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Abstract— This paper presents a run-to-run (R2R) controller
for mechanical serial sectioning (MSS). MSS is a destructive
material analysis process which repeatedly removes a thin
layer of material and images the exposed surface. The images
are then used to gain insight into the material properties
and often to construct a 3-dimensional reconstruction of the
material sample. Currently, an experience human operator
selects the parameters of the MSS to achieve the desired
thickness. The proposed R2R controller will automate this
process while improving the precision of the material removal.
The proposed R2R controller solves an optimization problem
designed to minimize the variance of the material removal
subject to achieving the expected target removal. This optimiza-
tion problem was embedded in an R2R framework to provide
iterative feedback for disturbance rejection and convergence
to the target removal amount. Since an analytic model of the
MSS system is unavailable, we adopted a data-driven approach
to synthesize our R2R controller from historical data. The
proposed R2R controller is demonstrated through simulations.
Future work will empirically demonstrate the proposed R2R
through experiments with a real MSS system.

I. INTRODUCTION

Serial sectioning is a destructive analysis process used to
gain insight on the material properties and micro-structure
of materials. Serial sectioning is typically used when non-
destructive analysis is insufficient, due either to material
composition or if a higher resolution of data for a specific
features is required. Serial sectioning repeatedly removes
thin layers of material and captures a detailed image of
the exposed surface. At the end of a serial sectioning
experiment, this sequence of images are combined to create
a 3D reconstruction of the sample. The 3D reconstruction
can be used to gain knowledge of the size, shape, and
location of features of interest within the overall sample. This
process is used for failure analysis, feature identification,
and material composition experiments [1]. A common use
is identification of flaws in 3D printed metal samples to
locate the size and location of areas in the sample which
leftover powered metal may still exist or where the print
may have left a large void. There are three different types of
serial sectioning tools, micro-mill serial sectioning, FIB laser
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serial sectioning, and mechanical serial sectioning (MSS).
This paper will be focusing on a MSS process.

MSS uses a three phase repetitive process of grinding,
polishing, and optical imagining, to collect data from a
material sample. Each cycle of grinding, polishing, and
optical imaging is called a slice which produces a montage
of images which can be stitched together to produce a larger
cross-sectional image of the entire surface or a specific
region of interest. Currently, an experienced human operator
inputs the desired number of slices which is called a run.
A run consists of the human operator selecting a recipe; a
sequence of grinding pads and polishing pads, as well as the
polish time, speed, solution, and solution dispensing time.
The parameters of this recipe are the inputs to the MSS
system. This paper will develop an autonomous controller
for iteratively selecting the appropriate recipe to achieve
a target material removal amount. The current method for
achieving the target removal per slice is for an experienced
human operator to run a series of test slices. The material
removal is then measured using the average focal height
of the microscope used for the image montage. Based on
the calculated material removal and their experience, the
human operator adjusts the recipe, typically by adjusting the
polishing times for each pad. This process is repeated with
another run of test slices until the target removal amount
is achieved. This process is not ideal for several reasons.
First, it requires significant human intervention from a skilled
operator whose valuable experience could be better used for
other pursuits. Second, the ‘calibration-phase’ of the recipe
can require multiple test runs, removing a large amount of
material. This is inappropriate for small material-samples
since a significant portion of the material-sample will not
be sectioned at a consistent rate. Third, pad wear over
the course of a long run can cause the removal amount
to drop causing inconsistent slice thickness during image
reconstruction. An automated MSS controller could both
reduce human intervention and improve the performance of
the system.

The contributions of this paper are summarized as follows.
This paper proposes a run-to-run (R2R) controller to reduce
operator intervention while improving the precision and con-
sistency of material removal. Run-to-run (R2R) is described
as “’similar to batch processes but more extensive” [2]. R2R
is commonly used to reduce output variance and increase
precision in systems that perform repetitive processes [3]-
[8]. R2R assumes that the output is sparsely sampled which
allows for a linear regression model to be used. We will
be using R2R in combination with constrained optimization
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with the goal of reducing the variance of the system output
awhile achieving the target removal amount faster and more
consistently than the “guess and check” current method being
used. One of the main challenges is that we do not have
access to an analytic first-principles model that maps recipes
to material removal. Instead, we will use a data-driven
method to synthesize our R2R controller from historical
operational data. We will also compare our method with a
state of the art R2R method.

