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Invariant Configuration-Space Bubbles
for Revolute Serial-Chain Robots

Claus Danielson , Senior Member, IEEE

Abstract—This letter adapts the invariant-set motion
planner (ISMP) for robot motion planning. We derive con-
trol invariant subsets of configuration-space bubbles lifted
into the state-space. The resulting sets guarantee colli-
sion avoidance since they are both constraint admissible
and control invariant. We present a command governor
that enforces the positive invariance of the constraints in
closed-loop. This governor can be used to transform any
nominal tracking controller into a constraint enforcing con-
troller. We use these control invariant sets to quantify a
relationship between velocity and control authority that
enables collision avoidance. We demonstrate our invariant-
sets through an illustrative numerical example.

Index Terms—Autonomous robots, robot control,
optimization, constrained control, reachability analysis.

I. INTRODUCTION

THE INVARIANT-SET motion-planner (ISMP) is an algo-
rithm for generating dynamically feasible trajectories

from an initial state to a target equilibrium through an obstacle-
filled environment [1], [2], [3], [4], [5], [6], [7], [8], [9]. The
invariant-set motion-planner (ISMP) has several advantageous
properties. It allows for aggressive, but safe maneuvers since,
by definition, the system state will never leave the constraint
admissible positive invariant (CAPI) sets. It is quantifiably
robust since it incorporates feedback into the design and the
CAPI sets provide a natural buffer that can absorb tracking
errors due to model uncertainty and disturbances [9]. It reduces
the curse-of-dimensionality by sampling from the output-space
instead of the state-space. Furthermore, it does not require
dense sampling since the CAPI sets can cover large volumes
of the state/output-space. It typically has low online compu-
tational costs since the CAPI sets can be pre-computed as
they only depend on the time-invariant closed-loop dynam-
ics, rather than the time varying environment. The ISMP has
been successfully applied to spacecraft [1], [2], [3], [4] and
autonomous driving [5], [6], [7], [8]. This letter applies the
ISMP for robot motion planning.
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The defining feature of the ISMP is that knowledge of the
closed-loop system dynamics is incorporated into the motion
plan using CAPI sets (also called viable sets [10]). CAPI sets
have two important properties; they are constraint admissi-
ble meaning that they do not collide with any obstacles (or
more generally they satisfy constraints) and they are pos-
itive invariant meaning that the closed-loop dynamics will
remain inside the set. Thus, these CAPI sets describe regions
of the state-space where the system can safely track the
corresponding references without collision. The ISMP uses
random-sampling [11] and graph-searches to find a corridor of
CAPI sets that safely guides the system through the obstacle
filled environment to the target equilibrium.

For space and automotive applications, the positive invari-
ant (PI) sets were known from the literature. Thus, adapting
the ISMP for these applications required developing methods
for certifying that these PI sets are constraint admissible. For
instance, autonomous driving required certifying that a PI set
for a vehicle does not intersect obstacles (e.g., other vehi-
cles). In contrast, for robotics constraint admissible sets are
known in the form of configuration-space bubbles [12], [13],
[14], [15] which describe a neighborhood of configurations
for which the robot does not intersect an obstacle. This letter
addresses the problem of rendering these constraint admissible
sets invariant.

Invariant sets are important in motion planning since they
describe sets of states for which constraint enforcement is
possible. Many motion planning algorithms tacitly incorpo-
rate invariant sets. For instance, kino-dynamic [11] motion
planners use dynamic trajectories, which are 1-dimensional
invariant sets. LQR-trees [16] expand an invariant tube around
these linear invariant sets, however, this post-hoc synthesis
can be computationally expensive. Invariance is also implic-
itly incorporated into motion planning by forcing the robot to
move slowly and cautiously. This heuristically provides invari-
ance by ensuring that the limited control authority of the joint
actuators can overcome the momentum of the robot to prevent
collisions. This letter quantifies this heuristic relationship
between velocity and control authority using invariance.

