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This paper studies the estimation of high-dimensional, discrete, possibly
sparse, mixture models in the context of topic models. The data consists of
observed multinomial counts of p words across n independent documents. In
topic models, the p × n expected word frequency matrix is assumed to be
factorized as a p × K word-topic matrix A and a K × n topic-document ma-
trix T . Since columns of both matrices represent conditional probabilities be-
longing to probability simplices, columns of A are viewed as p-dimensional
mixture components that are common to all documents while columns of T

are viewed as the K-dimensional mixture weights that are document specific
and are allowed to be sparse.

The main interest is to provide sharp, finite sample, �1-norm convergence
rates for estimators of the mixture weights T when A is either known or un-
known. For known A, we suggest MLE estimation of T . Our nonstandard
analysis of the MLE not only establishes its �1 convergence rate, but also re-
veals a remarkable property: the MLE, with no extra regularization, can be
exactly sparse and contain the true zero pattern of T . We further show that
the MLE is both minimax optimal and adaptive to the unknown sparsity in
a large class of sparse topic distributions. When A is unknown, we estimate
T by optimizing the likelihood function corresponding to a plug in, generic,
estimator Â of A. For any estimator Â that satisfies carefully detailed condi-
tions for proximity to A, we show that the resulting estimator of T retains the
properties established for the MLE. Our theoretical results allow the ambient
dimensions K and p to grow with the sample sizes.

Our main application is to the estimation of 1-Wasserstein distances be-
tween document generating distributions. We propose, estimate and analyze
new 1-Wasserstein distances between alternative probabilistic document rep-
resentations, at the word and topic level, respectively. We derive finite sam-
ple bounds on the estimated proposed 1-Wasserstein distances. For word
level document-distances, we provide contrast with existing rates on the 1-
Wasserstein distance between standard empirical frequency estimates. The
effectiveness of the proposed 1-Wasserstein distances is illustrated by an anal-
ysis of an IMDB movie reviews data set. Finally, our theoretical results are
supported by extensive simulation studies.

1. Introduction. We consider the problem of estimating high-dimensional, discrete,
mixture distributions, in the context of topic models. The focus of this work is the estimation,
with sharp finite sample convergence rates, of the distribution of the latent topics within the
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documents of a corpus. Our main application is to the estimation of Wasserstein distances
between document generating distributions.

In the framework and traditional jargon of topic models, one has access to a corpus of
n documents generated from a common set of K latent topics. Each document i ∈ [n] :=
{1, . . . , n} is modeled as a set of Ni words drawn from a discrete distribution �

(i)∗ on p

points, where p is the dictionary size. We observe the p-dimensional word-count vector Y (i)

for each document i ∈ [n], where we assume

Y (i) ∼ Multinomialp
(
Ni,�

(i)∗
)
.

The topic model assumption is that the matrix of expected word frequencies in the corpus,
�∗ := (�

(1)∗ , . . . ,�
(n)∗ ) can be factorized as

(1) �∗ = AT ∗
Here, A represents the p ×K matrix of conditional probabilities of a word, given a topic and,
therefore, each column of A belongs to the p-dimensional probability simplex

�p := {
x ∈ R

p | x � 0,1�
p x = 1

}
.

The notation x � 0 represents xj ≥ 0 for each j ∈ [p], and 1p is the vector of all ones. The

K × n matrix T ∗ := (T
(1)∗ , . . . , T

(n)∗ ) collects the probability vectors T
(i)∗ ∈ �K , the simplex

in R
K . The entries of T

(i)∗ are probabilities with which each of the K topics occurs within
document i, for each i ∈ [n]. Relationship (1) would be a very basic application of Bayes’
theorem if A also depended on i. A matrix A that is common across documents is the topic
model assumption, which we will make in this paper.

Under model (1), each distribution on words, �
(i)∗ = AT

(i)∗ ∈ �p , is a discrete mixture
of K < p distributions. The mixture components correspond to the columns of A, and are
therefore common to the entire corpus, while the weights, given by the entries of T

(i)∗ , are
document specific. Since not all topics are expected to be covered by all documents, the mix-
ture weights are potentially sparse, in that T

(i)∗ may be sparse. Using their dual interpretation,
throughout the paper we will refer to a vector T

(i)∗ as either the topic distribution or the vector
of mixture weights, in document i.

The observed word frequencies are collected in a p × n data matrix X = (X(1), . . . ,X(n))

with independent columns X(i) = Y (i)/Ni corresponding to the ith document. Our main in-
terest is to estimate T ∗ when either the matrix A is known or unknown. We allow for the
ambient dimensions K and p to depend on the sizes of the samples {N1, . . . ,Nn} and n

throughout the paper.
While, for ease of reference to the existing literature, we will continue to employ the text

analysis jargon for the remainder of this work, and our main application will be to the analysis
of a movie review data set, our results apply to any data set generated from a model satisfying
(1), for instance in biology [18, 22], hyperspectral unmixing [29] and collaborative filtering
[25].

The specific problems treated in this work are listed below, and expanded upon in the
following subsections:

1. The main focus of this paper is on the derivation of sharp, finite-sample, �1-error
bounds for estimators T̂ (i) of the potentially sparse topic distributions T

(i)∗ , under model (1),
for each i ∈ [n]. The finite sample analysis covers two cases, corresponding to whether the
components of the mixture, provided by the columns of A, are either (i) known or (ii) un-
known, and estimated by Â from the corpus data X. As a corollary, we derive corresponding
finite sample �1-norm error bounds for mixture model-based estimators of �

(i)∗ .



LIKELIHOOD ESTIMATION OF SPARSE TOPIC DISTRIBUTIONS 3309

2. The main application of our work is to the construction and analysis of similarity
measures between the documents of a corpus, for measures corresponding to estimates of the
Wasserstein distance between different probabilistic representations of a document.

1.1. A finite sample analysis of topic and word distribution estimators. Finite sample
error bounds for estimators Â of A in topic models (1) have been studied in [3, 5, 9, 10, 24],
while the finite sample properties of estimators of T

(i)∗ and, by extension, those of mixture-
model-based estimators of �

(i)∗ , are much less understood, even when A is known beforehand
and, therefore, Â = A.

When �
(i)∗ ∈ �p is a probability vector parametrized as �

(i)∗ = g(T ), with T ∈ R
K , K < p

and some known function g, provided that T is identifiable, the study of the asymptotic prop-
erties of the maximum likelihood estimator (MLE) of T , derived from the p-dimensional
vector of observed counts Y (i), is over eight decades old. Proofs of the consistency and
asymptotic normality of the MLE, when the ambient dimensions K and p do not depend
on the sample size, can be traced back to [32, 33] and later to the seminal work of [11], and
are reproduced, in updated forms, in standard textbooks on categorical data [1, 12].

The mixture parametrization treated in this work, when A is known, is an instance of these
well-studied low-dimensional parametrizations. Specialized to our context, for document i ∈
[n], the parametrization is �

(i)
∗j = A�

j ·T
(i)∗ with T

(i)∗ ∈ �K , for each component j ∈ [p] of

�
(i)∗ . However, even when p and K are fixed, the aforementioned classical asymptotic results

are not applicable, as they are established under the following key assumptions that typically
do not hold for topic models:

(1) 0 < T
(i)
∗k < 1, for all k ∈ [K],

(2) �
(i)
∗j = A�

j.T
(i)∗ > 0 for all j ∈ [p].

The regularity assumption (1) is crucial in classical analyses [32, 33], and stems from the
basic requirement of M-estimation that T

(i)∗ be an interior point in its appropriate parameter
space. In effect, since

∑K
k=1 T

(i)
∗k = 1, this is a requirement on only a (K − 1) subvector of it.

In the context of topic models, a given document i of the corpus may not touch upon all K

topics, and in fact is expected not to. Therefore, it is expected that T
(i)
∗k = 0, for some k. Fur-

thermore, K represents the number of topics common to the entire corpus, and although topic
k may not appear in document i, it may be the leading topic of some other document j . Both
presence and absence of a topic in a document are subject to discovery, and are not known
prior to estimation. Moreover, one does not observe the topic proportions T

(i)∗ per document
i directly. Therefore, one cannot use background knowledge, for any given document, to
reduce K to a smaller dimension in order to satisfy assumption (1).

The classical assumption (2) also typically does not hold for topic models. To see this, note
that the matrix A is also expected to be sparse: conditional on a topic k, some of the words
in a large p-dimensional dictionary will not be used in that topic. Therefore, in each column
A·k , we expect that Ajk = 0, for many rows j ∈ [p]. When the supports of Aj · and T

(i)∗ do not

intersect, the corresponding probability of word j in document i is zero, �
(i)
∗j = A�

j ·T
(i)∗ = 0.

Since zero word probabilities are induced by unobservable sparsity in the topic distribution
(or, equivalently, in the mixture weights), one once again cannot reduce the dimension p a
priori in a theoretical analysis. Therefore, the assumption (2) is also expected to fail.

The analysis on the MLE of T
(i)∗ is thus an open problem with A being known even for

fixed p scenarios, when the standard assumptions (1) and (2) do not hold and when the
problem cannot be artificially reduced to a framework in which they do.
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Finite sample analysis of the rates of the MLE of topic distributions, for known A. In
Section 2.1, we provide a novel analysis of the MLE of T

(i)∗ for known A, under a sparse
discrete mixture framework, in which both the ambient dimensions K and p are allowed to
grow with the sample sizes Ni and n. Kleinberg and Sandler [25] refer to the assumption of
A being known as the semiomniscient setting in the context of collaborative filtering and note
that even this setting is, surprisingly, very challenging for estimating the mixture weights. By
studying the MLE of T

(i)∗ when A is known, one gains appreciation of the intrinsic difficulty
of this problem, that is present even before one further takes into account the estimation of
the entire p × K matrix A.

To the best of our knowledge, the only existing work that treats the aspect of our problem
is [4], under the assumptions that

(a) the support S∗ of T
(i)∗ is known and Tmin := mink∈S∗ T

(i)
∗k ≥ c/s with s = |S∗| and

c ∈ (0,1],
(b) the matrix A is known and κ = min‖x‖1=1 ‖Ax‖1 > 0.

