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A B S T R A C T   

Cropland carbon budget depicts the amount of carbon flowing in and out of agroecosystems and the changes in 
carbon stocks of soil and living biomass during the same period. Soil carbon credit is the additional change in soil 
carbon stock under certain farming practices compared with the business-as-usual practices. Accurately calcu
lating cropland carbon budget and soil carbon credit is critical to assessing climate change mitigation potential in 
agroecosystems. The calculation of cropland carbon budget and soil carbon credit is sensitive to local soil and 
climatic conditions, especially initial soil organic carbon (SOC) stock, which is determined by both SOC con
centration (SOC%) and bulk density (Bulk_Density). SOC stock data are either from soil sampling or gridded 
public survey data. In agroecosystem models, SOC stock data are a key model input for quantifying cropland 
carbon budget and soil carbon credit. However, various types and degrees of uncertainties exist in SOC stock 
datasets, which propagate to the quantification of SOC stock change. In particular, a large discrepancy is found in 
two widely used SOC stock datasets — Rapid Carbon Assessment dataset (RaCA) and Gridded Soil Survey 
Geographic Database (gSSURGO) — in the U.S. Midwest, with a relative difference (quantified using Normalized 
Root Mean Square Error, NRMSE) of 48.0% for 0–30 cm SOC stock between the two datasets. It remains largely 
unclear how uncertainty in SOC stocks affects the calculation of cropland carbon budget and soil carbon credit. 
To address this question, we used a well-validated process-based agroecosystem model, ecosys, to assess the 
impacts of SOC stock uncertainty on carbon budget and soil carbon credit calculation in the U.S. Midwestern 
corn-soybean rotation systems. Our results reveal the following findings: (1) A sizable discrepancy exists in 
simulated cropland carbon budget between using gSSURGO and using RaCA for their SOC% and Bulk_Density as 
model inputs, with a Pearson correlation coefficient (r) of only 0.4 for simulated change of SOC stock (ΔSOC) 
using these two different soil datasets. (2) Simulated cropland carbon budget components were more sensitive to 
initial SOC% than to Bulk_Density. For example, the upper and lower quartiles of multi-year averaged ΔSOC were 
−29.8 and 4.8 gC/m2/year for the selected counties respectively, with an uncertainty of 13.7 and 0.7 gC/m2/ 
year induced by uncertainties in initial SOC% and Bulk_Density, respectively. (3) Both simulated ΔSOC and its 
uncertainty were negatively correlated with initial SOC%, whereas ΔSOC was negatively correlated with air 
temperature, and ΔSOC uncertainty was positively correlated with air temperature. (4) The uncertainty of 
calculated soil carbon credits was much smaller compared with the uncertainty of calculated absolute carbon 
budgets assuming the same SOC stock uncertainty level in the inputs. Specifically, in our assessment comparing 
planting cover crops vs no cover crop, the uncertainty of calculated soil carbon credits induced by initial SOC% 
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uncertainty was less than 4% (relative to the quantified value of the soil carbon credits) for 90% of the cases. Our 
analysis highlights that high accuracy measurement of SOC% as inputs is needed for the calculation of cropland 
carbon budgets; however, soil carbon credit quantification is much less sensitive to the initial SOC% inputs, and 
the current publicly available soil datasets (e.g., gSSURGO) are largely suitable for the calculation of soil carbon 
credits.   

1. Introduction 

Terrestrial ecosystems play an important role in the global carbon 
cycle (Friedlingstein et al., 2020) and have been argued to have high 
potential for climate change mitigation by conserving and sequestering 
carbon (Bossio et al., 2020; Fargione et al., 2018; Minasny et al., 2017). 
Various natural climate solutions (e.g., conservation, restoration, and/or 
improved land management actions across global forests, wetlands, 
grasslands, and agricultural lands) have been proposed to increase car
bon storage and mitigate greenhouse gas emissions in terrestrial eco
systems (Bossio et al., 2020; Fargione et al., 2018; Griscom et al., 2017). 
However, accurately accounting for carbon input and output flows 
under different interventions to assess their climate change mitigation 
potential remains challenging (Novick et al., 2022). Croplands, as 
heavily managed terrestrial ecosystems providing food, fiber, biofuel, 
and other ecosystem services to human society, play a critical role in 
regional and global carbon budgets (Zhang et al., 2015). Croplands 
under intensive cultivation have been losing soil carbon compared to 
pre-cultivation land uses such as forests or grasslands (Lal, 2002). 
Therefore, reversing soil carbon loss in croplands is a priority not only 
for climate change mitigation but also for improving soil health (Lal, 
2004). Several management practices may increase soil carbon storage 
for croplands, such as cover cropping and reduced or no tillage (Havlin 
et al., 1990; Jian et al., 2020; West & Post, 2002; Xu et al., 2019). 
However, the effectiveness of these management practices to increase 
soil carbon storage and their impacts on other cropland carbon budget 
terms (e.g., ecosystem gross primary productivity, ecosystem respira
tion, and crop yield) needs to be assessed locally in order to account for 
soil type and climate effects (Ogle et al., 2019). 