The main contribution of this letter is the derivation of con-
trol invariant (CI) subsets of configuration-space bubbles. We
lift the bubbles from the configuration-space into the state-
space and describe a subset of joint positions and velocities
for which it is possible to remain inside the bubble and thus
avoid collisions. Another contribution of this letter is the devel-
opment of a command governor (CG) for which the CI subset
becomes PI, i.e., the closed-loop dynamics will not leave the
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configuration-space bubble. One advantage of this approach is
that the CG can transform any nominal controller into a control
that renders a configuration-space bubble PI. This means that
an existing robot controller does not need to be redesigned to
apply the ISMP. Our final contribution is using these CI sets to
quantify a relationship between velocity and control authority
that guarantees the joint-motors can stop the robot before its
momentum carries it out of the configuration-space bubble.

The remainder of this letter is organized as follows. In
Section II, we describe the robot motion planning problem and
the ISMP algorithm. In Section III, we describe configuration-
space bubbles and their invariant subsets. We present a formal
proof that configuration-space bubbles are output-admissible.
We then derive a CI subset and a CG that renders this set PI.
Finally, we present an illustrative example that demonstrates
the advantages of our proposed approach.

Notation and Definitions: R are the real numbers and S =
R/2πZ ∼= [0, 2π) is the circle of radians. The p-norm of
a vector x ∈ Rn is ‖x‖p = (

∑n
i=1 |xi|p)1/p. A p-norm ball

Bp is the set Bp = {x : ‖x‖p ≤ 1}. The distance between
sets is d(X ,Y) = infx∈X ,y∈Y ‖x − y‖ where ‖·‖ is the 2-
norm. The convex-hull of a finite-set {x1, . . . , xm} is the set
{∑m

i=1 λixi :
∑m

i=1 λi = 1, λi ≥ 0}. The closure and interior
of a set X are denoted by cl(X ) and int(X ), respectively. The
pseudo-cross product matrix k× ∈ R3×3 satisfies k×v = k× v.
A set O is positive invariant if x(t0) ∈ O⇒ x(t) ∈ O ∀t > t0.
A set O is control invariant if for all x(t0) ∈ O there exists
u(t) ∈ U such that x(t) ∈ O for all t ≥ t0, i.e., there exists
a controller for which the set is PI. A directed graph G =
(I,E) is a set of nodes I together with a set of ordered pairs
E ⊆ I × I called edges. Nodes i, j ∈ I are called adjacent
if (i, j) ∈ E is an edge. A path is a sequence of adjacent
vertices. A graph search is an algorithm for finding a path
through a graph. A graph T is a tree if every pair of nodes
(i, j) ∈ I is connected by exactly one path. pij(θ) ∈ R3 denotes
the position of reference-frame j with respect to frame i in
configuration θ ∈ Sn.

II. ROBOT MOTION PLANNING PROBLEM

A. Robot Dynamics
We consider an n-link revolute serial-chain robot whose

dynamics are modeled by the Lagrange-Euler equations

M(θ)θ̈ + C(θ, θ̇)θ̇ = τ (1)

where τ (t) ∈ Rn are the torques, θ(t) ∈ Sn are positions,
and θ̇(t), θ̈(t) ∈ Rn are, respectively, the velocity and accel-
eration of the n revolute joints. The configuration-dependent
mass-inertia and coriolis-centripetal matrices are denoted by
M(θ) and C(θ, θ̇), respectively. The nonlinearity of the robot
dynamics (1) is one of the reasons the robot motion planning
problem is challenging.

B. Input and Output Constraints
The objective of the robot motion-planning problem is to

move the robot from an initial state (θ(0), θ̇(0)) to a desired
configuration θ̄∞ without colliding with any obstacles in the
environment. The spatial extents of the obstacles are described
by the collection of sets {Bk}m

k=1 where B = ⋃m
k=1 Bk ⊂ R3.

Algorithm 1 Invariant-Set Motion-Planner
1: Input: Search-tree T = (I,E)
2: Find path {σ0, . . . , σN} from θ̄σ0 = θ(0) to θ̄σN = θ∞
3: repeat
4: if (θ(t), θ̇(t)) ∈ Oσk+1 then
5: k← k + 1
6: end if
7: Use controller τ (t) = κσk

(
θ(t), θ̇(t)

)

8: until θ(t) = θ̄∞

Likewise, the configuration-dependent spatial extent of the
robot is described by the set

R(θ) =
{
p0s(θ) : s ∈ R

}
(2)

where R ⊆ R3 indexes all points s on the robot in the home-
configuration and p0s(θ) is the forward-kinematics of the point
s ∈ R relative to the base-frame 0 in configuration θ . To avoid
collisions, the distance d(R(θ),B) between the obstacles B
and robot R(θ) should be positive d(R(θ),B) > 0. Thus,
we have the following set of constraints on the admissible
configurations θ for the robot