The parameter κ is called the �1 → �1 condition number of A [25], which measures the
amount of linear independence between columns of A that belong to the simplex �p . Under
(a) and (b), the problem framework is very close to the classical one, and the novelty in
[4] resides in the provision of a finite sample �1-error bound of the difference between the
restricted MLE (restricted to the known support S∗) and the true T

(i)∗ , a bound that is valid for
growing ambient dimensions. However, assumption (a) is rather strong, as the support of T

(i)∗
is typically unknown. Furthermore, the restriction

∑
k∈S∗ T

(i)
∗k = 1 implies that Tmin ≤ 1/s.

Hence (a) essentially requires T
(i)∗ to be approximately uniform on its a priori known support.

This does not hold in general. For instance, even if the support were known, many documents
will primarily cover a very small number of topics, while only mentioning the rest, and thus
some topics will be much more likely to occur than others, per document.

Our novel finite sample analysis in Section 2.1 avoids the strong condition (a) in [4]. For
notational simplicity, we pick one i ∈ [n] and drop the superscripts (i) in X(i), T

(i)∗ and �
(i)∗

within this section. In Theorem 1 of Section 2.1.1, we first establish a general bound for the
�1-norm of the error (T̂mle − T∗), with T̂mle being the MLE of T∗. Then, in Section 2.1.2, we
use this bound as a preliminary result to characterize the regime in which the Hessian matrix
of the loss in (4), evaluated at T̂mle, is close to its population counterpart (see condition (16)
in Section 2.1.2). When this is the case, we prove a potentially faster rate of ‖T̂mle − T∗‖1 in
Theorem 2. A consequence of both Theorem 1 and Theorem 2 is summarized in Corollary 3
of Section 2.1.2 for the case when T∗ is dense such that S∗ = [K]. For dense T∗, provided that
T 3

min ≥ C log(K)/(κ4Ni) for some sufficiently large constant C > 0, ‖T̂mle − T∗‖1 achieves
the parametric rate

√
K/Ni , up to a multiplicative factor κ−1.

As mentioned earlier, since T∗ is not necessarily an interior point, we cannot appeal to the
standard theory of the MLE, nor can we rely on having a zero gradient of the log likelihood
at T̂mle. Instead, our proofs of Theorem 1 and 2 consist of the following key steps:

• We prove that the KKT conditions of maximizing the log likelihood under the restric-
tion that T̂mle ∈ �K lead to a quadratic inequality in (T̂mle − T∗) of the form (T̂mle −
T∗)�H̃ (T̂mle − T∗) ≤ (T̂mle − T∗)�E, where (the infinity norm of) E is defined in the next
point, and

H̃ = ∑
j :Xj>0

Xj

�∗jA
�
j ·T̂mle

Aj ·A�
j ·.
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• We bound the linear term of this inequality by ‖E‖∞‖T̂mle − T∗‖1 together with a sharp
concentration inequality (Lemma I.2 of Appendix I [8]) for

‖E‖∞ = max
k∈[K]

∣∣∣∣ ∑
j :�∗j >0

Ajk

�∗j

(Xj − �∗j )

∣∣∣∣.
• We prove that the quadratic term can be bounded from below by (κ2/2)‖T̂mle −T∗‖2

1, using
the definition of the �1 → �1 condition number of A, and control of the ratios Xj/�∗j over
a suitable subset of indices j such that Xj > 0.

• The faster rate in Theorem 2 requires a more delicate control of H̃ , and its analysis is
complicated by the division by A�

j ·T̂mle. To this end, we use the bound in Theorem 1 to first

prove that A�
j ·T̂mle ≤ (1 + c)�∗j , for all j with �∗j > 0 and some constant c ∈ (0,1). We

then prove a sharp concentration bound (Lemma I.4 of Appendix I) for the operator norm
of the matrix H−1/2(Ĥ −H)H−1/2 for Ĥ = ∑

j Xj�
−2
∗j Aj ·A�

j · and H = ∑
j �−1

∗j Aj ·A�
j ·.

This will lead to an improved quadratic inequality

(T̂mle − T∗)�H(T̂mle − T∗) ≤ (1 + c)(T̂mle − T∗)�E

≤ (1 + c)
∥∥H 1/2(T̂mle − T∗)

∥∥
2

∥∥H−1/2E
∥∥

2.

Finally, a sharp concentration inequality for ‖H−1/2E‖2 gives the desired faster rates on
‖T̂mle − T∗‖1.

Minimax optimality and adaptation to sparsity of the MLE of topic distributions, for
known A. In Section 2.1.3, we show that the MLE of T∗ can be sparse, without any need
for extra regularization, a remarkable property that holds in the topic model set-up. Specifi-
cally, we introduce in Theorem 5 a new incoherence condition on the matrix A under which
{supp(T̂mle) ⊆ supp(T∗)} holds with high probability. Therefore, if the vector T∗ is sparse,
its zero components will be among those of T̂mle. Our analysis uses a primal-dual witness
approach based on the KKT conditions from solving the MLE. To the best of our knowledge,
this is the first work proving that the MLE of sparse mixture weights can be exactly sparse,
without extra regularization, and determining conditions under which this can happen. Since
supp(T̂mle) ⊆ supp(T∗) implies that if T∗k = 0 for some k, so is [T̂mle]k , this sparsity recovery
property further leads to a faster

√
s/Ni rate (up to a logarithmic factor) for ‖T̂mle − T∗‖1

with s = |S∗|, as summarized in Corollaries 4 and 6 of Section 2.1.3. In Section 2.1.4, we
prove that

√
s/Ni in fact is the minimax rate of estimating T∗ over a large class of sparse

topic distributions, implying the minimax optimality of the MLE as well as its adaptivity to
the unknown sparsity s.

Finite sample analysis of the estimators of topic distributions, for unknown A. We study
the estimation of T∗ when A is unknown in Section 2.2. Our procedure of estimating T∗ is
valid for any estimator Â of A with columns of Â belonging to �p . For any such estimator
Â, we propose to plug it into the log-likelihood criterion

∑
j Xj log(Â�

j ·T ) for estimating T∗.

While the proofs are more technical, we can prove that the resulting estimate T̂ of T∗ by using
Â retains all the properties proved for the MLE T̂mle based on the known A in Section 2.1,
provided that the error ‖Â − A‖1,∞ := maxk ‖Â·k − A·k‖1 is sufficiently small. In fact, all
bounds of ‖T̂ − T∗‖1 in Theorems 8 and 9 and Corollary 11 of Section 2.2.2, have an extra
additive term ‖Â−A‖1,∞ reflecting the effect of estimating A. In Theorem 10 of Section 2.2,
we also show that the estimator T̂ retains the sparsity recovery property despite using Â.
Essentially, our take-home message is that the rate for ‖T̂ −T∗‖1 is the same as ‖T̂mle −T∗‖1
plus the additive error ‖Â − A‖1,∞, provided that Â estimates A well in ‖ · ‖1,∞ norm, with
one instance given by the estimator in [9] and fully analyzed in Section 2.2.3.
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Finite sample analysis of the estimators of word distributions. In Section 2.3, we com-
pare the mixture-model-based estimator �̃A = AT̂mle of �∗ with the empirical estima-
tor �̂ = X (we drop the document-index i), which is simply the p-dimensional observed
word frequencies, in two aspects: the �1 convergence rate and the estimation of probabil-
ities corresponding to zero observed frequencies. For the empirical estimator �̂, we find
E[‖�̂ − �∗‖1] ≤ √‖�∗‖0/N with ‖�∗‖0 = ∑

j 1{�∗j > 0}, while E[‖�̃A − �∗‖1] ≤
E[‖T̂mle − T∗‖1] = O(

√
K log(K)/N). We thus expect a faster rate for the model-based es-

timate �̃A whenever K log(K) = O(‖�∗‖0). Regarding the second aspect, we note that we
can have zero observed frequency (Xj = 0) for some word j that has strictly positive word
probability (�∗j > 0). The probabilities of these words are estimated incorrectly by zeroes
by the empirical estimate �̂ whereas the model-based estimator �̃A can produce strictly pos-
itive estimates, for instance, under conditions stated in Section 2.3. On the other hand, for the
words that have zero probabilities in �∗ (hence zero observed frequencies), the empirical es-
timate �̂ makes no mistakes in estimating their probabilities while the estimation error of �̃A

tends to zero at a rate that is no slower than
√

K log(K)/N . In the case that T̂mle has correct
one-sided sparsity recovery, detailed in Section 2.1.3, �̃A also estimates zero probabilities
by zeroes.

1.2. Estimates of the 1-Wasserstein document distances in topic models. In Section 3,
we introduce two alternative probabilistic representations of a document i ∈ [n]: via the word
generating probability vector, �

(i)∗ , or via the topic generating probability vector T
(i)∗ . We

use either the 1-Wasserstein distance (see Section 3 for the definition) between the word
distributions, W1(�

(i)∗ ,�
(j)∗ ;Dword), or the 1-Wasserstein distance between the topic distri-

butions, W1(T
(i)∗ , T

(j)∗ ;Dtopic), in order to evaluate the proximity of a pair of documents i

and j , for metrics Dword and Dtopic between words and topics, defined in displays (46) and
(49)–(50), respectively. In particular, in Section 3.1 we explain in detail that we regard a topic
as a distribution on words, given by a column of A and, therefore, distances between topics
are distances between discrete distributions in �p , and need to be estimated when A is not
known.

In Section 3.2, we propose to estimate the two 1-Wasserstein distances by plug-in estimates
W1(�̃

(i), �̃(j);Dword) and W1(T̂
(i), T̂ (j); D̂topic), respectively, where �̃(i) = ÂT̂ (i) is the

model-based estimator of �
(i)∗ based on a generic estimator Â of A and the estimator T̂ (i) of

T
(i)∗ that uses the same Â, as studied in Section 2. We prove in Proposition 12 of Section 3.2

that the absolute values of the errors of both estimates can be bounded by

max
�∈{i,j}

∥∥T̂ (�) − T (�)∗
∥∥

1 + ‖Â − A‖1,∞.

A main theoretical application of the �1-error bounds for the topic distributions derived in
Section 2 can be used to bound the first term while the second term reflects the order of
the error in estimating A and, therefore, vanishes if A is known. For completeness, we take
the estimator Â proposed in [9] and provide in Corollary 13 of Section 3.2 explicit rates of
convergence of both errors of estimating two 1-Wasserstein distances by using this Â. The
practical implications of the corollary are that a short document length (small N ) can be
compensated for, in terms of speed of convergence, by having a relatively small number of
topics K covered by the entire corpus, whereas working with a very large dictionary (large
p) will not be detrimental to the rate in a very large corpus (large n).

