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A B S T R A C T   

Excessive agricultural nitrate export to aquatic systems degrades water quality and causes downstream ecological 
crises. Limited understanding of their underlying mechanisms and controls hinders mitigation measures. Here we 
analyzed observations of nitrate concentration (C) and discharge (Q) in 83 intensively managed agricultural 
watersheds across the central U.S. Midwest (37.0–44.5 N, 97.5–80.0 W), which reveals a regionally consistent 
pattern in C~Q relationships: C~Q relationship is chemodynamic at low flows and chemostatic at high flows, i. 
e., C increases with Q until a threshold beyond which C levels off. Motivated by this universal pattern, we 
developed a coupled model at the event scale that involves mixing of quick flow with high nitrate levels coming 
from shallow soils and the slow flow with low nitrate levels coming from deeper soils. Its implementation in 
combination with seasonal patterns of hydrology and agricultural practices explains observed patterns in the 
C~Q relationship across broad spatial and temporal scales and quantifies their main driving factors. Agricultural 
practices (i.e., corn fraction, nitrogen fertilizer use) explain 49% of spatial variability of C in quick flow during 
peak season, whereas tile drainage explains another 25%. Scenario analysis of changing area fraction of tile and 
corn using model projections sheds light on plausible pathways to assess and implement nutrient loss reduction 
goals.   

1. Introduction 

Aquatic pollution, for example, hypoxia zones and harmful algal 
blooms, is increasingly becoming a threat to water resources and human 
health. Excessive reactive nitrogen is one of the major factors leading to 
aquatic pollution (Howarth and Marino, 2006). Human activities are 
responsible for the increasing export of reactive nitrogen to aquatic 
systems over the past two centuries, and agricultural fertilizer is the 
main diffuse source of nitrogen pollution (Boesch, 2002; Galloway et al., 
2004), especially in agricultural regions such as the U.S. Midwest. The 
expansion of agricultural fields (Zhang et al., 2015) and heavy use of 
synthetic fertilizers to boost crop yields (FAO, 2022) in the U.S. Midwest 

are increasing the input of nitrogen, introducing large doses of reactive 
nitrogen that ultimately spread across the entire Mississippi river basin 
and into the Gulf of Mexico, causing major environmental problems, 
including the formation of hypoxic zones (Rabalais et al., 2002), harmful 
algal blooms (Loftin et al., 2016), and degradation of water quality 
(Turner and Rabalais, 1994). Previous studies suggested that non-point 
pollution caused by agricultural management in the U.S. Midwest con
tributes to about 70% of nitrogen transported from the Mississippi River 
Basin to the Gulf of Mexico (Alexander et al., 2008; Robertson and Saad, 
2021). Although state- and national-level nutrient loss reduction plans 
have been made for decades, there is still a lack of measurable progress 
in nutrient loss reduction at the regional and national scales (EPA, 2022; 
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NLRS, 2021). Understanding how nitrogen dynamics interact with hy
drology in agricultural watersheds is critical to developing effective 
policies for the management of nutrient loss reduction (Bowles et al., 
2018; Wollheim et al., 2018). 

The relationship between solute concentration (C) and discharge (Q) 
has long been seen as an important signature of an integrated response 
to hydrological and biochemical processes in a watershed and has been 
used to understand the underlying mechanisms of solute transport 
(Godsey et al., 2009; Minaudo et al., 2019; Moatar et al., 2017; Musolff 
et al., 2015; Pohle et al., 2021). Generally, there are three kinds of C~Q 
relationships (Godsey et al., 2009). In the chemostatic relationship, C 
does not change with the change of Q, indicating a relatively homoge
neous and uniform solute concentration distribution (Basu et al., 2010; 
Moatar et al., 2017). In the dilution pattern, C decreases with increasing 
Q, which manifests as a source-limited mechanism when the abundance 
of the solute limits its delivery to streams (Basu et al., 2011; Shanley 
et al., 2011). In the flushing pattern, C increases with increasing Q due to 
the flushing of solute. In this case, the transport capacity, rather than the 
abundance of solute, limits the solute delivery to the stream (Basu et al., 
2011; Thomas et al., 2016). 

Though a growing number of studies have studied the nitrate export 
patterns in the intensified agricultural landscapes through investigating 
the C~Q relationships (Marinos et al., 2020; Musolff et al., 2021), de
bates exist on the underlying mechanisms and the factors that drive 
variations in the C-Q relationship, especially at large spatio-temporal 
scales. A common perception is that nitrate export from agricultural 
lands typically follows chemostatic or stationary biogeochemical pat
terns (Basu et al., 2010; Bieroza et al., 2018; Gorski and Zimmer, 2021; 
Thompson et al., 2011). This posits that decades of agriculture fertilizer 
input has resulted in spatially-uniform legacy storage of soil N, such that 
inter-annual variations in total nitrogen export are small, leading to 
temporal invariance of the annual concentrations (Basu et al., 2010). 
However, recent meta-analyses have revealed that nitrate export pat
terns from agricultural lands instead mostly follow flushing patterns at a 
finer temporal resolution (e.g. biweekly and daily), meaning that nitrate 
concentration increases as discharge increases (Botter et al., 2020; 
Ebeling et al., 2021; Marinos et al., 2020; Zhi and Li, 2020). Multiple 
factors have been attributed to the observed nitrate export patterns. 
Specifically, Zhi and Li (2020) found that observed nitrate export pat
terns emerge from a switch between the dominance of shallow soil water 
at high streamflows and deeper groundwater at low streamflows, 
forming the so-called shallow and deep hypothesis. However, there is no 
consensus on which factors predominantly control nitrate variations and 
export patterns, and to what extent. As more extreme rainfall events are 
expected (Westra et al., 2014), understanding the event scale nitrate 
exporting mechanism is of great importance. 