Technically, both observational and modeling approaches can be 
used to assess cropland carbon budgets under different management 
practices (Hollinger et al., 2005; Smith et al., 2010; Zhou et al., 2021a). 
Field observations of changes in soil organic carbon (SOC) storage and 
carbon fluxes like photosynthesis and respiration have significantly 
advanced our understanding of carbon cycling in the agroecosystems 
(Kucharik et al., 2001; Luo et al., 2017; Zhou et al., 2021a). However, it 
is often not feasible or cost-effective to collect field observations across 
every acre of croplands due to the high financial and labor costs. Sat
ellite observations can provide estimations of a few carbon fluxes, such 
as harvested yield (Guan et al., 2016, 2017; Peng et al., 2018, Peng et al., 
2020) and gross primary productivity (Jiang et al., 2021), but other 
carbon budget components such as heterotopic respiration are inade
quately quantifiable from satellites. Moreover, it is challenging to use 
soil sampling to calculate soil carbon credits, because it requires com
parison with a counterfactual scenario in which the intervention does 
not take place (Guan et al., 2022). Though we may estimate the coun
terfactual differences of soil carbon change using paired sites in one 
field, this method still has high uncertainty due to variability in soil type 
and topography between sites, and it is also practically difficult to 
implement (e.g., rarely a farmer would allow such a treatment experi
ment in their commercial field). Process-based models have been widely 
used to calculate carbon budgets for croplands (Huang et al., 2009; Li 
et al., 1994; Zhou et al., 2021a). However, large uncertainties exist in 
model-simulated cropland carbon budget mainly due to uncertainties in 
model structure, parameters, weather, and soil inputs (Jung et al., 2007; 
Mishra et al., 2017; Shi et al., 2018; Sulman et al., 2018). Among various 
soil input data needed by the process-based models, initial SOC stock is 
one of the most important input variables (Li et al., 1994; Sulman et al., 

2018), and variation in initial SOC stock influences many processes 
including decomposition rates, soil water and oxygen dynamics, plant 
growth, soil microbial activity, and soil respiration (Cotrufo et al., 2013, 
2015; Delogu et al., 2017; Li et al., 2021; Li et al., 2019; Liang et al., 
2018; Murphy, 2015; Oldfield et al., 2019; Rajkai et al., 2004). 

There are large uncertainties existing in currently available SOC 
stock datasets that serve as critical inputs for carbon balance models 
(Goidts et al., 2009; Jandl et al., 2014; Potash et al., 2022). For soil 
sampling data, the accuracy of measured SOC stock depends on the 
representativeness of sampling locations and time, and the measurement 
uncertainties of SOC concentration (SOC%), bulk density (Bulk_Den
sity), and gravel content (Goidts et al., 2009; Meersmans et al., 2009). 
For example, using the state-of-the-art soil sampling methods, uncer
tainty of SOC% measurements can still be up to 16% depending upon the 
method adopted, while the uncertainty of Bulk_Density measurements is 
even larger and can lead to 10–40% uncertainty in SOC stock estimation 
(Goidts et al., 2009; Meersmans et al., 2009). In addition, the impact of 
gravel content on SOC stock estimation can be difficult to determine and 
is often omitted due to a lack of data (Gerzabek et al., 2005). Gridded 
soil datasets, primarily interpolated from soil sampling data and usually 
providing soil properties with representative categorical values, are 
widely used as model input data to support the simulation of carbon 
budget at regional to global scales. Those datasets not only contain 
uncertainties from soil sampling and interpolation methods, but also 
contain uncertainties from the impacts of historical land cover change 
and land management practices on SOC stock (Hengl et al., 2017; 
Ramcharan et al., 2018; Veenstra & Lee Burras, 2015). Due to these 
factors, SOC stocks obtained from different soil datasets have discrep
ancies with each other (Ramcharan et al., 2018; Zhong & Xu, 2011). It 
remains unclear how these uncertainties of SOC stock affect the calcu
lation of cropland carbon budgets and soil carbon credits using process- 
based models. 

In this study, we used an advanced agroecosystem model, ecosys, to 
quantify the impacts of uncertainty in initial SOC stock on the calcula
tion of cropland carbon budgets and soil carbon credits over the U.S. 
Midwest, which is one of the most important global food baskets pro
ducing one third of global corn and soybean production. We aim to 
answer the following questions: (1) What are the impacts of uncertainty 
in the measured SOC% and Bulk_Density on the calculation of cropland 
carbon budgets in the U.S. Midwest? (2) How does this uncertainty 
manifest itself under different soil and climate conditions? (3) How large 
are the impacts of uncertainty in the measured SOC% and Bulk_Density 
on the calculation of soil carbon credits in the U.S. Midwest? To answer 
the first question, we first compared the cropland carbon budgets 
calculated based on SOC% and Bulk_Density from the Gridded Soil 
Survey Geographic Database (gSSURGO) and Rapid Carbon Assessment 
(RaCA) datasets, and quantified the impact of SOC stock inconsistency 
on the calculation of cropland carbon budgets over the U.S. Midwest 
(Section 3.1-3.2); we then conducted sensitivity analyses of quantifying 
cropland carbon budgets at different SOC% and Bulk_Density levels 
across 9 selected counties in Illinois, Iowa, and Indiana states encom
passing representative climate and soil variations in this region (Section 
3.3). To answer the second question, we simulated the impacts of SOC% 
and Bulk_Density uncertainty on cropland carbon budgets at the county 
scale across Illinois, Iowa, and Indiana states and also at gSSURGO soil 
map unit scale for Champaign County, Illinois. Based on those simula
tions, we investigated the spatial heterogeneity of uncertainty in crop
land carbon budgets induced by SOC stock data uncertainty, and 
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analyzed how this uncertainty varies with climate and soil conditions 
(Section 3.4). To answer the third question, we simulated the cropland 
carbon budgets at county scale assuming non-legume cover crops 
adopted across Illinois, Iowa, and Indiana states since 2000, and 
investigated the impacts of uncertainty in SOC% and Bulk_Density on 
the calculation of soil carbon credits due to the hypothetical cover crop 
adoption (Section 3.5). 

