015; Morgan et al., 2022; Wapman et al., 2022;
White-Lewis, 2020).

In recent years there has been growing interest in quantifying
the faculty hiring process in various fields (Barnett et al., 2010;
Clauset et al., 2015; Cowan and Rossello, 2018; Fernandes et al.,
2020; Fowler et al., 2007; Hanneman, 2001; Lee et al., 2021; Mai
et al., 2015; Wapman et al., 2022; Zuo et al., 2019). For instance,
Clauset et al. (2015) used a network science approach to study the
trajectories of 19,000 faculty members in business, computer
science, and history. They found that faculty hiring networks have
a particularly hierarchical structure. They also found that doctoral
program prestige is a strong predictor of faculty placement and
that there exists a bias towards men as compared to women with
the same training, especially in the fields of business and com-
puter science (Clauset et al., 2015). A follow-up study in 2021,
which used the same data set, utilized adaptive rewiring network
models to test mechanisms that give rise to the hierarchical
nature of the faculty hiring observed in the 2015 study (Lee et al.,
2021). It concludes that a mixture of two mechanisms, total
faculty production and local homophily, likely drives the
dynamics of real-world faculty hiring. Another recent study
combined a survey of tenure-track faculty members in eight
fields, US census data, and the NSF Survey of Earned Doctorates
to study the impact of socioeconomic status on faculty position
acquisition and found that faculty members tended to grow up in
wealthier homes and were 25 times more likely to have a parent
who held a Ph.D., as compared to the general US population
(Morgan et al., 2022). An extensive study of faculty hiring
between 2011 and 2020 encompassed 295,089 US faculty mem-
bers in 10,612 departments across 107 fields and eight domains
(including mathematics and computing) using data from the
Academic Analytics Research Center (Wapman et al., 2022). This
study confirmed the hierarchical structure observed in previous
studies extends across many fields of academic hiring. The study
also uncovered populations of US faculty members with high
attrition rates: US faculty members trained outside the US,
Canada, and the UK; faculty members that are trained and hired
by the same university; and faculty members that are trained at
universities from which relatively few graduates acquire faculty
positions. Finally, this study found that recent changes in the
gender parity of faculty members are explained mainly by the
retirement of older faculty members, who tend to be men
(Wapman et al., 2022). A survey-based statistical analysis of
academic job seekers primarily in the life sciences identified sig-
nificant associations between receiving an academic job offer and
the number of job applications filed, winning a career transition
award, total citation count, authorship of high-profile papers, and
postdoctoral fellowships (Fernandes et al., 2020). The same study
also found significant negative associations between receiving an
academic job offer and the number of years an applicant is on the
job market and joint industry and academic job searches

(Fernandes et al., 2020). Despite these efforts spent investigating
academic hiring, a comprehensive understanding of the evolution
of the mathematics faculty hiring process over many decades is
lacking. Our analysis moves towards filling this gap in
understanding.

We complement the existing work on faculty hiring by
studying doctoral-granting (DG) faculty hiring in mathematics
over the past 70 years at the individual and departmental scale
using the Mathematics Genealogy Project (MGP, http://www.
genealogy.ams.org), which is an extensive database of graduate
advisor–advisee relationships. We consider academic hiring as a
complex system at two different scales: the individual level and
the department level. At the individual level, we examine over
120,000 records from MGP to uncover characteristics that lead to
successful DG faculty placements in mathematics. Here, we set
out to understand which factors, academic or otherwise, allow a
mathematics graduate degree holder to transition to a DG faculty
member in mathematics and how generally difficult this transi-
tion is to make. We will refer to this transition as the graduate-to-
faculty transition (GFT) throughout the paper. We begin our
investigation into the GFT by studying 150 US math departments
and show that the GFT is decreasing over time. This finding even
holds for historically “well-placing” departments, which annually
graduated at least one student who eventually acquired a DG
faculty position in mathematics between 1950 and 2015. We also
find statistically significant academic-based and gender-based
factors that influence the GFT.

In addition to our individual-level examination of the GFT, we
use network analysis methods to investigate the department level.
Myers et al. (2011) analyzed the MGP database between 1973 and
2011 and showed that department authority scores correlate with
departmental rankings from US News & World Reports and the
National Research Council. Hub and authority centrality were
originally developed in the context of ranking web pages
(Kleinberg, 1999). We join Myers et al. (2011) in using these
centralities as proxies for departmental prestige. Similar to the
definitions given in Myers et al. (2011), we define a department
with a high authority value as one where Ph.D. recipients go on to
become DG faculty at prestigious schools and a department with
a high hub value as one containing many DG faculty who
received their Ph.D. at prestigious schools. Expanding on Myers
et al. (2011), we conduct a fine-grained analysis that explores
gains and losses in the hub and authority centrality of US math
departments between 1950 and 2019.