Notation: The mean and variance of a random variable x
will be denoted by E[z] and V[z] = E[zz "] —E[z]E[z] . The
Kronecker product of matrices A and B is denoted by A® B.
The vectorization vec(A) € R™ of a matrix A € R"*™ is
a vector comprised of the concatenated column vectors of
A. For a matrix A with linearly independent columns, its
left pseudo-inverse is a matrix A" such that ATA = I.
In particular, the Moore-Penrose pseudo-inverse is AT =
(ATA)LAT,

II. AUTOMATING MSS PROBLEM

In this section, we begin with a brief description of the
MsSS plant, followed by the operational constraints, and the
control objectives. We then provide a description of the
historical data available to us, which will be used for data-
driven controller synthesis.

A. The MSS Plant

We begin by considering a deterministic system model for
the MSS plant. Due to the operational nature of MSS systems,
we do not have direct access to in-situ measurements, nor
can we change the recipe during a run. Thus, we model the
MSS system plant as a discrete time algebraic map of the
recipe u; to removal amount y;

Yi = f(ui; di) (D

where u; € R™ and y; € R! are the MSs ¢! sys-
tem inputs and outputs respectively, and the ‘time’-index
i represents the slice number for the plant. We consider
the plant (1) to be deterministic, but unknown. We note
that the plant (1) ‘dynamics’ do not depend on the system
‘state’ y;, Thus, the plant is a static non-linearity mapping
f(ui,d;) : R x R" — R! that maps recipes u; and
additional hidden variables d; to the removal amount y;.
The hidden variables d; € R™¢ characterize all unknown
factors within the system, such as material hardness, thermal
effects, sensor measurement error, grinding and polishing pad
wear, cavities in the material, etc. Since we do not have
access to the hidden variables d;, it is not possible to learn
a model of the static nonlinearity (1) from historical data.
Furthermore, even if the plant model were known, it cannot
be utilized since the hidden variables d; are unmeasured
and time-varying. Instead, we will use real-time feedback
to adjust the recipe u; online to achieve the desired removal
amount y; — r where r € R! is the target removal amount.
Feedback control is ideally suited to the problem of rejecting
unknown and varying disturbances d;. Although the plant (1)
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is static, the closed-loop system will be dynamic due to the
dynamics of the controller.

The MSS plant (1) is an over-actuated system; there are
multiple n, > n, = 1 inputs u; € R" that can be
manipulated to drive y; — r one output y; to the desired
removal amount r € R!. The manipulated inputs are the
recipe parameters summarized in Table I. For the automated
system, we envision that the MSS will operate with a fixed
sequence of multiple grinding and polishing pad types, as
well as different solution types for each pad. The automated
system will then select the polishing speed and polishing time
for each of the pads in the sequence. The vector u; € R™»
of polishing-speeds and polishing-times is the control input
(recipe) for the MSS system. For this preliminary work, we
will only manipulate the polishing times for one grinding
pad followed by one polishing pad. Thus, we have a 2 input
system. Importantly for controller development, the removal
amount (1) is monotonically non-decreasing with respect to
the polish times i.e. polishing for a longer time will not result
in less material removed.

The over-actuation of the MSS renders human-in-the-loop
operation difficult, requiring the operator to have significant
experience and expertise to choose the appropriate recipe
u € R™ to achieve the desired removal amount y; € R*.
An automated system will improve the user-friendliness of
the MSS. Furthermore, an automated system could harness
this over-actuation to improving system performance, shorten
the calibration-phase, and reduce human error. Performance
objectives will be described in Section II-C.