2. Materials and methods 

2.1. Soil datasets 

We used two mainstream and publicly available soil datasets, RaCA 
and gSSURGO, in this study. We first compared SOC stock, SOC%, and 
Bulk_Density over different soil depths from these two datasets to 
quantify their uncertainties. We then quantified the impacts of un
certainties in SOC stock on the calculation of cropland carbon budgets 
and soil carbon credits in the U.S. Midwest. The detailed information 
about these two soil datasets and how we processed the datasets for the 
comparison were provided as follows. 

2.1.1. Rapid Carbon Assessment dataset (RaCA) 
The RaCA dataset was developed by the Natural Resource Conser

vation Service (NRCS), United States Department of Agriculture (USDA) 
(Loecke et al., 2016) to provide values of the SOC stock under different 
land cover types across the U.S. In the RaCA dataset, SOC% was obtained 
by subtracting the measured soil inorganic carbon from the total carbon, 

where total soil carbon was measured using the combustion method, and 
inorganic soil carbon was measured using the calcium carbonate 
calcimeter equivalence approach. The Bulk_Density above 50 cm soil 
depth was measured using the clod method at −33 kPa matric potential 
at some of the sites in this dataset. For the sites without Bulk_Density 
measurements or depths below 50 cm, the Bulk_Density was predicted 
using pedotransfer functions based on the data from the sites with bulk 
density measurements using the methodology of Sequeira et al (2014). 
The accuracies of these predictions were 0.10 to 0.15 Mg/m3 (Sequeira 
et al., 2014; Loecke et al., 2016). The SOC stock within a certain soil 
depth was calculated using the SOC% and the coarse-fragment-adjusted 
Bulk_Density corresponding to that soil layer. 

2.1.2. Gridded Soil Survey Geographic dataset (gSSURGO) 
The gSSURGO dataset was derived from the USDA-NRCS Soil Survey 

Geographic (SSURGO) Database to provide statewide soil data at scales 
from 1:12,000 to 1:63,360. Because of its high resolution, it is the most 
widely used soil dataset in the U.S. for field- and subfield-scale agro
ecosystem modeling (Jin et al., 2019). Each soil map unit in gSSURGO 
has unique soil properties and productivity derived from the National 
Soil Information System (NASIS) collected by the National Cooperative 
Soil Survey over the past century (USDA-NRCS, 2021). The concentra
tion of soil organic matter (SOM%) is provided in the gSSURGO dataset, 
expressed as the weight percentage of decomposed plant and animal 
residue in soil material with diameter less than 2 mm. We calculated 
SOC% by assuming that 58% of SOM is organic carbon (Pribyl, 2010). 
The Bulk_Density we used is the dry weight of soil materials (with 

Table 1 
Experiment design.  

Experiment Setup Purpose 

Exp 1: Comparison of calculated cropland carbon 
budgets between using the gSSURGO and RaCA 
soil datasets. 

Four combinations: 
(1) gSSURGO SOC% + gSSURGO Bulk_Density; 
(2) RaCA SOC% + RaCA Bulk_Density; 
(3) gSSURGO SOC% + RaCA Bulk_Density; 
(4) RaCA SOC% + gSSURGO Bulk_Density. 

To quantify the impact of SOC stock inconsistency from two 
different soil datasets on the calculation of cropland carbon 
budgets. 

Exp 2: Sensitivity of cropland carbon budgets to 
different levels of SOC% and Bulk_Density. 

Selected 9 counties across the U.S. Midwest, and 
(1) changed the topsoil (0–30 cm) SOC% ranges from 0.1 to 
5.9% with a step of 0.2%; 
(2) changed the topsoil Bulk_Density ranges from 0.9 to 1.7 
Mg/m3 with a step of 0.1 Mg/m3, respectively. 

To investigate the impacts of uncertainty in SOC% and 
Bulk_Density on the calculation of cropland carbon budgets at 
different SOC% and Bulk_Density levels. 

Exp 3: Simulate the impacts of uncertainties in 
SOC% and Bulk_Density on the calculation of 
cropland carbon budgets for the U.S. 
Midwest. 