' = cl
({

θ ∈ Sn : d
(
R(θ),B

)
> 0

})
. (3)

Here we take the closure of the admissible set since con-
figurations where the robot barely touches the obstacle are
not considered collisions. This is consistent with the defi-
nition of configuration-space bubbles [12], [13], [14], [15]
and will allow the derivation of closed invariant sets. The
non-convexity of the output constraint set (3) is another rea-
son the robot motion planning problem is challenging. Our
approach will exploit existing algorithms and software for
collision-detection, i.e., computing the distance d(R(θ),B).

The joint-motor torques τ (t) ∈ Rn are subject to polytopic
input constraints τ ∈ T where

T =
{
τ ∈ Rn : hjτ ≤ kj for j = 1, . . . , Nτ

}
(4)

where Nτ is the number of torque constraints. For instance,
bounds τ ≤ τ (t) ≤ τ̄ will produce a box T with Nτ = 2n
constraints. We assume that the set T ⊆ Rn contain the origin
in its interior. This assumption means that each of the joint-
motors can produce both positive and negative torques.

C. Robot Motion Planning Problem and Algorithm
The robot motion planning problem is stated below.
Problem 1: Find a feasible torque trajectory τ (t) ∈ T such

that robot converges θ(t)→ θ̄∞ to the target configuration θ̄∞
while remaining in the safe region θ(t) ∈ '.

The robot motion planning problem can be solved using
the ISMP described by Algorithm 1. The ISMP searches an
appropriately constructed search-tree T for a sequence {θ̄i}N

i=1
of intermediate references θ̄i ∈ Sn that guide the robot (1) state
x(t) = (θ(t), θ̇(t)) from an initial state x(0) = x0 to a target
equilibrium configuration θ̄∞ ∈ Sn while avoiding obstacles
θ(t) ∈ '. Associated with each node i ∈ I is a controller
κi which drives the robot to the reference configuration θ̄i. In
addition, each node has an associated CAPI set Oi, which is
output admissible [I, 0]Oi ⊆ ', input admissible κi(θ, θ̇) ∈ T
for all (θ, θ̇) ∈ Oi, and positive invariant x(t) ∈ Oi under
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Algorithm 2 Search Tree T Construction
1: Input: State (θ(0),ω(0)), target θ∞, obstacles B
2: Output: Search Tree T = (I,E)
3: Construct CAPI set O∞ and controller κ∞(θ, θ̇)
4: Initialize tree T.add-node = (θ̄∞,O∞, κ∞)
5: repeat
6: Sample random configuration θ̄i ∈ int(')
7: Connect θ̄i ∈ int([I, 0]Oj) to closest configuration θ̄j
8: Construct CAPI set Oi and controller κi(θ, θ̇)
9: Update search-tree

T.add-node =
{
θ̄i, κi,Oi

}

T.add-edge = (i, j)

10: until (θ(0),ω(0)) ∈ Oi

the controller κi. The edges (i, j) ∈ E of the tree T = (I,E)
indicate that the state (1) will enter the j-th CAPI set Oj while
tracking the i-th reference θ̄i without leaving the current CAPI
set Oi. Thus, the ISMP avoids obstacles by moving the robot
state through a sequence {σi}N

i=0 of CAPI sets Oσi .
The construction of the search-tree is described

by Algorithm 2. Since our proposed approach will render
configuration-space bubble PI, the search-tree construc-
tion Algorithm 2 for the rapid-ISMP [2] is similar to the
configuration-space planner [14]. See those papers for details.
We will describe the synthesis of the CI sets Oi and controller
κi in the subsequent section.

III. CONSTRAINT ADMISSIBLE INVARIANT SETS

The distinguishing feature of the ISMP is the use of CAPI
sets to encode the interactions between the closed-loop dynam-
ics and constraints into the motion plan. In this section, we
describe CAPI sets for robot motion planning.

