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ARTICLE INFO ABSTRACT

Handling Editor: Matthew Tighe Cropland carbon budget depicts the amount of carbon flowing in and out of agroecosystems and the changes in
carbon stocks of soil and living biomass during the same period. Soil carbon credit is the additional change in soil

Keywords: carbon stock under certain farming practices compared with the business-as-usual practices. Accurately calcu-

Soil organic carbon lating cropland carbon budget and soil carbon credit is critical to assessing climate change mitigation potential in

Uncertainty

agroecosystems. The calculation of cropland carbon budget and soil carbon credit is sensitive to local soil and
climatic conditions, especially initial soil organic carbon (SOC) stock, which is determined by both SOC con-
centration (SOC%) and bulk density (Bulk_Density). SOC stock data are either from soil sampling or gridded
public survey data. In agroecosystem models, SOC stock data are a key model input for quantifying cropland
carbon budget and soil carbon credit. However, various types and degrees of uncertainties exist in SOC stock
datasets, which propagate to the quantification of SOC stock change. In particular, a large discrepancy is found in
two widely used SOC stock datasets — Rapid Carbon Assessment dataset (RaCA) and Gridded Soil Survey
Geographic Database (§SSURGO) — in the U.S. Midwest, with a relative difference (quantified using Normalized
Root Mean Square Error, NRMSE) of 48.0% for 0-30 cm SOC stock between the two datasets. It remains largely
unclear how uncertainty in SOC stocks affects the calculation of cropland carbon budget and soil carbon credit.
To address this question, we used a well-validated process-based agroecosystem model, ecosys, to assess the
impacts of SOC stock uncertainty on carbon budget and soil carbon credit calculation in the U.S. Midwestern
corn-soybean rotation systems. Our results reveal the following findings: (1) A sizable discrepancy exists in
simulated cropland carbon budget between using gSSURGO and using RaCA for their SOC% and Bulk_Density as
model inputs, with a Pearson correlation coefficient (r) of only 0.4 for simulated change of SOC stock (ASOC)
using these two different soil datasets. (2) Simulated cropland carbon budget components were more sensitive to
initial SOC% than to Bulk_Density. For example, the upper and lower quartiles of multi-year averaged ASOC were
—29.8 and 4.8 gC/m?/year for the selected counties respectively, with an uncertainty of 13.7 and 0.7 gC/m?/
year induced by uncertainties in initial SOC% and Bulk _Density, respectively. (3) Both simulated ASOC and its
uncertainty were negatively correlated with initial SOC%, whereas ASOC was negatively correlated with air
temperature, and ASOC uncertainty was positively correlated with air temperature. (4) The uncertainty of
calculated soil carbon credits was much smaller compared with the uncertainty of calculated absolute carbon
budgets assuming the same SOC stock uncertainty level in the inputs. Specifically, in our assessment comparing
planting cover crops vs no cover crop, the uncertainty of calculated soil carbon credits induced by initial SOC%
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uncertainty was less than 4% (relative to the quantified value of the soil carbon credits) for 90% of the cases. Our
analysis highlights that high accuracy measurement of SOC% as inputs is needed for the calculation of cropland
carbon budgets; however, soil carbon credit quantification is much less sensitive to the initial SOC% inputs, and
the current publicly available soil datasets (e.g., gSSURGO) are largely suitable for the calculation of soil carbon

credits.

1. Introduction

Terrestrial ecosystems play an important role in the global carbon
cycle (Friedlingstein et al., 2020) and have been argued to have high
potential for climate change mitigation by conserving and sequestering
carbon (Bossio et al., 2020; Fargione et al., 2018; Minasny et al., 2017).
Various natural climate solutions (e.g., conservation, restoration, and/or
improved land management actions across global forests, wetlands,
grasslands, and agricultural lands) have been proposed to increase car-
bon storage and mitigate greenhouse gas emissions in terrestrial eco-
systems (Bossio et al., 2020; Fargione et al., 2018; Griscom et al., 2017).
However, accurately accounting for carbon input and output flows
under different interventions to assess their climate change mitigation
potential remains challenging (Novick et al., 2022). Croplands, as
heavily managed terrestrial ecosystems providing food, fiber, biofuel,
and other ecosystem services to human society, play a critical role in
regional and global carbon budgets (Zhang et al., 2015). Croplands
under intensive cultivation have been losing soil carbon compared to
pre-cultivation land uses such as forests or grasslands (Lal, 2002).
Therefore, reversing soil carbon loss in croplands is a priority not only
for climate change mitigation but also for improving soil health (Lal,
2004). Several management practices may increase soil carbon storage
for croplands, such as cover cropping and reduced or no tillage (Havlin
et al., 1990; Jian et al., 2020; West & Post, 2002; Xu et al., 2019).
However, the effectiveness of these management practices to increase
soil carbon storage and their impacts on other cropland carbon budget
terms (e.g., ecosystem gross primary productivity, ecosystem respira-
tion, and crop yield) needs to be assessed locally in order to account for
soil type and climate effects (Ogle et al., 2019).

Technically, both observational and modeling approaches can be
used to assess cropland carbon budgets under different management
practices (Hollinger et al., 2005; Smith et al., 2010; Zhou et al., 2021a).
Field observations of changes in soil organic carbon (SOC) storage and
carbon fluxes like photosynthesis and respiration have significantly
advanced our understanding of carbon cycling in the agroecosystems
(Kucharik et al., 2001; Luo et al., 2017; Zhou et al., 2021a). However, it
is often not feasible or cost-effective to collect field observations across
every acre of croplands due to the high financial and labor costs. Sat-
ellite observations can provide estimations of a few carbon fluxes, such
as harvested yield (Guan et al., 2016, 2017; Peng et al., 2018, Peng et al.,
2020) and gross primary productivity (Jiang et al., 2021), but other
carbon budget components such as heterotopic respiration are inade-
quately quantifiable from satellites. Moreover, it is challenging to use
soil sampling to calculate soil carbon credits, because it requires com-
parison with a counterfactual scenario in which the intervention does
not take place (Guan et al., 2022). Though we may estimate the coun-
terfactual differences of soil carbon change using paired sites in one
field, this method still has high uncertainty due to variability in soil type
and topography between sites, and it is also practically difficult to
implement (e.g., rarely a farmer would allow such a treatment experi-
ment in their commercial field). Process-based models have been widely
used to calculate carbon budgets for croplands (Huang et al., 2009; Li
et al., 1994; Zhou et al., 2021a). However, large uncertainties exist in
model-simulated cropland carbon budget mainly due to uncertainties in
model structure, parameters, weather, and soil inputs (Jung et al., 2007;
Mishra et al., 2017; Shi et al., 2018; Sulman et al., 2018). Among various
soil input data needed by the process-based models, initial SOC stock is
one of the most important input variables (Li et al., 1994; Sulman et al.,

2018), and variation in initial SOC stock influences many processes
including decomposition rates, soil water and oxygen dynamics, plant
growth, soil microbial activity, and soil respiration (Cotrufo et al., 2013,
2015; Delogu et al., 2017; Li et al., 2021; Li et al., 2019; Liang et al.,
2018; Murphy, 2015; Oldfield et al., 2019; Rajkai et al., 2004).

There are large uncertainties existing in currently available SOC
stock datasets that serve as critical inputs for carbon balance models
(Goidts et al., 2009; Jandl et al., 2014; Potash et al., 2022). For soil
sampling data, the accuracy of measured SOC stock depends on the
representativeness of sampling locations and time, and the measurement
uncertainties of SOC concentration (SOC%), bulk density (Bulk_Den-
sity), and gravel content (Goidts et al., 2009; Meersmans et al., 2009).
For example, using the state-of-the-art soil sampling methods, uncer-
tainty of SOC% measurements can still be up to 16% depending upon the
method adopted, while the uncertainty of Bulk_Density measurements is
even larger and can lead to 10-40% uncertainty in SOC stock estimation
(Goidts et al., 2009; Meersmans et al., 2009). In addition, the impact of
gravel content on SOC stock estimation can be difficult to determine and
is often omitted due to a lack of data (Gerzabek et al., 2005). Gridded
soil datasets, primarily interpolated from soil sampling data and usually
providing soil properties with representative categorical values, are
widely used as model input data to support the simulation of carbon
budget at regional to global scales. Those datasets not only contain
uncertainties from soil sampling and interpolation methods, but also
contain uncertainties from the impacts of historical land cover change
and land management practices on SOC stock (Hengl et al., 2017;
Ramcharan et al., 2018; Veenstra & Lee Burras, 2015). Due to these
factors, SOC stocks obtained from different soil datasets have discrep-
ancies with each other (Ramcharan et al., 2018; Zhong & Xu, 2011). It
remains unclear how these uncertainties of SOC stock affect the calcu-
lation of cropland carbon budgets and soil carbon credits using process-
based models.