In our analysis, we find that a subset of 14 “elite” departments
holds approximately 70% of the authority centrality of the entire
network. Moreover, the total centrality held by these elite
departments remains relatively constant between 1950 and 2019.
However, the share of centrality held individually by each of these
elite departments varies over that time frame. Strikingly, we find
that one of the 14 elite departments dramatically increased its
share of both hub and authority centrality.

In summary, our investigations into the GFT and the temporal
dynamics of centrality at the departmental scale make three
contributions:

● We perform an analysis of the evolution of academic hiring
within the field of mathematics between 1950 and 2019.

● We begin to uncover academic and demographic factors
associated with successfully acquiring a DG faculty position
at the individual level in the field of mathematics.

● We find that an elite group of departments comprise a large
portion of network centrality between 1950 and 2019.
Furthermore, the portion of centrality held by the elite
group remains relatively stable throughout that time span.
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However, we find one math department that has
dramatically and consistently increased its share of both
hub and authority centrality, the latter of which is a proxy
for rank.

Data collection
We begin with a sample of 150 Ph.D.-granting institutions based
on the U.S. News Graduate Schools Top Mathematics Programs
rankings. The union of three archived U.S. News rankings from
1998, 2010, and 2018 comprise a final sample of 150 institutions
that we analyze.

We then proceed to gather data from the Mathematics Gen-
ealogy Project (MGP, http://www.genealogy.ams.org). We col-
lected all data on October 4, 2022. For each of the 150 schools, we
search MGP for all individuals who ever obtained a Ph.D. from
that school. From the search results, we retain each person’s
name, the year of their Ph.D., and a hyperlink to their full record
within MGP. We acquire 121,521 records of graduates from
150 schools. Of these, 466 records are missing a year, accounting
for 0.4% of the data. For the remaining records, the year ranges
from 1792 to 2022, with a median year of 1997 and a mean year
of approximately 1993.

Next, we gather information about which individuals have
served as DG faculty. From MGP data, the only means we have to
infer whether the target individual became a DG faculty member
is to check whether they advised Ph.D. students who also appear
in MGP. For each person in our database, we see if there are any
students listed on their individual MGP record. If there are no
students listed, we assume the individual did not serve as DG
faculty. If there are students listed, we list all the schools at which
the students received their Ph.D.s and take the mode as the pri-
mary school at which the advisor was DG faculty. For example, if
an individual advised 8 Ph.D. students at the University of Iowa
and 2 at the University of Indiana, we would take the University
of Iowa as the institution where the individual was DG faculty. If
the mode is not unique, we record the first (in chronology)
institution. It is a limitation of our approach that we cannot
identify faculty in departments that do not grant Ph.D.’s, nor DG
faculty who do not have any Ph.D. students appearing in MGP,
either through omission of data or through not having served as
advisor. Overall, we identify a DG faculty institution for 24,928
individuals. Finally, in our construction of hiring networks, we
restrict attention to those who became DG faculty at one of the
150 US News-ranked schools, which results in a data set of 19,372
individuals.

Next, if available, we gather information about the school
where each individual’s advisor received a Ph.D., as well as how
many students the advisor is listed on MGP as having mentored.

Finally, for each record, we extract the individual’s first name
and run it through the genderize.io algorithm (Demografix
ApS, 2022) to infer the individual’s gender. From the outset, it is
important to recognize the limitations of this approach. Most
critically, inferred gender is not the same as actual gender. The
only accurate source for information on an individual’s gender is
the individual themself. However, many of the MGP records
correspond to deceased individuals, and even for living indivi-
duals, a survey methodology is unlikely to produce much data.
Moreover, an additional severe limitation of our approach is the
algorithm’s unfortunate use of binary gender. Overall, it would be
strongly preferable to have self-identified gender information, and
information unrestricted to a binary scale. Lacking this data, we
proceed with using the gender inference algorithm, keeping in
mind its serious shortcomings.

For each name, the algorithm outputs an inferred binary
gender based on its internal database of names with self-identified

gender as scraped from online sources. For example, consider the
first name Kelsey. Suppose that the genderize.io database
contains 900 instances of this name, 765 coming from self-
identified women, and 135 coming from self-identified men.
Then the algorithm would infer the gender of “woman” and
would report a probability of 0.85, based on the frequency 765/
900. An additional limitation of the algorithm is now apparent:
there is no way to know the extent to which the underlying data
might be biased. For instance, if we had access to self-identified
gender information for all individuals in the world with the name
Kelsey, would the observed frequency of women be close to the
0.85 reported by the algorithm?