Simulated cropland carbon budgets at the county scale using 
the gSSURGO majority soil types across Illinois, Iowa, and 
Indiana states, and also simulated cropland carbon budget at 
gSSURGO soil map unit scale for Champaign County of 
Illinois, with the following setup: 
(1) changed the topsoil SOC% by adding or subtracting 0.77% 
(the RMSE between SOC% from gSSURGO and RaCA over top 
30 cm; see Section 3.1 for more details) from the original 
values, and calculated the uncertainty in cropland carbon 
budgets induced by the SOC% uncertainty. 
(2) changed the topsoil Bulk_Density by adding or subtracting 
0.15 Mg/m3 (the RMSE between Bulk_Density from gSSURGO 
and RaCA over top 30 cm; see Section 3.1 for more details) 
from the original values, and calculated the uncertainty in 
cropland carbon budgets induced by the Bulk_Density 
uncertainty. 

To investigate the impacts of uncertainty in SOC stock on the 
calculation of cropland carbon budgets, and analyze the 
spatial variation of such impacts with the variation of climate 
and soil conditions. 

Exp 4: Simulate the impacts of SOC% and 
Bulk_Density uncertainties on the calculation of 
soil carbon credits for the U.S. Midwest. 

Simulated soil carbon credits assuming non-legume cover 
crops adopted across Illinois, Iowa, and Indiana states during 
the non-growing seasons since the November of 2000 at 
county scale using gSSURGO majority soil types, with the 
following setup: 
(1) changed the topsoil SOC% by adding or subtracting 0.77% 
from the original values, and quantified the impacts of 
uncertainty in SOC% on the calculation of soil carbon credits 
(i.e., the ΔSOC difference between the scenarios with and 
without cover crops). 
(2) changed the topsoil Bulk_Density by adding or subtracting 
0.15 Mg/m3 from original values, and quantified the impacts 
of uncertainty in Bulk_Density on the calculation of soil carbon 
credits. 

To investigate the impacts of uncertainty in SOC% and 
Bulk_Density on the calculation of soil carbon credits.  
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diameter less than 2 mm) per unit volume of soil at one-third bar water 
tension from gSSURGO (USDA-NRCS, 2022). 

2.1.3. Comparison of two soil datasets 
We compared values of SOC stock, SOC%, and Bulk_Density from the 

RaCA and gSSURGO datasets at 410 cropland sites sampled by RaCA 
across the U.S. Midwest. The RaCA SOC stock at 0–5 cm, 0–30 cm, and 
0–100 cm depths were obtained from the RaCA SOC pedon dataset, 
which was calculated based on measured SOC% and Bulk_Density pro
files. To determine the Bulk_Density at 0–5 cm, 0–30 cm, and 0–100 cm 
depth intervals, we resampled the coarse-fragment-adjusted Bulk_Den
sity measurements using the equal-area quadratic smoothing spline 
method (Bishop et al., 1999). The SOC% of different soil layers was 
obtained by dividing the SOC stock with the resampled Bulk_Density for 
RaCA. For the gSSURGO dataset, we obtained the Bulk_Density and SOM 
% using the representative value of the majority soil type at the RaCA 
sampling locations. The SOC stock of gSSURGO was calculated based on 
the SOC% and Bulk_Density of soil profile (Eq. (1)). 

SOCstock = Depth × Bulk Density × SOC% (1)  

where SOCstock, Bulk_Density, SOC%, and Depth are the stock of soil 
organic carbon in Mg/ha, coarse-fragment-adjusted bulk density in Mg/ 
m3, soil organic carbon concentration at a given soil depth in %, and the 
thickness of the soil layer in cm, respectively. 

2.2. Ecosys model 

To study the impacts of SOC stock uncertainty on the calculation of 
cropland carbon budgets and soil carbon credits, we used an advanced 
agroecosystem model, ecosys, to simulate the cropland carbon budgets 
with different SOC% and Bulk_Density as model inputs in the U.S. 
Midwest. The ecosys model was developed using biophysical and 
biochemical principles simulating hourly carbon, water, energy, and 
nutrient balance in the soil–vegetation-atmosphere continuum within 
ecosystems (Grant, 2001). It has been applied and validated for agri
cultural ecosystems under different climate and soil conditions with 
various land management practices (e.g., tillage, fertilizer management, 
crop rotation, and irrigation) (Grant, 1997; Grant et al., 2001, 
2007,2020; Zhang et al., 2021a, Zhang et al., 2021b). The performance 
of ecosys in simulating major carbon budget components, including gross 
primary productivity (GPP), net ecosystem exchange (NEE), ecosystem 
respiration (Reco), and change in SOC stock (ΔSOC), has been validated 
for major types of ecosystems at both site and regional scales (Grant, 
1989c; Grant et al., 2001; Grant & Flanagan, 2007; Mekonnen et al., 
2017). In a previous study, we validated the model performance in 
simulating crop production and carbon budgets with the benchmarks 
from flux tower observations, USDA National Agricultural Statistics 
Service (NASS) county scale crop yield survey data, and a novel 
remotely sensed GPP dataset across the U.S. Midwestern agroecosystems 
(Zhou et al., 2021a). 