To the best of our knowledge, this rate analysis of the estimates of 1-Wasserstein distance
corresponding to estimators of discrete distributions in topic models is new. The only related
results, discussed in Section 3.1, have been established relative to empirical frequency esti-
mators of discrete distributions, from an asymptotic perspective [35, 36] or in finite samples
[37].
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In Remark 8 of Section 3.2, we discuss the net computational benefits of represent-
ing documents in terms of their K-dimensional topic distributions, for 1-Wasserstein dis-
tance calculations. Using an IMBD movie review corpus as a real data example, we il-
lustrate in Appendix B the practical benefits of these distance estimates, relative to the
more commonly used earth(word)-mover’s distance [27] between observed empirical word-
frequencies, W1(�̂

(i), �̂(j);Dword), with �̂(i) := X(i), for all i ∈ [n]. Our analysis reveals
that all our proposed 1-Wasserstein distance estimates successfully capture differences in the
relative weighting of topics between documents, whereas the standard W1(�̂

(i), �̂(j);Dword)

is substantially less successful, likely owing in part to the fact noted in Section 1.1 above, that
when the dictionary size p is large, but the document length Ni is relatively small, the quality
of �̂(i) as an estimator of �

(i)∗ will deteriorate, and the quality of W1(�̂
(i), �̂(j);Dword) as

an estimator of (47) will deteriorate accordingly.
The remainder of the paper is organized as follows. In Section 2.1, we study the estimation

of T∗ when A is known. A general bound of ‖T̂mle − T∗‖1 is stated in Section 2.1.1 and is
improved in Section 2.1.2. The sparsity of the MLE is discussed in Section 2.1.3 and the min-
imax lower bounds of estimating T∗ are established in Section 2.1.4. Estimation of T∗ when
A is unknown is studied in Section 2.2. In Section 2.3, we discuss the comparison between
model-based estimators and the empirical estimator of �∗. Section 3 is devoted to our main
application: the 1-Wasserstein distance between documents. In Section 3.1, we introduce al-
ternative Wasserstein distances between probabilistic representations of documents with their
estimation studied and analyzed in Section 3.2. The Appendix contains the analysis of a real
data set of IMDB movie reviews, all proofs, auxiliary results and all simulation results.

Notation. For any positive integer d , we write [d] := {1, . . . , d}. For two real numbers
a and b, we write a ∨ b = max{a, b} and a ∧ b = min{a, b}. For any set S, its cardinality
is written as |S|. For any vector v ∈ R

d , we write its �q -norm as ‖v‖q for 0 ≤ q ≤ ∞. For
a subset S ⊂ [d], we define vS as the subvector of v with corresponding indices in S. Let
M ∈ R

d1×d2 be any matrix. For any set S1 ⊆ [d1] and S2 ⊆ [d2], we use MS1S2 to denote
the submatrix of M with corresponding rows S1 and columns S2. In particular, MS1· (M·S2 )
stands for the whole rows (columns) of M in S1 (S2). Sometimes we also write MS1 = MS1·
for succinctness. We use ‖M‖op and ‖M‖q to denote the operator norm and elementwise
�q norm, respectively. We write ‖M‖1,∞ = maxj ‖M·j‖1. The kth canonical unit vector in
R

d is denoted by ek while 1d represents the d-dimensional vector of all ones. I d is short
for the d × d identity matrix. For two sequences an and bn, we write an � bn if there exists
C > 0 such that an ≤ Cbn for all n ≥ 1. For a metric D on a finite set X , we use boldface
D := (D(a, b))a,b∈X to denote the corresponding |X | × |X | matrix. The set Hd contains all
d × d permutation matrices.

2. Estimation of topic distributions under topic models. We consider the estimation
of the topic distribution vector, T

(i)∗ ∈ �K , for each i ∈ [n]. Pick any i ∈ [n]; for notational
simplicity, we write T∗ = T

(i)∗ , X = X(i) and �∗ = �
(i)∗ as well as N = Ni throughout this

section.
We allow, but do not assume, that the vector T∗ is sparse, as sparsity is expected in topic

models: a document will cover some, but most likely not all, topics under consideration. We
therefore introduce the following parameter space for T∗:

T (s) = {
T ∈ �K : ∣∣supp(T )

∣∣ = s
}
,

with s being any integer between 1 and K . From now on, we let S∗ := supp(T∗) and write
|S∗| for its cardinality.
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In Section 2.1, we study the estimation of T∗ from the observed data X, generated from
background probability vector �∗ parametrized as �∗ = AT∗, with known matrix A. The
intrinsic difficulties associated with the optimal estimation of T∗ are already visible when
A is known, and we treat this in detail before providing, in Section 2.2, a full analysis that
includes the estimation of A. We remark that assuming A known is not purely unrealistic in
topic models used for text data, since then one typically has access to a large corpus (with n

in the order of tens of thousands). When the corpus can be assumed to share the same A, this
matrix can be very accurately estimated.

The results of Section 2.1 hold for any known A, not required to have any specific structure:
in particular, we do not assume that it follows a topic model with anchor words (Assumption 1
stated in Section 2.2.1 below). We will make this assumption when we consider optimal
estimation of T∗ when A itself is unknown, in which case Assumption 1 serves as both a
needed identifiability condition and a condition under which estimation of both A and T∗, in
polynomial time, becomes possible. This is covered in detail in Section 2.2.

2.1. Estimation of T∗ when A is known. When A is known and given, with columns
A·k ∈ �p , the data has a multinomial distribution,

(2) NX ∼ Multinomialp(N;AT∗),
where T∗ ∈ �K is the topic distribution vector, with entries corresponding to the proportions
of the K topics, respectively. Under (2), it is natural to consider the Maximum Likelihood
Estimator (MLE) T̂mle of T∗. The log likelihood, ignoring terms independent of T , is propor-
tional to

p∑
j=1

Xj log
(
A�

j ·T
) = ∑

j∈J

Xj log
(
A�

j ·T
)
,

where the last summation is taken over the index set of observed relative frequencies,

(3) J := {
j ∈ [p] : Xj > 0

}
,

and using the convention that 00 = 1. Then

(4) T̂mle := arg max
T ∈�K

∑
j∈J

Xj log
(
A�

j ·T
)
.

This optimization problem is also known as the log-optimal investment strategy; see, for
instance [16], problem 4.60. It can be computed efficiently, since the loss function in (4) is
concave on its domain, the open half-space

⋂
j∈J {x ∈ R

K | A�
j ·x > 0}, and the constraints

T � 0 and 1�
KT = 1 are convex.

The following two subsections state the theoretical properties of the MLE in (4), and in-
clude a study of its adaptivity to the potential sparsity of T∗ and minimax optimality. In
Section 2.3, we show that although T̂mle is constructed only from observed, nonzero, fre-
quencies, A�

j ·T̂mle can be a nonzero estimate of �∗j for those indices j ∈ J c for which we
observe Xj = 0.

2.1.1. A general finite sample bound for ‖T̂mle −T∗‖1. To analyze T̂mle, we first introduce
two deterministic sets that control J defined in (3). Recalling �∗ = AT∗, we collect the words
with nonzero probabilities in the set

(5) J := {
j ∈ [p] : �∗j > 0

}
.

We will also consider the set

(6) J := {
j ∈ [p] : �∗j > 2εj

}
,
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where

(7) εj := 2

√
�∗j logp

N
+ 4 logp

3N
, ∀1 ≤ j ≤ p.

The sets J and J are appropriately defined such that J ⊆ J ⊆ J holds with probability at
least 1 − 2p−1 (see Lemma I.1 of Appendix I). Define

(8) ρ := max
j∈J

‖Aj ·‖∞
�∗j

.

We note that J , J and ρ all depend on T∗ implicitly via �∗. Another important quantity is
the following �1 → �1 restricted condition number of the submatrix AJ of A, defined as

(9) κ(AJ , s) := min
S⊆[K]:|S|≤s

min
v∈C(S)

‖AJ v‖1

‖v‖1
,

with

C(S) := {
v ∈ R

K \ {0} : ‖vS‖1 ≥ ‖vSc‖1
}
.

We make the following simple, but very important, observation that

(10) T̂mle − T∗ ∈ C(S∗)

with S∗ = supp(T∗), by using the fact that both T̂mle and T∗ belong to �K . In fact, (10) holds
generally for any estimator T̂ ∈ �K as

0 = ‖T∗‖1 − ‖T̂ ‖1 = ∥∥(T∗)S∗
∥∥

1 − ‖T̂S∗‖1 − ‖T̂Sc∗‖1 ≤ ∥∥(T̂ − T∗)S∗
∥∥

1 − ∥∥(T̂ − T∗)Sc∗
∥∥

1.

Display (10) implies that the “effective” �1 error bound of T̂mle − T∗ arises mainly from the
estimation of (T∗)S∗ . Also because of this property, we need the condition number of A to be
positive only over the cone C(S∗) rather than the whole R

K .
The following theorem states the convergence rate of ‖T̂mle − T∗‖1. Its proof can be found

in Appendix F.1.

THEOREM 1. Assume κ(AJ , s) > 0. For any ε ≥ 0, with probability 1 − 2p−1 − 2ε, one
has

(11) ‖T̂mle − T∗‖1 ≤ 2

κ2(AJ , s)

{√
2ρ log(K/ε)

N
+ 2ρ log(K/ε)

N

}
.

Theorem 1 is a general result that only requires κ(AJ , s) > 0. The rates depend on two
important quantities: κ(AJ , s) and ρ, which we discuss below in detail. In the next section,
we will show that the bound in Theorem 1 serves as an initial result, upon which one could
obtain a faster rate of the MLE in certain regimes.