In this study, we used an advanced agroecosystem model, ecosys, to
quantify the impacts of uncertainty in initial SOC stock on the calcula-
tion of cropland carbon budgets and soil carbon credits over the U.S.
Midwest, which is one of the most important global food baskets pro-
ducing one third of global corn and soybean production. We aim to
answer the following questions: (1) What are the impacts of uncertainty
in the measured SOC% and Bulk_Density on the calculation of cropland
carbon budgets in the U.S. Midwest? (2) How does this uncertainty
manifest itself under different soil and climate conditions? (3) How large
are the impacts of uncertainty in the measured SOC% and Bulk_Density
on the calculation of soil carbon credits in the U.S. Midwest? To answer
the first question, we first compared the cropland carbon budgets
calculated based on SOC% and Bulk Density from the Gridded Soil
Survey Geographic Database (gSSURGO) and Rapid Carbon Assessment
(RaCA) datasets, and quantified the impact of SOC stock inconsistency
on the calculation of cropland carbon budgets over the U.S. Midwest
(Section 3.1-3.2); we then conducted sensitivity analyses of quantifying
cropland carbon budgets at different SOC% and Bulk Density levels
across 9 selected counties in Illinois, Iowa, and Indiana states encom-
passing representative climate and soil variations in this region (Section
3.3). To answer the second question, we simulated the impacts of SOC%
and Bulk_Density uncertainty on cropland carbon budgets at the county
scale across Illinois, Iowa, and Indiana states and also at gSSURGO soil
map unit scale for Champaign County, Illinois. Based on those simula-
tions, we investigated the spatial heterogeneity of uncertainty in crop-
land carbon budgets induced by SOC stock data uncertainty, and
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analyzed how this uncertainty varies with climate and soil conditions
(Section 3.4). To answer the third question, we simulated the cropland
carbon budgets at county scale assuming non-legume cover crops
adopted across Illinois, Iowa, and Indiana states since 2000, and
investigated the impacts of uncertainty in SOC% and Bulk_Density on
the calculation of soil carbon credits due to the hypothetical cover crop
adoption (Section 3.5).

2. Materials and methods
2.1. Soil datasets

We used two mainstream and publicly available soil datasets, RaCA
and gSSURGO, in this study. We first compared SOC stock, SOC%, and
Bulk Density over different soil depths from these two datasets to
quantify their uncertainties. We then quantified the impacts of un-
certainties in SOC stock on the calculation of cropland carbon budgets
and soil carbon credits in the U.S. Midwest. The detailed information
about these two soil datasets and how we processed the datasets for the
comparison were provided as follows.

2.1.1. Rapid Carbon Assessment dataset (RaCA)

The RaCA dataset was developed by the Natural Resource Conser-
vation Service (NRCS), United States Department of Agriculture (USDA)
(Loecke et al., 2016) to provide values of the SOC stock under different
land cover types across the U.S. In the RaCA dataset, SOC% was obtained
by subtracting the measured soil inorganic carbon from the total carbon,

Table 1
Experiment design.
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where total soil carbon was measured using the combustion method, and
inorganic soil carbon was measured using the calcium carbonate
calcimeter equivalence approach. The Bulk_Density above 50 cm soil
depth was measured using the clod method at —33 kPa matric potential
at some of the sites in this dataset. For the sites without Bulk_Density
measurements or depths below 50 cm, the Bulk_Density was predicted
using pedotransfer functions based on the data from the sites with bulk
density measurements using the methodology of Sequeira et al (2014).
The accuracies of these predictions were 0.10 to 0.15 Mg/m® (Sequeira
et al., 2014; Loecke et al., 2016). The SOC stock within a certain soil
depth was calculated using the SOC% and the coarse-fragment-adjusted
Bulk Density corresponding to that soil layer.

2.1.2. Gridded Soil Survey Geographic dataset (gSSURGO)

The gSSURGO dataset was derived from the USDA-NRCS Soil Survey
Geographic (SSURGO) Database to provide statewide soil data at scales
from 1:12,000 to 1:63,360. Because of its high resolution, it is the most
widely used soil dataset in the U.S. for field- and subfield-scale agro-
ecosystem modeling (Jin et al., 2019). Each soil map unit in gSSURGO
has unique soil properties and productivity derived from the National
Soil Information System (NASIS) collected by the National Cooperative
Soil Survey over the past century (USDA-NRCS, 2021). The concentra-
tion of soil organic matter (SOM%) is provided in the gSSURGO dataset,
expressed as the weight percentage of decomposed plant and animal
residue in soil material with diameter less than 2 mm. We calculated
SOC% by assuming that 58% of SOM is organic carbon (Pribyl, 2010).
The Bulk Density we used is the dry weight of soil materials (with

Experiment Setup

Purpose

Exp 1: Comparison of calculated cropland carbon  Four combinations:

To quantify the impact of SOC stock inconsistency from two

budgets between using the gSSURGO and RaCA
soil datasets.

Exp 2: Sensitivity of cropland carbon budgets to
different levels of SOC% and Bulk Density.

Exp 3: Simulate the impacts of uncertainties in
SOC% and Bulk_Density on the calculation of
cropland carbon budgets for the U.S.
Midwest.

Exp 4: Simulate the impacts of SOC% and
Bulk_Density uncertainties on the calculation of
soil carbon credits for the U.S. Midwest.

(1) gSSURGO SOC% + gSSURGO Bulk_Density;

(2) RaCA SOC% + RaCA Bulk Density;

(3) gSSURGO SOC% + RaCA Bulk_Density;

(4) RaCA SOC% + gSSURGO Bulk_Density.

Selected 9 counties across the U.S. Midwest, and

(1) changed the topsoil (0-30 cm) SOC% ranges from 0.1 to
5.9% with a step of 0.2%;

(2) changed the topsoil Bulk_Density ranges from 0.9 to 1.7
Mg/m® with a step of 0.1 Mg/m>, respectively.

Simulated cropland carbon budgets at the county scale using
the gSSURGO majority soil types across Illinois, Iowa, and
Indiana states, and also simulated cropland carbon budget at
gSSURGO soil map unit scale for Champaign County of
Illinois, with the following setup:

(1) changed the topsoil SOC% by adding or subtracting 0.77%
(the RMSE between SOC% from gSSURGO and RaCA over top
30 cm; see Section 3.1 for more details) from the original
values, and calculated the uncertainty in cropland carbon
budgets induced by the SOC% uncertainty.

(2) changed the topsoil Bulk_Density by adding or subtracting
0.15 Mg/m?® (the RMSE between Bulk_Density from gSSURGO
and RaCA over top 30 cm; see Section 3.1 for more details)
from the original values, and calculated the uncertainty in
cropland carbon budgets induced by the Bulk_Density
uncertainty.

Simulated soil carbon credits assuming non-legume cover
crops adopted across Illinois, lowa, and Indiana states during
the non-growing seasons since the November of 2000 at
county scale using gSSURGO majority soil types, with the
following setup:

(1) changed the topsoil SOC% by adding or subtracting 0.77%
from the original values, and quantified the impacts of
uncertainty in SOC% on the calculation of soil carbon credits
(i.e., the ASOC difference between the scenarios with and
without cover crops).

(2) changed the topsoil Bulk_Density by adding or subtracting
0.15 Mg/m® from original values, and quantified the impacts
of uncertainty in Bulk_Density on the calculation of soil carbon
credits.

different soil datasets on the calculation of cropland carbon
budgets.

To investigate the impacts of uncertainty in SOC% and
Bulk_Density on the calculation of cropland carbon budgets at
different SOC% and Bulk_Density levels.

To investigate the impacts of uncertainty in SOC stock on the
calculation of cropland carbon budgets, and analyze the
spatial variation of such impacts with the variation of climate
and soil conditions.

To investigate the impacts of uncertainty in SOC% and
Bulk_Density on the calculation of soil carbon credits.
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diameter less than 2 mm) per unit volume of soil at one-third bar water
tension from gSSURGO (USDA-NRCS, 2022).

2.1.3. Comparison of two soil datasets

We compared values of SOC stock, SOC%, and Bulk_Density from the
RaCA and gSSURGO datasets at 410 cropland sites sampled by RaCA
across the U.S. Midwest. The RaCA SOC stock at 0-5 cm, 0-30 ¢cm, and
0-100 cm depths were obtained from the RaCA SOC pedon dataset,
which was calculated based on measured SOC% and Bulk _Density pro-
files. To determine the Bulk_Density at 0-5 cm, 0-30 cm, and 0-100 cm
depth intervals, we resampled the coarse-fragment-adjusted Bulk_Den-
sity measurements using the equal-area quadratic smoothing spline
method (Bishop et al., 1999). The SOC% of different soil layers was
obtained by dividing the SOC stock with the resampled Bulk_Density for
RaCA. For the gSSURGO dataset, we obtained the Bulk_Density and SOM
% using the representative value of the majority soil type at the RaCA
sampling locations. The SOC stock of gSSURGO was calculated based on
the SOC% and Bulk_Density of soil profile (Eq. (1)).