In ecosys, the dynamics of SOC stock were simulated by adding car
bon to soil through leaf and root senescence, root exudation, and harvest 
residue (both shoot and root), and losing carbon from soil via microbial 
respiration and leaching (Grant, 2001). At a long time scale (≥annual 
scale), the dynamics of SOC stock can be approximated as the difference 
between plant carbon fixation, harvested carbon (e.g., grain), and 
ecosystem respiration (Eq. (2)) (Baker & Griffis, 2005; Zhou et al., 
2021a), which can be used to analyze the contribution of each individual 
carbon budget components to the final change in SOC stock. In the 
following analysis, we focused on the impacts of uncertainty in initial 
soil condition on the calculation of carbon budget components in Eq. (2). 

ΔSOC ≈ GPP − Harvest − Reco (⩾annual scale for a cropland)

≈ GPP − Harvest − Ra − Rh (⩾annual scale for a cropland)
(2)  

where ΔSOC is the change in soil organic carbon stock, GPP is the 

ecosystem gross primary productivity, Harvest is the carbon removed by 
harvest, Reco is the ecosystem respiration, Ra is the ecosystem autotro
phic respiration, and Rh is the ecosystem heterotrophic respiration, 
respectively. 

2.2.1. Plant carbon fixation (GPP), autotrophic respiration (Ra), and crop 
yield 

Carbon fixation (GPP) of the plant canopy in ecosys is calculated by 
summing the photosynthesis of each leaf at different canopy layers, 
which is simulated at hourly time intervals for each leaf under specific 
azimuth, leaf inclination, and light exposure conditions (Grant, 1989c; 
Grant et al., 1989). For C3 plants, the Farquhar model is used to 
calculate photosynthesis; while for C4 plants, the mesophyll-bundle 
sheath carbon exchange is considered explicitly. The stomatal resis
tance used for photosynthesis is calculated based on canopy turgor po
tential (ψ t) and potential photosynthesis (Vc’) using Eq. 3, considering 
both the water balance and energy balance for the canopy (Grant, 1995; 
Grant and Flanagan, 2007). 

rcmin = 0.64
(
Cb − C’

i

)/
V ’

c rc driven by rates of carboxylation vs. diffusion
(3a)  

rc = rcmin + (rcmax − rcmin)e−β ψt rc constrained by water status (3b)  

where rc is stomatal resistance of canopy; ψ t is the canopy turgor po
tential; Cb is the atmosphere CO2 concentration in canopy; rcmin, Ci’ and 
Vc’ are the minimum canopy stomatal resistance, intercellular CO2 
concentration, and potential canopy CO2 fixation rate when canopy 
water potential equals 0 MPa, respectively; rcmax is canopy cuticular 
resistance, and β is the shape parameter of stomatal resistance. 

Carbon fixed by the plant is allocated to shoot and root dynamically 
for plant respiration and phytomass growth (Grant, 1989a, 1989b). The 
total autotrophic respiration (Ra) is calculated by summing the oxidation 
of nonstructural carbon pools in shoots and roots for growth and 
structural biomass maintenance, and the energy cost for nutrient uptake 
(Grant et al., 2003). Specifically, Ra is calculated based on the 
nonstructural carbon products from CO2 fixation and on shoot and root 
temperatures, considering the limitation of soil O2 concentration on root 
autotrophic respiration. Total respiration is first used for each plant 
organ’s maintenance respiration, which is calculated based on the 
structural N biomass content, and temperature and moisture stresses for 
branches, roots, and mycorrhizae, respectively. If total respiration 
cannot meet total maintenance respiration, remobilization and senes
cence will occur in the plant organs. If total respiration is more than the 
demand from maintenance respiration, their difference will be used as 
growth respiration. Dry matter biomass growth of branches and roots is 
simulated based on the growth respiration, remobilization, and senes
cence in different plant organs. The dry matter formed with the growth 
respiration in shoot is allocated to leaf, sheath, stalk, soluble reserves, 
husk, cob, and grain dynamically according to the growth stages (Grant, 
1989a, 1989b). The final yield is determined by the seed number and 
kernel mass, which are calculated during pre- and post-anthesis growth 
stages, respectively, considering plant biomass, nutrients status, and 
environmental conditions (Grant et al., 2011). 

2.2.2. Heterotrophic respiration (Rh) 
Ecosys simulates heterotrophic respiration (Rh) with explicit micro

bial community dynamics, considering the limitations from the con
centration of dissolved organic carbon (DOC) produced from the solid 
organic carbon hydrolysis, oxygen content, microbial N and P content 
for each substrate-microbe complex, and microbial functional type at 
different soil layers (Eq. 4) (Dimitrov et al., 2010; Grant, 2014; Grant 
et al., 2003). There are five organic matter-microbe complexes simu
lated in ecosys, including coarse woody litter, fine non-woody litter, 
animal manure, particulate organic matter, and humus at different soil 
layers. Each substrate-microbe complex consists of five organic states, 
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including solid organic matter, dissolved organic matter, sorbed organic 
matter, microbial residue, and microbial decomposers (Grant, 2014). 
Ecosys considers the heterotrophic, autotrophic, facultative anaerobes, 
obligate anaerobes, diazotrophic, and obligate aerobe microbial func
tional types. Heterotrophic respiration is computed as follows, 