REMARK 1 (Discussion on κ(AJ , s)). The �1 → �1 condition number, κ(A,K), is com-
monly used to quantify the linear independence of the columns belonging to �p of the matrix

A ∈ R
p×K
+ [25]. As remarked in [25], the �1 → �1 condition number κ(A,K) plays the role

of the smallest singular value, σK(A) = infv �=0 ‖Av‖2/‖v‖2, but it is more appropriate for
matrices with columns belonging to a probability simplex. Because of the chain inequalities

κ(A,K)√
p

≤ σK(A) ≤ √
Kκ(A,K),
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and the fact that K � p, having κ−1(A,K) appear in the bound loses at most a
√

K factor
comparing to σ−1

K (A). But using σ−1
K (A) potentially yields a much worse bound than using

κ−1(A,K): there are instances for which κ(A,K) is lower bounded by a constant whereas
σK(A) is only of order o(1) (see, for instance, [25], Appendix A).

The restricted �1 → �1 condition number κ(A, s) in (9) for 1 ≤ s ≤ K generalizes κ(A,K)

by requiring the condition of A over the cones C(S) with S ⊆ [K] and |S| ≤ s. We thus view
κ(A, s) as the analogue of the restricted eigenvalue [7] of the Gram matrix in the sparse
regression settings. In topic models, it has been empirically observed that the (restricted)
condition number of A is oftentimes bounded from below by some absolute constant [4].

To understand why κ(AJ , s) appears in the rates, recall that the MLE in (4) only uses the
words in J as defined in (3). Intuitively, only the condition number of AJ should play a role
as we do not observe any information from words in J c := [p] \ J . Since J ⊆ J ⊆ J holds
with high probability, we can thus bound κ(AJ , s) from below by κ(AJ , s). For the same
reason, ρ in (8) is defined over j ∈ J rather than j ∈ J .

REMARK 2 (Discussion on ρ). Define the smallest nonzero entry in T∗ as

Tmin := min
k∈S∗

T∗k.

Recall �∗j = A�
j ·T∗ = A�

jS∗T∗S∗ . We have ρ = max{ρS∗, ρSc∗} where

ρS∗ = max
k∈S∗

max
j∈J

Ajk∑
a∈S∗ AjaT∗a

≤ 1

Tmin
,(12)

ρSc∗ = max
k∈Sc∗

max
j∈J

Ajk∑
a∈S∗ AjaT∗a

≤ 1

Tmin
· max

k∈Sc∗
max
j∈J

Ajk∑
a∈S∗ Aja

.(13)

The magnitudes of both ρS∗ and ρSc∗ closely depend on Tmin while ρSc∗ also depends on

(14) ξ := max
j∈J

‖AjSc∗‖∞
‖AjS∗‖1

,

a quantity that essentially balances the entries of AjS∗ and those of AjSc∗ . Clearly, when T∗ is
dense, that is, |S∗| = K , we have ξ = 0. In general, we have

(15) ρ ≤ (1 ∨ ξ)/Tmin.

We further remark that if A has a special structure such that there exists at least one anchor
word for each topic k ∈ S∗, that is, for each k ∈ [K], there exists a row Aj · ∝ ek (see As-
sumption 1 in Section 2.2.1 below), it is easy to verify that the inequality for ρS∗ in (12) is in
fact an equality.

2.1.2. Faster rates of ‖T̂mle − T∗‖1. In this section, we state conditions under which the
general bound stated in Theorem 1 can be improved. We begin by noting that one of the main
difficulties in deriving a faster rate for ‖T̂mle − T∗‖1 is in establishing a link between the
Hessian matrix (the second-order derivative) of the loss function in (4) evaluated at T̂mle to
that evaluated at T∗.

To derive this link, we prove in Appendix F.1 that a relative weighted error of estimating
T∗ by T̂mle stays bounded in probability, in the precise sense that

(16) max
j∈J

|A�
j ·(T̂mle − T∗)|

A�
j ·T∗

= OP(1).
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Further, we show in Lemma I.4 in Appendix I that the Hessian matrix of (4) at T∗ concentrates
around its population-level counterpart, with Xj replaced by �∗j . A sufficient condition
under which (16) holds can be derived as follows. First, note that

(17) max
j∈J

|A�
j ·(T̂mle − T∗)|

A�
j ·T∗

≤ max
j∈J

‖Aj ·‖∞
�∗j

‖T̂mle − T∗‖1
(8)= ρ‖T̂mle − T∗‖1.

We have bounded ρ by ρ ≤ (1 ∨ ξ)/Tmin in (15), and have provided an initial bound on
‖T̂mle − T∗‖1 in Theorem 1. Therefore, (16) holds if these two bounds combine to show
ρ‖T̂mle −T∗‖1 is of order OP(1). This is summarized in the following theorem. Let κ(AJ ,K)

be defined in (9) with s = K and AJ in place of AJ . Recall that ξ is defined in (14). In
addition, we define

M1 := logK

κ4(AJ , s)T 3
min

(
1 ∨ ξ3)

,

M2 := logK

κ2(AJ ,K)T 2
min

(1 ∨ ξ)(1 + ξ
√

K − s).

(18)

THEOREM 2. For any T∗ ∈ T (s) with 1 ≤ s ≤ K , assume there exists some sufficiently
large constant C > 0 such that

(19) N ≥ C max{M1,M2}.
Then, with probability 1 − 2p−1 − 4K−1 − 2e−K , we have

‖T̂mle − T∗‖1 � κ−1(AJ , s)
√

K/N.

Condition (19) requires the sample size N to be sufficiently large relative to Tmin, ξ and
the �1 → �1 condition number of A. If N ≥ CM1, then the argument in (17) above implies
(16), while we use N ≥ CM2 to prove in Appendix I that the Hessian matrix of (4) at T∗
concentrates around its population-level counterpart.

Combining the bounds in Theorem 1 and Theorem 2, we immediately have the following
faster rate of the MLE under (19):

(20) ‖T̂mle − T∗‖1 = OP

(
min

{
κ−2(AJ , s)

√
ρ logK

N
,κ−1(AJ , s)

√
K

N

})
.

We remark that, when T∗ is sparse, the first term in the minimum on the right of (20) could
be smaller than the second one (see one instance under item (a) of Corollary 6).

However, for dense T∗ ∈ T (K) such that |S∗| = K , the newly derived rate in Theorem 2
(the second term in (20)) is always faster than that in Theorem 1 (the first term in (20)), as
summarized in the following corollary. Its proof follows immediately from Theorem 2 by
replacing s by K and noting that in that case ξ = 0, by (14).

COROLLARY 3 (Dense T∗). For any T∗ ∈ T (K), assume there exists some sufficiently
large constant C > 0 such that

(21) N ≥ C
logK

κ4(AJ ,K)T 3
min

.

Then we have

P

{
‖T̂mle − T∗‖1 � κ−1(AJ ,K)

√
K

N

}
≥ 1 − 2p−1 − 4K−1 − 2e−K.
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Although in our current application we expect T∗ to be exactly sparse, there are many
other applications where T∗ can only be approximately sparse. For instance, in a standard
latent Dirichlet allocation model [15], T∗ follows a Dirichlet distribution and is never exactly
sparse. The theoretical results derived above are directly applicable to these situations.

Theorem 2 and Corollary 3 allow us to pin-point the difficulty in establishing rate adap-
tation to sparsity of the T̂mle of a potentially sparse T∗, when its sparsity pattern is neither
known, nor recovered. To this end, notice that although the bound in Theorem 2 is derived
for sparse T∗, the rate is essentially the same as that of Corollary 3, that pertains to a dense
T∗ and, moreover, is established under the stronger condition (19). This condition involves
the quantity ξ defined in (14), which balances entries of AJSc∗ and AJS∗ . We thus view (19)
as the price to pay, compared to (21), for not knowing the support S∗ of T∗. We recall that all
prior existing literature on this problem, either classical [1, 12] or more recent [4] assumes
that S∗ is known.

The next section establishes the remarkable fact that the MLE of T∗ in topic models can
be exactly sparse, under conditions that we establish in this section. This property allows us
to relax (19) and prove that the rate of ‖T̂mle − T∗‖1 can adapt to the unknown sparsity of T∗,
when the support of T̂mle is included in the support of T∗.

2.1.3. The sparsity of the MLE in topic models. We will shortly investigate and discuss
conditions under which T̂mle in topic models is sparse, a remarkable feature of the MLE since
there is no explicit regularization in (4). To that end, we will show that

(22) Esupp := {
supp(T̂mle) ⊆ supp(T∗)

}
holds with high probability. Therefore, when T∗ has zero entries, T̂mle will also be sparse,
and have at least as many zeroes. Before stating these results more formally, we give a first
implication, in Corollary 4, of the sparsity of the MLE on its �1-norm rate.

COROLLARY 4. For any T∗ ∈ T (s) with 1 ≤ s < K , assume there exists some sufficiently
large constant C > 0 such that

(23) N ≥ C
log(s ∨ n)

κ4(AJ , s)T 3
min

.

Then, for any ε ≥ 0,

P

[
Esupp ∩

{
‖T̂mle − T∗‖1 � κ−1(AJ , s)

√
s log(1/ε)

N

}]
≥ 1 − 2

p
− 4

s ∨ n
− 2εs.

To compare the rates with Theorem 1, suppose Assumption 1 in Section 2.2.1 holds and
we have ρ ≥ ρS∗ = 1/Tmin from Remark 2. Since Tmin ≤ 1/s and 1 ≥ κ(AJ , s) ≥ κ(AJ , s),
we conclude that the rate in Corollary 4 is no slower than that in Theorem 1.

Compared to Theorem 2 and condition (19), on the even Esupp, the faster rate in Corollary 4
is obtained under a weaker condition (23). This reflects the benefit of (one-sided) support
recovery, supp(T̂mle) ⊆ supp(T∗).

In the following theorem, we show that Esupp indeed holds with high probability under an
incoherence condition on A.

THEOREM 5. For any T∗ ∈ T (s) with any 1 ≤ s < K , assume (23). Further assume there
exists some sufficiently small constant c > 0 such that

(24)
(
κ−1(AJ , s)

√
ξs

Tmin
+ 1

)√
ξ log(K)

TminN
≤ c min

k∈Sc∗

∑
j∈J

c

Ajk.

Then one has P(Esupp) ≥ 1 − 2p−1 − 4(s ∨ n)−1 − 4K−1.
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SKETCH OF THE PROOF. We defer the detailed proof to Appendix F.4, but offer a sketch
here. For any T∗ with supp(T∗) ⊆ [K], our proof of supp(T̂mle) ⊆ supp(T∗) consists in two
steps. We show that:

(i) there exists an optimal solution T̃ to (4) such that supp(T̃ ) ⊆ supp(T∗);
(ii) if there exists any other optimal solution T̄ to (4) that is different from T̃ , we also

have supp(T̄ ) ⊆ supp(T∗).
Since T̂mle itself is an optimal solution to (4), combining (i) and (ii) yields the desired result.