A distinct C~Q relationship has been recently reported in the U.S. 
Midwest region, a highly managed agricultural landscape: under rela
tively low Q conditions, the C~Q relationship exhibits a flushing 
pattern; under high Q conditions, a chemostatic C~Q relationship is 
observed (Koenig et al., 2017; Marinos et al., 2020). However, the un
derlying mechanisms remain elusive. Further, the spatial and temporal 
variation of meteorology and agricultural practices cause the spatial and 
temporal variabilities in hydrology and biogeochemistry, and how those 
variabilities regulate the nitrate C~Q relationship in this agricultural 
landscape is under-investigated. Temporally, agricultural practices 
change the seasonal field nitrogen balance. For example, synthetic ni
trogen fertilizer increases soil nitrogen content in spring, and crop ni
trogen uptake reduces field nitrogen content during the growing season. 
Besides, the runoff also shows a clear seasonal pattern. In spring, the 
high precipitation and snowmelt sustain the high river discharge 
(Baldwin and Lall, 1999). The temporal variation of hydrology and 
biogeochemistry has been shown to be a controlling factor in the tem
poral variation of the hypoxic region in the Gulf of Mexico (Bianchi 
et al., 2010; Laurent and Fennel, 2019). Spatially, the agricultural 
practices vary in different places. For example, the amount of synthetic 

fertilizer and tile drainage condition (density and efficiency) varies 
spatially (Cao et al., 2018; Nakagaki and Wieczorek, 2016). These 
different patterns of agricultural management factors over the landscape 
further result in the spatial heterogeneity of riverine nitrogen sources in 
the Mississippi River (David et al., 2010; Sinha et al., 2019). A system
atic understanding of the spatial and temporal variation of the C~Q 
relationship and the underlying driving factors are therefore urgently 
needed to help identify “hot spots” and “hot moments” of nitrate export 
and to help further develop more effective and systematic nutrient loss 
reduction strategies over the broad Midwestern agricultural regions. 

Here we systematically examined daily nitrate export patterns 
(concentration~discharge relationship, C~Q) in 83 intensively- 
managed watersheds of varying sizes in the central Midwest, across a 
large gradient of climate, geology, and land use conditions (e.g., corn 
area fraction and tile drainage percentage), and we found similar two- 
stage patterns in the studied watersheds (Fig. 1). The observation of 
this two-stage pattern led us to the overarching scientific questions: 
What are the underlying processes and causal factors that generate this 
unique and universal C~Q pattern in agriculture-dominated water
sheds, and how do they regulate the spatial and temporal variation of 
C~Q patterns across different watersheds? Inspired by the “shallow and 
deep” hypothesis (Stewart et al., 2022; Zhi and Li, 2020), we hypothe
sized that the hydrological vertical mixing of quick flow from shallow 
soil and slow flow from deep soil directly shapes the distinct C~Q 
relationship observed in agricultural watersheds. We further hypothe
sized that the spatial and temporal variation of hydrology and agricul
tural management practices drive the spatial and temporal variation of 
the C~Q relationship. 

The main goal of this study, thus, is to answer the above-mentioned 
scientific questions via testing two hypotheses. To accomplish the goal, 
we developed a hydrological vertical mixing model based on our hy
potheses at both event and monthly scales. We further used the model to 
understand the spatial and temporal variation of the C~Q relationships 
and its underlying drivers. We finally parameterized the model and 
predicted the C~Q relationships in all the HUC8 watersheds over the 
central U.S. Midwest under different management scenarios, which can 
provide critical implications for designing effective nutrient loss 
reduction strategies. 

2. Materials and methods 

2.1. Study area and data 

Our study area is the central U.S. Midwest, which is a heavily 
managed agricultural area. The majority of this region was once glaci
ated (Fig. 1), and rich glacier deposits were left behind, which later 
became the most fertile soil in the world (Huston, 2005). The glaciation 
also contributes to the poor drainage conditions in this region (Anders 
et al., 2018; Atkinson et al., 2014; Sears, 1926). The U.S. Midwest, which 
contributes up to ~30% of global corn and soybean production (FAO, 
2022), has experienced extensive modification by human activities over 
the past 200 years, transforming from native prairies to uniform and 
highly productive agricultural landscapes (Fenneman and Johnson, 
1946; Kalita et al., 2007). Extensive artificial tile drainage significantly 
improves drainage conditions and changes the dominant hydrological 
processes. Two major soil types in the region are Alfisols and Mollisols 
based on the USDA soil Taxonomy. Precipitation happens in all months 
and seasons and exhibits seasonal variation with more precipitation in 
the warm, summer seasons (Andresen et al., 2012; Baldwin and Lall, 
1999). 

We considered 83 stations (Fig. 1) in this region that had nitrate and 
discharge observations for more than 2 years. Among these sites, 61 are 
operated by the United States Geological Survey (U.S. Geological Sur
vey, 2021), and the daily nitrate concentration and discharge data can 
be directly accessed via USGS API. 22 are operated by National Center 
for Water Quality Research (NCWQR) (Barbiero et al., 2018), and we 
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calculated the daily flow weighted mean concentration based on mul
tiple measurements on each day. Detailed information about data 
availability over each site can be found in Table S3. The upstream 
boundaries for each station were retrieved through USGS’s NLDI web 
API (https://waterdata.usgs.gov/blog/nldi-intro/). The C~Q relation
ships in our study were plotted in the log-log space, and the discharge is 
normalized by the upstream drainage area. We calculated the corn/
soybean area fraction, defined as the ratio of corn/soybean planting area 
to the total area of each watershed, based on the Cropland Data Layer 
(CDL, 2012–2020) from USDA NASS (NASS, USDA, 2021). The area 
fraction of tile drainage, defined as the ratio of tile-drained area to the 
total area of each watershed, is obtained from a USGS dataset (Nakagaki 
and Wieczorek, 2016). To support the regional prediction of the C~Q 
relationships and nitrate loading for all the HUC8 watersheds in the 
central U.S. Midwest, we used the daily discharge from the GRADES 
dataset, which is a well-calibrated and validated model-derived 
discharge database (Lin et al., 2019; Yang et al., 2019). 

2.2. Methods 

2.2.1. Hydrological vertical mixing model 
A two-end-member mathematical model was developed to illustrate 

the mixing of quick flow and slow flow (Fig. 2) (Hooper et al., 1990). 
Total streamflow (Q) is the sum of quick flow (Qquick) and slow flow 
(Qslow), and the stream nitrate concentration (C) is then the weighted 
average of quick flow concentration (Cquick) and slow flow concentration 
(Cslow), 

Q = Qquick + Qslow (1)  

C =
CquickQquick + CslowQslow

Q
(2) 

The nitrate concentrations of quick flow and slow flow exhibit 
distinct characteristics because of their distinctive flow pathways (Zhi 
and Li, 2020). Quick flow refers to runoff that follows flow pathways 
that respond quickly to rainfall events. The major sources of quick flow 
include surface flow, shallow subsurface flow, and tile drainage flow. 
The C in quick flow is generally high and also dynamic in agricultural 

Fig. 1. Location of the study area and examples of nitrate concentration (C) ~ discharge (Q) relationships. a. Corn fraction of the selected watersheds in the 
central U.S. Midwest. The brown color represents the glacial material (Soller et al., 2009) and the red lines indicate the glaciated portion of the Central Lowland of the 
Interior Plains (Fenneman and Johnson, 1946). b. to m. Examples of the C~Q relationships in the central U.S. Midwest of selected watersheds. b. Des Moines River, 
IA; c. Turkey River, IA; d. Spoon River, IL; e. Raisin River, OH; f. North Raccoon River, IA; g. St Joseph River, IN; h. West Nishnabotna River, IA; i. Auglaize River, 
OH; j. Nodaway River, IA; k. Old Mans River, IA; l. Embarras River, IL; m. White River, IN. 