SOC ek = Depth x Bulk_Density x SOC% (@)

where SOCgck, Bulk Density, SOC%, and Depth are the stock of soil
organic carbon in Mg/ha, coarse-fragment-adjusted bulk density in Mg/
m>, soil organic carbon concentration at a given soil depth in %, and the
thickness of the soil layer in cm, respectively.

2.2. Ecosys model

To study the impacts of SOC stock uncertainty on the calculation of
cropland carbon budgets and soil carbon credits, we used an advanced
agroecosystem model, ecosys, to simulate the cropland carbon budgets
with different SOC% and Bulk Density as model inputs in the U.S.
Midwest. The ecosys model was developed using biophysical and
biochemical principles simulating hourly carbon, water, energy, and
nutrient balance in the soil-vegetation-atmosphere continuum within
ecosystems (Grant, 2001). It has been applied and validated for agri-
cultural ecosystems under different climate and soil conditions with
various land management practices (e.g., tillage, fertilizer management,
crop rotation, and irrigation) (Grant, 1997; Grant et al., 2001,
2007,2020; Zhang et al., 2021a, Zhang et al., 2021b). The performance
of ecosys in simulating major carbon budget components, including gross
primary productivity (GPP), net ecosystem exchange (NEE), ecosystem
respiration (R,c,), and change in SOC stock (ASOC), has been validated
for major types of ecosystems at both site and regional scales (Grant,
1989c; Grant et al., 2001; Grant & Flanagan, 2007; Mekonnen et al.,
2017). In a previous study, we validated the model performance in
simulating crop production and carbon budgets with the benchmarks
from flux tower observations, USDA National Agricultural Statistics
Service (NASS) county scale crop yield survey data, and a novel
remotely sensed GPP dataset across the U.S. Midwestern agroecosystems
(Zhou et al., 2021a).

In ecosys, the dynamics of SOC stock were simulated by adding car-
bon to soil through leaf and root senescence, root exudation, and harvest
residue (both shoot and root), and losing carbon from soil via microbial
respiration and leaching (Grant, 2001). At a long time scale (>annual
scale), the dynamics of SOC stock can be approximated as the difference
between plant carbon fixation, harvested carbon (e.g., grain), and
ecosystem respiration (Eq. (2)) (Baker & Griffis, 2005; Zhou et al.,
2021a), which can be used to analyze the contribution of each individual
carbon budget components to the final change in SOC stock. In the
following analysis, we focused on the impacts of uncertainty in initial
soil condition on the calculation of carbon budget components in Eq. (2).

ASOC =~ GPP — Harvest — R,

~ GPP — Harvest — R, — R,

(>annual scale for a cropland)
(>annual scale for a cropland)

@

where ASOC is the change in soil organic carbon stock, GPP is the
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ecosystem gross primary productivity, Harvest is the carbon removed by
harvest, R, is the ecosystem respiration, R, is the ecosystem autotro-
phic respiration, and Ry is the ecosystem heterotrophic respiration,
respectively.

2.2.1. Plant carbon fixation (GPP), autotrophic respiration (Ry), and crop
yield

Carbon fixation (GPP) of the plant canopy in ecosys is calculated by
summing the photosynthesis of each leaf at different canopy layers,
which is simulated at hourly time intervals for each leaf under specific
azimuth, leaf inclination, and light exposure conditions (Grant, 1989c;
Grant et al., 1989). For C3 plants, the Farquhar model is used to
calculate photosynthesis; while for C4 plants, the mesophyll-bundle
sheath carbon exchange is considered explicitly. The stomatal resis-
tance used for photosynthesis is calculated based on canopy turgor po-
tential () and potential photosynthesis (V") using Eq. 3, considering
both the water balance and energy balance for the canopy (Grant, 1995;
Grant and Flanagan, 2007).

Femin = 0.64(Cb - C,) / V; r. driven by rates of carboxylation vs. diffusion
(3a)

Fe = Femin + (Femar — Temin)€ ?¥* 1, constrained by water status (3b)

where r, is stomatal resistance of canopy; v, is the canopy turgor po-
tential; Cp is the atmosphere CO5 concentration in canopy; remin, Ci” and
V.’ are the minimum canopy stomatal resistance, intercellular CO,
concentration, and potential canopy CO, fixation rate when canopy
water potential equals 0 MPa, respectively; remay i canopy cuticular
resistance, and S is the shape parameter of stomatal resistance.

Carbon fixed by the plant is allocated to shoot and root dynamically
for plant respiration and phytomass growth (Grant, 1989a, 1989b). The
total autotrophic respiration (Ry) is calculated by summing the oxidation
of nonstructural carbon pools in shoots and roots for growth and
structural biomass maintenance, and the energy cost for nutrient uptake
(Grant et al.,, 2003). Specifically, R, is calculated based on the
nonstructural carbon products from COs fixation and on shoot and root
temperatures, considering the limitation of soil O concentration on root
autotrophic respiration. Total respiration is first used for each plant
organ’s maintenance respiration, which is calculated based on the
structural N biomass content, and temperature and moisture stresses for
branches, roots, and mycorrhizae, respectively. If total respiration
cannot meet total maintenance respiration, remobilization and senes-
cence will occur in the plant organs. If total respiration is more than the
demand from maintenance respiration, their difference will be used as
growth respiration. Dry matter biomass growth of branches and roots is
simulated based on the growth respiration, remobilization, and senes-
cence in different plant organs. The dry matter formed with the growth
respiration in shoot is allocated to leaf, sheath, stalk, soluble reserves,
husk, cob, and grain dynamically according to the growth stages (Grant,
1989a, 1989b). The final yield is determined by the seed number and
kernel mass, which are calculated during pre- and post-anthesis growth
stages, respectively, considering plant biomass, nutrients status, and
environmental conditions (Grant et al., 2011).

2.2.2. Heterotrophic respiration (Rp)

Ecosys simulates heterotrophic respiration (Rp) with explicit micro-
bial community dynamics, considering the limitations from the con-
centration of dissolved organic carbon (DOC) produced from the solid
organic carbon hydrolysis, oxygen content, microbial N and P content
for each substrate-microbe complex, and microbial functional type at
different soil layers (Eq. 4) (Dimitrov et al., 2010; Grant, 2014; Grant
et al., 2003). There are five organic matter-microbe complexes simu-
lated in ecosys, including coarse woody litter, fine non-woody litter,
animal manure, particulate organic matter, and humus at different soil
layers. Each substrate-microbe complex consists of five organic states,
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including solid organic matter, dissolved organic matter, sorbed organic
matter, microbial residue, and microbial decomposers (Grant, 2014).
Ecosys considers the heterotrophic, autotrophic, facultative anaerobes,
obligate anaerobes, diazotrophic, and obligate aerobe microbial func-
tional types. Heterotrophic respiration is computed as follows,

Geoderma 429 (2023) 116254

agement, soil, and climate condition (A in Fig. 1). Soil carbon credits
are the additional change of SOC under intervention practices compared
with the business-as-usual practices. In other words, soil carbon credits
are the difference of ASOC between the scenarios with and without an
intervention practice (Eq. (5), Cp in Fig. 1).

Ry, = X2, X/Ryi;  Total heterotrophic respiration (4a) Soil carbon credits = ASOCinervention — ASOChusiness—as—usual 5)
Ruini = R.. <U02- . / U-.. ) Ry limited by O, (4b) where ASOCinservention iS the SOC stock change of the scenario with an

h hind ot intervention practice, ASOChysiness-as-usual iS the SOC stock change of the
Ry it = Minarc{Ruin1[Quic] } / {(Kuoe + [Qisc]) Metfyst  Ru limited by substrate DOC (40)

Ruing = Ry,min{Cxinsa/Cxj, Crinia/Cri} Ry limited by microbial N and P
(4d)

where Ry, is the total heterotrophic respiration; Ry is the heterotrophic
respiration of substrate-microbe complex i and microbial functional type
n in soil layer I; Ry, is the specific heterotrophic respiration of M;pq
without limitations from DOC, O, soil moisture, and nutrients at 25 °C;
Uo2ini and U’ggin, are active O uptake coupled with radial diffusion of
0O,, assuming O, demand driven by potential Ry (corresponding to the
oxidation of glucose), respectively; M; q ¢ is the active microbial C of
microbial functional type n; [Q;;c] is the concentration of DOC pro-
duced from the solid soil organic carbon hydrolysis; Knqc is the
Michaelis-Menten constant for Ry’y, on [Qicl; fig and f,q are the re-
sponses of microbial growth to soil temperature and soil moisture,
respectively; Cyj and Cp; are the maximum ratio of microbial N and P to
microbial C, respectively; Cnin,1q and Cp; 14 are the ratio of microbial N
and P to microbial C, respectively. More details on soil biogeochemistry
processes and parameters of ecosys can be found in the supplementary
materials of Grant et al. (2019).