Rh = ΣiΣnΣlRhi,n,l Total heterotrophic respiration (4a)  

Rhi,n,l = R’
h i,n,l

(
UO2i,n,l

/
U’

O2i,n,l

)
Rh limited by O2 (4b)     

Rhi,n,l = R’
hnmin

{
CNi,n,l,a

/
CNj, CPi,n,l,a

/
CPj

}
Rh limited by microbial N and P

(4d)  

where Rh is the total heterotrophic respiration; Rhi,n,l is the heterotrophic 
respiration of substrate-microbe complex i and microbial functional type 
n in soil layer l; R’hn is the specific heterotrophic respiration of Mi,n,a,l 
without limitations from DOC, O2, soil moisture, and nutrients at 25 ◦C; 
UO2i,n,l and U’O2i,n,l are active O2 uptake coupled with radial diffusion of 
O2, assuming O2 demand driven by potential Rh (corresponding to the 
oxidation of glucose), respectively; Mi,n,a,l,C is the active microbial C of 
microbial functional type n; [Qi,l,C] is the concentration of DOC pro
duced from the solid soil organic carbon hydrolysis; KmQC is the 
Michaelis–Menten constant for Rh’i,n on [Qi,C]; ftgl and fψgl are the re
sponses of microbial growth to soil temperature and soil moisture, 
respectively; CNj and CPj are the maximum ratio of microbial N and P to 
microbial C, respectively; CNi,n,l,a and CPi,n,l,a are the ratio of microbial N 
and P to microbial C, respectively. More details on soil biogeochemistry 
processes and parameters of ecosys can be found in the supplementary 
materials of Grant et al. (2019). 

2.3. Simulation experiment design 

We conducted four different types of simulations (Exp 1 to 4 in 
Table 1) using ecosys to evaluate the impacts of uncertainty in SOC stock 
on the calculation of cropland carbon budgets and soil carbon credits. In 
these simulations, we used climate data from North American Land Data 
Assimilation System (NLDAS-2) (Xia et al., 2012) as model inputs, and 
ran the model with corn-soybean rotation without irrigation, which 
reflects typical crop rotations and management practices in the rainfed 
U.S. Midwest (Zhou et al., 2021b). The crop-specific state-wise fertilizer 
information from USDA (USDA, 2019) was applied before planting for 
the simulations over Illinois, Iowa, and Indiana states. The model was 
run from 1979 to 2018 (1979–2000 was treated as the spin-up period to 
get the reasonable initial conditions, e.g., soil moisture content, micro
bial community, and nitrogen content), and the simulated carbon bud
gets during 2001 and 2018 and the simulated soil carbon credits 
assuming non-legume cover crops adoption during the non-growing 
seasons since November of 2000 were used for the following analysis. 
More detailed information about the model setup for the simulations 
across Illinois, Iowa, and Indiana can be found in Zhou et al. (2021a). 

2.3.1. Definitions of SOC change and soil carbon credits 
We defined SOC change (ΔSOC) as the absolute change in SOC stock, 

which is calculated based on the difference of SOC stock between the 
end and beginning of the targeted period under a specific crop man

agement, soil, and climate condition (A0 in Fig. 1). Soil carbon credits 
are the additional change of SOC under intervention practices compared 
with the business-as-usual practices. In other words, soil carbon credits 
are the difference of ΔSOC between the scenarios with and without an 
intervention practice (Eq. (5), C0 in Fig. 1). 

Soil carbon credits = ΔSOCintervention − ΔSOCbusiness−as−usual (5)  

where ΔSOCintervention is the SOC stock change of the scenario with an 
intervention practice, ΔSOCbusiness-as-usual is the SOC stock change of the 

scenario with business-as-usual practices. 

2.3.2. Exp 1: Comparison of calculated cropland carbon budgets between 
using the gSSURGO and RaCA soil datasets 

To investigate how the uncertainty of SOC stock from publicly 
available soil datasets affects the calculation of cropland carbon budgets 
(GPP, Ra, Rh, Harvest, rate of SOC stock change), we compared the 
simulated carbon budgets based on gSSURGO and RaCA datasets at the 
RaCA cropland sites in the U.S. Midwest. Specifically, we designed four 
different simulations to investigate the impacts of SOC% and Bulk_
Density on calculated cropland carbon budgets: (1) using both SOC% 
and Bulk_Density from gSSURGO; (2) using SOC% from gSSURGO and 
Bulk_Density from RaCA; (3) using SOC% from RaCA and Bulk_Density 
from gSSURGO; and (4) using both SOC% and Bulk_Density from RaCA. 
We did the simulations with 18 gN/m2 fertilizer, a regionally moderate 
rate (Cao et al., 2018), before corn planting and no fertilizer before 
soybean planting, and all other soil properties were from gSSURGO 
except SOC% and Bulk_Density. 