TABLE I
INPUTS (RECIPE PARAMETERS) FOR THE MSS

Input Variable Constraints
u,¢ cutting pad type 1<~+<8
up¢ polishing pad type 1<~y<8
us polishing solution type 1<~y <4
u,, polishing speed (RPM) for each pad | 1 < v < 300
u polishing time for each pad 5 <y

B. Operational Constraints

Our controller must produce recipes w that are physi-
cally implementable by the MSS. The operational constraints
shown in Table I describe the physical limitations of the
MSS system. The maximum number of pads the system is
able to hold at a time is eight, therefore u,; + up; < 8
for any recipe. For polishing solutions us we are able to
select one one of the following particle sizes 1um, 3um,
6um, or 9um which can be used in any combination with
the pad types. The speed at which the pads can be rotated
U, 18 limited to 300 RPM. The minimum amount of time a
pad can polish for is five seconds. To ensuring a favorable
imaging surface while avoiding over use of polishing pads,
constraining polishing pads to more than sixty seconds and
less than 200 seconds will be imposed. The constraints for
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our system form a n,,-dimensional polytope

U={ueR™: Hu<h}. (2)

We will analyze our R2R controller with and without these
constraints (2).

C. Control Objectives

Beyond automating the operation of the MSS, our control
objectives include improving its performance. Our control
objectives can be summarized by the following conceptual
stochastic optimization problem

u; = argmin  V[y — r|u] (3a)
st. Elylul =7 (3b)
ueU. (3¢)

The desired controller should compute a recipe u such that
the expected material removal E[y|u] matches the target
removal amount r i.e. the recipe u should satisfy the equality
constraint (3b). Since the MSS is over-actuated n, > 1, there
are potentially an infinite-number of recipes © € R™* that
can achieve the desired removal (3b). Among these recipes
u, we would like to select the recipe that produces the
lowest variance (3a) so that the slices have uniform thickness.
Finally, the recipe u must be implementable (3c) given the
input constraints described in Section II-B.

In Section III, we will translate the conceptual stochastic
optimization problem (3) into an implementable determinis-
tic optimization problem. We will use a data-driven approach
to formulate this deterministic optimization problem from
historical operation data. This deterministic optimization
problem will be embedded in a R2R control framework to
iteratively ensure that the removal amount converges y; — r
to the target removal amount 7.

D. Historical Operational-Data

We will use a data-driven approach to translate the con-
ceptual stochastic optimization problem (3) into an imple-
mentable deterministic form. The available data consists of
pairs of recipes u; € R™* and the resulting removal rate
y; € RL. The entire available data set D = {),U} is
comprised of historical usage of the plant providing a set of
outputs based off of previous operator defined inputs. The
set D € RNX"? s the set of N states corresponding to
the set of inputs & € RN—1X™u with respective outputs
Yy € RNVNxny, Using this historical data, we are able to
approximate a deterministic model for (1).

III. OPTIMAL RUN-TO-RUN CONTROLLER

In this section, we describe the proposed R2R controller
for automating the MSS system. R2R control is the appro-
priate paradigm for this problem due to the lack of in-situ
measurements and our inability to alter the recipe during a
slice. Our algorithm embeds a deterministic formulation of
the stochastic optimization problem (3) into a R2R frame-
work in order to compute optimal recipes u;, ;. The R2R
framework provides a feedback mechanism for adjusting the
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recipe Uf+1 based on the material removal y;, which is
measured after each slice. This feedback is used to reject
the hidden variables d;, which we consider disturbances.

A. Optimal Recipe

The main challenge for MSS controller synthesis is that the
plant model (1) mapping recipes u; to removal amount y; is
an unknown static non-linearity. However, since the removal
amount (1) is monotonic, we can use a linear approximation

“4)

~
~

yi=c+blu

~
~

where ¢ fu;,d;) is the drift coefficient and b
V f(u;, d;) is the slope coefficient around the operating point
u;. The parameters ¢ € R! and b € R™ are uncertain and
time-varying due to both the changing linearization point
u; and the hidden variables d;. To capture this uncertainty,
we will model these parameters as stochastic. Although the
probability density function of these stochastic variables
is unknown, we will use historical-data to quantify our
uncertainty using their empirical moments. We will use these
empirical moments to translate the conceptual stochastic
optimization problem (3) into a deterministic optimization
problem. Since we consider stochastic parameters, estimat-
ing the parameters is non-trivial.

First, we translate the stochastic equality constraint (3b)
into a deterministic constraint based on empirical moments.
Substituting the stochastic linear model (4) into the equality

constraint (3b) yields E[y;|u;] = Elc + bTu;lu;] = 7.
Exploiting the linearity of the expectation, we obtain E[c] +
E[b] "u; = r; where r; and u; are deterministic. This

equality becomes the deterministic constraints (6b) when the
expectations E[c] and E[b] are replaced by their empirical
estimates p. = E[c] and pp, =~ E[b].