Fig. 2. Conceptual illustration of the hydrological vertical mixing model.  
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fields, due to the surficial nitrate input from nitrogen fertilization 
(Fig. 2). Slow flow refers to the flow pathways that respond slowly to 
rainfall events. The major sources of slow flow include deep subsurface 
water and groundwater, and the nitrate concentration in slow flow is 
generally low (Fig. 2). 

2.2.2. Event-scale model development 
The vertical mixing model was firstly applied at a single rainfall 

event. To detect the rainfall event, we firstly applied a 3-day moving 
average filter to the discharge time series. A valid rainfall event in our 
study was defined as those events with a recession length larger than 5 
days. We assumed that Qslow and Cslow remain constant during a rainfall 
event (Basu et al., 2012; Drury et al., 2016; Feldman, 2000; Hare, 2021; 
Lastoria, 2008; Li et al., 2020; Schilling et al., 2015; Van Meter et al., 
2018). The dynamics of streamflow after a rainfall event were modeled 
via an exponential recession curve characterized with a recession rate 
k1, 

Q(t) = Q0e−k1 t, (3)  

where Q0 is the initial streamflow during a rainfall event [mm/s], and k1 
is the flow recession rate [1/day]. t is the number of days after the 
occurrence of a rainfall event [days]. Then, Qquick is the difference be
tween Q and Qslow, 

Qquick = Q − Qslow (4) 

As there is no explicit equation describing the dynamics of nitrogen 
concentration in soil/stream after a rainfall event, we assumed for 
simplicity Cquick changes linearly after a rainfall event, 

Cquick = Cquick0 − k2t, (5)  

where Cquick0 is the initial quick flow concentration during a recession 
process [mg/L], and k2 is the change rate of the quick flow concentration 
[mg/L/day]. The model sensitivity suggested that the C~Q relationship 
is not sensitive to k2 (Fig. S21). Integrating equation (1–5), we obtained 
the expression of C in a rainfall event (see details in Supplementary), 

C =
CslowQslow −

(
Cquick0 + k2

k1
ln Q0−Qslow

Q−Qslow

)
Qslow

Q

+

(

Cquick0 +
k2

k1
ln

Q0 − Qslow

Q − Qslow

)

(6)  

2.2.3. Monthly-scale model development 
To investigate how the seasonal variation of biogeochemical factors 

and hydrological factors drive the seasonal variability of the C~Q 
relationship, we further applied the hydrological vertical model at the 

monthly scale. We first constructed a conceptual equivalent rainfall 
event for each month with the monthly statistics derived from historical 
hydrography and observed stream nitrate concentrations. The concep
tualized rainfall event statistically characterizes the flow recession 
process and nitrogen dynamics separately in different months (Fig. 3). 
The maximum discharge (Qmax) and minimum discharge (Qmin) of a 
conceptualized rainfall event are defined as the 95th percentile 
discharge (Q95) and 5th percentile discharge (Q05) in a certain month 
from multi-year observations, respectively. 

To estimate slow flow, a digital filter was applied to the daily 
discharge time series to separate water flow into two parts, the quickly 
responding part (Qqr) and the slowly responding part (Qsr). In this study, 
the digital filter method by Lyne and Hollick (1979) was applied. Then, 
the slow flow in a certain month (Qslow) was then defined as the average 
Qsr in this month. An additional upper-bound constraint was applied 
here to make sure the model is both physically and numerically correct, 

Qslow = min{mean{Qsr[t ∈ month]}, Q05} (7) 

The initial quick flow (Qquick0) was then defined as the difference 
between Qmax and Qslow, 

Qquick0 = Qmax − Qslow (8) 

To estimate the flow recession rate of the monthly conceptualized 
rainfall event, we first extracted all rainfall events in a certain month 
(Fig. 3). Then, the flow recession rate in the monthly conceptualized 
rainfall event (k1) was estimated using the averaged k1, event for single 
rainfall events happening in a certain month, 

k1 = mean
{

k1, event
}

(9) 

We here estimated the Cquick using the average nitrate concentration 
between the 90th percentile of discharge (Q90) and 95th percentile 
discharge (Q95) in a certain month from multi-year observations, and 
Cquick defined here was used as the initial quick flow concentration in the 
conceptualized rainfall event, 

Cquick0 = Cquick = mean{C[Q ∈ [Q90, Q95]]} (10) 

The change rate of quick flow concentration k2 was defined with the 
gradient of Cquick0, 

k2 = ∇Cquick0 (11) 

In this study, we categorized the dynamics of quick flow concen
tration into four periods in the hydrology year: 1) The dormant period 
(from November to March), in which the low-temperature limits mi
crobial activity, and nitrate concentration has little change. 2) The 
fertilization period (from March to June), during which the use of syn
thetic fertilizer increases the soil nitrate concentration. 3) The plant 

Fig. 3. Flow chart for constructing the monthly conceptualized rainfall event.  
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uptake period (from June to August), during which plant uptake is the 
major process that consumes soil nitrate and reduces the stream nitrate 
concentration. 4) The mineralization period (from August to 
November), during which the mineralization of crop residue increases 
the soil nitrate concentration. During the fertilization and mineraliza
tion periods, k2 is negative. During the plant uptake period, k2 is 
positive. 

Cslow was estimated by the average nitrate concentration of the flow 
with the lowest 5th percentile discharge from all observations, 

Cslow = const = mean
{

C
[
Q ≤ Q05, all

]}
(11) 

By substituting the above parameters in Eq. (6) with the parameters 
in the monthly conceptualized rainfall event, we could get the monthly 
concentration model (see details in Supplementary). 