Keeping all of the limitations in mind, we proceed by choosing
a gender inference probability below which we are unwilling to
accept the algorithm’s inference. We initially experimented with a
high threshold, p= 0.95, but manual examination of the excluded
data suggested that an overwhelming majority of discarded names
were of East or South Asian origin. Discarding so many of these
names would result in the erasure of those groups from our study.
Thus, to achieve more inclusion, we seek a cutoff probability
threshold p* such that the frequencies of inferred men and
women in the excluded data are equal to the average probabilities
of being a man and being a woman in that same excluded data;
that is to say, we strive for aggregate internal consistency in the
excluded data. We find a single value of p* satisfying this cri-
terion, namely p* ≈ 0.6, and we exclude data where p < p*. We
find 93,882 inferred men (77.2%) and 22,410 inferred women
(18.4%). For 5229 individuals (4.3%), our cutoff for probability
precluded an inference.

Results
Focusing on individuals: the graduate to faculty transition rate.
We begin our analysis by computing the probability that a
mathematics Ph.D. holder becomes a faculty member who advises
one or more mathematics Ph.D. students to graduation. For this
analysis, we use all 121,055 records in our dataset that have a
graduation year listed. Figure 1 shows the total number of
mathematics Ph.D. graduates each year from 1900 to 2019, and
the number of those Ph.D. graduates who are listed on MGP as
having eventually advised students. Both the number of

Fig. 1 The number of mathematics Ph.D. degrees awarded from 150 US
math departments (green solid curve) and the number of people who
later became doctoral-granting (DG) faculty members from this pool
(blue dotted curve) between the years 1900 and 2019. The steep decline
beginning in 2010 is simply an indication of the necessary time lag between
receiving one’s Ph.D. and graduating one’s first Ph.D. student.
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mathematics Ph.D. degrees awarded and the number of people
who receive a Ph.D. and go on to become a DG faculty member
in mathematics increase between 1900 and 1970, but after
roughly 1970 the number of new DG faculty members saturates,
and even declines slightly, while total annual graduates continue
to rise. Most of the steep decline evident in eventual advisors after
about 2010 is due to the fact that many of those who graduated
more recently may not have advised students yet (but perhaps
will eventually).

By dividing the number of people who receive a Ph.D. and go
on to become a DG faculty member in mathematics (blue dotted
curve in Fig. 1) by the total number of mathematics Ph.D. degrees
awarded (green solid curve in Fig. 1), we obtain the graduate to
DG faculty transition (GFT) rate.

The annual GFT rate for all records, shown in Fig. 2, can be
interpreted as a global measure of the relative ease of acquiring a
DG faculty position in mathematics. The GFT rate decays
nonlinearly from 1900 through 2019. In the past 30 or so years,
the GFT rate has trended closer to zero than it previously had
over the time scale we considered, though we again note that the
data is incomplete for recent graduates who may eventually train
future students but have not yet done so.

To further investigate the GFT rate, we look at what happens
when we restrict the data to graduates from a list of “well-placing”
schools between the years of 1950 and 2015. We choose these
schools to determine if a subset of math departments were
immune from the global behavior of the GFT rate over this time
span. We choose these years because the data are less complete
before 1950, and graduates after 2015 may not have had enough
time to acquire a DG faculty position and advise their first
trainee. We define a well-placing school as a school that between
these years annually graduated at least one mathematics Ph.D.
student who eventually mentored a student at one of the 150
departments we included in our analysis. Ten schools fall into this
category, including Harvard University, Massachusetts Institute
of Technology, Princeton University, Stanford University, Uni-
versity of Chicago, University of North Carolina–Chapel Hill,
University of California–Berkeley, University of Michigan,
University of Pennsylvania, and University of
Wisconsin–Madison. The minimum, median, and maximum
GFT rates for schools in this group are shown in Fig. 3. We can
see that the transition rate of “well-placing” mathematics
departments declines in a similar manner to the global trend

seen in Fig. 2. Note the spread that exists in Fig. 3 in the 1950s
and 1960s dies off over time as the minimum, median, and
maximum GFT rates each trend downward over time.

Centrality scores: hubs and authorities. Here, we apply the
network science approach described in Myers et al. (2011) to a
larger data set and incorporate temporal dynamics into the cen-
trality analysis. Myers et al. constructed a doctoral-granting
faculty hiring network based on data from the MGP database
between the years 1973 and 2011. In their network, the nodes
represent US math departments and the edges are representative
of DG faculty hiring. The edges are weighted by the number of
people who were trained as graduate students in a department
and acquire DG faculty positions in another department. The
edges point from the DG faculty department towards the grad-
uate training department, and the graduate training and DG
faculty departments can be the same if the person was trained and
hired by the same department. As an example, a professor in the
Purdue University Department of Mathematics who received a
Ph.D. from the University of Wisconsin–Madison Department of
Mathematics is represented as an edge pointing from the Purdue
University Department of Mathematics node to the University of
Wisconsin-Madison Department of Mathematics node.