2.3. Simulation experiment design

We conducted four different types of simulations (Exp 1 to 4 in
Table 1) using ecosys to evaluate the impacts of uncertainty in SOC stock
on the calculation of cropland carbon budgets and soil carbon credits. In
these simulations, we used climate data from North American Land Data
Assimilation System (NLDAS-2) (Xia et al., 2012) as model inputs, and
ran the model with corn-soybean rotation without irrigation, which
reflects typical crop rotations and management practices in the rainfed
U.S. Midwest (Zhou et al., 2021b). The crop-specific state-wise fertilizer
information from USDA (USDA, 2019) was applied before planting for
the simulations over Illinois, Iowa, and Indiana states. The model was
run from 1979 to 2018 (1979-2000 was treated as the spin-up period to
get the reasonable initial conditions, e.g., soil moisture content, micro-
bial community, and nitrogen content), and the simulated carbon bud-
gets during 2001 and 2018 and the simulated soil carbon credits
assuming non-legume cover crops adoption during the non-growing
seasons since November of 2000 were used for the following analysis.
More detailed information about the model setup for the simulations
across Illinois, Iowa, and Indiana can be found in Zhou et al. (2021a).

2.3.1. Definitions of SOC change and soil carbon credits

We defined SOC change (ASOC) as the absolute change in SOC stock,
which is calculated based on the difference of SOC stock between the
end and beginning of the targeted period under a specific crop man-

scenario with business-as-usual practices.

2.3.2. Exp 1: Comparison of calculated cropland carbon budgets between
using the gSSURGO and RaCA soil datasets

To investigate how the uncertainty of SOC stock from publicly
available soil datasets affects the calculation of cropland carbon budgets
(GPP, R, Rp, Harvest, rate of SOC stock change), we compared the
simulated carbon budgets based on gSSURGO and RaCA datasets at the
RaCA cropland sites in the U.S. Midwest. Specifically, we designed four
different simulations to investigate the impacts of SOC% and Bulk -
Density on calculated cropland carbon budgets: (1) using both SOC%
and Bulk Density from gSSURGO; (2) using SOC% from gSSURGO and
Bulk_Density from RaCA; (3) using SOC% from RaCA and Bulk_Density
from gSSURGO; and (4) using both SOC% and Bulk_Density from RaCA.
We did the simulations with 18 gN/m? fertilizer, a regionally moderate
rate (Cao et al., 2018), before corn planting and no fertilizer before
soybean planting, and all other soil properties were from gSSURGO
except SOC% and Bulk_Density.

2.3.3. Exp 2: Sensitivity of cropland carbon budgets to different SOC% and
Bulk_Density levels

We selected 9 counties in the U.S. Midwest, which cover represen-
tative soil and climate variation in this region (Fig. 2a), to investigate the
sensitivity of cropland carbon budgets to different levels of SOC% and
Bulk_Density. In the simulations, soil properties of the major soil types
over croplands in each county from gSSURGO were used as initial soil
inputs. To simulate the sensitivity of cropland carbon budgets to
different SOC% levels, we used the topsoil (0-30 cm) SOC% scenarios
from 0.1% to 5.9% with an interval of 0.2%, which encompasses most
SOC% levels in the U.S. Midwest, and using Bulk_Density of major soil
types over croplands in each county from gSSURGO. To simulate the
sensitivity of cropland carbon budgets to different Bulk_Density levels,
we used the topsoil Bulk_Density scenarios from 0.9 to 1.7 Mg/m> with
an interval of 0.1 Mg/m?® to cover the range of Bulk_Density in this re-
gion, and using SOC% of major soil types over croplands in each county
from gSSURGO.

2.3.4. Exp 3: Simulate the impacts of uncertainties in SOC% and
Bul Density on the calculation of cropland carbon budgets for the U.S.
Midwest

We also simulated the cropland carbon budgets for 293 counties in
Illinois, Iowa, and Indiana states with soil properties of major soil types
over croplands in each county from gSSURGO. In these simulations, we
perturbed the topsoil SOC% and Bulk_Density to quantify the impacts of
uncertainties in SOC% and Bulk_Density on the calculation of cropland
carbon budgets at given uncertainty levels. We further analyzed the
impacts of climate and soil conditions on the uncertainty of calculated
cropland carbon budgets. The uncertainty levels of SOC% and Bulk -
Density used were 0.77% and 0.15 Mg/m>, which were the RMSE
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Anign is the simulated ASOC with gSSURGO SOC% + 0.77% or Bulk_Density + 0.15 Mg/m?.
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C, is the simulated soil carbon credits with gSSURGO SOC% and Bulk Density;
Cpw 18 the simulated soil carbon credits with gSSURGO SOC% - 0.77% or Bulk_Density - 0.15 Mg/m’;
is the simulated soil carbon credits with gSSURGO SOC% + 0.77% or Bulk Density + 0.15 Mg/m’.

CHigh

Fig. 1. Illustration of soil carbon change (ASOC), soil carbon credits, and their uncertainty assuming cover crop adopted since the winter of 2000. The solid lines are
the changes in model simulated SOC stock initialized with gSSURGO SOC% and Bulk _Density, the dotted lines are the changes in model simulated SOC stock
initialized with gSSURGO SOC% + 0.77% or Bulk Density + 0.15 Mg/m>, and the dashdot lines are the changes in model simulated SOC stock initialized with
gSSURGO SOC% — 0.77% or Bulk Density — 0.15 Mg/m>. We use ASOC as an example component of the cropland carbon budgets here, but the uncertainty
quantification method also applies to other carbon budget components in Eq. (2).
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Fig. 2. (a) Soil organic carbon (SOC) stock of Illinois, Indiana, and Iowa integrated over 0-100 cm using data from gSSURGO, and the location of Champaign County,
Mllinois; (b) The distribution of 0-100 cm SOC stock in Champaign County, Illinois. The counties with red boundaries and numbers in (a) were selected for the

sensitivity analysis in Fig. 5.

between the top 30 cm SOC stock data from gSSURGO and RaCA (see
Section 3.1 and Fig. 3f and g for more details). We either (1) changed the
topsoil SOC% by adding or subtracting 0.77% from the original
gSSURGO values, or (2) changed the topsoil Bulk_Density by adding or
subtracting 0.15 Mg/m® from the original gSSURGO values. Similar
analysis was also conducted at gSSURGO soil map unit scale but only in
Champaign County, Illinois.

The uncertainties of cropland carbon budgets induced by un-
certainties in SOC% or Bulk_Density were quantified using half of the
absolute difference between the simulated cropland carbon budgets
with high and low SOC% (gSSURGO SOC% =+ 0.77%) inputs, or/and
with high and low Bulk_Density (gSSURGO Bulk Density + 0.15 Mg/m®)
inputs, respectively (Fig. 1).

2.3.5. Exp 4: Simulate the impacts of uncertainties in SOC% and
Bulk_Density on the calculation of soil carbon credits for the U.S. Midwest

Similar simulations were conducted as in Section 2.3.4 but with the
addition of winter cover crops to quantify the uncertainty of soil carbon
credits induced by the uncertainty of SOC% and Bulk_Density across the
same 293 counties. For this analysis, in ecosys we hypothetically planted
the non-legume annual ryegrass (Qin et al., 2021) on November 5 for
each year since 2000, and terminated 7 days before cash crop planting in
those simulations. The soil carbon credits were calculated as the dif-
ference in simulated ASOC between Exp 4 (with cover crops) and Exp 3
(without cover crops) with the same soil inputs (i.e., Co, Chigh, Crow in
Fig. 1).

To quantify the relative uncertainties of calculated soil carbon
credits induced by uncertainties in SOC% or Bulk_Density, we first
calculated the absolute difference between the simulated soil carbon
credits with high and low SOC% (gSSURGO SOC% =+ 0.77%, Cyjgn and
Crow in Fig. 1) as inputs, or with high and low Bulk_Density (gSSURGO

Bulk _Density + 0.15 Mg/m3, Chigh and Cpow in Fig. 1) as inputs. We then
calculated the ratio between half of the before-mentioned absolute dif-
ference (i.e., abs(Crigh - Crow)/2) and the simulated soil carbon credits
with gSSURGO SOC% and Bulk_Density (i.e., Cp in Fig. 1), and use this
ratio as a metric to indicate the relative uncertainty in the calculated soil
carbon credits (Fig. 1).