2.2.4. Model sensitivity, parameterization, and validation 
To further understand the spatial variation of the C~Q relationships, 

we examined the relationship between watershed characteristics (i.e. 
corn fraction and tile fraction) and the parameters (i.e. Qmin, Qmax, 
Cquick0, Cslow, Qslow) that determine the shape of the watershed C~Q 
relationship in the monthly hydrological vertical mixing model. To 
extend the C~Q relationship to a broader scale, we further established 
empirical relationships between the watershed characteristics (i.e. corn 
fraction and tile fraction) and nitrate concentration parameters (i.e. 
Cquick and Cslow) in the monthly hydrological vertical mixing model. 
Based on the nature of nitrate dynamics, we made three assumptions: (1) 
Cslow was constant for the whole year; (2) Cquick was dynamic all over the 
year, and the dynamics of Cquick were characterized into four periods in a 
hydrology year (i.e. the dormant period, the fertilization period, the 
plant uptake period, and the mineralization period, as defined in Sec
tion 2.2.3); (3) Cquick changed linearly within each period. We first 
established empirical relationships to estimate Cslow and Cquick in June, 
August, and November, 

Cquick, Jun = 0.15 ∗ e8.16∗CornFraction + 8.88 ∗ TileFraction (12)  

Cquick, Aug = 1.28 ∗ e3.21∗CornFraction − 0.61

∗ (SoybeanFraction + CornFraction) (13)  

Cquick, Nov = 0.73 ∗ e4.17∗CornFraction + 7.80 ∗ SoybeanFraction (14)  

Cslow = 4.52 ∗ e−3.58∗TileFraction (15) 

Cquick in other months were interpolated following our assumptions 
(see details in Supplementary). The estimation of Cquick and Cslow were 
then validated using the leave-one-watershed-out cross-validation 
method. 

To better understand the importance of corn fraction and tile fraction 
in nitrate export, we then attributed the spatial variation of Cquick to the 
spatial variation of corn fraction and tile fraction in June, the month 
with the highest nitrate concentration in all studied watersheds, 
following: 

var(a + b) = var(a) + 2Cov(a, b) + var(b) + ErrorTerm (16)  

where a is the corn fraction related term (0.15 ∗ e8.16∗CornFraction), and b is 
the term related to tile fraction (8.88 ∗ TileFraction) in equation (12). 

We validated our hydrological mixing model and parameterization 
at different levels. First, we compared the observed nitrate concentra
tion with the following predictions: (1) predicted nitrate concentration 
estimated with the event-scale hydrological vertical mixing model, (2) 
predicted nitrate concentration estimated with the monthly-scale hy
drological vertical mixing model without parameterization, (3) pre
dicted nitrate concentration estimated with the monthly-scale 
hydrological vertical mixing model with parameterization in all 83 
watersheds. Three statistical criteria were used to indicate model 

performance, Pearson correlation coefficient (r), root mean square error 
(RMSE), and bias. 

We further evaluated the performance of monthly nitrate loading 
estimation by comparing the nitrogen loading estimated via the monthly 
scale hydrological vertical mixing model with observations at all 61 
USGS gauges. In the hydrological vertical mixing model estimation, the 
nitrate concentration was firstly estimated with the developed monthly 
C~Q relationship based on the observed discharge, i.e. C = f(Q). The 
flow ranges from 5th percentile discharge (Q05) to 95th percentile 
discharge (Q95) in a monthly conceptualized rainfall event. Here, we 
assumed that the nitrate concentration for discharges smaller than the 
5th percentile discharge is f(Q05) and the nitrate concentration for dis
charges larger than the 95th percentile discharge is f(Q95). The nitrate 
loading (L) is then the product of discharge and concentration, i.e. L =

CQ. Similarly, the observed nitrate loading was estimated as the product 
of observed discharge and nitrate concentration at the USGS gauges. To 
gap fill and estimate daily nitrate concentrations, we used the state-of- 
the-art and most widely used the Weighted Regressions on Time, 
Discharge, and Season (WRTDS) method, which is a regression model 
that uses time, discharge, and seasons as explanatory variables as pre
dictors of nitrate concentrations (Hirsch et al., 2010; Hirsch and De 
Cicco, 2015), 

ln(C) = β0 + β1t + β2ln(Q) + β3sin(2πt) + β4cos(2πt) + ε (17)  

where t is time in decimal years, C is the daily concentration, Q is daily 
discharge, β0 ∼ β4 are fitted coefficients, and ε is the error term. 

2.2.5. Scenario analysis 
Increased spring wetting has been projected for the U.S. Midwest 

(Pachauri et al., 2014), which may lead to increasing adoption of tile 
drainage to improve soil drainage conditions (NASS, USDA, 2019a). 
Besides, recent years have seen the trend of expansion in corn planting 
acreage due to increased needs for grain and bioenergy production 
(Cheng et al., 2022; Foley et al., 2011), as well as an overall heavier use 
in nitrogen fertilizer (Cao et al., 2018) (though the trend has been 
slowed down due to the high fertilizer cost recently). To understand how 
the change of tile drainage fraction and corn fraction affects nitrogen 
exporting, we used the developed C~Q relationship model to calculate 
nitrate loading in June, one of the months with the highest nitrogen 
loading, in two major scenarios: (1) increase tile fraction by 10%, 20%, 
30% (e.g. tile fraction increases from 40% to 44%, 48%, and 52%, 
respectively), and (2) increase/decrease corn fraction by 20% (e.g. corn 
fraction increases/decreases from 40% to 48% and 32%, respectively), 
over all the HUC8 watersheds in the central U.S. Midwest, to examine 
how the change of tile drainage and corn fraction would change the 
nitrate loading in June. In each scenario, we first predicted the C~Q 
relationships based on the corn fraction and tile fraction and the 
GRADES dataset. We then calculated the nitrate loading in June for each 
scenario with the predicted C-Q relationships. The predicted nitrate 
loading was then averaged from 1980 to 2013 for comparison among 
different scenarios. 

3. Results 

3.1. Model validation results 

3.1.1. Validation of nitrate concentration estimation 
The developed hydrological vertical mixing model revealed a satis

factory performance in nitrate concentration estimation. Over the 83 
watersheds in the studied area, the Pearson correlation coefficient (r), 
RMSE, and bias are 0.84, 2.23 mg/L, −0.04 mg/L for the event-scale 
hydrological vertical mixing model, 0.76, 2.51 mg/L, −0.43 mg/L for 
the monthly-scale hydrological vertical mixing model without parame
terization, and 0.66, 2.96 mg/L, −0.70 mg/L for the monthly-scale hy
drological vertical mixing model with parameterization, respectively 
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(Fig. 4). The high r and low RMSE show the ability to use the hydro
logical vertical mixing model to further understand the spatial and 
temporal variability of the C~Q relationships. The decrease of r and 
increase of RMSE and bias from event-scale hydrological vertical mixing 
model to monthly-scale hydrological vertical mixing with parameteri
zation indicates that the model uncertainty accumulates as we increase 
the complexity of the model when introducing conceptualized monthly 
rainfall event and parameterization. 