In Myers et al. (2011), network centrality was analyzed for 58
math departments using hub and authority centrality scores. Hub
and authority centrality scores were originally developed in the
context of ranking web pages on the internet (Kleinberg, 1999)
and were used in the search engine for Ask.com (Newman, 2018).
Mathematically, centrality authority and centrality hub vectors x
and y are the left and right singular vectors corresponding to the
largest singular value of the adjacency matrix, A, scaled so their
elements each sum to 1. Thus, they satisfy

x ¼ αAy;

and

y ¼ βATx;

where constants α and β satisfy αβ= 1/σ2 and σ is the largest
singular value of A (Newman, 2018).

Fig. 2 The combined graduate to doctoral-granting (DG) faculty
transition (GFT) rate for 150 DG US math departments from 1900 to
2019. The GFT rate decays nonlinearly over time.

Fig. 3 The minimum, median, and maximum graduate-to-faculty
transition (GFT) rates for 10 schools that have annually graduated at
least one mathematics Ph.D. student who became a doctoral-granting
(DG) faculty member in a department in one of the 150 departments we
considered between 1950 and 2015. All three measures decrease, but the
maximum GFT rate most sharply declines between the years of 1950-2015.
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In Myers et al. (2011), departments with high authority scores
are defined as “a strong source of prestigious Ph.D. students,” and
departments with high hub scores are defined as “a strong
destination.” We refine their definitions for the reader’s clarity.
We take a department with a high authority score to mean an
institution from which Ph.D. recipients go on to become DG
faculty at prestigious schools, and we define a department with a
high hub score as a department that hires many DG faculty who
received a Ph.D. from a prestigious school. Next, we compute the
GFT rate as a function of authority score for each of the
150 schools in our set that graduated students between the years
of 1950 and 2019 (see Fig. 4).

As expected, higher authority scores, suggesting higher
prestige, correlate with higher GFT rates. The data appear linear
on a log–log plot of the GFT rate versus the authority score of the
Ph.D. training departments (r2= 0.7 via least-squares fitting on
the log-log axes). It is worth pointing out that San Diego State
University (GFT rate= 0.5, authority score ≈ 1.36 × 10−5)
appears to be an outlier in the group because only two graduates
in our dataset obtained a Ph.D. from San Diego State University,
and one of them eventually became a DG faculty member.

Furthermore, we look at the probability of moving up (higher
authority score) when transitioning from Ph.D. holder to DG
faculty. Of the graduates who eventually go on to advise students
at one of the 150 schools of interest, we compute the fraction of
those who have advised students at an institution with a greater
authority score than that of their Ph.D. granting institution. This
fraction is shown in Fig. 5. It remains relatively stable between
1950 and 2019, largely hovering between 15% and 25%. Note that
graduates from 2019 may not have enough time to advise
students yet, and in fact, our data only contains two individuals
who graduated in 2019 and already have advisees listed.

Logistic model: probability of faculty placement. To identify
factors associated with a target individual obtaining a doctoral-
granting (DG) faculty position, we construct a logistic regression
model. The dichotomous outcome variable is whether or not the
target individual became a DG faculty. As discussed previously,
we infer DG faculty status from the individual’s record of student
advising as listed in MGP, should it exist. We include several
explanatory variables in our model: the target’s year of receipt of

Ph.D.; their inferred gender; prestige measures of their Ph.D.
granting institution and their advisor’s Ph.D. granting institution;
and finally, the number of Ph.D. students overseen by their
advisor. We now explain these choices in detail.

Since the academic job market is tighter in some years and less
so in others, we include the year of Ph.D. receipt as an
explanatory variable. To address differential outcomes depending
on gender, we include inferred gender in the model. We also
include the interaction of the inferred gender with the year of
Ph.D. receipt in order to allow for the possibility of a shifting
hiring landscape for women over time.

To account for the prestige of the target individual’s Ph.D.
granting institution, we (initially) include its hub and authority
scores as computed over a 10-year time period up to but not
including the Ph.D. year. For that same time period, to account
for the influence of the target’s Ph.D. advisor as part of the job
search process, we include the hub and authority scores of that
person’s Ph.D. granting institution. Finally, to account for the
target’s Ph.D. advisor’s advising patterns, albeit in a crude
manner, we include the total number of students who received
Ph.D.s from the target’s advisor over the same 10-year window. It
is important to recall that the target Ph.D. and advisor Ph.D. hub
and authority scores are all calculated from the same network and
thus may be correlated. In fact, the correlation between hub and
authority for the target is r ≈ 0.66 and for the advisor is r ≈ 0.51.
Among the four network scores, the two least correlated are the
target’s authority score and the advisor’s hub score (r ≈ 0.16), so
we include these in our model. While including the other two
network scores might increase model fit, it could be at the
expense of interpretability, especially if estimates for the effects of
strongly correlated variables have opposite signs.