A. Output Admissibility
In this section, we review the concept of configuration-space

bubbles [12], [13], [14], [15]. Configuration-space bubbles
provide a computationally efficient method for describing a
subset of the configuration-space for which the output con-
straints (3) are satisfied (including self-collsions [15]). In the
terminology of the ISMP, configuration-space bubbles are
output-admissible sets. Our main contribution is the deriva-
tion of invariant subsets of these configuration-space bubbles
in the next subsection.

For a reference configuration θ̄ ∈ Sn, the configuration-
space bubble is given by

C(θ̄) =
{
θ :

∥∥∥P(θ̄)
(
θ − θ̄

)∥∥∥
1
≤ 1

}
(5)

where the diagonal matrix P(θ̄) = diag(ρ1(θ̄), . . . , ρn(θ̄)) has
entries

ρi(θ̄) = max
s∈R
‖ki × pis(θ̄)‖2
d
(
p0s(θ̄),B

) (6)

where ki ∈ R3 is the i-th axis of rotation and pis(θ̄) ∈ R3

is the forward-kinematics to a point s ∈ R on the robot in
configuration θ̄ . Here we use the more recent and flexible
definition [14] for configuration-space bubbles. Note that the

configuration-space bubbles (5) are not defined for θ̄ 0∈ int(')
since this would cause a division by zero in (6).

Although configuration-space bubbles (5) have a long his-
tory in robotics [15], we have not found a rigorous proof of
their output admissibility. Therefore, we provide the following
proposition as a foundation for our results.

Proposition 1 (Output Admissibility): Let θ̄ ∈ int('). Then,
the robot does not collide with an obstacle for all configu-
rations θ ∈ C(θ̄) in the configuration-space bubble (5), i.e.,
C(θ̄) ⊆ '.

Proof: For a point s ∈ R on the robot, the distance to the
obstacles B is defined as d(p0s(θ̄),B) = miny∈B ‖p0s(θ̄)− y‖
where all norms in this proof are 2-norms unless otherwise
stated. By the triangle inequality, we have

d(p0s(θ̄),B) ≤ ‖p0s(θ̄)− p0s(θ)‖+ min
y∈B
‖p0s(θ)− y‖

= ‖p0s(θ̄)− p0s(θ)‖+ d(p0s(θ),B) (7)

Using the forward-kinematics pis = pij + R(θj)pjs where pis is
the position of s relative to the base-frame i = 0 and pjs is its
position relative to joint-frame j = 1, we can bound the first
term, ‖pis(θ)− pis(θ̄)‖ = ‖R(θj)pjs(θ)−R(θ̄j)pjs(θ̄)‖ since pij
does not depend on the configuration. By the triangle inequal-
ity, we have ‖pis(θ)− pis(θ̄)‖ ≤ ‖R(θj)pjs(θ)−R(θj)pjs(θ̄)‖+
‖R(θj)pjs(θ̄)−R(θ̄j)pjs(θ̄)‖. Since the 2-norm is invariant under
rotations, we can simplify

‖pis(θ)− pis(θ̄)‖ ≤ ‖pjs(θ)− pjs(θ̄)‖+
+ ‖pjs(θ̄)− R(θ̃)pjs(θ̄)‖. (8)

where θ̃j = θ̄j−θj and R(θj)
−1R(θ̄j) = R(θ̄j−θj) = R(θ̃j) since

the rotations about the same axis kj. Applying the Rodriguez
formula R(θ̃j) = I + sin(θ̃j)k×j + (1 − cos(θ̃j))k×j k×j to the
square of the second-term yields ‖pjs(θ̄) − R(θ̃j)pjs(θ̄)‖2 =
s2
θ̃
‖kj×pjs(θ̄)‖2 + (1−cθ̃ )

2‖kj×kj×pjs(θ̄)‖2 where the cross-
term disappears since kj×pjs ⊥ kj×kj×pjs. Since kj ⊥ kj×pjs,
we have ‖kj× kj×pjs(θ̄)‖ = ‖kj×pjs(θ̄)‖‖kj‖ where ‖kj‖ = 1
since kj is a unit-vector. Therefore, ‖pjs(θ̄)− R(θ̃j)pjs(θ̄)‖2 =
(2 − 2 cos θ̃j)‖kj × pjs(θ̄)‖2. Substituting into (8), yields
‖pis(θ)− pis(θ̄)‖ ≤ ‖pjs(θ)− pjs(θ̄)‖+ ‖kj× pjs(θ̄)‖|θ̃j| where
2−2 cos θ̃j ≤ θ̃2

j . Following the same arguments, this inequal-
ity applies for frames i = 1, . . . , n − 1 and j = i + 1. Thus,
we can obtain