3.1.2. Validation of Cquick and Cslow parameterization 
Fig. 5, Table S1, and Fig. S9 show the results of leave-one-watershed- 

out cross-validation of estimating nitrate concentration parameters (i.e. 
Cquick and Cslow) using parameterization with corn and tile fractions. The 
overall r, RMSE, and bias for the Cquick estimation are 0.70, 2.48 mg/L, 
and −0.14 mg/L, respectively. The r, RMSE, bias for Cquick estimation in 
each month range from 0.45 to 0.77, from 1.55 mg/L to 3.25 mg/L, and 
from −0.61 mg/L to 0.40 mg/L, respectively. The Cquick estimation 
performs better in the spring (r>0.70), when there is less human 
perturbation. The Cquick estimation performs worse in the fall (r<0.65), 
and r is lowest in October when harvesting happens (r=0.45). The 
performance of estimating Cslow is relatively lower than Cquick with 
overall r, RMSE and bias of 0.50, 1.70 mg/L, and −0.14 mg/L, respec
tively. These results support that the empirical relationships developed 
here could be used to predict the C~Q relationships in ungauged wa
tersheds at different months. 

3.1.3. Validation of monthly nitrogen loading estimation 
We further compared the predicted monthly nitrogen loading with 

observations from 61 USGS gauges (Fig. 6). The r between monthly ni
trogen loading estimated via our hydrological mixing model and that 
estimated by the WRTDS method is 0.96, and the corresponding RMSE, 
and bias are 0.04 g/m2, and 0.00 g/m2, respectively (Fig. 6), which 
demonstrates that our model has high accuracy in predicting monthly 

nitrate loading. 

3.2. Hydrological vertical mixing on the C~Q relationship 

The C~Q relationships from modeling and observation were 
compared, and both the event-scale and the monthly-scale hydrological 
mixing model were found to be able to well reproduce the observed C~Q 
relationships at the watershed scale (Figs. 7 and S10). Fig. 7 is an 
example of the monthly C~Q relationships in the Spoon River water
shed, IL from May 22, 2013 to June 13, 2021. The “two-stage” shape 

Fig. 4. Validation of daily nitrate concentration (C) estimation for all 83 watersheds for a. event-scale hydrological vertical mixing model, b. monthly hy
drological vertical mixing model without parameterization of Cquick and Cslow, and c. monthly hydrological vertical mixing model with parameterization of Cquick and 
Cslow. The density is the normalized bi-dimensional histogram of the observed and simulated daily nitrate concentration. 

Fig. 5. Leave-one-watershed-out validation of nitrate concentration parameterization in the monthly-scale hydrological vertical mixing model. a. leave- 
one-watershed-out validation for Cquick. b. leave-one-watershed-out validation for Cslow. 

Fig. 6. Validation of the monthly nitrate loading at the USGS gauges. Monthly 
nitrate loading was aggregated from the daily nitrate loading. Daily nitrate 
loading was calculated as the product of daily discharge and daily nitrate 
concentration. Observation is the monthly nitrate loading calculated with 
WRTDS gap-filled USGS nitrate concentration observations. Prediction is the 
monthly nitrate loading calculated with the nitrate concentration estimated 
with our monthly hydrological vertical mixing model without 
parameterization. 

Z. Ma et al.                                                                                                                                                                                                                                      



Water Research 229 (2023) 119468

7

agrees well with the observed data, which shows that C increases with 
the increase of Q at low flow conditions and then levels off at high flow 
conditions. Further, the monthly-scale hydrological vertical mixing 
model successfully reveals the seasonal dynamics of the C~Q relation
ship. The nitrate concentration at high flow conditions is highest from 
March to June, and it decreases gradually from July to August, which 
moves the C~Q relationship downwards along the y-axis. From 
September to November, the nitrate concentration at high flow condi
tions increases, which moves the C~Q relationship upwards along the y- 
axis. Besides, the distributions of the streamflow peak at the high flow 
regions from March to June, suggesting that the quick flow dominated 
the C~Q relationship regime during this period (Figs. 7 and S11). The 
streamflow distribution in July is more positively skewed, and the 
discharge peaks at a smaller value compare to the distribution in June, 
indicating a drier condition. The streamflow distribution in August, with 
only one peak in the low flow region, indicates that slow flow is one of 
the controlling factors in that month. The streamflow distributions from 
September to February have two or more peaks, with at least one in slow 
flow regions and one in high flow regions, which shows a transition from 
the slow flow dominated regime to the quick flow dominated regime in 
those months (Figs. 7 and S11). 

3.3. Sensitivity of the monthly-scale hydrological model to corn and tile 
fractions 

The correlations between watershed characteristics (corn and tile 
fractions) and parameters in the monthly hydrological vertical mixing 
model in June are shown in Table 1. We found that the planting of corn 
changes the hydrological and biogeochemical processes, especially, 
Cquick and Qslow, and further controls the C~Q relationship at the 
watershed scale. Cquick shows a significant positive relationship (r = 0.54 
and p < 0.001) and increases exponentially with increasing corn frac
tion (Fig. S12), indicating that a large portion of stream nitrate origi
nates from fertilizer application in cornfields (Donner et al., 2004; Kohl 

et al., 1971). Qslow in June also significantly correlates with corn fraction 
(r = 0.47 and p < 0.001). Evapotranspiration (ET) of croplands is low in 
May and June compared to that in forests and grassland (Liu et al., 2016; 
Mishra et al., 2010), and the relatively low ET leads to more water 
storage in June, which explains why Qslow in June is higher in the wa
tersheds with higher corn fraction. Other critical variables of the C~Q 
relationship (e.g. Qmin, Cmax, and Cslow) either have no significant cor
relation or weak correlation with corn fraction (Fig. S12 and Table 1). 
Based on these empirical results, we established statistical models be
tween corn fraction and the parameters that showed statistically sig
nificant relationships (p < 0.05, Cquick, Qmin, Qmax, and Qslow). Integrating 
these relationships with the hydrological vertical mixing model, we 
found that increasing corn fraction moves the C~Q relationship towards 
the top right corner (Fig. 8). When corn fraction is 10% or lower, nitrate 
concentration remains relatively stable with the change of streamflow, 
indicating that the observed distinct “two-stage” C~Q relationship 
might be a unique feature in the agricultural landscapes, which is very 
different from the C~Q relationships found in forests and urban regions 
(Zhi and Li, 2020). 