Concretely, the model described above is

LogOdds � β0 þ β1ðYearÞ þ β2ðInferredGenderWomanÞ
þ β3ðYear � InferredGenderWomanÞ
þ β4ðTarget0s Ph:D:AuthorityÞ þ β5ðAdvisor0s Ph:D:HubÞ
þ β6ðNumber of Students Advised by AdvisorÞ;

ð1Þ
where since we use a logistic regression framework, Log Odds is
the log odds of obtaining a DG faculty position.

Fig. 4 Graduate-to-faculty transition (GFT) rate by average authority
score of graduate training department between the years of 1950 and
2019 on a log–log plot. The dashed line represents a least-squares fit of the
data, yielding an r2 value of 0.7 on the log-log axes.

Fig. 5 The fraction of doctoral-granting (DG) faculty members who
acquire a faculty position in a DG department with a higher authority
score than the department where they completed their graduate studies
versus the year of Ph.D. graduation. The fraction hovers between 15% and
25% and is relatively stable over seven decades.
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Before fitting the regression, we perform several data filtering
steps. First, to be consistent with the time period we have studied
previously, we filter out target individuals who received their
Ph.D. prior to 1950 or after 2015, resulting in a data set of 104,674
records. Second, to be consistent with whom we include in our
network, we further restrict attention to individuals whose
advisor received their Ph.D. at one of the 150 schools we study,
reducing the data set to 85,323. While we have not formally coded
the geography of the advisor Ph.D. institutions for the excluded
records, inspection suggests that the vast majority are schools
outside of the United States. Third, we are forced to eliminate any
records missing a gender inference. Removing these 3,569 records
leaves 81,754 remaining. Fourth and last, in 63 cases (constituting
0.1% of the remaining data) we are unable to compute prestige
scores because no one from the target individual’s Ph.D. granting
institution became DG faculty during the 10-year time window
prior to the year of Ph.D. receipt. We must eliminate these
records, resulting in a final data set of 81,691 records.

Next, to again be consistent with our previous decisions, we
take the outcome variable to be not merely whether the target
individual became a DG faculty member, but whether they
became a DG faculty member at one of the 150 schools we study.
There are 4032 individuals in the data set who did become DG
faculty but not at one of the 150 schools, and so along with 64,381

individuals who did not become DG faculty at any school in our
data set, these individuals have an outcome variable coded
as false.

In summary, our logistic model investigates whether indivi-
duals who received a Ph.D. at one of the 150 schools and whose
advisor received their Ph.D. at one of those same schools ended
up becoming DG faculty at still one of those same schools. We
have 81,691 records, and the observed frequency of a positive
outcome (becoming DG faculty at one of the 150 schools) is 0.16.

We fit the model using the standard glm command in the
RStudio statistical computing environment. In terms of evaluat-
ing our model, we steer clear of measures of predictive accuracy
because our intention is not to build a classifier. Indeed, with such
a limited set of explanatory variables, we have no expectation that
our model could be used in this way. However, we can still hope
to assess if there are important associations between the outcome
variable and the explanatory variables that we do have. Loosely,
our situation could be compared to a linear regression that
produces a low coefficient of determination but statistically
significant coefficients. Thus, to diagnose our model, we set a
relatively low bar and compare it to a null model. A likelihood
ratio test of our model results in p < 0.001, suggesting that the
model is preferable to the null one. Table 1 provides estimates
from our model.

The signs of the significant coefficients have the following
interpretations. The negative coefficient on year means that
overall, there is an association between time and a decreased
probability of obtaining a DG faculty position. Similarly, the
negative coefficient on inferred gender woman indicates an
association between being a woman and a decreased probability
of obtaining a DG faculty position. The positive coefficient on the
interaction of year and inferred gender woman suggests that the
decreased probability of hiring for inferred women is becoming
less severe over time. The positive coefficient on the authority
score of the individual’s Ph.D. granting institution shows an
association between that institution’s prestige and its students
being hired as DG faculty. This result is perhaps not surprising
given the way the authority score is constructed. There is one
additional significant coefficient, namely, the negative coefficient
on the number of students advised by the individual’s Ph.D.
advisor. This coefficient indicates an association that is less
intuitive to us and could perhaps be a target for further research.
We could hypothesize that when an advisor advises more
students, they are able to provide less individualized attention
to each student. This reduced attention might decrease the
probability of a DG faculty placement, either because the student
receives insufficient guidance or because the situation discourages
the student from wanting to be in academia. Regardless, these are
merely conjectures, and ethnographic data might shed further
light on plausible explanations.