‖p0s(θ)− p0s(θ̄)‖ ≤
∑n

j=1
‖kj × pjs(θ̄)‖|θ̃j|

where pjs(θ) = pjs(θ̄) when s is fixed in the j-th reference-
frame. Plugging into (7) and rearranging terms, we obtain

d(p0s(θ),B) ≥ d(p0s(θ̄),B)−
∑n

j=1
‖kj × pjs(θ̄)‖|θ̃j|

Using (6), the sum simplifies to the weighted 1-norm in (5)

d(p0s(θ),B) ≥ d(p0s(θ̄),B)
(
1− ‖Pθ̃‖1

)
.

For any configurations θ ∈ int(C(θ̄)) in the interior
configuration-space bubble (5), we have ‖Pθ̃‖1 < 1. Hence
d(p0s(θ),B) > 0, ∀s ∈ R where d(p0s(θ̄),B) > 0 since
θ̄ ∈ int('). Thus, by the definition (2) of R(θ), we have
d(R(θ),B) > 0 for all θ ∈ int(C(θ̄)), i.e., int(C(θ̄)) ⊆ int(').
Therefore, C(θ̄) = cl(int(C(θ̄))) ⊆ cl(int(')) = '.
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B. Control and Positive Invariance
In this section, we present our main contribution; a PI subset

O of the configuration-space bubble (5). In the next section,
we will discuss how to scale these PI sets to ensure that they
are input admissible. The following theorem describes a CI
subset of the configuration-space bubble (5).

Theorem 1 (Control Invariance): Consider the set

O = conv
{[

θ̄ ± ei/ρi
0

]
,

[
θ̄ ± ei/ρi
∓νei

]
: i = 1, . . . , n

}
(9)

where ei are the standard basis-vectors and ρi were defined
in (6). If the tuning-parameter ν > 0 satisfies

ν2B1 ⊆ P(θ̄)M(θ)−1(T − C(θ, θ̇)θ̇
)
, ∀(θ, θ̇) ∈ O (10)

then (9) is a CI subset [I, 0]O ⊆ C(θ̄) of the configuration-
space bubble (5) under the robot dynamics (1).

Proof: First, we show [I, 0]O ⊆ C(θ̄). By definition (9),
any θ ∈ [I, 0]O can be expressed as the convex combination

θ = θ̄ + P−1
(∑n

i=1
λ+

i ei − λ−i ei

)

where λ+
i , λ−i ∈ [0, 1] and

∑n
i=1 λ+

i + λ−i = 1. Thus, ‖P(θ −
θ̄)‖1 = ‖∑n

i=1λ
+
i ei− λ−i ei‖1 = ∑n

i=1|λ+
i − λ−i | ≤∑n

i=1λ
+
i +

λ−i = 1. Therefore, θ ∈ C(θ̄) by definition of the bubble (5).
Next, we show that O is CI by showing the existence

of a feasible control input τ ∈ T that keeps the state
(θ, θ̇) ∈ O inside O. Consider the nonlinear change-of-
variables ε = P(θ − θ̄) and feedback-linearizing controller
τ = M(θ)Pu + C(θ, θ̇)θ̇ . Under this change-of-variables, the
dynamics (1) become a linear double-integrator

d
dt

[
ε
ε̇

]
=

[
0 I
0 0

][
ε
ε̇

]
+

[
0
I

]
u. (11)

Furthermore, the candidate CI set (9) is transformed into

Ô = conv
{[

±ei
0

]
,

[
±ei
∓νei

]
: i = 1, . . . , n

}

By condition (10), we can conservative under-approximate the
constraints U ⊆ Rn on the fictitious input u ∈ Rn as a 1-norm
ball U = ν2B1. Since the transformed dynamics (11) are linear
and the transformed constraints Ô and Û are polytopic, we can
prove that Ô is CI by showing that for each of its vertices there
exists a feasible control input u ∈ U such that the resulting
vector-field ẋ points into the set Ô [17].