3. Results

3.1. Comparison of gSSURGO and RaCA soil datasets at the U.S.
Midwestern croplands

Significant differences exist between the gSSURGO and RaCA data-
sets in terms of SOC stock, SOC%, and Bulk Density at different soil
depths, with p-value < 0.1 based on paired t-test except for topsoil (0-30
cm) SOC stock (Fig. 3). Compared with RaCA, gSSURGO has higher
Bulk_Density and lower SOC% in the topsoil at the cropland sites. Cor-
relations between these two datasets are low for both Bulk_Density and
SOC%, with Pearson correlation coefficients (r) ranging from 0.18 to
0.50 (Fig. 3). The relative differences between these two datasets
quantified by Normalized Root Mean Square Error (NRMSE) were
48.0%, 53.2%, and 11.3% for topsoil SOC stock, SOC% and Bulk Den-
sity, respectively. For surface layer (0-5 cm), gSSURGO has lower SOC%
and higher Bulk Density compared with RaCA; for subsurface layer
(0-30 cm) and more deeper soil layer (0-100 cm), the bias between
gSSURGO and RaCA is smaller for both SOC% and Bulk Density
compared with surface layer, but large discrepancy still exists between
these two soil datasets.
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Fig. 3. Comparison of SOC stock, SOC concentration (SOC%), and coarse-fragment-adjusted bulk density (Bulk Density) between the RaCA measurements and
gSSURGO dataset at different soil depths for 410 cropland sites sampled by the RaCA across the U.S. Midwest.

3.2. Comparison of calculated cropland carbon budgets based on with smaller ASOC (Fig. 4a), which was caused by the inconsistency of
gSSURGO and RaCA soil datasets in the U.S. Midwest SOC% in these two datasets (Fig. 4b). The mean and standard deviation
of the difference between RaCA-based and gSSURGO-based ASOC across
To compare the cropland carbon budgets calculated based on all the selected sites were —2.7 and 25.7 gC/m?/year, respectively. From
different soil datasets and investigate which soil properties induced such both the RaCA-based and gSSURGO-based ASOC, we found that the
differences, we simulated carbon budgets with different combinations of long-term (i.e., 2001 to 2018) SOC stock change was correlated with
SOC% and Bulk_Density from gSSURGO and RaCA as model inputs at the both the local specific soil and climate conditions for the corn-soybean
RaCA cropland sites (Fig. 4 and Fig. S1). We found that large discrep- rotation system, in particular correlated with initial SOC% and air
ancies exist in the simulated cropland carbon budgets (i.e., ASOC) when temperature (Fig. S2).
using SOC% and Bulk_Density from gSSURGO as the model inputs versus We treated the carbon budgets simulated with RaCA SOC% and
using data from RaCA (Fig. 4a). The correlation coefficient between Bulk_Density as the baseline, and calculated the difference between the

RaCA-based and gSSURGO-based ASOC was only 0.4, and the carbon budgets simulated with other SOC% and Bulk_Density combi-
gSSURGO-based ASOC was larger than RaCA-based ASOC at the sites nations and the baseline (SOC%gaca + Bulk Densitygraca, Fig. 4b and
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Fig. 4. (a) Comparison of ASOC simulated with gSSURGO and RaCA soil datasets; and (b) the difference of ASOC simulated using different combinations of
gSSURGO and RaCA SOC% and Bulk_Density data, compared with the baseline simulations with SOC% and Bulk_Density from RaCA at the RaCA cropland sites in the
U.S. Midwest. In the boxplots of (b), the center marks the medians, and the edges mark the 25th and 75th percentiles of the ASOC difference between the simulations
with different SOC% and Bulk Density combinations and the baseline among all the simulated sites, respectively.

Fig. S1). We found that (1) the distributions of differences in plant-
related carbon budget components (i.e., GPP, R, Harvest) were
similar for the combinations with different SOC% sources but same
Bulk_Density sources (i.e., Fig. S1b, d, and e), which means the differ-
ence in SOC% was not the major cause of differences in the plant-related
carbon budget components. Bulk Density had larger impacts on the
calculation of plant-related cropland carbon budgets compared with
SOC%. The median of GPP difference caused by Bulk _Density difference
was about 6.6 gC/m?/year, with ranges (i.e., 25th and 75th percentiles)
from —4.2 to 18.4 gC/m?/year; while the median of GPP difference
caused by SOC% difference was about —0.5 gC/m?/year, with ranges
from —7.5 to 6.4 gC/m?/year across all the RaCA cropland sites
(Fig. S1b). (2) The different sources of SOC% had larger impacts on the
calculated Ry and ASOC than those of Bulk _Density (Fig. 4b, Fig. S1a and
f). The median and ranges of Ry, and ASOC difference between the
combinations using gSSURGO SOC% (i.e., SOC%gssurco + Bulk_Densi-
tygssurgo and SOC%gssurgo + Bulk_Densityraca) and the baseline were
greater than that between combinations with RaCA SOC% (SOC%gaca +
Bulk_Densitygssurgo) and the baseline. The median of ASOC difference
caused by SOC% difference was about 3.1 gC/m?/year, with ranges from
—11.9 to 16.6 gC/m?/year; while the median of ASOC difference caused
by Bulk_Density difference was about 0.2 gC/m?/year, with ranges from
—1.0 to 1.2 gC/m?%/year across all the RaCA cropland sites in the Mid-
west (Fig. 4b). This result means that SOC% had larger impacts on the
calculation of cropland carbon budgets compared with Bulk_Density.

3.3. Sensitivity of cropland carbon budgets to SOC% and Bulk_Density

To analyze the sensitivity of cropland carbon budgets to different
SOC% and Bulk Density levels, we selected 9 counties over Illinois,
Iowa, and Indiana (Fig. 2a), and simulated carbon budgets in these
counties using ecosys by changing topsoil SOC% and Bulk_Density sys-
tematically (Fig. 5). Overall, almost all carbon budget components
showed higher sensitivity to changes in SOC% than to changes in
Bulk_Density, especially for ASOC. For example, the magnitude of
simulated ASOC increased quickly with the increase of SOC%
throughout all the selected counties (Fig. 5a), while the simulated ASOC
had changed slightly with respect to the change of Bulk Density
(Fig. 5g).

The response of different carbon budget components to variation in
SOC% showed similar patterns for all the selected counties (Fig. 5a-f).
The plant-related components of carbon budgets (i.e., GPP, R,, and
Harvest) increased markedly with the increase of SOC% when SOC% is
smaller than 2.0%, and increased more slowly when SOC% is above
2.0% (Fig. 5b, d, e). However, ecosystem respiration, R, showed

higher sensitivity to the change of SOC% even in the high SOC% region
(i.e., SOC% > 2.0%) compared with other plant-related components. In
Reco, R was more sensitive to the change of SOC% than R, at high SOC%,
and Ry dominated the increases of R, with the increases of SOC% at
high SOC%. Thus, among other cropland carbon budget components,
the changes in Ry primarily drove ASOC changes at different SOC%
levels.

Compared with the sensitivity of carbon budgets to different SOC%
levels, there was less sensitivity of carbon budgets to the changes in
Bulk _Density, especially within low Bulk Density regions (Fig. 5g-1).
GPP, R, Harvest, R;, and Ry showed little sensitivity to changes in
Bulk_Density in regions where Bulk_Density was lower than 1.5 Mg/m?,
but showed greater sensitivity to the change of Bulk Density in the high
Bulk Density region (Fig. 5h-1). This is due to the soil porosity being
smaller at higher Bulk Density, which results in smaller soil water and
oxygen storage/exchange capacities, and limits crop water and N uptake
as well as the microbial activity.

3.4. Quantifying the uncertainties in cropland carbon budgets induced by
uncertainties in SOC% and Bulk_Density in the U.S. Midwest

To quantify the impacts of uncertainty from SOC% and Bulk_Density
on the calculation of cropland carbon budgets in the U.S. Midwest, we
ran ecosys at the county scale for Illinois, Iowa, and Indiana states and at
the soil map unit scale for Champaign County of Illinois, and perturbed
the topsoil SOC% and Bulk_Density based on the uncertainties obtained
from the comparison of RaCA and gSSURGO datasets (Fig. 3).

Overall, the uncertainty of cropland carbon budgets induced by SOC
% uncertainty was larger than that induced by Bulk Density uncertainty,
especially for ASOC, R, and Ry, (Fig. 6), which was consistent with the
sensitivity analysis results in Section 3.3 (Fig. 5). This finding was
consistent with the county-level simulations for the three states and also
with the soil map unit scale simulations for Champaign County of Illinois
(Fig. 6). Specifically, for Illinois, Iowa, and Indiana states, the un-
certainties of ASOC, R, and Rp induced by SOC% uncertainty were
higher than that induced by Bulk_Density uncertainty for most counties
(Fig. 7). The relative uncertainties in calculated carbon budget compo-
nents induced by initial SOC% uncertainty were 1.1%, 2.4%, 2.1%, 1.1%
and 3.6% for GPP, Harvest, R.,, Rq, and Ry, respectively. In contrast, the
relative uncertainties in calculated carbon budget components induced
by initial Bulk Density uncertainty were 0.3%, 0.4%, 0.3%, 0.3% and
0.3% for GPP, Harvest, R¢c,, Rg, and Ry, respectively from the simula-
tions for Illinois, Iowa, and Indiana states (Fig. 6). As the residual of the
major carbon budget components (ASOC ~ GPP - Harvest - R,), the
25th and 75th percentiles of multi-year averaged ASOC were —29.8 and
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Fig. 6. The uncertainty of carbon budget components induced by the uncertainties of SOC% and Bulk Density in (a) Illinois, Iowa, and Indiana states and (b)
Champaign County of Illinois. In the boxplots of (a) and (b), the central marks the medians, and the edges mark the 25th and 75th percentiles of the carbon budget
components uncertainties, respectively. For (a), the boxplots were based on the county scale simulations of carbon budgets over Illinois, lowa, and Indiana states. For
(b), the boxplots were based on the soil map unit scale simulations of carbon budgets over Champaign County, Illinois.