Table 1 Estimates obtained from fitting model (1), which describes the log odds of an individual becoming a DG faculty member,
based on N= 81, 691 records (see the section “Logistic model: probability of faculty placement” for details, including important
limitations of the modeling approach).

Coefficient of Estimate Standard error z Significant

(Intercept) 72.9 1.28 57.1 ***
Year −0.0377 0.000644 −58.6 ***
Inferred gender woman −13.9 3.81 −3.65 ***
Year ⋅ inferred gender woman 0.00688 0.00192 3.59 ***
Target’s Ph.D. authority 1.37 0.0310 44.3 ***
Advisor’s Ph.D. hub 0.0714 0.0521 1.37
Students advised by advisor −0.0479 0.00229 −20.9 ***

Significance column is coded as *p < 0.05, **p < 0.01, ***p < 0.001.

Fig. 6 The number of departments that comprise 50% and 90% of the
hub and authority centrality between the years 1950 and 2019. Centrality
scores are computed using a rolling window of 10 years, indicated on the x-
axis by the first year of the decade. Black and blue curves correspond to
50% and 90% of centrality, respectively. Solid and dashed curves
correspond to hub and authority centrality, respectively. This analysis
includes 106 schools.
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Temporal dynamics of US math departments
To begin our department-level analysis, we compute the hub and
authority centrality scores of a subset of 106 of the US mathe-
matics departments we considered, starting in 1950 and going
through 2019, using a rolling window of 10 years for each net-
work construction, thereby extending the analysis presented in
Myers et al. (2011). We determine this subset by computing the
centrality scores of our entire set of 150 departments for each
rolling decade starting with 1950 and ending with 2019. Any
school that does not appear as an institution with DG faculty
during each rolling 10-year period returns an authority (hub)
score of zero. We omit any school which returned a zero cen-
trality score for any of the rolling decades and re-compute the
centrality scores for the remaining 106 departments. From this
network analysis, we find that a minority of departments hold the
majority of the hub and authority centrality. Figure 6 shows that
between five and seven departments hold 50% of the authority
centrality and between 11 and 19 departments hold 50% of the
hub centrality between 1950 and 2019, calculated over rolling
decades, and plotted by the first year of each decade. Roughly
one-third of departments hold 90% of the authority centrality and
two-thirds of departments hold 90% of the hub centrality between
the years of 1950 and 2019.

Furthermore, we explore the temporal dynamics of hub and
authority centrality associated with elite math departments
between the years of 1950 and 2019. To select elite departments to
study, we compute the departments with the seven highest
authority scores across seven network constructions spanning
1950–1959, 1960–1969, 1970–1979, 1980–1989, 1990–1999,
2000–2009, and 2010–2019 and take the union of the department
sets. As a result of this computation, the following departments
meet our definition of elite: California Institute of Technology,
Carnegie Mellon University, Columbia University, Cornell Uni-
versity, Harvard University, Massachusetts Institute of Technol-
ogy, Princeton University, Stanford University, University of
Chicago, University of California–Berkeley, University of Michi-
gan, University of Washington, University of
Wisconsin–Madison, and Yale University. Together this group of
departments consistently holds approximately 72% of the
authority centrality and approximately 43% of the hub centrality
between 1950 and 2019 (see Fig. 7).

While the share of hub and authority centrality held by this
group of elite departments remains relatively constant between
1950 and 2019, the individual share of hub and authority cen-
trality held by each elite department changes more dramatically
over time. We compute the Kendall rank correlation coefficient
(Kendall, 1948) of authority and hub centrality time series
spanning decades beginning in 1950 and ending in 2019 for pairs
of elite departments. In this context, a Kendall rank correlation
coefficient close to 1 would indicate that the centrality score
trajectories of two departments between 1950 and 2019 move in
the same direction. Similarly, a Kendall rank correlation coeffi-
cient close to −1 would indicate that the centrality trajectories of
two departments between 1950 and 2019 move in opposite
directions. Large and significant Kendall rank correlation coeffi-
cients associated with pairs of elite departments’ hub and
authority centrality time series are summarized in Fig. 8.

Strikingly, we find consistent gains between 1950 and 2019 in
both hub and authority centrality by the Carnegie Mellon Uni-
versity Departments of Mathematics while the Massachusetts
Institute of Technology Department of Mathematics and the Yale
University Department of Mathematics fall in both measures of
centrality over the same time course, as shown in Figs. 8 and 9.