Next, we translate the conceptual stochastic cost (3a) into a
deterministic cost function. Substituting the stochastic linear
model (4) into the cost (3a) yields

Viyilus] = E[(ys — ri)*|ui] = E[(c 4+ b'u; — r9)*|ui] (5

where the mean value of y; is 7; due to the equality
constraint (3b). Expanding the cost, yields V[y;|u;] o
uj E[bbu; + 2u/E[bc] — 2u;E[b]r; where the terms from
E[(c + r;)?] were omitted since they do not depend on the
decision variables w;. Substituting the empirical estimates
E[bb'] ~ Sy, + popy and Efbe] & Spe + pippic, we obtain
Viyilu) o< w] (Spp + posty )ui + 2u] Spe — 20y (pe — 73)
Since p. — 7; —ubTui according to (6b), we obtain
Vyilui] o< uf (Sep — popyd )u; + 2u S Finally, noting that
ubTui is constant, we obtain the deterministic cost (6a). Thus,
the conceptual stochastic optimization problem (3) can now
be approximated by the following deterministic optimization
problem

u; = argmin  u' Syt + 2u ! Sy (6a)
s.t. pe + ubTui =7 (6b)
u; €U (6¢)

where the approximation is due to the use of empirical
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estimates of the means ., fp and variances Ypp, 2pe Of the
parameters. Conveniently, this problem formulation (6) only
requires second-order statics for the model (4) parameters.
Solving (6) will produce the optimal recipe u;.

B. Run-to-Run Controller

The deterministic optimization problem (6) is static. Thus
in this section, we embed this optimization problem (6) into
an R2R framework to provide feedback. Our R2R algorithm
iteratively adjusts the recipe uj,; based on the measured
material removed y; during the previous slice . The R2R
feedback allows the material removal to converge y; — 7 to
the desired removal amount r while rejecting the unmeasured
disturbances d;. The difference y; — r between the actual y;
and desired r removal amount is used to update the drift
coefficient p.. We update the drift coefficient using expo-
nentially weighted moving average (EWMA) dynamics [9]

(7

where fi.;+1 is the updated drift coefficient and A\ € [0, 1]
is a tuning parameter. The EWMA update-law has many
beneficial properties [9]. The optimization problem (6) is
solved with the updated drift coefficient u. to obtain a
new recipe u; which is then implemented. Thus, we can
interpret the drift coefficient u. as a state and the equality
constraint (6b) as dynamics. The R2R controller continues
to refine the recipe u; until all slices have been completed.

fhe,it1 = Hei + Ay — 1)

C. Comparison with Existing R2R Controllers

In this section, we compare our R2R controller algorithm
with existing R2R controllers from the literature. As noted
in the survey [2], most R2R controllers have the following
integral dynamics

®)

where ulj' = up/ MbTHb is the Moore-Penrose pseudo-inverse
and A € [0,1] is a tuning parameter. See equation (16)
from [2] for details. We will show that our R2R controller
has integral dynamics (8) when the input constraints (6¢) are
ignored, although with a novel pseudo-inverse. In contrast,
when the input constraints are included the integral dynamics
no longer apply. Without the input constraints (6¢), the
Karush-Kuhn-Tucker (KKT) optimality conditions for (6) are

il

/1'1—7r T = He
where v € R is the dual variable associated with the equality
constraint (6b). Solving (9) for u, we obtain the control-law

w=pi(r—pe)+ (I — i) Sy She  (10)

where ;LZ = ¥, e/ () Sy, 1) is an alternative pseudo-
inverse of puy, i.e. gl = ) St/ (g Syt ps) = 1. This
pseudo-inverse was derived from (6) to minimizes the vari-
ance E[(y — r)?|u] of the material removal. Combining (10)
with the EWMA dynamics (7), we obtain the following

Uir1 = u; + A\ (r — ;)

Mo
0

€))
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integral dynamics
wirt = i (r—pies) + 5 (T=p) ) Sy S + Auah (r = )
= w; + b (r — yi) (11)

with the specific initial condition wug MZ(T — peo) +
(I — i) 25 She. This initial condition is important
since otherwise the dynamic controller (11) would not
include the second-term which compensates for possible
cross-correlation between the model (4) parameters ¢ and
b. Note that our integral dynamics (11) match the literature
dynamics (8).