Consider the vertex xi = (ei, 0) ∈ Ô and the control input
ui = −ν2ei ∈ U . Then, xi + 1

ν ẋi = (ei,−νei) ∈ Ô By the
Minkowski-Weyl theorem, the polytope Ô has a half-space
representation Ô = {x : hjx ≤ kj, j = 1, . . . , N} Thus, 1

ν hjẋi ≤
kj − hjxi since xi + 1

ν ẋi ∈ Ô. For all half-spaces incidence to
the vertex xi, we have hjxi = kj. Therefore, the vector-field ẋ
points hjẋ ≤ 0 into Ô at xi.

Next, consider the vertex xi = (ei,−νei) and control input
u = ν2ei ∈ U . Then, xi + 1

ν ẋi = 0 ∈ Ô. Following a similar
argument as above, we conclude that the vector-field ẋ points
1
ν hjẋ ≤ 0 into Ô at xi where ν > 0.

Thus, the set Ô is CI, i.e., for all x(t) ∈ Ô there exists
u(t) ∈ U that keeps the state inside Ô. Inverting the nonlin-
ear transformation, this means for all (θ, θ̇) ∈ O there exists
τ (t) ∈ T that keeps the state inside Ô.

Since the transformed constraint sets Ô and Û are poly-
topic and the feedback linearized dynamics (11) are linear,
we can use the standard methods [17] to compute the maxi-
mal control/positive invariant set for this problem. However,
computing this set for a multi-link robot n3 1 may be compu-
tationally intractable. Furthermore, the resulting invariant set
may require an excessive amount of memory to store either its
half-space representation or vertex representation. In contrast,
the CI set (9) is pre-computed, and the number of vertices
depends linearly 2n on the number of links n.

The tuning-parameter ν > 0 limits the joint-velocities θ̇i
inside the CI set O, i.e., |θ̇i| ≤ ν. Intuitively, it is clear that if
the robot moves too quickly then its momentum can carry
it out of the configuration-space bubble (5). This intuition
is quantified by condition (10) which provides a relationship
betwen the maximum joint-velocities ν and the torque author-
ity (4) of the joint-motors. Condition (10) requires that the
coriolis and centripetal torques C(θ, θ̇)θ̇ do not saturate the
joint-motors, allowing a deceleration of at least |θ̈i| = ν2 for
each joint i = 1, . . . , n to stop the robot before it leaves the
CI set. In the next section, we discuss how to compute this
bound to ensure that the CI set O is input admissible.

According to Theorem 1, the set (9) is CI meaning that
there exists a feasible controller which can keep the robot state
(θ, θ̇) inside the set O. The ISMP will require a controller that
renders the CI set (9) positive invariant. Although the proof of
Theorem 1 suggests a vertex controller [17], it would be overly
conservative and inflexible. Instead, we propose a CG [18]
which can transform any controller into a constraint enforcing
controller. The CG uses the following input-admissible set

U(θ, θ̇) =




 τ ∈ T :
∃δ > 0 s.t.[
θ

θ̇

]
+ δ

[
θ̇

M−1(τ + Cθ̇)

]
∈ O




 (12)

where the parameter δ > 0 ensures that a point x + δẋ along
the ray from x passing through x + ẋ is contained inside O.
This is equivalent to showing that ẋ = (θ̇, θ̈) points into O.
In practice, we use a fixed 0 < δ 5 1. This set describes all
feasible torques τ ∈ T that ensure that the CI set (9) becomes
PI. The CG computes the admissible torque τ = κ(θ, θ̇) ∈
U(θ, θ̇) closest to the desired torque κ̄(θ, θ̄ , θ̇)

3κ(θ, θ̇) = arg min
τ
‖τ − κ̄(θ, θ̄ , θ̇)‖ (13a)

s.t. τ ∈ U(θ, θ̇) (13b)

where κ̄(θ, θ̄ , θ̇) is any tracking θ → θ̄ controller. The CG
only interferes with the nominal controller when necessary to
enforce constraints. If the requested torque τ = κ̄(θ, θ̇ , θ̄) is
admissible τ ∈ U(θ, θ̇) then it is implemented τ - = κ̄(θ, θ̄ , θ̇).
For the i-th reference θ̄i and PI set Oi, we denote the result-
ing controller (13) as κi(θ, θ̇). Alternatively, the CG could
be implemented with a control barrier function [19] whose
level-sets are PI.