To prove (i), we use the primal-dual witness approach based on the KKT condition of (4).
Specifically, we construct the (oracle) optimal solution T̃ as

(25) T̃S∗ = arg max
β∈�s

N
∑
j∈J

Xj log
(
A�

jS∗β
)
, T̃Sc∗ = 0.

Here, S∗ = supp(T∗) and s = |S∗|. On the random event,

(26) max
k∈Sc∗

∑
j∈J

Xj

Ajk

A�
jS∗ T̃S∗

< 1,

we prove step (i) by showing that T̃ is an optimal solution to (4) via its KKT condition. Also
on the event (26), we prove step (ii) by using the concavity of the loss function in (4) together
with some intermediate results from proving (i). Finally, we show that the random event (22)
holds with the specified probability in Theorem 5 under condition (24). �

For completeness, in Appendix A, we show that for a certain class of topic models T̂mle
is not only sparse, but can also consistently estimate the zero entries in T∗. Other examples
are possible, but we restrict our attention to topic models (1) with anchor words, satisfying
Assumption 1 stated in Section 2.2.1, for which we show that we also have supp(T∗) ⊆
supp(T̂mle) with high probability. Combination with Theorem 5 proves consistent support
recovery of T̂mle, in this class of topic models, a fact also confirmed by our simulations in
Appendix D.

EXAMPLE 1. We argued above that, when A has a certain configuration, if T∗ has zero
entries, so will T̂mle. We provide below a simple but illuminating example of this fact. Assume
that all words are anchor words: each topic uses its own dedicated words, and there is no
overlap between words per topic. We collect the respective word indices, per topic, in the
set {I1, . . . , IK} which forms a partition of [p]. In this case, the columns of A have disjoint
supports, and by inspecting the displays (F.12)–(F.13) in the proof of Theorem 1, one can
deduce that T̂mle has the following closed-form expression:

[T̂mle]k = ∑
i∈Ik

Xi, ∀k ∈ [K].

Indeed, the above expression can be understood by noting that Z ∼ MultinomialK(N;T∗)
where Zk = N

∑
i∈Ik

Xi for each k ∈ [K]. Therefore, when T∗k = 0 for some k ∈ [K], we im-
mediately have Zk = 0, with probability one. Thus, [T̂mle]k = 0, and supp(T̂mle) ⊆ supp(T∗).
For a more general A, the phenomenon supp(T̂mle) ⊆ supp(T∗) still remains under the inco-
herence condition (24) that we explain in detail in the following remark.

REMARK 3. Condition (24) can be interpreted as an incoherence condition on the sub-
matrices A·S∗ and A·Sc∗ . To see this, recall from Remark 2 that ξ controls the largest ratio of
‖AjSc∗‖∞ to ‖AjS∗‖1 over all j ∈ J . Since

J = {
j ∈ [p] : AjS∗ �= 0

}
and J

c = {
j ∈ [p] : AjS∗ = 0

}
,
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the left-hand side of (24) controls from above the magnitude of the entries AjSc∗ for the
rows with AjS∗ �= 0, whereas the right-hand side bounds from below A·Sc∗ on the rows with
AjS∗ = 0. To aid intuition, the following figure illustrates the restriction on A where the
submatrix AJSc∗ is required to have relatively small entries, while the submatrix AJ

c
Sc∗ needs

to have relatively large entries. Generally speaking, the more incoherent A·S∗ and A·Sc∗ are,
the more likely condition (24) holds.

In particular, condition (24) always holds if A·S∗ and A·Sc∗ have disjoint supports. Another
favorable situation for (24) is when there exist anchor words in the dictionary (see Assump-
tion 1 in Section 2.2.1). Specifically, when there exist at least m anchor words for each of
the topics indexed by Sc∗, and their nonzero entries in the corresponding rows of A are lower
bounded by δ ∈ (0,1/m] (recall that columns of A sum up to one), the right-hand side of (24)
is no smaller than c(mδ).

To conclude our discussion of the fast rates of the MLE, we remark that the rate in The-
orem 1 per se could be as fast as

√
s logK/N under additional conditions and if we restrict

ourselves to the following subspace of T (s):

(27) T ′(s) := T ′(s, c
) = {
T ∈ T (s) : Tmin ≥ c
/s

}
.

Here, c
 ∈ (0,1] is some absolute constant. The following corollary summarizes the condi-
tions that we need to simplify the rates in Theorem 1 and combines them with the conditions
in Corollary 4 and Theorem 5 to yield a faster rate of the MLE when T∗ is sparse.

COROLLARY 6. For any T∗ ∈ T (s) with 1 ≤ s < K ,

(a) if T∗ ∈ T ′(s), ξ = O(1), κ−1(AJ , s) =O(1) and s log(K) =O(N), then

‖T̂mle − T∗‖1 = OP

(√
s log(K)

N

)
;

(b) if conditions (23)–(24) and κ−1(AJ , s) = O(1) hold, then

‖T̂mle − T∗‖1 = OP

(√
s

N

)
.

We note that the bound in case (a) from Theorem 1 is slower by a factor
√

log(K), which
is the price to pay for not recovering the support of T∗. In Section 2.1.4, we benchmark the
fast rate

√
s/N in Corollary 6 and show that it is minimax rate optimal, by establishing the

minimax lower bounds of estimating T∗ ∈ T (s) for any 1 ≤ s ≤ K .
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REMARK 4 (Comparison with existing work). For known A, and when S∗ is also known,
[4] analyzes the estimator T̃ as defined in (25). Note that T̃ is not the MLE in general and
‖T̃ − T∗‖1 = ‖(T̃ − T∗)S∗‖1 holds by definition. Under κ−1(AJ , s) = O(1) and a condition
similar to (23), [4], Theorem 5.3, proves ‖(T̃ − T∗)S∗‖1 = OP(

√
s/N) only for T∗ ∈ T ′(s).

Therefore, the result of [4] is only comparable to ours when T∗ is dense with S∗ = [K]. Even
in this case, our result (see, for instance, Corollary 3) is more general in the sense that we
do not require Tmin ≥ c/K to obtain the same rate. More generally, when S∗ is unknown,
our result in Corollary 6 shows that the MLE can still have fast rates in many scenarios.
Moreover, we prove that the MLE is actually sparse and consistently estimate the zero entries
of T∗ under the incoherence condition (24).

2.1.4. Minimax lower bounds and the optimality of the MLE. To benchmark the rate of
T̂mle in Corollary 6, we now establish the minimax lower bound of estimating T∗ over T ′(s)
for any 1 < s ≤ K . Notice that such a lower bound is also a minimax lower bound over
T∗ ∈ T (s), a larger parameter space.

The following theorem states the �1-norm minimax lower bound of estimating T∗ in (2),
from data X.

THEOREM 7. Under (2), assume 1 < s ≤ cN for some small constant c > 0. Then there
exists some absolute constants c0 > 0 and c1 ∈ (0,1], depending on c only, such that

inf
T̂

sup
T∗∈T ′(s)

P

{
‖T̂ − T∗‖1 ≥ c0

√
s

N

}
≥ c1.

The infimum is taken over all estimators T̂ ∈ �K .

Different from the standard �1-norm minimax rate, s/
√

N , of estimating an s-dimensional
unconstrained vector from N i.i.d. observations, for instance the regression coefficient vector
in linear regression, Theorem 7 shows that the �1-minimax rate of estimating the probability
vector T∗ ∈ T ′(s) is of order

√
s/N .

In view of Theorem 7, under the conditions of Corollary 6, the MLE is minimax optimal
for T∗ ∈ T ′(s). In fact, Corollary 6 also shows that under conditions therein, the optimal rate
can be still achieved by the MLE on a larger space T (s). Furthermore, the derived rates in
the minimax lower bounds in Theorem 7 are sharp.

It is also worth mentioning that in contrast to the sparse linear regression setting where
the minimax optimal rates of estimating a p-dimensional vector with at most s nonzero en-
tries contain a log(ep/s) term, the minimax optimal rates in our context do not contain an
additional log(eK/s) term, an advantage of support recovery of the MLE.

REMARK 5 (Method of moments and least squares estimators). The method of moments
is a natural alternative to MLE-based estimation. It would correspond to estimating T∗ by the
solution X = AT∗. Since this solution may not lie in the probability simplex �K , one can
consider instead the restricted least squares estimator (RLS) that regresses X onto A over
the probability simplex �K . However, this method is not optimal, as it does not take into
account the heteroscedasticity of the data X. We confirmed this via our simulation study
in Appendix D. An iterative weighted RLS could be used to improve the performance of
the RLS. It is well known that in the classical setting with K and p fixed, this technique
is asymptotically (as N → ∞) equivalent with the MLE (in fact, both are efficient); see,
for instance, [12] and [1]. We confirmed this in our simulation studies in Appendix D, but
found that it never improved upon the MLE, and furthermore, had a significantly greater
computational time than the MLE.
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REMARK 6. Since our target T∗ lies in a probability simplex, we view the �1 norm as
a natural metric for quantifying the estimation error. Nevertheless, our analysis readily gives
the error bounds of estimating T∗ in �2-norm, as stated in Appendix L.

2.2. Estimation of T∗ when A is unknown. When A is unknown, we propose to estimate
A first. The estimation of A has been well understood in the literature of topic models, as
reviewed in Section 2.2.1. Our procedure of estimating T∗ for unknown A is valid for any
estimator of A, and is stated and analyzed in Section 2.2.2. In Section 2.2.3, we illustrate our
general result by applying it to a particular estimator of A.

2.2.1. Estimation of A. The estimation of A under topic models has been originally stud-
ied within a Bayesian framework [15, 23], and variational-Bayes type approaches were fur-
ther proposed to accelerate the computation of fully Bayesian approaches. We refer to [14]
for an in-depth overview of this class of techniques.

More recently, [2, 3, 5, 9, 10, 20, 24] studied provably fast algorithms for estimating A

from a frequentist point of view. The common thread of these works, both theoretically and
computationally, is the usage of the following separability condition.