Next, we show our R2R Algorithm does not necessarily
have literature dynamics (8) when the input constraints (6¢)
are included. With the input constraints (6¢), the KKT opti-
mality conditions for (6) are

22(,5 122 HI u —22(,0
w0 0| |v|=|r—pe (12)
Hy 0 0 AA ha

where H and h are the half-space parameters of the input
constraints (2) and H 4 and h 4 are the rows corresponding
to the subset A of constraints that are active at the optimal.
The active dual variables are denoted by A4 > 0 where the
dual variable corresponding to inactive constraints are zero.
Through brute-force computation, we obtain

L — ) + (I — piug ) (84 Spe + Thia)

u =y
where T' = ¥, H | (H4%,, H})™! and ,ui is yet another
pseudo-inverse of u; given by

b= (So' = By HA(HAS,, HA) " Ha%y i

iy (T = S HA(H A%, H )™ HaYy, iy
Note that if (6) is feasible then pu; does not lie in the
null-space of ¥,,' — SV H L (HAY,, H)) " HAY,,'. This
follows from the fact that the active inequality constraints
cannot bind the equality constraint (6b).

Although (13) has a similar structure as (10), it cannot
necessarily be transformed into the integral-form (8). As
1 changes (7), the optimal active-set .4 can change. Thus,
the pseudo-inverse ui and matrix ' are time-varying. Thus,
the nonlinear map provided by the optimization problem (6)
replaces rather than integrates (8) the control inputs. Note
that, although our R2R controller does not have the integral
dynamics (8), it is still dynamic due to the EWMA dynam-
ics (7). Finally, note that our R2R controller can be trivially
put in the general form u;11 = au,; + du; given by equation
(17) in [2] since any arbitrary feedback controller «(x) can
be written in this form by defining du; = x(x) — au,.

13)

I'V. NUMERICAL RESULTS

In this section, we present numerical results demonstrating
our R2R controller. First, we present results verifying our
stochastic model (4) of the material removal (1). Next,
we present simulation results that demonstrate our R2R
controller for an unknown static nonlinearity (1). Finally,
we present simulations results of our R2R controller for
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o Historical Data Yy = p. + 1) w
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Fig. 1. Fit of stochastic linear model (4) using historical data.

the stochastic model (4) where the parameters c¢ and b are
time-varying with a Gaussian distribution. Throughout this
section, we consider the MSS with 2 pads to allow us to plot
y; € R versus u; € R,

A. Parameter Estimation and Model Validation

We use historical operational data to estimate the mean
and variance of the stochastic linear model (4). Historical
data was collected over a ten years span and contain over
150 runs containing up to 500 slices per run. The data files
contain the inputs of the system (polish times, RPM, pads
used) and outputs (microscope focus height). We utilize the
observations from the system plant which come in the form
of multiple data files, which contain the inputs (polish times,
RPM, pads used) and outputs (microscope focus height). We
developed a script that extracts this data from thousands of
separate text-files and collects the data into a unified data
set D = (Y,U) where U € R"™ 2 are the recipes and
Y € R ! are the resulting amounts of material removed.
When a slice is imaged, the focal height of the microscope
is recorded for each image in the montage. The average
focal height is then calculated and used to estimate the
amount of material removed for each slice. Microscope auto
focus errors can occur which will cause incorrect average
focal height readings which can lead to readings of negative
or minimal removal amounts. Therefore, the need to pre-
process the data by removing outliers is required. This
includes removing all data points associated with negative
values. Also, we compute a preliminary estimate of the
mean and variance of the parameters ¢ and b. Any data-
points y; ¢ + b'u; outside of 3 standard deviations of
the estimated mean value y; = u. + ,u;,rui are removed.
Once pre-processing is complete, we use the historical data
to estimated the mean and variance of the parameters of
the stochastic model (4) using the generalized method of
moments (GMM) method [10]. The curve-fit of the mean
Yi = e + ,u;—ui of (4) is shown in Fig. 1.