Note that θ and θ̇ are parameters, not decision variables
in the optimization problem (13). Likewise, for M(θ) and
C(θ, θ̇)θ̇ . Thus, the constraints (13b) are polytopic since O
is a polytope. Therefore, if the cost (13a) is a 2-norm then the
CG (13) can be implemented as a quadratic program. Likewise,
if the cost (13a) is a 1-norm or∞-norm then the CG (13) can
be implemented as a linear program. Thus, the CG (13) is
computationally tractable.
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C. Input Admissibility
In this section, we provide a joint-velocity bound ν > 0

which satisfies (10) ensuring that the set (9) is CI. The velocity
bound is given by the following proposition.

Proposition 2 (Velocity Bound): Condition (10) holds for

ν ≤
√

ρ̄

m + cρ̄
min

j=1,...,Nτ

kj∥∥hj
∥∥ (14)

where ρ̄ = maxi=1,...,n ρi, and m and c are uniform bounds on
the mass-inertia matrix ‖M(θ)‖ ≤ m and corilois-centripetal
matrix ‖C(θ, θ̇)‖ ≤ c‖θ̇‖2, respectively.

Proof: Condition (10) is equivalent to
⋃

(θ,θ̇)∈O, θ̈∈ν2P−1B1

M(θ)θ̈ + C(θ, θ̇)θ̇ ⊆ T

We will outer-approximate the non-convex set on the left-
hand side. For (θ, θ̇) ∈ O, the following bound holds
‖C(θ, θ̇)θ̇‖ ≤ max(θ,θ̇)∈O c‖θ̇‖2 = cν2 where the inequal-
ity follows from the uniform bound on the corilois/centripetal
matrix [20] and the equality follows from θ̇ = νei being
the largest magnitude velocity ‖θ̇‖2 ≤ ‖θ̇‖1 ≤ ν for veloc-
ity in (9). Likewise, the following bound on the mass-inertia
term holds maxθ̈∈ν2P−1B1

‖M(θ)θ̈‖ ≤ maxθ̈∈ν2P−1B1
m‖θ̈‖ =

mν2/ρ̄ where ρ̄ = maxi=1,...,n ρi(θ̄) and the inequality follows
from the uniform bound on the mass-inertia matrix [21]. Thus,
M(θ)θ̈ ∈ ν2m/ρ̄B2. Therefore, the following set inclusion
holds

⋃

(θ,θ̇)∈O, θ̈∈ν2P−1B1

M(θ)θ̈ + C(θ, θ̇)θ̇ ⊆ (m/ρ̄ + c)ν2B2.

Hence, (10) holds if T includes the ball (m/ρ̄ + c) ν2B2 of
radius (m/ρ̄ + c) ν2. Or equivalently, h6j hj(m/ρ̄ + c) ν2 ≤ k2

j
for j = 1, . . . , Nτ . Solving for ν yields (14).

The velocity bound ν > 0 in Proposition 2 ensures that the
joint-motors can produce sufficient torque to keep the robot
configuration inside the invariant set (9). For serial revolute
robots, uniform bounds on the mass-inertia matrix ‖M(θ)‖ ≤
m [21] and the coriolis/centripetal matrix ‖C(θ, θ̇)θ̇‖ ≤
c‖θ̇‖2 [20] are guaranteed to exist. Note that a non-negative
velocity bound (14) exists since T is assumed to contain
the origin in its interior and therefore kj > 0. The velocity-
bound is tighter for smaller ρ̄ configuration-space bubbles (5).
Likewise, larger inertia bounds m or corilois/centripetal bounds
c will tighten the bound (14) on the maximum velocity.

IV. ILLUSTRATIVE EXAMPLE

In this section, we demonstrate our path planning algorithms
through an illustrative numerical example. For illustrative pur-
pose, we consider a planar 2-link robot so that both the
configuration-space and work-space can be shown in the
plane. The robot is shown in Fig. 1. The dynamics (1) and
spatial-extent (2) were modeled using MATLABs robotics
toolbox [22]. The objective is to move the robot from the home
configuration θ̄0 = (0, 0) to the vertical position θ̄∞ = (π

2 , 0)
while avoiding the single obstacle B shown in Fig. 1. The
obstacles B in configuration-space is shown in Fig. 2.