ASSUMPTION 1. For each k ∈ [K], there exists j ∈ [p] such that Ajk �= 0 and Ajk′ = 0
for all k′ ∈ [K] \ {k}.

Assumption 1 is also known as the anchor word assumption as it translates into assuming
the existence of words that are only related to a single topic. It has been empirically shown in
[19] that Assumption 1 holds in most large corpora for which the topic models are reasonable
modeling tools. Assumption 1, coupled with a mild regularity condition on the topic matrix
T ∗ ∈ R

K×n, also serves as an identifiablity condition on model (1), in that it can be shown
that the matrix A can be uniquely recovered from the expected frequency matrix �∗. See, [3,
13] for the case when K is known and more recently, [9], for the case when K is unknown.
Since K can be consistently estimated when it is unknown (see, for instance, [9]), in the
sequel we focus on estimators of A that have K columns and belong to the space

(28) A = {
A ∈R

p×K : A·k ∈ �p,∀k ∈ [K]}.
Our results of estimating T∗ in Section 2.2.2 below will apply to any estimator Â ∈ A that is
sufficiently close to A in the matrix norms ‖ · ‖∞ and ‖ · ‖1,∞.

2.2.2. Estimation of T∗. Our theory for estimating T∗ in this section holds for any esti-
mator Â ∈ A. We therefore state them as such, and offer an example of the theory applied
with a particular estimator at the end of this section. Motivated by (4), given any estimate
Â ∈ A, we propose to estimate T∗ by

(29) T̂ = arg max
T ∈�K

N
∑
j∈J

Xj log
(
Â�

j ·T
)
.

Note that, in contrast to T̂mle in (4) for known A, the above T̂ depends on Â and is not the
MLE in general for unknown A.

Since one can only identify and estimate A up to some permutation of columns, the fol-
lowing theorem provides the convergence rate of ‖T̂ − P �T∗‖1 with P ∈ HK being some
K × K permutation matrix. Its proof can be found in Appendix G.1. Recall that the sets J

and J are defined in (5) and (6), and the quantity ρ is defined in (8).
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THEOREM 8. Suppose the events

(30)
⋂
j∈J̄

{∥∥Âj · − (AP )j ·
∥∥∞ ≤ 1

2
�∗j

}

and

(31)
{∥∥ÂJ − (AP )J

∥∥
1,∞ ≤ 1

2
κ(AJ , s)

}
hold with probability 1 − α, for some permutation matrix P ∈ HK . Then we have, with prob-
ability 1 − 4p−1 − α,

∥∥T̂ − P �T∗
∥∥

1 ≤ 6

κ2(AJ , s)

{√
2ρ log(p)

N
+ 2ρ log(p)

3N
+ 3

∥∥ÂJ − (AP )J
∥∥

1,∞

+ 7

3

∑
j∈J\J

‖Âj · − (AP )j ·‖∞
�∗j

log(p)

N

}
.

The restrictions (30) and (31) and the last two terms in the bound above reflect both the
requirement and the effect of estimating A on the overall �1-convergence rate of T̂ . Note that
by using condition (30) the last term in the bound can be simply bounded from above by

7

κ2(AJ , s)

|J \ J | log(p)

N
.

This term originates from words that have very small probability of occurrence, �∗j =
O(log(p)/N), but have nonzero observed frequencies, Xj > 0. For ease of presentation,
we assume in the sequel that the number of such words is bounded, that is, |J \ J | ≤ C for
some finite constant C > 0. Still, our analysis allows one to track their presence throughout
the proof.

To provide intuition of the first requirement (30), suppose P = IK and note that this event
guarantees that, for all T∗ ∈ �K and for all j ∈ J ,

(32) Â�
j ·T∗ ∈ [

A�
j ·T∗ ± ∣∣Â�

j ·T∗ − A�
j ·T∗

∣∣] ⊆ [
�∗j ± ‖Âj · − Aj ·‖∞

] ⊆
[

1

2
�∗j ,

3

2
�∗j

]
so that Â�

j ·T∗ and �∗j are the same up to a constant factor. In particular, �∗j > 0

implies Â�
j ·T∗ > 0, ensuring that T∗ lies in the domain of the log-likelihood function

N
∑

j∈J Xj log(Â�
j T ).

The second restriction (31) allows us to replace the �1 → �1 condition number of the
random matrix ÂJ by that of AJ . Since

κ(ÂJ , s) = min
S⊆[K]:|S|≤s

min
v∈C(S)

‖ÂJ v‖1

‖v‖1

≥ κ(AJ , s) − max
S⊆[K]:|S|≤s

max
v∈C(S)

‖(ÂJ − AJ )v‖1

‖v‖1
(33)

≥ κ(AJ , s) − ‖ÂJ − AJ ‖1,∞,

the bound in (31) immediately yields

(34) κ(ÂJ , s) ≥ 1

2
κ(AJ , s).
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Similar to the case of A known, treated in Section 2.1.2, when T̂ lies in the vicinity of T∗
in the sense of (16), the rate of ‖T̂ − P �T∗‖1 can be improved. The following result is an
analogue of Theorem 2 for unknown A. Its proof can be found in Appendix G.2. Recall that
M1 and M2 are defined in (18).

THEOREM 9. Assume there exists a sufficiently large constant C > 0 such that

(35) N ≥ C
log(p)

log(K)
max{M1,M2}.

Further assume |J \ J | ≤ C′ for some constant C′ > 0. Suppose the events (30) and

(36)
{
ρ

∥∥ÂJ − (AP )J
∥∥

1,∞ ≤ 1

24
κ2(AJ , s)

}
hold with probability 1 − α, for some permutation matrix P ∈ HK . Then we have, with prob-
ability 1 − 8p−1 − α,

∥∥T̂ − P �T∗
∥∥

1 �
1

κ(AJ , s)

√
K log(p)

N
+ 1

κ2(AJ , s)

∥∥ÂJ − (AP )J
∥∥

1,∞.

Condition (35) only differs from condition (19) for known A by a log(p) term. Compared
to the restrictions (30) and (31) in Theorem 8, Theorem 9 replaces (31) by the stronger re-
quirement (36) on ‖ÂJ − (AP )J ‖1,∞ by a factor ρ/κ(AJ , s).

Regarding the support recovery of T̂ , we also have an analogue of Theorem 5 for un-
known A. The following theorem states the one-sided support recovery of T̂ in (29) when A

is unknown and estimated by Â ∈ A. Its proof can be found in Appendix G.3.

THEOREM 10. Assume there exists some positive constants C, C′, C′′ such that N ≥
Clog(p)/T 3

min, |J \ J | ≤ C′ and κ−1(AJ , s) ≤ C′′. Suppose the intersection of events (30),
(36) and √

ξ log(p)

TminN

(
1 +

√
ξs

Tmin

)
+ log(p)

N
+

(
1 + ξ

Tmin

)∥∥ÂJ − (AP )J
∥∥

1,∞

≤ c min
k∈Sc∗

∑
j∈J

c

Ajk

(37)

holds with probability at least 1 − α, for some permutation matrix P ∈ HK and some suffi-
ciently small constant c > 0. Then

P
{
supp(T̂ ) ⊆ supp(T∗)

} ≥ 1 − 10p−1 − α.

Comparing to (24) in Theorem 5, condition (37) is stronger by the factor log(p)/N + (1 +
ξ/Tmin)‖ÂJ − (AP )J ‖1,∞ due to the error of estimating A. Theorem 10 in conjunction with
Theorem 9 immediately implies that, under the conditions therein,

∥∥T̂ − P �T∗
∥∥

1 = OP

(√
s logp

N
+ ∥∥ÂJ − (AP )J

∥∥
1,∞

)
.

Theorem 10 provides the one-sided support recovery of the estimator T̂ based on an es-
timated A that satisfies (30), (36) and (37). Similar to the results we established for T̂mle in
Section 2.1.3, the support of T̂ can also consistently recover the support of T∗, over a certain
class of topic models, as discussed in Appendix A.2.
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REMARK 7. Our estimation of T∗ uses a plug-in estimator Â of A in (29). The estimation
error naturally depends on how well Â estimates A. Alternatively, if one is willing to assume
additional structure on T ∗, then there exist approaches that directly estimate T ∗ without
estimating A first. See, for instance, [6] and [26].

2.2.3. Application with the estimator proposed in [9]. Our results in Section 2.2.2 hold
for any estimator Â ∈ A provided that the rate of Â satisfies certain requirements. In this
section, we illustrate these general results by taking Â as the estimator proposed in [9] and
by providing concrete conditions for the aforementioned requirements on Â.

Since [9] studies the estimation of A under Assumption 1, we denote by Ik the index
set of anchor words in topic k for each k ∈ [K]. We write |Imax| = maxk∈[K] |Ik| and I =⋃

k=1 Ik with its complement set I c = [p] \ I . Let M := n ∨ p ∨ N . Under conditions stated
in Appendix K.1, [9] establishes the following guarantees on Â:

(38) min
P∈HK

‖Â − AP‖1,∞ =OP

(√
K(|Imax| + |I c|) log(M)

nN

)
.

The above rate of convergence in ‖ · ‖1,∞ norm is useful to apply Theorem 9 and is further
shown to be minimax optimal, up to the factor log(M), in [9] under Assumption 1. To validate
condition (30) in Theorem 9, one also needs a control of ‖Âj · −(AP )j ·‖∞ for j ∈ J , which is
not studied in [9]. We establish a new result on the rate of convergence of ‖Âj · − (AP )j ·‖∞,
that is,

(39) min
P∈HK

∥∥Âj · − (AP )j ·
∥∥∞ �

√
‖Aj ·‖∞

K log(M)

nN

(
1 ∨

√
p‖Aj ·‖∞

)
holds uniformly over j ∈ J with probability at least 1 −O(M−1). We defer its precise state-
ment and proof to Theorem K.1 of Appendix K.1. Equipped with the guarantees on Â in (38)
and (39), for the estimator T̂ of T∗ that uses Â as the estimator of A, the following corol-
lary provides the rate of convergence of ‖T̂ − T∗‖1 and its one-sided support recovery. Set
�min := minj∈J �∗j .