We also found significant correlations between tile fraction and pa
rameters in the hydrological vertical mixing model (Table 1), which 
confirms that tile drainage modifies hydrological processes and further 
influences the biogeochemical cycle in the agroecosystems. In June, 
Cquick is significantly correlated with tile fraction across all watersheds, 
and Cquick is higher in watersheds with more tile-drained fields (Fig. S13, 
r = 0.36, p < 0.001). This relationship can be explained largely by 
decreasing residence time and less nitrogen absorption by the soil in tile- 
drained fields (Schilling et al., 2015). Cslow decreases exponentially with 
increased tile fraction (Fig. S13, r = − 0.44), suggesting that tile 
drainage reduces the contribution of water above tile drainages to slow 
flow, and increases the relative contribution of water from deeper soil 
with lower nitrate concentration contributing to slow flow. We also 
found that Qmax in June has a positive correlation with tile drainage 
fraction (Fig. S13, r = 0.45 and p < 0.001), and Qslow and Cslow in June 
are negatively correlated with tile fraction, also suggesting that tile 
drainage facilitates quick flow drainage and reduces water penetration 
that contributes to deeper, slower flow (Fig. S13, r = −0.30 for Qslow, 
Fig. S13, r = −0.44 for Cslow). Increasing tile fractions, therefore, moves 
the C~Q relationship toward the top left corner (Fig. 8). When tile 
fraction is only 10%, the C~Q relationship tends to be chemostatic, 
indicating that tile drainage is a contributing factor to the distinct 
“two-stage” C~Q relationship in these agriculture-dominated 
watersheds. 

Fig. 7. The observed and simulated nitrate concentration (C) ~ discharge (Q) relationships in the Spoon River watershed in central Illinois from May 22, 
2013 to June 13, 2021. a. The observed C~Q relationships. b. The simulated C~Q relationships. c. to l. The C~Q relationship from January to December. The 
thickness of lines in c. to l. represents the density of streamflow distribution, details can be found in Fig. S11. 

Table 1 
Pearson correlation coefficient (r) between monthly C~Q relationship 
model parameters and watershed characteristics (Corn Fraction and Tile 
Fraction) (*** p < 0.001; ** p < 0.01; * p < 0.05, p-value was corrected with 
Holm-Bonferroni method to control type one errors).   

Cquick, Jun Qmin, Jun Qmax,Jun Qslow Cslow 

Corn Fraction 0.54 *** 0.28 * −0.24 * 0.47 *** 0.21 
Tile Fraction 0.36 *** −0.42 *** 0.45 *** −0.30 ** 0.44 ***  
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3.4. Nitrate concentration prediction at all HUC8 watersheds in the 
central U.S Midwest 

We further predicted the monthly Cquick at all HUC8 watersheds in 
the central U.S. Midwest (Fig. 9). The results show that watersheds in 
Iowa, central Illinois, central Indiana, and central Ohio have the highest 
Cquick (Fig. 9), and those watersheds have the highest corn fraction or tile 
fraction (Fig. S15). The spatial pattern of the predicted Cquick is largely 
consistent with the riverine nitrate yield pattern estimated by David 
et al. (2010), suggesting that high flow carries the majority of the nitrate 
loading. Further, the results also reveal the temporal variation of Cquick, i. 
e. Cquick decreases from June to August, and then increases from August 
to November (Figs. S9 and S16). 

3.5. Scenarios of nitrate export 

Our HUC8-level C~Q relationship model predicts that an increase of 
tile drainage fraction would increase nitrate loading for all the HUC8 
watersheds in the central US Midwest (Fig. 10a-c). This is especially the 
case in northeast Indiana and northern Ohio, where a 30% relative in
crease of tile fraction under current conditions would lead to 20% more 
nitrate loading in June (Fig. 10c). Larger nitrate loading occurs in wa
tersheds with high tile drainage fractions, highlighting the importance 
of tile drainage in nitrate leaching management. 

The model also predicted diverse nitrate loading under the scenarios 
of increasing or decreasing “corn fraction” by 20% (Fig. 10d-e). Inter
preting this result requires more caution, as here we did not explicitly 
account for nitrogen fertilizer use information at the watershed scale 
due to lack of such information. Changing “corn fraction” here means 
the combined effects of changing corn acreage and changing nitrogen 
fertilizer usage. We found that both increase and decrease of “corn 
fraction” result in a great amount of nitrate loading change, especially in 
watersheds that currently have high corn fraction. A 20% relative in
crease of “corn fraction” under current conditions could lead to a 
considerable increase in nitrate loading in June. For example, nitrate 
loading would increase by more than 50% in the northwest watershed in 

Iowa (Fig. 10d). On the contrary, the reduction of “corn fraction” 
effectively reduces the nitrate loading in June (Fig. 10e). These alarming 
results highlight opportunities for making significant progress by man
aging our landscape through crop rotation and nutrient management. 
Although we generally know that high corn fractions would lead to a 
high nitrogen fertilizer amount and thus a high nitrate loading, results 
here show that nitrate loading increases exponentially with corn frac
tion, possibly because farmers tend to devote more fertile land and apply 
more fertilizer in growing corn (EPA, Illinois, 2021). Differentiating the 
effects of corn planting acreage and fertilizer application is necessary for 
designing effective nutrient loss reduction strategies. 

4. Discussion 

4.1. On the effectiveness of the hydrological vertical mixing model 

Our results show that the hydrological vertical mixing is able to 
reproduce the C~Q relationship and predict C via a two-end-member 
mixing model. The spatial distribution of solute content in the water
shed has long been seen as a controlling factor in nutrient export (N.B. 
Basu et al., 2011; Zhi and Li, 2020). In particular, Zhi and Li (2020) 
found that the “shallow and deep” hypothesis successfully explained the 
signatures of the C~Q relationship in watersheds with different land 
cover types (i.e. urban, agriculture, and undeveloped). Our hydrological 
vertical mixing model further extended this hypothesis, and successfully 
explained the distinct “two-stage” nitrate C~Q relationship in the 
agricultural watershed in the central U.S. Midwest (Figs. 7 and S9). In 
agricultural watersheds, synthetic nitrogen fertilizer is the dominant 
nitrate source, and the use of nitrogen fertilizer lifts the soil nitrogen 
content, especially in the shallow soil columns, which further leads to a 
stratified nitrogen vertical profile (e.g. Hahne et al., 1977; Van Meter 
et al., 2016). Quick flow (i.e. surface runoff, interflow, and tile flow) 
from shallow soil with high nitrate concentrations is the major source of 
nitrate in streamflow after precipitation. With the decrease of stream
flow, the stream nitrate concentration decreases as the contribution of 
slow flow from deeper soil with low nitrate concentration increases. 