Algorithm 2 was used to construct a search-tree T = (I,E)
for the Algorithm 1. We uniformly sampled configurations

Fig. 1. The robot considered in this illustrative example.

Fig. 2. The obstacle B is shown in configuration-space S2. Algorithm 2
planned a path θ̄σk around the obstacle. The robot trajectory θ (t) tracks
the path θ̄σk without leaving the corridor Oσk of CAPI sets. Video at
https://youtu.be/EDCwnRzLiVg.

θ̄ ∈ [−π,π]2. The sampled configuration θ̄ was moved to
connect (i, j) ∈ E to the nearest node j ∈ I using the convex
combination

θ̄i = θ̄j + λ

‖P(θ̄j)(θ̄ − θ̄j)‖1
(θ̄ − θ̄j) ∈ int([I, 0]Oj)

where the tuning-parameter λ ∈ [0, 1] determines how deeply
θ̄i lies inside [I, 0]Oj. The weighting matrix P(θ̄i) for the new
node i ∈ I was generated using (5) where d(ps0(θ̄),B) was
computed using the collision checker in MATLABs robotic
toolbox. Fig. 2 shows the references θ̄i and CAPI sets Oi asso-
ciated with the nodes i ∈ I of the search-tree T = (I,E)
as well as the edges (i, j) ∈ E connecting these nodes. The
search-tree T has |I| = 261 nodes and |E| = 260 edges.
Algorithm 2 required 2.45 seconds to construct the tree T.
The tree was re-wired using an RRT--like scheme to produce
more efficient paths [23].

The simulation results for the robot (1) in closed-loop
with Algorithm 1 are shown in Fig. 3. Algorithm 1 searched
the tree T for the shortest path {σk}20

k=1 ⊂ I from θ̄σ1 =
θ(0) to θ̄σ20 = θ∞ as shown Fig. 2. The nominal con-
troller κ(θ, θ̄ , θ̇) = −M(θ)F(θ − θ̄, θ̇) + C(θ, θ̇)θ̇ used in
Algorithm 1 is a feedback-linearized linear quadratic regula-
tor (LQR) where the LQR-gain F ∈ R2×4 was computed for
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Fig. 3. The angular position θ(t), velocity θ̇(t), and torque τ (t) for the
two revolute joints. The aggressive controller saturates the motors, but
the CG (13) prevents collisions.

the double-integrator (11) with Q = diag(1, 0.1, 0, 0) ∈ R4×4

and R = 10−3I ∈ R2×2. Algorithm 1 modifies the nomi-
nal controller using the CG (13). Algorithm 1 is executed
in discrete-time with a sample-time of δt = 50 millisec-
ond (20 hertz) and δ = δt was used in (12). The CG (13)
was posed as a quadratic program which was solved using
YALMIP toolbox [24] and quadprog. The CG required 15
milliseconds on average and 40 milliseconds maximum to exe-
cute. Between samples, the robot dynamics were simulated in
continuous-time.

Without the results of this letter, the nominal controller fails
the motion planning problem. First, the asymmetric state cost
Q = diag(1, 0.1, 0, 0) produces nonlinear closed-loop trajec-
tories between references. The nonlinear trajectories can leave
non-invariant configuration-space bubbles (5) even though the
end-points of the trajectory satisfy the constraints. Second,
the low input cost R = 10−3I produces an aggressive con-
troller that saturates the joint-motors. Without the forethought
provided by an invariant set, the weak motors cannot stop
the momentum of the robot from carrying it out of the
configuration-space bubbles (5).

The CAPI subsets (9) of the configuration-space bubbles (5)
presented in this letter alleviate these issues. For each node
σk ∈ I along the path {σk}20

k=1 ⊂ I, the CG produces a non-
linear controller (13) that enforces the CAPI set Oσk . Thus,
the trajectory of the robot (1) in closed-loop with Algorithm 1
remains inside the safe corridor of CAPI sets Oσk as shown in
Fig. 2. This is despite the saturation of the torque constraints
shown in Fig. 3. One of the main advantages of the ISMP
is that collision avoidance is guaranteed despite imperfect
tracking. This is demonstrated in Fig. 2 where the trajectory
effectively ignored the reference θ̄18. Despite this poor track-
ing the trajectory does not leave the corridor of CAPI sets and
therefore we can guarantee that collisions are avoided.
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