COROLLARY 11. Assume that the quantities κ−1(AJ , s), κ−1(AJ ,K), ξ and |J \J | are
bounded,

(40) N ≥ C
log(p)

T 2
min

max
{

1

Tmin
,1 + √

K − s

}
and

(41) Tmin �
√

pK log(M)

nN
, �minTmin �

K log(M)

nN
.

Then the estimator T̂ from (29) based on Â satisfies

min
P∈HK

∥∥T̂ − P �T∗
∥∥

1 =OP

(√
K log(p)

N
+

√
K(|Imax| + |I c|) log(M)

nN

)
.

Furthermore, if

(42)
1

Tmin

√
s log(p)

N
+ 1

Tmin

√
K(|Imax| + |I c|) log(M)

nN
≤ c min

k∈Sc∗

∑
j∈J

c

Ajk,
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holds for some sufficiently small constant c > 0, then with probability tending to one as
p → ∞, we have supp(T̂ ) ⊆ supp(T∗) and

min
P∈HK

∥∥T̂ − P �T∗
∥∥

1 �
√

s log(p)

N
+

√
K(|Imax| + |I c|) log(M)

nN
.

The result of Corollary 11 requires that

(a) A is well behaved in that the quantities κ−1(AJ , s), κ−1(AJ ,K) and ξ are bounded,
(b) there are only finitely many very small probability words (|J \ J | stays bounded),
(c) the sample size N is large enough to guarantee (40),
(d) the corpus size n and sample size N are large enough and both topic probabilities and

word probabilities need to satisfy mild signal strength conditions to guarantee (41), and
(e) A is incoherent, to satisfy (42) for one-sided support recovery.

The final bound for minP ‖T̂ − P �T∗‖1 involves two terms. Provided

(43) n �K
(|Imax| +

∣∣I c
∣∣) log(M)/s,

the rate
√

s log(p)/N dominates and compared to Corollary 6 and Theorem 7, Corollary 11
implies that the estimator T̂ that uses Â in [9] has the same optimal convergence rate as
T̂mle that uses the true A, up to a log(p) factor. By using |Imax| + |I c| < p, one set of suffi-
cient conditions for (43) is n � p log(M) and K � s. In many topic model applications, the
number of documents n is typically much larger than the vocabulary size p and the number
of topics remains small. For instance, in the IMDB movie reviews in Appendix B, we have
p ≈ 500 while n ≈ 20,000 with the estimated K being 6.

2.3. Estimation of �∗ in topic models. We compare the model-based estimator of �∗
with the empirical estimator in two aspects: the �1 convergence rate and the estimation of
probabilities corresponding to zero observed frequencies.

2.3.1. Improved convergence rate. We begin our discussion for known A. Let �̃A =
AT̂mle be the model-based estimator of �∗ with T̂mle obtained in (4) of Section 2.1. Recall
that �̂ = X is the empirical estimator of �∗. Further recall J = {j : �∗j > 0} from (5) and
write p = |J |. Consider s = K , for simplicity.

For �̂, it is easy to see, using the fact that each component of N�̂ has a Binomial distri-
bution and the Cauchy–Schwarz inequality (twice), that

(44) E‖�̂ − �∗‖1 ≤ ∑
i∈J̄

√
�∗i

N
≤

√
p

N

holds. Furthermore, the bound (44) is also sharp (one instance is when �∗i � 1/p). On the
other hand, Corollary 3 together with ‖A‖1,∞ = 1 implies

E‖�̃A − �‖1 ≤ E‖T̂mle − T ‖1 �
√

K

N
,

provided that κ−1(A,K) is bounded. This rate is faster than the rate (44) for �̂ by a fac-
tor

√
K/p. In the high-dimensional setting where p ≥ p � N , the bound in (44) does not

converge to zero unless the summability condition
∑

i∈J

√
�∗i = O(1) holds. In contrast,

consistency of �̃A is guaranteed as long as K = o(N).
When A is unknown, the rate of the empirical estimator can still be improved by the model-

based estimator �̃Â = ÂT̂ with T̂ obtained from (29) by using an accurate estimator Â ∈ A
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of A. Specifically, provided that κ−1(AJ , s) and ξ are bounded, the error due to estimating
A plays the following role in estimating �∗:

E‖�̃Â − �∗‖1 ≤ min
P

{
E

∥∥ÂJ − (AP )J
∥∥

1,∞ +E
∥∥T̂ − P �T∗

∥∥
1

}
� min

P
E

∥∥ÂJ − (AP )J
∥∥

1,∞ +
√

K logp

N
,

where we used ‖A‖1,∞ = 1 and ‖T̂ ‖1 = 1 in the first line and invoked Theorem 9 to derive
the second line. For the estimator Â studied in Section 2.2.3, we have

E‖�̃Â − �∗‖1 �
√

K(|Imax| + |I c|) log(M)

nN
+

√
K log(p)

N
.

If (|Imax| + |I c|) log(M) ≤ n, the above rate simplifies to
√

K log(p)/N . Moreover, as long
as

n ≥ K(|Imax| + |I c|) log(M)
/
p

and K logp ≤ p, the estimate �̃Â improves upon �̂ (in the �1 norm).
Our model-based estimation of �∗ uses the topic model assumption (1) and is to some

extent related to other works, such as [17, 38], where the estimation of �∗ is studied under a
low-rank structure of �∗.

2.3.2. Estimating word probabilities corresponding to zero observed frequencies. One
distinct aspect of the model-based mixture estimator compared to the empirical estimator lies
in the estimation of the cell probabilities �∗j with j ∈ J c = {j : Xj = 0}.

We distinguish between two situations: (i) j ∈ J c and �∗j > 0 and (ii) j ∈ J c and
�∗j = 0. We discuss them separately. For ease of reference to the results of the previous
sections, recall that J = {j : �∗j > 0}.

In case (i), the empirical estimator always estimates �∗j by �̂j = Xj = 0, while the mix-
ture estimator �̃A may produce nonzero estimates, as it is designed to combine the strength
of the mixture components. For instance, if condition (16) holds, then [1 − oP(1)]�∗j ≤
�̃A,j ≤ [1 + oP(1)]�∗j , for all j ∈ J , that is,

|�̃A,j − �∗j | = oP(�∗j ) = oP
(|�̂j − �∗j |) ∀j ∈ J ∩ J c,

showing that, indeed, �̃A,j is a nonzero estimator of a nonzero �∗j , and has smaller estima-
tion error than �̂j .

In case (ii), for any j such that �∗j = Xj = 0, the empirical estimator makes no mistake
while the model-based estimator �̃A,j = A�

j ·T̂mle could be nonzero. However, we remark

that the total error of estimating j ∈ J
c

made by �̃A is at most ‖(T̂mle − T∗)Sc∗‖1, which
converges to zero no slower than

√
K log(K)/N as shown in Section 2.1. Indeed, by the fact

that AjS∗ = 0 for j ∈ J
c
,∑

j∈J
c

|�̃A,j − �∗j | =
∑
j∈J

c

A�
jSc∗(T̂mle)Sc∗

≤ max
k∈Sc∗

∑
j∈J

c

Ajk

∥∥(T̂mle − T∗)Sc∗
∥∥

1

≤ ∥∥(T̂mle − T∗)Sc∗
∥∥

1.

In particular, if supp(T̂mle) ⊆ supp(T∗) holds, ‖(T̂mle −T∗)Sc∗‖1 = 0 and �̃A makes no mistake
of estimating �∗j for j ∈ J

c
.
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Summarizing, on the one hand, we expect the model-based estimator to outperform the
empirical estimator for estimating the cell probabilities in (i). On the other hand, the model-
based estimator is no worse than the empirical estimator for estimating the cell probabilities
in (ii) when A satisfies an incoherence condition (for instance, condition (24)). We verify
these two points in our simulation studies in Appendix D.

3. The 1-Wasserstein distance between documents in topic models. We now turn to
the main application of the results of Section 2. By abuse of terminology, we refer to the
1-Wasserstein distance between probabilistic representations of documents as the distance
between documents. This section is devoted to the theoretical evaluation of the Wasserstein
distance between appropriate discrete distributions, in topic models, and to the illustration of
our proposed methods and theory to the analysis of a real data set.

Consider two discrete distributions γ , ρ on X := {x1, . . . , x�, . . . , xL}, with x� ∈ E, where
E is a general, abstract space, and for some L ≥ 1. Let D be a metric on X and denote
by D := (D(xa, xb))1≤a,b≤L the L × L matrix that collects pairwise distances between the
elements in X . The W1 distance between γ and ρ with respect to the metric D is defined as

(45) W1(γ, ρ;D) := inf
w∈�(γ,ρ)

tr(wD),

where �(γ,ρ) is the set of discrete distributions w on X × X with marginals γ and ρ,
respectively. In the above notation, w is a doubly-stochastic L × L matrix.

3.1. The 1-Wasserstein distance between probabilistic representations of documents at the
word and topic level. We consider two alternative probabilistic representations of a docu-
ment i: (1) as a probability vector on p words, �(i)∗ , or (2) as a probability vector on K topics,
T

(i)∗ .
In view of our data example in Appendix B, we regard words as vectors in R

d , for some d .
Pretrained embeddings of words [30], sentences [34] and documents [28] have become a
popular general approach in natural language processing [31], and in particular allow one
to define metrics between words as metrics between their Euclidean vector representations.
Specifically, let Xword := {x1, . . . , xa, . . . , xp}, so xa ∈ R

d is a vector representing word a in
the dictionary via an embedding in R

d . Then, with ‖ · ‖2 denoting the Euclidean distance on
R

d , we define

(46) Dword(a, b) := ‖xa − xb‖2

as the distance between words a and b for a, b ∈ [p]. The 1-Wasserstein distance between
two discrete distributions �

(i)∗ and �
(j)∗ supported on these words, for any i, j ∈ {1, . . . , n},

is

(47) W1
(
�(i)∗ ,�(j)∗ ;Dword) := inf

w∈�(�
(i)∗ ,�

(j)∗ )

tr
(
wDword)

.