4.8 gC/m?/year across the selected counties with an uncertainty of 13.7
gC/m?/year and 0.7 gC/m?/year induced by uncertainties in initial SOC
% and Bulk_Density, respectively (Fig. 6). In the southern part of Illinois,
Iowa, and Indiana states, the uncertainties of ASOC, R, and Ry induced
by SOC% uncertainty were higher than that in the northern part (Fig. 7g,
j» 1), which was opposite to the distribution of SOC% (Fig. S3). This
spatial contrast was caused by the larger sensitivity of ASOC and Ry, to
SOC% at low SOC% conditions, as shown in Fig. 5. For the simulations
for Champaign County of Illinois, the uncertainty of all carbon budget
components induced by SOC% uncertainty was greater than that
induced by Bulk_Density uncertainty, especially for ASOC, Ry, and Ry
across almost all the soil map units (Fig. 8). These results were consistent
with the county scale simulations at Illinois, lowa, and Indiana states
(Fig. 7), but the spatial heterogeneity of uncertainties in simulated
carbon budgets induced by both SOC% and Bulk_Density uncertainties
at Champaign County of Illinois (Fig. 8) was much smaller than that at
Mlinois, Iowa, and Indiana states (Fig. 7), because the spatial variations
of soil and climate conditions in Champaign County of Illinois were
much smaller than those at regional scale of Illinois, Iowa, and Indiana
states (Fig. S3 and S4).

We further investigated the variation of ASOC and its uncertainty
across a range of different soil and climate conditions. Both ASOC and its
uncertainty showed negative correlation with initial SOC% at the county
scale in Illinois, Iowa, and Indiana (Fig. 9a and b) and at the soil map
unit scale in Champaign County of Illinois (Fig. 9e and f); this means that
the uncertainty in calculated ASOC was larger at low SOC% regions than
in high SOC% regions under the same SOC% uncertainty level. In Illi-
nois, lowa, and Indiana, ASOC and its uncertainty were also influenced
by air temperature (Fig. 9c and d). The response of ASOC to SOC% and
air temperature in Illinois, Iowa, and Indiana was consistent with the
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simulated response in RaCA cropland sites (Fig. S2). For counties with
the same level of SOC%, larger ASOC uncertainty existed in the counties
with higher air temperature under the same SOC% uncertainty level
(Fig. 9d). This may be due to enhanced microbial activity and soil
respiration under higher temperature conditions, thus Ry and its un-
certainty are larger when air temperature is higher under the same SOC
% and SOC% uncertainty levels.

3.5. Uncertainty of calculated soil carbon credits induced by SOC stock
uncertainty

To quantify the impacts of uncertainty from SOC% and Bulk_Density
on the calculation of soil carbon credits, we used the hypothetical
addition of cover crops in the corn-soybean rotation system as an
example. We ran ecosys at the county scale for Illinois, Iowa, and Indiana
under the scenarios with and without cover crops, and perturbed the
topsoil SOC% and Bulk_Density based on the uncertainty obtained from
comparison of the RaCA and gSSURGO datasets (Fig. 3). The un-
certainties of soil carbon credits induced by uncertainties in SOC% and
Bulk Density were smaller than the uncertainties of carbon budgets
under the same SOC% and Bulk_Density uncertainty levels (Fig. 10c-d vs
Fig. 6). The soil carbon credits generated from adopting winter cover
crops ranged from 11.7 to 18.7 gC/m?/year (25% to 75% of the
counties) with a median value of 15.7 gC/m?/year across Illinois, Iowa,
and Indiana. The relative uncertainty in soil carbon credits induced by
initial SOC% uncertainty was less than 3.6% for 90% of counties, and
less than 2.4% for 75% of counties, and the relative uncertainty in soil
carbon credits induced by initial Bulk_Density uncertainty was less than
5.6% and less than 2.6% for 90% and 75% of the selected counties,
respectively (Fig. 10).
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12



W. Zhou et al. Geoderma 429 (2023) 116254

Carbon Budget I Carbon Budget Uncertainty
I Induced by Induced by = Induced by SOC% uncgrtainty A
| SOCY% uncertainty Bulk_Density uncertainty ~— Induced by Bulk_Density uncertainty
I £SO MRERREingy ASOC uncertainty
1 Dy ; 0.5
1 : 0.4
1 ﬁ z
Padii 0.3
l c
I 802
I 0.1
| 0.0 - - . - ;
1 gC/m?/year gC/m?/year
! GPP uncertainty A GPP uncertainty
: ol 8 0.04]
0.031
! 2
I n
£0.021
| o
1 0.01
I i — 0.00 -—
1200 1400 1 0 10 20 30 0 5 10 125 200 25 30
GPP (gC/m?/year) I gC/m?/year gC/m*/year
I Harvest uncertaint Harvest uncertainty
I A 1 ‘ 7 iy 0.121
I TR 0.10
I e £0.081
- £ 0.06
| @
I 00.04
I 0.021
I 0.00 : : . , .
e —— 20 30 0 5 10 15 20 25 30
Harvest (gC/m?/year) | gC/m?/year gC/m?/year
e 1 Raeg OHEEFIAIMEY Reco Uncertainty
| 7 : p 0.06
| 0.05
1 20.04
"]
| £0.03
| 00.02
| : 0.01
| 5 . 0.00 . . . . .
600 800 1000 1200 1 0 10 20 30 o 5 1 125 2025 30
Reco (gC/m?/year) I gC/m?/year gC/m-/year
I R, uncertainty
I 0.10
0.08
| >
L
1 G 0.06
e
| 80.04
1 0.02
! ; — 0.00 :
TR I § 10 20 20 0 5 10 15 20 25 30
R, (gC/m?/year) 1 gC/m?/year gC/m?/year
I Ry uncertainty Rh uncertainty
I i g 0.14
I 0.12
I 3.0.10
' 0.08
I c
 0.06
| 0.04
| 0.02
I . 0.00 , . , . .
S—— b o 0 v 0 5 1 15 20 25 30
Ry (gC/m?/year) 1 gC/m?/year oC/m?/year

Fig. 8. Simulated carbon budgets and their uncertainties induced by SOC% or Bulk_Density uncertainty in cropland for Champaign County of Illinois.

13



W. Zhou et al. Geoderma 429 (2023) 116254

A, is the simulated carbon budget with | A A
g Low 0

gSSURGO SOC% and Bulk_Density;

Ay is the simulated carbon budget with

gSSURGO SOC%-0.77%;

Agigy 15 the simulated carbon budget with

gSSURGO SOC%+0.77%.

Atign

Carbon budget uncertainty = &A"‘w

Uncertainty of ASOC

> 18 L (b)
- £~ Lo
© T 516 i :
0 o -
g 82 02141 5 ;
-~ ! U Ra
<R 0 E cE i
) 55129 i
i 18] L
g 2 80 =17.774x+20.( 2310 = :
N y=-17.7] x+20.0 w0 y—-l.8:lflx+17.1
= -1001 =™ r=-0.7 @ < 8 r=-0.7 [
S oo . b
- 05 1.0 1.5 2.0 25 3.0 35 4.0 45 05 1.0 1.5 2.0 25 3.0 35 4.0 45
5 SOC concentration (%) SOC concentration (%)
5 ASOC Uncertainty of ASOC
<
2 4573 mwee 20 4.57% emew
=] c ] wweoee z =-7.29x-23.5y+119.14 -~ e ] ewmee z = 0.71x-1.24y+6.60
=8 4.0 r=086"" 10 § § 40 r=084"" ” 42‘
£E o a4 o 2 F P17 oL
g E-0. . S e v m | -0E Sm0.] 5T 5 skt s 5 6 1453
gl 2 IR LSS 200 g2 3 e ool gNE
0 semes: o =) .01 . - . s
§ 201 GPEE, “300 & 20 e og
1.5 & o —— 9] 1.51 LTS o)
o 10 et v drmenmyd oo -40Q 8 10 V- 00~
O sl@t et e A, | 50 Y L@ DR =
9 10 11 12 13 14 15 9 10 11 12 13 14 15
. — — — _ _ _NAirTemperature (°C) _ _ _ _ _ _ _ _ _ _ _AirTemperature("C) _ _ _ _ _ _
ASOC Uncertainty of ASOC
50 22 -
y=-26.833x+38.5 y=-0.797x+15.6
— r=09"* & 2 — r=05""
a =09 : £ T 181 :
© s ©
o £ 916
£ g2 50 g2
gn Q 9r 14
o= N
g4 5 —1001 5 g 12
o QB
Ee =~ ~150 ; @=10
<
Q (e) 8
—200 1
0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 7
SOC concentration (%) SOC concentration (%)

Fig. 9. Relationship of ASOC (left column) and its uncertainty (right column) with initial SOC% and air temperature under the same SOC% uncertainty level at the
county scale for Illinois, Iowa, and Indiana states and at the soil map unit scale for Champaign County of Illinois.