Fig. 8. The responses of nitrate concentration (C) ~ discharge (Q) relationship to tile fraction and corn fraction. a. Corn fraction of the selected watersheds. 
b. Tile fraction of the selected watersheds. c. The response of the C~Q relationship to corn fraction. d. The response of the C~Q relationship to tile fraction. 
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The hydrological status (i.e. soil moisture condition) determines the 
runoff generation process and further affects the C~Q relationship. In 
the wet period (March to June), the high precipitation and low plant 
water uptake lead to high soil moisture, and the water from shallow soil 
is the major stream water source. Therefore, the C~Q relationship is 
dominated by quick flow, and is more stationary mainly spanning the 
high flow region during the wet period (Fig. 7) (Winter et al., 2022). In 
the dry periods, either low precipitation or high water uptake by crops 
results in low soil moisture, and groundwater from deeper soil is the 
major source of streamflow (Winter et al., 2022). The C~Q relationship 
exhibits a transition from the quick-flow-dominated regime to the 
slow-flow-dominated regime during a rainfall event (Fig. 7), and ex
hibits a flushing pattern in this period. 

The model uncertainty gradually increases with the increase of 
model complexity (Fig. 4). In the event-scale hydrological mixing 
model, the two-end-member mixing model is a reasonable simplification 
of real mixing processes. However, a two-end-member mixing model 
could not capture the dilution pattern during flooding, during which a 
large amount of surface water with low nitrate concentration directly 
flows into the stream from precipitation (e.g. Fig. 1e and 1i). Besides, the 
complexity and heterogeneity properties of the watersheds might 
require models with more end members to capture the dynamics of 
nutrients (Lee and Krothe, 2001; Saiers et al., 2021). All those factors 

contribute to the uncertainty of the two-end-member hydrological ver
tical mixing model. From the event-scale model to the monthly-scale 
model, the use of conceptualized rainfall events ignores the 
intra-annual variabilities of hydrological and biogeochemical processes, 
which further increases the model uncertainty. Finally, model parame
terization further increases the model uncertainty since the parameter
ization did not consider all information about watershed characteristics. 
Specifically, nitrate export patterns are different under different land 
cover types (i.e. urban area, agriculture area, and forest area) (Musolff 
et al., 2021; Zhi et al., 2021). Further, the complex spatial organization 
of different landscapes within the watersheds might also change the 
nitrate export pattern (e.g. Figs. S4-S8; Hansen et al., 2018), which is not 
considered here. Compared with Cquick, the parameterization of Cslow 
exhibits higher uncertainty (Fig. 5). We hypothesized that the stream 
denitrification accounts for the high uncertainty of Cslow. Existing studies 
have shown that stream denitrification plays a more important role 
under low flow conditions to remove stream nitrogen, with shallower 
stream water depth and smaller flow velocity (N.B. Basu et al., 2011; 
Böhlke et al., 2009). Different controlling factors of stream denitrifica
tion (e.g. organic substrate, river bedforms, drainage density, etc.) 
showing large spatial heterogeneity might increase the parameterization 
uncertainty of Cslow (Gomez-Velez et al., 2015; Harvey et al., 2013; 
Inwood et al., 2007; Mulholland et al., 2008; Pinay et al., 2000). 

4.2. The impact of agricultural practices on nitrate export 

Corn fraction has been shown to be the leading factor that drives the 
spatial variation of nitrate export pattern, mainly through the biogeo
chemical cycle. Corn fields are the major consumers of synthetic fertil
izer nitrogen in the U.S. Midwest (NASS, USDA, 2019b), which increases 
nitrate concentration in streams. Specifically, the spatial variation of 
corn fraction has been found to explain half of the spatial variability of 
Cquick in June, and the change of corn fraction in our hypothetical sce
nario analysis also highlights the importance of corn fraction and fer
tilizer application for nutrient loss reduction. 

We found that the seasonal variation of Cquick largely follows the 
temporal pattern of field-level farmland nitrogen dynamics in the 
shallow soil layer when averaged over the 83 watersheds in the U.S. 
Midwest (Fig. 11). In particular, Cquick increases from March to June 
(Fig. 11), corresponding to synthetic fertilizer application for corn (Cao 
et al., 2018) and increased soil mineralization during the wet and 
warming-up period during spring and early summer, both of which 
elevate soil inorganic nitrogen (SIN). The Cquick then decreases from 
June to August, primarily due to plant uptake of SIN. From September to 
November, Cquick slowly increases due to the mineralization of soil 
organic nitrogen in Fall, especially in soybean fields (King et al., 2016). 
With generally low microbial activities at low temperature from 
November to February, Cquick remains relatively stable. These 
watershed-scale patterns closely mimic SIN dynamics measured and 
simulated over several farmlands (Archontoulis et al., 2020; Marti
nez-Feria et al., 2018), indicating the aggregated field-level SIN dy
namics largely control the watershed nitrate export behavior. 