Fig. 1 shows that the available historical data is not very
exciting (in the sense of persistency of excitation). The expert
human operators tend to use a few different recipes and the
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polish times are round numbers, typically multiples of 60
seconds. Indeed, the excitation of this input data u; is

1

g (N Z

=1

where o(-) is the smallest singular-value of a matrix. While

the low-level of excitation makes it difficult to accurately

estimate the parameters, it demonstrates the room for im-

provement through automation. The proposed R2R control

algorithm will not artificially restrict itself to a small number

of recipes with round numbers. This greater flexibility can

potentially lead to improved performance. In future work, we

will consider active-learning/dual-control to produces more
exciting data for our data-driven R2R control design.

Fig. 1 shows that material removal y; is highly variable.
Even when the same recipe w; = @ is used, the resulting
removal y; varies greatly. This is partially due to measure-
ment noise, but the hidden parameters d; play a significant
role. Polishing a soft material will remove far more material
than polishing a hard material for the same amount of time.
Likewise, a fresh pad will remove material more quickly
than an old pad. This high variance of the material removal
shown in Fig. 1 motivates our decision to model the material
removal as stochastic (4). This also motivates our objective

of finding recipes that minimize the variance in the removal
of material.

T
uiui -
T) = 0.0678

U; U

B. Simulation Results

In this section, we compare our R2R controller in with
the literature controller (8) using the Moore-Penrose pseudo-
inverse p = /g o of pp. We also compare our con-
troller without the input constraints (6¢). As we showed in
Section III-C, without (6¢) our controller has the form (8)
with the pseudo-inverse

S M
11y S o
For these simulation results, we model the removal func-
tion (1) as y; = pe + u;rui where y; is the removal amount,
L 1s estimated variance of the output, yy is the estimated
variance of the inputs, and w; is the inputs. The simulation
results are shown in Fig. 2. For each of the 3 R2R algorithms
we show the removal amount y; and the recipe u; versus slice
1. The desired removal amount is = 10.5 microns.

Each of the R2R algorithms converged to the desired re-
moval amount y; — r after 14 slices. This is fast convergence
considering an experiment is typically comprised of hundreds
of slices. Furthermore, a human operator can require up to
40 slices to find an appropriate recipe for a unique sample
with adjustments needed during the course of an experiment.
However, the two linear R2R controllers (8) with different
pseudo-inverses produced different recipes to achieve the
desired removal amount.

Figure 2 and 3 shows both linear R2R controllers (8)
produced non-implementable recipes. In Figure 2, the liter-
ature R2R controller (8) with the Moore-Penrose pseudo-

T
)=

I (14)
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Fig. 3. Simulation results comparing the proposed R2R control with and

without constraints with the literature R2R controller (8) using the Moore-
Penrose pseudo-inverse.

inverse produces a negative polishing times for one of
the pads, which is obviously unimplementable. Figure 3
shows that changes in the target removal amount leads to
the unconstrained variant of our controller to produce an
excessively long polishing times for one of the pads that
violated the constraints.

C. Robustness Simulations

In this section, we present simulation results that stress-
test the R2R algorithms. We modeled the material removal
function (1) using the linear model (4) with time-varying
parameters ¢ and b. For each slice ¢, the parameters were
sampled from a Gaussian distribution

IR PIREEH)
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Fig. 4. Comparison of R2R controllers for stochastic removal amounts

where the mean and variance were empirically estimated.
Our R2R controller was compared with the literature con-
troller (8) using the Moore-Penrose pseudo-inverse. The
simulation results are shown in Fig. 4. The target removal
amount was r = 10 microns. For a fair comparison, the
sequence of parameters ¢; and b; was pre-computed so that
both algorithms had the same realizations of the random
variables. As Fig. 4 shows, both R2R algorithms keep the
average removal amount E[y;] around the target removal
amount. Indeed, our R2R algorithm had an average removal
amount of E[y;] = 9.99 whereas the literature algorithm
had an average E[y;] = 9.98. The advantage of our R2R
controller is the reduction of the variance of the removal
amount V[y;]. The reduction in the variance is apparent
from Fig. 4. Indeed, the variance of the removal amount
for our algorithm was V[y;] = 3.33 whereas the variance of
the literature controller was V[y;] = 17.69. Thus, for these
simulation results, our controller reduces the variance of the
removal amount by 81%.
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