14



W. Zhou et al.

Simulated SOC stock in Champaign County, IL

(a) Carbon credit = ASOC with cover crop —
20100 | \/\ Wt vill e
20000 ) \
':“ -
£ 19900 - 1
=
= %
~ 19800 1
Nt
g .
4 19700 I}
8 .
% 19600 - -
19500 A n
= Wwith cover crop
19400 + without cover crop
2001 2006 2011 2016
Relative carbon credit uncertainty induced by
80SOC% uncertainty at lllinois, lowa, and Indi states
(c) Carbon credit uncertainty = w
70 C, is the simulated carbon credit with gSSURGO SOC%;
Chign is the simulated carbon credit with gSSURGO SOC%+0.77%;
Crow i the simulated carbon credit with gSSURGO SOC%-0.77%.
" 60 L
o L
¥=
£sof /A
o
o
% 40
=
&
€ 30
3
z
20
10
0 =
0 2 4 6 8 10 12 14

Relative carbon credit uncertainty (%)

Geoderma 429 (2023) 116254

Carbon credit at Illinois, lowa, and Indiana states

(b)

&

w B
o o

Number of counties

N
o

10

5] 10 15 20 25 30

Carbon credit (gC/m?%/year)

35 40

Relative carbon credit uncertainty induced by Bulk_Density
uncertainty at Illinois, lowa, and Indiana states

80 =
(d) Carbon credit uncertainty = W
L o
70 Cy is the simulated carbon credit with gSSURGO Bulk_Density;
Ciiign is the simulated carbon credit with gSSURGO Bulk_Density+0.15;
Crow is the simulated carbon credit with gSSURGO Bulk_Density-0.15

601
n
2
€50
= -
o
© V1
‘s 40
=
38
€ 30
=
=2

20

10

/=
0 i i
0 2 4 6 8 10 12 14

Relative carbon credit uncertainty (%)

Fig. 10. The impacts of initial SOC stock uncertainty on the calculation of soil carbon credits. (a) An example illustrating the calculation of soil carbon credits for the
corn-soybean rotation system assuming hypothetical adoption of winter cover crop since the winter of 2000 in Champaign County of Illinois; (b)-(d) refer to: (b)
simulated soil carbon credits, (¢) uncertainty of soil carbon credits induced by SOC% uncertainty, and (d) uncertainty of soil carbon credits induced by Bulk_Density
uncertainty, assuming hypothetical adoption of winter cover crop since the winter of 2000 in the states of Illinois, Iowa, and Indiana.

4. Discussion

In this study, we analyzed the impacts of SOC% and Bulk_Density
uncertainty on the calculation of cropland carbon budgets and soil
carbon credits in the U.S. Midwestern corn-soybean rotation system
using the advanced agroecosystem model, ecosys. Specifically, we con-
ducted the following analyses: (1) Compared the simulated carbon
budgets using the RaCA-based and gSSURGO-based soil properties at
RaCA cropland sampling sites in the U.S. Midwest. (2) Analyzed the
sensitivity of cropland carbon budgets to SOC% and Bulk_Density levels
for Illinois, Iowa, and Indiana states. (3) Quantified the uncertainties of
cropland carbon budgets induced by uncertainties in initial SOC% and
Bulk Density, and investigated their variation across a range of soil and
climate conditions. (4) Analyzed the impacts of SOC% and Bulk_Density
uncertainty on the calculation of soil carbon credits for Illinois, Iowa,
and Indiana states. In the following, we will first address the potential
limitations of this research, including the comparison of RaCA and
gSSURGO soil datasets and the use of the ecosys model, and then syn-
thesize the results to answer the questions proposed in the Introduction
Section 1.

4.1. Limitations of comparison between RaCA and gSSURGO soil datasets
and use of the ecosys model

The comparison of gSSURGO and RaCA datasets reveals that signif-
icant inconsistency exists in these two datasets for both SOC% and
Bulk Density. These inconsistencies may come from several aspects.
First, there is scale mismatch between gSSURGO and RaCA, as gSSURGO
is a gridded dataset derived by upscaling the point-based samples to soil
map units, while RaCA is a point-based-only sampling dataset. Second,
the measurement methods of both SOC% and Bulk_Density in gSSURGO
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and RaCA are different. Third, there is a temporal shift between
gSSURGO and RaCA field sampling, and changes in land management
during that period may change the SOC% and Bulk _Density. Finally, we
calculated the SOC% of gSSURGO from SOM by treating 58% of SOM as
SOC, and this conversion factor may introduce some uncertainty to the
comparison (Pribyl, 2010).

Though there are some limitations in the direct comparison of RaCA
and gSSURGO soil datasets (i.e., gSSURGO is at soil map unit scale,
while RaCA is at point scale), these are the best and also the most widely
used soil datasets we could use to address the current research goals
related to uncertainty of SOC stock data and its impact on the quantified
carbon budget. As stated before, quantification of carbon budget and soil
carbon credits currently needs to rely on process-based models, and SOC
stock data are among the most important input data for models.
Although the RaCA dataset is based on soil samples collected more
recently than the gSSURGO dataset, it only provides soil information at
some sampling sites, and the sparse distribution of RaCA sampling sites
limits its application. The gSSURGO SOC stock dataset has its un-
certainties from soil sampling methodology, the interpolation methods
based on soil map unit, and majority of gSSURGO raw data were
collected 40 years ago and thus it may not be fully representative of the
current situation (though SOC change is relatively slow). However,
gSSURGO is the only dataset currently available for quantifying crop-
land carbon budgets at field scale across the Midwest or for the
contiguous U.S.

The results presented in this study were obtained from the ecosys
model, which explicitly and mechanistically simulates the biophysical
and biogeochemical processes and their impacts on carbon budgets of
the ecosystem. Besides complicated aboveground processes (crop
growth, canopy energy balance, hydraulic and stomatal controls on
water use and carbon uptake), ecosys also simulates dynamics of water,
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carbon, oxygen and nutrient content, and microbial activities in soil.
Specifically related to SOC dynamics, ecosys explicitly simulates the
dynamics of five organic matter-microbe complexes in soil (Grant et al.,
1993; Grant, 2013), which can easily be mapped to the measurable
particulate organic carbon (POC) and mineral-associated organic carbon
(MAOC) pools (Cotrufo et al., 2019). We previously had validated the
model performance in simulating the major carbon budget components
(i.e., GPP, R, NEE, and yield) and their responses to environmental
conditions at both site scale and regional scale, benchmarked with flux
tower observations, remotely sensed GPP dataset and county scale NASS
crop yield data (Zhou et al., 2021a). Thus based on the comprehensive
processes included by ecosys and the prior validations of the ecosys
performance, we are confident about the reliability of using the ecosys
model to simulate the impacts of SOC stock uncertainty on the calcu-
lation of carbon budgets. Although the results presented in this study are
based on ecosys simulations, the proposed methodology to quantify the
impacts of SOC stock uncertainty on the calculation of carbon budgets
and soil carbon credits should also be applicable to other soil biogeo-
chemistry models like CENTURY, Daycent, DNDC, and MEMS (Parton
et al., 1988; Li et al., 1994; Zhang et al., 2021c; Cotrufo et al., 2022).

4.2. What are the impacts of SOC stock uncertainty on the calculation of
cropland carbon budgets in the U.S. Midwest?

To analyze the impacts of SOC stock uncertainty on model-based
calculation of cropland carbon budgets, we separated uncertainty in
SOC stock into those caused by SOC% or Bulk Density. Our results
revealed that the uncertainty in SOC% has larger impacts on the
calculation of cropland carbon budgets compared with that in Bulk -
Density (Figs. 4-8).