Our results show that corn fraction significantly correlates with Cquick 
in all twelve months, indicating strong control of corn planting on Cquick 

(Fig. S17, r: 0.40–070, p < 0.001). This pattern may arise from both 
short-term and long-term legacy effects of hydrology and biogeochem
ical cycles arising from agricultural practices. Growing more corn with 
high fertilizer application generally leads to a relatively higher level of 
nitrate storage in agricultural lands and export to rivers and streams. 
Longer residence time of groundwater and absorption of nitrate in soils 
can delay nitrate export to streams (Van Meter et al., 2016). Crop and 
soil microbes can uptake inorganic nitrogen in fertilizer and return ni
trogen back to the soil later in the form of organic nitrogen such as plant 
residue (Quan et al., 2021). The decomposition of organic nitrogen in 
plant residue, which happens at any time, also contributes to nitrate 

Fig. 9. Predicted Cquick at all HUC8 watersheds in the central U.S. Midwest 
for a. June, b. August, and c. November. 
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export in streamflow. 
Tile drainage changes the flow path of water and nitrogen, and 

further drives the spatial variation of nitrate exporting. Tile drainage 
facilitates shallow soil water draining (Danesh-Yazdi et al., 2016; 
Schilling et al., 2012), reduces water penetrating into deeper soil and the 
water storage in the shallow soil (Gramlich et al., 2018; Muma et al., 
2016), which increases the quick flow and decreases slow flow. Besides, 
tile drainage reduces the nitrate residence time and further increases 
nitrate concentration in the stream (Table 1). Specifically, the spatial 
variation of tile drainage explains nearly a quarter of the spatial varia
tion of Cquick in June. To the best of our knowledge, this study represents 
the first time that the impact of tile drainage on nitrate loading has been 
quantified at the regional scale. We also found a seasonality of the 
impact of tile drainage on water and nitrate exporting. Tile drainage 
plays a more important role during wet periods, as Cquick is significantly 
correlated with tile fraction (p < 0.05) for all months except during 
August (Fig. S18), and the Q95 is significantly correlated with tile frac
tion except for the dry months (from August to October) (Fig. S19). 
During dry months, low soil moisture caused by relatively lower pre
cipitation and high crop water uptake limits the functioning of tile 
drainage to deliver water and nitrate (Lam et al., 2016). 

4.3. Future roadmap for modeling and monitoring agricultural nitrate 
export 

Nutrient loss reduction practices in the U.S. to date appear to be 
inadequate for meeting federal and state government goals (EPA, Illi
nois, 2021, EPA, 2015). This lack of progress may in part be attributed to 
the lack of incentives for growers to adopt certain management practices 
(EPA, Illinois, 2021), and inadequate geospatial targeting of such 
practices, both of which require improved scientific understanding to 
provide guidance. Our study provided a holistic view of how nitrogen 
cycles interact with hydrological cycles under heavily-managed agro
ecosystems. We found that the C~Q relationship in the U.S. Midwest 
cannot be characterized by a simple chemostatic or chemodynamic 
behavior. Instead, our finding largely confirms the “shallow and deep” 
hypothesis (Zhi and Li, 2020) that transitions from a 
quick-flow-dominated regime to a slow-flow-dominated regime are 
controlled by hydrological vertical mixing. Furthermore, we showed 
that shallow soil is directly controlled by both fast-responding hydro
logical inputs (e.g., rainfall, infiltration) and agricultural practices (e.g. 
corn fraction, fertilizer use), modulated by tile drainage. On the other 
hand, deep soil (including deep subsurface water and groundwater) has 
slower hydrological dynamics with low nitrate concentration (Botter 

Fig. 10. Scenario analysis of nitrate loading. Nitrate loading (LN), its absolute and relative changes under the cases of a. increase 10% tile, b. increase 20% tile, c. 
increase 30% tile, d. increase 20% corn, and e. reduce 20% corn at all HUC8 watersheds in the central U.S. Midwest. 
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et al., 2020; Ebeling et al., 2021). Our study developed a parsimonious 
process-based model to bring the above findings together mathemati
cally, and this new model enabled us to quantitatively attribute the roles 
of agricultural practices and tile drainage in agricultural nitrate export 
and helped provide scenario assessments under different corn and tile 
drainage fractions. The findings reveal the fundamental coupling of 
hydrology and biogeochemistry from individual fields to watersheds to 
the region as a whole, which carries broad generality and applicability 
to different agriculture-dominant watersheds across the world. 

Our study has generated a scientific and technological roadmap for 
modeling and monitoring agricultural nitrate export. First, the findings 
here can be further corroborated by in-situ measurements and moni
toring networks. For example, stable isotope technology can be applied 
to measure nitrate from both shallow and deep soil layers to directly 
attribute the composition and sources of riverine nitrate (Hu et al., 
2019). Second, cost-effective nitrate sensors deployable at stream 
gauges have the potential to build a monitoring network through the 
Internet-of-Things (IoT) technology, which could enable real-time 
monitoring and tracking of watershed-level nitrate dynamics (Saboe 
et al., 2021). Advanced remote sensing technologies enable the detec
tion of management practices, such as crop rotation (Cai et al., 2018), 
plant nitrogen uptake (Wang et al., 2021), and cover crop adoption 
(Zhou et al., 2022), supporting on-the-ground tracking of the progress of 
desired practice adoption. The process-based agroecosystem models that 
can link field-to-watershed dynamics (Zhou et al., 2021), further 
empowered with artificial intelligence and the increasing amount of 
observations from diverse sources (Zhi et al., 2021), collectively should 
allow for customized designs for individual watersheds for prioritized 
changes in management practices on the ground to achieve the most 
effective nutrient loss reduction. The above scientific and technological 
roadmap will ultimately generate sufficient actionable insights that can 

enable both market-based incentive programs (e.g. water quality trading 
market) and optimized government policy-making, leading to real 
progress in nutrient loss reduction under a changing climate. 

5. Conclusion 

We analyzed historical stream nitrate and discharge data from 83 
watersheds in the central U.S. Midwest and found a unique “two-stage” 
C~Q relationship over these agricultural watersheds. We further 
developed a hydrological vertical mixing model to explain the shape of 
the observed C~Q relationship at both the event and monthly scales and 
empirical parameterization schemes to predict nitrate concentrations, 
which were used to predict the C~Q relationship and nitrate load at all 
HUC8 watersheds in the central U.S. Midwest with daily stream 
discharge data from GRADES. The hydrological vertical mixing model 
suggests that the observed “two-stage” C~Q relationship in this region 
originates from the vertical mixing of quick flow with high nitrate levels 
from shallow soils and the slow flow with low nitrate levels from deeper 
soils. The hydrological vertical mixing model coupled with the season
ality of hydrology and agricultural practice explains the spatial and 
temporal variation of the C~Q relationship at the watershed scale. The 
planting of corn and installation of tile drainage has been found to 
change both the hydrological and biogeochemical processes and further 
controls the C~Q relationship. We found that the spatial variation of 
corn fraction and tile fraction explains 48.8% and 25.5% variation of 
Cquick in June, respectively. Our work reveals the underlying coupled 
hydrological and biogeochemical processes that shape the C~Q rela
tionship and its spatial and temporal variation, and highlights the 
importance of managing tile drainage and fertilizer inputs in nutrient 
loss reduction. More broadly, our work provides a holistic framework for 
modeling and monitoring nitrate export over agricultural watersheds. 
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