2.3.3. Exp 2: Sensitivity of cropland carbon budgets to different SOC% and 
Bulk_Density levels 

We selected 9 counties in the U.S. Midwest, which cover represen
tative soil and climate variation in this region (Fig. 2a), to investigate the 
sensitivity of cropland carbon budgets to different levels of SOC% and 
Bulk_Density. In the simulations, soil properties of the major soil types 
over croplands in each county from gSSURGO were used as initial soil 
inputs. To simulate the sensitivity of cropland carbon budgets to 
different SOC% levels, we used the topsoil (0–30 cm) SOC% scenarios 
from 0.1% to 5.9% with an interval of 0.2%, which encompasses most 
SOC% levels in the U.S. Midwest, and using Bulk_Density of major soil 
types over croplands in each county from gSSURGO. To simulate the 
sensitivity of cropland carbon budgets to different Bulk_Density levels, 
we used the topsoil Bulk_Density scenarios from 0.9 to 1.7 Mg/m3 with 
an interval of 0.1 Mg/m3 to cover the range of Bulk_Density in this re
gion, and using SOC% of major soil types over croplands in each county 
from gSSURGO. 

2.3.4. Exp 3: Simulate the impacts of uncertainties in SOC% and 
Bul_Density on the calculation of cropland carbon budgets for the U.S. 
Midwest 

We also simulated the cropland carbon budgets for 293 counties in 
Illinois, Iowa, and Indiana states with soil properties of major soil types 
over croplands in each county from gSSURGO. In these simulations, we 
perturbed the topsoil SOC% and Bulk_Density to quantify the impacts of 
uncertainties in SOC% and Bulk_Density on the calculation of cropland 
carbon budgets at given uncertainty levels. We further analyzed the 
impacts of climate and soil conditions on the uncertainty of calculated 
cropland carbon budgets. The uncertainty levels of SOC% and Bulk_
Density used were 0.77% and 0.15 Mg/m3, which were the RMSE 

R’
h i,n,l = Mi,n,a,l,C

{
Rhi,n,l

[
Qi,l,C

] }/{(
KmQC +

[
Qi,l,C

] ) }
ftglfψgl Rh limited by substrate DOC (4c)   
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Fig. 1. Illustration of soil carbon change (ΔSOC), soil carbon credits, and their uncertainty assuming cover crop adopted since the winter of 2000. The solid lines are 
the changes in model simulated SOC stock initialized with gSSURGO SOC% and Bulk_Density, the dotted lines are the changes in model simulated SOC stock 
initialized with gSSURGO SOC% + 0.77% or Bulk_Density + 0.15 Mg/m3, and the dashdot lines are the changes in model simulated SOC stock initialized with 
gSSURGO SOC% – 0.77% or Bulk_Density – 0.15 Mg/m3. We use ΔSOC as an example component of the cropland carbon budgets here, but the uncertainty 
quantification method also applies to other carbon budget components in Eq. (2). 
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between the top 30 cm SOC stock data from gSSURGO and RaCA (see 
Section 3.1 and Fig. 3f and g for more details). We either (1) changed the 
topsoil SOC% by adding or subtracting 0.77% from the original 
gSSURGO values, or (2) changed the topsoil Bulk_Density by adding or 
subtracting 0.15 Mg/m3 from the original gSSURGO values. Similar 
analysis was also conducted at gSSURGO soil map unit scale but only in 
Champaign County, Illinois. 

The uncertainties of cropland carbon budgets induced by un
certainties in SOC% or Bulk_Density were quantified using half of the 
absolute difference between the simulated cropland carbon budgets 
with high and low SOC% (gSSURGO SOC% ± 0.77%) inputs, or/and 
with high and low Bulk_Density (gSSURGO Bulk_Density ± 0.15 Mg/m3) 
inputs, respectively (Fig. 1). 

2.3.5. Exp 4: Simulate the impacts of uncertainties in SOC% and 
Bulk_Density on the calculation of soil carbon credits for the U.S. Midwest 

Similar simulations were conducted as in Section 2.3.4 but with the 
addition of winter cover crops to quantify the uncertainty of soil carbon 
credits induced by the uncertainty of SOC% and Bulk_Density across the 
same 293 counties. For this analysis, in ecosys we hypothetically planted 
the non-legume annual ryegrass (Qin et al., 2021) on November 5 for 
each year since 2000, and terminated 7 days before cash crop planting in 
those simulations. The soil carbon credits were calculated as the dif
ference in simulated ΔSOC between Exp 4 (with cover crops) and Exp 3 
(without cover crops) with the same soil inputs (i.e., C0, CHigh, CLow in 
Fig. 1). 

To quantify the relative uncertainties of calculated soil carbon 
credits induced by uncertainties in SOC% or Bulk_Density, we first 
calculated the absolute difference between the simulated soil carbon 
credits with high and low SOC% (gSSURGO SOC% ± 0.77%, CHigh and 
CLow in Fig. 1) as inputs, or with high and low Bulk_Density (gSSURGO 

Bulk_Density ± 0.15 Mg/m3, CHigh and CLow in Fig. 1) as inputs. We then 
calculated the ratio between half of the before-mentioned absolute dif
ference (i.e., abs(CHigh - CLow)/2) and the simulated soil carbon credits 
with gSSURGO SOC% and Bulk_Density (i.e., C0 in Fig. 1), and use this 
ratio as a metric to indicate the relative uncertainty in the calculated soil 
carbon credits (Fig. 1). 