The calculated cropland carbon budget is sensitive to the SOC%
level, especially at low SOC% regions, and the soil carbon sequestration
potential (i.e., ASOC) is higher in lower SOC% regions (Fig. 5a-f). Based
on the ecosys simulations, we found that the simulated carbon budget
components show large sensitivity to SOC% at the county scale in Illi-
nois, Iowa, and Indiana and at the soil map unit scale in Champaign
County of Illinois (Figs. 6-8), but the impacts of SOC% are different for
plant-related (i.e., GPP, R,, and Harvest) and soil-related (i.e., Ry and
ASOC) carbon budget components. Plant-related carbon budget com-
ponents show larger sensitivity to SOC% levels in regions with SOC
concentration less than 2%, and less sensitivity to SOC% levels in re-
gions with larger SOC concentration (> 2%). In contrast, soil-related
carbon budget components show higher sensitivity to SOC% levels
under both low and high SOC% conditions compared with plant-related
carbon budget components. Under high SOC% conditions, heterotrophic
microbial populations are larger than those under low SOC% conditions
as long as there are no limitations from soil moisture, temperature, and
oxygen. The above results can be largely explained by the processes
included in the ecosys model. Heterotrophic respiration and soil
mineralization are more accelerated under high SOC% conditions. With
higher mineralization rates in higher SOC% soils, the soil can provide
more N, P and S to support plant growth. However, the amount of nu-
trients that can be uptaken by plants is limited by the plant nutrient
uptake ability, which is determined by root length and root distribution,
soil oxygen concentration, soil water content, soil temperature, and
inorganic N/P availability. Thus, the plant-related carbon budget com-
ponents are more sensitive to SOC% levels for low SOC% regions, and
less sensitive to SOC% levels for high SOC% regions.

Our simulation shows that Bulk Density has less impact on the
calculation of carbon budgets than that of SOC% (Fig. 5). The simulated
carbon budgets show smaller sensitivity to Bulk_Density under normal
Bulk_Density regions (i.e., <1.5 Mg/m®), but show larger sensitivity to
Bulk Density at higher Bulk Density regions for both plant and soil-
related carbon budget components (Fig. 5). With the increase of Bulk -
Density, the soil porosity decreases, which reduces soil water holding
capacity and oxygen transfer capacity. At high Bulk_Density region, such
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impacts may become large because water and oxygen become the
limiting factors for plants and microbial growth under low soil porosity
conditions, particularly in high rainfall regions, which may result in
large impacts on both plant and soil related carbon budget components.

4.3. How do local soil and climate conditions regulate the impacts of SOC
stock uncertainty on the calculation of cropland carbon budgets?

The uncertainty of calculated cropland carbon budgets (i.e., ASOC)
caused by initial SOC stock uncertainty is mainly induced by the un-
certainty in SOC%, such impact is modulated by local climate and soil
conditions. Our simulated results show that regions with lower SOC%
have larger uncertainty in calculated carbon budget components than
that for higher SOC% regions under the same SOC% uncertainty level
and climate conditions. Regions with higher temperature also have
larger uncertainty in calculated carbon budget components, ceteris
paribus. Thus, locations with lower SOC% and higher temperature have
larger uncertainty in calculated carbon budgets compared with locations
with higher SOC% and lower temperature under the same SOC% un-
certainty level (Fig. 9d and f). At low SOC% regions, both plant and soil
related carbon budget components show larger sensitivity to SOC%
levels compared with that at high SOC% regions (Fig. 5a-f), which may
result in the pattern that the uncertainty of ASOC induced by SOC%
uncertainty is larger at lower SOC% regions. For higher temperature
regions, the microbial activity and heterotrophic respiration is higher
when soil temperature is below the optimal temperature for microbial
growth (Yvon-Durocher et al., 2012). Thus, in higher temperature re-
gions, the uncertainty of ASOC induced by SOC% uncertainty is larger
than that in lower temperature regions under the same SOC% and SOC%
uncertainty level due to the increase of heterotrophic respiration.

4.4. How large are the impacts of uncertainty in SOC% and Bulk_Density
on calculated soil carbon credits in the U.S. Midwest?

The impacts of SOC% and Bulk_Density uncertainties on the calcu-
lation of soil carbon credits are much smaller compared to its impacts on
the calculation of carbon budgets. The relative uncertainties of calcu-
lated soil carbon credits induced by SOC% or Bulk_Density uncertainty
are less than 3.6% or 5.6%, respectively, for 90% of selected counties
across the U.S. Midwest assuming planting cover crops (Fig. 10). The
uncertainty of calculated ASOC induced by SOC% uncertainty is about
13 gC/m?/year across the U.S. Midwest, and the ratio of soil carbon
credits uncertainty to ASOC uncertainty is about 4%. The much smaller
impact of soil stock uncertainty on the calculation of soil carbon credits
is mostly due to the unique definition of soil carbon credits. Soil carbon
credits quantify the relative difference of soil carbon changes between
two counterfactual scenarios, i.e., the scenario with intervention man-
agement practices and the business-as-usual scenario. Since the impacts
of SOC stock uncertainty on ASOC under these two counterfactual sce-
narios tend to be in the same direction with a similar magnitude, the
uncertainty of calculated soil carbon credits (ASOC difference between
these two scenarios) induced by SOC stock uncertainty has been
significantly mitigated. Our results demonstrate that the uncertainty of
the public soil data only has a relatively small impact on the calculation
of soil carbon credits, which means that current publicly-available soil
datasets like gSSURGO and RaCA can be used for calculating soil carbon
credits with high accuracy.

4.5. Practical implications of our finding

Uncertainties in SOC stock exist in both in-situ soil sampling mea-
surement and gridded SOC datasets, arising from measurement un-
certainties of SOC% and Bulk Density, as well as the interpolation
method used for generating the gridded data. We found that the un-
certainty in SOC% has a larger impact on the calculation of cropland
carbon budgets than that in Bulk_Density. We thus recommend efforts to
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further reduce uncertainty of SOC% measurements. Novel approaches,
such as remote sensing (Wang et al., 2022; Gholizadeh et al., 2021;
Sanderman et al., 2021), can be used to estimate topsoil SOC% at large
scale to reduce the topsoil SOC% uncertainty. Although the uncertainty
in Bulk_Density has less impact on the calculation of cropland carbon
budgets compared with that in SOC%, we still recommend to have ac-
curate Bulk_Density measurements especially at high Bulk_Density re-
gions, because both plant-related and soil-related carbon budget
components are sensitive to Bulk Density levels at high Bulk Density
regions.

To enhance soil carbon sequestration, several farming practices have
been suggested, such as planting cover crops and reduced tillage, but
their potential in enhancing SOC stock needs to be assessed locally.
Process-based models are used to quantify cropland carbon budget and
soil carbon credits of these farming practices with the inputs of local soil
and climatic information (Basche et al., 2016; Huang et al., 2020). Errors
in initial SOC stock data will be propagated to the calculations of
cropland carbon budgets and soil carbon credits (Guan et al., 2022).
From our results, the uncertainty of SOC% appears to have large impacts
on the calculated cropland carbon budgets, but only a slight impact on
the calculated soil carbon credits (Fig. 10). These results suggest that
quantifying soil carbon credits from intervention practices may not
require in-field soil sampling for the baseline, and the current public soil
data such as gSSURGO can largely fulfill the needs. This finding has
important implications for the agricultural carbon credit market,
considering the high cost and low scalability of soil sampling.

As initial SOC stock (or reference SOC stock) is one of the basic inputs
to generate greenhouse gas (GHG) inventories using process-model-
based approaches at regional scale, based on our results, we recom-
mend to explicitly consider the uncertainty of GHG emissions induced
by initial SOC stock uncertainty in the GHG inventories. Therefore, the
proposed approach to quantify the impacts of SOC stock uncertainty in
this study built a foundation that can be applied to other process-based
modeling approaches or industry protocols to assess the uncertainties of
soil carbon credits.

5. Conclusion

In conclusion, by simulating the U.S. Midwestern cropland carbon
budgets, we assessed the impacts of SOC stock uncertainty on the
calculation of cropland carbon budgets and soil carbon credits under
corn-soybean rotations. Our results reveal the following important
findings. (1) The gSSURGO-based calculation of cropland carbon bud-
gets shows a large discrepancy with the RaCA-based calculation of
cropland carbon budgets. (2) The SOC% uncertainty has larger impacts
on the calculation of cropland carbon budgets for most of the carbon
budget components compared to Bulk_Density, especially for ASOC and
Reco- (3) The uncertainty of ecosystem respiration, especially hetero-
trophic respiration, is the major contributor of uncertainty in calculated
cropland carbon budgets induced by SOC% uncertainty. (4) Both ASOC
and its uncertainty show negative correlation with initial SOC%; while
ASOC shows negative correlation with air temperature, and uncertainty
of ASOC shows positive correlation with air temperature. (5) The un-
certainty of SOC% and Bulk_Density has a much smaller impact on the
calculation of soil carbon credits. These analyses provided insights on
how uncertainties in initial SOC stock affect the quantification of crop-
land carbon budgets and soil carbon credits, and highlighted that (i)
high-accuracy SOC% measurement is needed to quantify the cropland
carbon budgets; and (ii) current publicly-available soil datasets can be
used for quantifying soil carbon credits with a relatively small uncer-
tainty. The approach to quantify the impacts of SOC stock uncertainty on
cropland carbon budgets and soil carbon credits used in this study can be
applied to other models and used to assess uncertainties of carbon
sequestration potential of various farming practices.
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