Alternatively, viewing the corpus as an ensemble, and under model (1), document differ-
ences can be explained in terms of 1-Wasserstein distances between what can be regarded as
sketches of the documents, the topic distributions T ∗ in (1). For each document i ∈ [n], the
topic proportion T

(i)∗ is a discrete distribution supported on K topics. Analogous to (47), we
define a population-level distance between topic distributions in document i and j , based on
the 1-Wasserstein distance, by

(48) W1
(
T (i)∗ , T (j)∗ ;Dtopic) = inf

α∈�(T
(i)∗ ,T

(j)∗ )

tr
(
αDtopic),

where Dtopic ∈ R
K×K+ is a metric matrix on K topics.
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To define Dtopic, we view a topic as being itself a distribution, on words. Specifically, for
every k ∈ [K], topic k is a distribution on the p words of the dictionary, with mass corre-
sponding to A·k ∈ �p . We recall that the topic model specifies Ajk as the probability of word
j given topic k. We therefore let Xtopic = {A·1, . . . ,A·k, . . . ,A·K : A·k ∈ �p for k ∈ [K]}.
With this view, metrics between two topics k and l are distances between discrete distribu-
tions A·k and A·� in �p , with supports in Xword.

In this work, we focus on two closely related such metrics. The first one is itself a 1-
Wasserstein distance:

(49) D
topic
W (k, �) := W1

(
A·k,A·�,Dword)

, ∀k, � ∈ [K],
the calculation of which requires optimization in p dimensions and employs input Dword

which, in the context of text analysis, is obtained from domain knowledge, as explained
above, and further discussed in Appendix B. The second metric is the total variation, TV
distance:

(50) D
topic
TV (k, �) := 1

2
‖A·k − A·�‖1, ∀k, � ∈ [K],

which is optimization free, and independent of the domain knowledge required by (49).
We note that the space Xtopic is bounded with respect to both metrics (49) and (50). In

particular, the total variation distance is always bounded by 1, and hence, ‖Dtopic
TV ‖∞ ≤ 1.

Furthermore, by Lemma H.2 in Appendix H, for any k, � ∈ [K],

D
topic
W (k, �) = W1

(
A·k,A·�,Dword) ≤ ∥∥Dword∥∥∞

1

2
‖A·k − A·�‖1 ≤ ∥∥Dword∥∥∞,

and thus, ‖Dtopic
W ‖∞ ≤ ‖Dword‖∞. As noted in Remark 8 below, ‖Dword‖∞ is typically

bounded; in practice, word embeddings are often normalized to unit-length, in which case
‖Dword‖∞ ≤ 2.

3.2. Finite sample error bounds for estimates of the 1-Wasserstein distance between doc-
uments. The theoretical analysis of estimates of the 1-Wasserstein distance W1(γ, ρ;D)

between discrete probability measures γ and ρ supported on a metric space X endowed with
metric D has been restricted, to the best of our knowledge, to estimates W1(ρ̂

(i), γ̂ (j);D) cor-
responding to observed empirical frequencies ρ̂(i), γ̂ (j), respectively, observed on samples i

and j , of sizes Ni and Nj .
We drop the superscripts and subscripts in the next few paragraphs, for ease of presenta-

tion, to give a brief overview of the one-sample related results.
When L is fixed and (X ,D) has bounded diameter, [35] showed that

√
NW1(ρ̂, ρ;D)

converges in distribution, while [36] showed that when p = ∞ and their summability condi-
tion (3) holds,

√
NW1(ρ̂, ρ;D) converges weakly over the set of probability measures with

finite first moment with respect to D, defined in their Section 2.1.
Finite sample rates of convergence for W1(ρ̂, ρ;D) when L = L(N) are less studied, with

the exception of [37], who showed that they are of the order
√

L/N , for L < N , when (X ,D)

has bounded diameter, and obtained this result as a particular case of a general theory.
When (X ,D) has bounded diameter, the rate of W1(ρ̂, ρ;D) can be obtained directly

from a bound on ‖ρ̂ −ρ‖1, via the basic inequalities c‖ρ̂ −ρ‖1 ≤ W1(ρ̂, ρ;D) ≤ C‖ρ̂ −ρ‖1
[21], where c = minx �=y∈X D(x,y) and C = maxx,y∈X D(x,y). Therefore, when ρ, ρ̂ ∈ �L,
and ρ̂ are observed frequencies, the rate W1(ρ̂, ρ;D) �

√
L/N , with high probability, is

therefore immediate, and is small when L < N . Furthermore, W1(ρ̂, ρ;D) �
√

1/N when∑L
j=1

√
ρj < ∞, for any L, allowed to depend on N and be larger than N , matching the rate

established for L = ∞ in [36].
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We complement this literature by constructing and analyzing alternate estimates of the 1-
Wasserstein distance between discrete distributions generated according to a topic model (1).
After obtaining any estimate Â ∈ A and the estimate T̂ (�) from (29) by using this Â and X(�),
for each � ∈ {i, j}, we propose to estimate the word-level document distance (47) by

(51) W1
(
�̃(i), �̃(j);Dword)

, with �̃(�) = ÂT̂ (�),∀� ∈ {i, j}.
For the Wasserstein distance between topic distributions in (48) with the two choices of Dtopic

in (49) and (50), we propose to estimate W1(T
(i)∗ , T

(j)∗ ;Dtopic
W ) and W1(T

(i)∗ , T
(j)∗ ;Dtopic

TV ),
respectively, by

W1
(
T̂ (i), T̂ (j); D̂topic

W

)
, with D̂

topic
W (k, �) = W1

(
Â·k, Â·�;Dword)

,∀k, � ∈ [K];(52)

W1
(
T̂ (i), T̂ (j); D̂topic

TV
)
, with D̂

topic
TV (k, �) = 1

2
‖Â·k − Â·�‖1,∀k, � ∈ [K].(53)

The following proposition shows how error rates of the various Wasserstein distance esti-
mates depend on the estimation of A and T

(�)∗ . Its proof can be found in Appendix H. Recall
that ‖M‖1,∞ = maxj ‖M·j‖1 for any matrix M . Define

R
(
Â, T̂ (i), T̂ (j)) := min

P∈HK

{
‖Â − AP‖1,∞ + 1

2

∑
�∈{i,j}

∥∥T̂ (�) − P �T (�)∗
∥∥

1

}
.

PROPOSITION 12. For any estimator Â ∈ A and the estimators T̂ (i), T̂ (j) from (29)
based on this Â, we have:∣∣W1

(
�̃(i), �̃(j);Dword) − W1

(
�(i)∗ ,�(j)∗ ;Dword)∣∣ ≤ ∥∥Dword∥∥∞R

(
Â, T̂ (i), T̂ (j));(54) ∣∣W1

(
T̂ (i), T̂ (j); D̂topic

W

) − W1
(
T (i)∗ , T (j)∗ ;Dtopic

W

)∣∣ ≤ ∥∥Dword∥∥∞R
(
Â, T̂ (i), T̂ (j));(55) ∣∣W1

(
T̂ (i), T̂ (j); D̂topic

TV
) − W1

(
T (i), T (j);Dtopic

TV
)∣∣ ≤ R

(
Â, T̂ (i), T̂ (j)).(56)

We provide supporting simulations in Appendix E to study the rate of estimation of docu-
ment distances, focusing on the estimator (53) as an illustrative example.

COROLLARY 13. Under conditions of Corollary 11, for the estimator Â proposed in
[9], and estimators T̂ (i), T̂ (j) from (29) based on this Â, with probability tending to one, the
bounds given in Proposition 12 hold with

R
(
Â, T̂ (i), T̂ (j)) �

√
max{‖T (i)∗ ‖0,‖T (j)∗ ‖0} log(p)

N
+

√
K(|Imax| + |I c|) log(M)

nN
.

REMARK 8. We make the following remarks:

1. All error upper bounds given by Proposition 12 are of the same order, when
‖Dword‖∞ ≤ C, for some constant C > 0. In practice, word embedding vectors are often
normalized to unit length when used to define Dword, in which case ‖Dword‖∞ ≤ 2.

2. The first two error bounds are the same, but in the first the estimation of both A

and T∗ play a role in the estimation of �∗, whereas the second bound is influenced by the
estimation of A via the estimation of the distance metric. Although the error bounds are
the same, computing the LHS of (54) involves an optimization in dimension p, whereas the
LHS of (55) is in the much lower dimension K . Although the distance metric in (55) does
require the computation of K(K − 1)/2 Wasserstein distances in dimension p, as in (54), all
n(n− 1)/2 pairwise distances between the documents in the corpus can be computed by only
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a K-dimensional Wasserstein distance; this results in a substantial computational gain for K

small and n and p large, the typical case in topic modeling (in our example in Appendix B,
n = 20,605 and p = 500, whereas K = 6). We note that approximations to the W1 distance
can be considered to reduce computational complexity at the cost of accuracy, as in [27]; we
instead focus on exact calculation of the W1 distance, but in a reduced dimension (K).

3. The LHS in (56) is once again an optimization in dimension K , with input indepen-
dent of ‖Dword‖∞ and, therefore, its bound is also independent of this quantity. Furthermore,
D̂

topic
TV is computed from simple �1 norms of the columns of Â, so avoids the computational

issues of the Wasserstein distance entirely.
4. We will shortly illustrate the advantage of our Wasserstein distance estimates in Ap-

pendix B below, where we analyze an IMBD movie review corpus. To exploit the geometry
of the word embeddings, [27] was the first to suggest using the 1-Wasserstein distance (also
known as the Earth Mover’s Distance) between the word frequency vectors �̂(i), �̂(j). The
benefit of using the Wasserstein distance, relative to the previously used �2 or TV distances,
is that it takes into account the relative distance between words, as captured by Dword, so
documents with similar meaning can have a small distance even if there is little overlap in the
exact words they use.

The analysis of a corpus of movie reviews, presented in Appendix B, illustrates on the same
data set that the three newly proposed document-distance estimates, W1(�̃

(i), �̃(j);Dword)

and W1(T̂
(i), T̂ (j); D̂topic), for estimates of D̂topic of the two metrics defined in (49) and

(50), are competitive. In particular, W1(T̂
(i), T̂ (j); D̂topic

TV ) yields qualitatively similar results,
relative to our other two proposed distances, while having the net benefit of involving opti-
mization only in K dimensions, and K � p, typically by several orders of magnitude. Fur-
thermore, it obviates the need for pretrained word embeddings. Our analysis further reveals
that all our proposed distance estimates capture well topical differences between the docu-
ments, while the standard W1(�̂

(i), �̂(j);Dword) between observed document frequencies is
substantially less successful.
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