To understand what caused the gains in hub and authority
centrality between 1950 and 2019, we plot the rolling averages
(using a 10-year window) of graduates from Carnegie Mellon

University, Massachusetts Institute of Technology, and Yale
University who eventually became a doctoral-granting (DG) math
faculty, as well as the number of DG math faculty hires at each
university, starting with the year 1950 and ending with the year
2019 (see Fig. 10). For Carnegie Mellon University, we observe
that the average number of graduates that eventually became a
DG faculty and the number of DG faculty hires both initially rise,
and then remain somewhat constant. In contrast, for Yale Uni-
versity, we observe an initial rise in the average number of
graduates that eventually became DG faculty followed by a
decline starting slightly after 1980. We also see a decline in the
average number of DG faculty hires at Yale University over time.
For 10-year windows near the end of the range considered, such
as 2010 to 2019, the graduate student and DG faculty averages are
slightly lower, likely due to the fact that graduate students may
not have secured a DG faculty position yet, and similarly for
faculty members who have been hired but have not yet had a
student graduate.

Discussion
In this study, we analyze the MGP database to understand how
academic faculty selection operates in the field of mathematics. In
particular, we seek to elucidate the factors that influence the
transition from mathematics graduate degree holder to doctoral-
granting (DG) faculty member and understand temporal trends
related to this transition. We first show a growing disparity
between the number of mathematics Ph.D.s awarded and the
number of DG faculty positions acquired over time. This dis-
parity is most extreme after 1970. The GFT rate has reached its
lowest point during the last 30 years, and even historically well-
placing departments exhibit the same trend. Additionally, we find

Fig. 7 The fraction of hub (green solid curve) and authority (orange
dotted curve) centrality held in total by California Institute of
Technology, Carnegie Mellon University, Columbia University, Cornell
University, Harvard University, Massachusetts Institute of Technology,
Princeton University, Stanford University, University of Chicago,
University of California–Berkeley, University of Michigan, University of
Washington, University of Wisconsin–Madison, and Yale University
between the years of 1950 and 2019. Centrality scores are computed
using a rolling window of 10 years, indicated on the x-axis by the first year
of the decade. To select elite departments to study, we compute the
departments with the seven highest authority scores across seven network
constructions spanning 1950–1959, 1960–1969, 1970–1979, 1980–1989,
1990–1999, 2000–2009, and 2010–2019 and take the union of the
department sets. Both the hub and authority centrality held by this group of
elite departments remains relatively stable over this time frame.

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-01708-9 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | (2023)10:247 | https://doi.org/10.1057/s41599-023-01708-9 7



Fig. 8 Significant (p ≤ 0.05) and large (∣τ∣ > 0.5) Kendall rank correlation coefficients for time series of the hub (left) and authority (right) scores of
elite math departments. We focus mainly on the relationships between the Carnegie Mellon University, Massachusetts Institute of Technology, and Yale
University Departments of Mathematics.

Fig. 9 Time series of hub and authority centrality scores associated with 106 math departments between the years 1950 and 2019. Centrality scores
are computed using a rolling window of 10 years, indicated on the x-axis by the first year of the decade. The hub and authority centrality score time series
for Carnegie Melon University, Massachusetts Institute of Technology, and Yale University math departments are highlighted in red, yellow, purple,
respectively. The geometric mean of all 106 departments’ temporal hub and authority score is plotted as a dashed blue curve. Other elite departments are
plotted in dark gray and all other departments are plotted in light gray. The hub and authority centrality time series for the Carnegie Melon University
Department of Mathematics increases as the hub and authority centrality time series associated with the Massachusetts Institute of Technology and Yale
University Departments of Mathematics decrease in a significant manner.

Fig. 10 Averaged DG faculty hires and averaged graduate production at the Carnegie Mellon University, Massachusetts Institute of Technology, and
Yale University Departments of Mathematics over time. (Left): Rolling averages using a 10-year window of DG math faculty hires at Carnegie Mellon
University, Massachusetts Institute of Technology, and Yale University, by the year of their first graduated student. (Right): Rolling averages using a
10-year window of graduates from Carnegie Mellon University, Massachusetts Institute of Technology, and Yale University who eventually became a
doctoral-granting (DG) math faculty, by year of graduation. Both subplots start with the year 1950 and end with the year 2019.
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that the log of the GFT rate correlates with the log of the
authority score of the graduate training institution. A logistic
regression model reveals that both time and the authority score of
an individual’s Ph.D. granting department are significantly
associated with the probability of obtaining a DG faculty position
in a department. Moreover, individuals inferred to be women
appear to be disadvantaged as compared to men, though the
disadvantage narrows over time.

At the department level, we find that the Carnegie Mellon
University Department of Mathematics increased its hub and
authority centrality consistently over time, while the Massachu-
setts Institute of Technology and Yale University Departments of
Mathematics fell in both measures over the same time frame.
These gains and losses in centrality correspond to the temporal
dynamics of the average number of graduate students produced
(who eventually become a DG math faculty) and averaged DG
math faculty hires at Carnegie Mellon University and Yale Uni-
versity, respectively. Increasing graduate student output (specifi-
cally those that become DG faculty members), and DG faculty
hiring, would have resulted in increasing the authority and hub
scores, respectively. However, the underlying details of what
made these universities more or less attractive to graduate stu-
dents and faculty remain unclear but may involve some combi-
nation of department culture, department research interests, and
its relevance to funding initiatives over this period, amongst a
suite of other unknown factors.

Our study has several limitations regarding the data we used.
We do not have information about the number of job applica-
tions individuals filed, career transition award recipient status,
total citation counts, high-impact journal authorship records,
postdoctoral fellowship recipient status, the length of time an
individual spends on the job market, or if individuals conducted
joint academic-industry job searches. It was previously shown
that these factors are significantly associated with receiving an
academic job offer in a recent survey analysis (Fernandes et al.,
2020). We also do not have information pertaining to an indi-
vidual’s desire and decision-making process regarding pursuing
an academic career versus another type of employment. Addi-
tionally, we are only studying the transition from mathematics
Ph.D. graduate to DG faculty member in mathematics. It is
possible that mathematics departments have hired DG faculty
members who are not listed in the MGP database due to their
graduate training field. Our study also does not include DG
faculty members who do not advise graduate students, for
example, mathematics Ph.D. holders who teach at liberal arts
colleges, community colleges, or even in non-mathematics
departments.

Our study also has important limitations regarding the cen-
trality metric we used. Our method for computing temporal
trajectories of network centrality is rather straightforward, and
other more sophisticated frameworks have been designed for this
purpose (see, e.g., Taylor et al., 2017, 2019, 2021; Kawakatsu et al.,
2021). In our study, we used hub and authority centrality, which
are eigenvector-based centrality metrics, to quantify the impor-
tance of math departments in our faculty hiring network. Fol-
lowing Myers et al. (2011), we used hubs and authorities because
of their interpretable meaning in the context of math depart-
ments. However, eigenvector-based centralities can exhibit a
phenomenon known as “localization,” in which centrality is
concentrated in a handful of nodes relative to the rest of the
network (Martin et al., 2014). This property is known to be
related to the structure of the network and “is particularly visible
in networks with high-degree hubs1 or power-law degree dis-
tributions” (Martin et al., 2014). To address this challenge, the
recent work of Taylor et al. (2017) has proposed a generalization
of eigenvector centrality for temporal networks. They find that

“the strength of the coupling between layers is important for
determining multiscale properties of centrality, such as localiza-
tion phenomenon.” They tested their method on the MGP
database in the weak and strong coupling limits and noted, “We
believe this weak-coupling regime to be inappropriate for the
MGP Ph.D. exchange network, as mathematics department
prestige should not fluctuate wildly from one year to the next.”
They also comment that “For scenarios in which exploring var-
ious [couplings] is not computationally feasible, we highlight that
restricting one’s attention to the [strong coupling] limit can still
yield very informative results.” While we do not use the exact
method in Taylor et al. (2017), we do expect the layers of our
temporal network to be relatively strongly coupled due to our use
of a 10-year rolling window for each network construction. For
example, the network that spans 1950–1959 shares much of the
same information with the network that spans 1951–1960.

In summary, we find that the Graduate Faculty Transition rate,
an imperfect indicator of the relative ease of acquiring a DG
faculty position in mathematics, is decaying over time, even for
historically well-placing departments. We also uncover statisti-
cally significant factors (academic and otherwise) that influence
the transition, including gender, year, target’s Ph.D. authority,
and the number of students advised by Ph.D. advisor. At the
department level, we find that the Carnegie Mellon University
Department of Mathematics consistently gained both hub and
authority centrality between 1950 and 2019, a rare behavior in
our network analysis. Taken together, we find that acquiring a
DG faculty position is becoming more difficult and overall the
rankings of departments remain relatively constant, though it is
not impossible for departments to improve their ranking
over time.

Data availability
The code and an anonymized version of the Mathematics Gen-
ealogy Project dataset (https://mathgenealogy.org/index.php) we
analyzed is posted here https://github.com/cefitzg/MGP_plots.

Received: 17 October 2022; Accepted: 13 April 2023;

Note
1 Martin and coworkers state the definition of “hubs” as “nodes of unusually high
degree,” not to be confused with the technical definition of hubs and authority
centralities in the section “Centrality scores: hubs and authorities”.
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