3. Results 

3.1. Comparison of gSSURGO and RaCA soil datasets at the U.S. 
Midwestern croplands 

Significant differences exist between the gSSURGO and RaCA data
sets in terms of SOC stock, SOC%, and Bulk_Density at different soil 
depths, with p-value < 0.1 based on paired t-test except for topsoil (0–30 
cm) SOC stock (Fig. 3). Compared with RaCA, gSSURGO has higher 
Bulk_Density and lower SOC% in the topsoil at the cropland sites. Cor
relations between these two datasets are low for both Bulk_Density and 
SOC%, with Pearson correlation coefficients (r) ranging from 0.18 to 
0.50 (Fig. 3). The relative differences between these two datasets 
quantified by Normalized Root Mean Square Error (NRMSE) were 
48.0%, 53.2%, and 11.3% for topsoil SOC stock, SOC% and Bulk_Den
sity, respectively. For surface layer (0–5 cm), gSSURGO has lower SOC% 
and higher Bulk_Density compared with RaCA; for subsurface layer 
(0–30 cm) and more deeper soil layer (0–100 cm), the bias between 
gSSURGO and RaCA is smaller for both SOC% and Bulk_Density 
compared with surface layer, but large discrepancy still exists between 
these two soil datasets. 

Fig. 2. (a) Soil organic carbon (SOC) stock of Illinois, Indiana, and Iowa integrated over 0–100 cm using data from gSSURGO, and the location of Champaign County, 
Illinois; (b) The distribution of 0–100 cm SOC stock in Champaign County, Illinois. The counties with red boundaries and numbers in (a) were selected for the 
sensitivity analysis in Fig. 5. 
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3.2. Comparison of calculated cropland carbon budgets based on 
gSSURGO and RaCA soil datasets in the U.S. Midwest 

To compare the cropland carbon budgets calculated based on 
different soil datasets and investigate which soil properties induced such 
differences, we simulated carbon budgets with different combinations of 
SOC% and Bulk_Density from gSSURGO and RaCA as model inputs at the 
RaCA cropland sites (Fig. 4 and Fig. S1). We found that large discrep
ancies exist in the simulated cropland carbon budgets (i.e., ΔSOC) when 
using SOC% and Bulk_Density from gSSURGO as the model inputs versus 
using data from RaCA (Fig. 4a). The correlation coefficient between 
RaCA-based and gSSURGO-based ΔSOC was only 0.4, and the 
gSSURGO-based ΔSOC was larger than RaCA-based ΔSOC at the sites 

with smaller ΔSOC (Fig. 4a), which was caused by the inconsistency of 
SOC% in these two datasets (Fig. 4b). The mean and standard deviation 
of the difference between RaCA-based and gSSURGO-based ΔSOC across 
all the selected sites were −2.7 and 25.7 gC/m2/year, respectively. From 
both the RaCA-based and gSSURGO-based ΔSOC, we found that the 
long-term (i.e., 2001 to 2018) SOC stock change was correlated with 
both the local specific soil and climate conditions for the corn-soybean 
rotation system, in particular correlated with initial SOC% and air 
temperature (Fig. S2). 

We treated the carbon budgets simulated with RaCA SOC% and 
Bulk_Density as the baseline, and calculated the difference between the 
carbon budgets simulated with other SOC% and Bulk_Density combi
nations and the baseline (SOC%RaCA + Bulk_DensityRaCA, Fig. 4b and 

Fig. 3. Comparison of SOC stock, SOC concentration (SOC%), and coarse-fragment-adjusted bulk density (Bulk_Density) between the RaCA measurements and 
gSSURGO dataset at different soil depths for 410 cropland sites sampled by the RaCA across the U.S. Midwest. 
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Fig. S1). We found that (1) the distributions of differences in plant- 
related carbon budget components (i.e., GPP, Ra, Harvest) were 
similar for the combinations with different SOC% sources but same 
Bulk_Density sources (i.e., Fig. S1b, d, and e), which means the differ
ence in SOC% was not the major cause of differences in the plant-related 
carbon budget components. Bulk_Density had larger impacts on the 
calculation of plant-related cropland carbon budgets compared with 
SOC%. The median of GPP difference caused by Bulk_Density difference 
was about 6.6 gC/m2/year, with ranges (i.e., 25th and 75th percentiles) 
from −4.2 to 18.4 gC/m2/year; while the median of GPP difference 
caused by SOC% difference was about −0.5 gC/m2/year, with ranges 
from −7.5 to 6.4 gC/m2/year across all the RaCA cropland sites 
(Fig. S1b). (2) The different sources of SOC% had larger impacts on the 
calculated Rh and ΔSOC than those of Bulk_Density (Fig. 4b, Fig. S1a and 
f). The median and ranges of Rh and ΔSOC difference between the 
combinations using gSSURGO SOC% (i.e., SOC%gSSURGO + Bulk_Densi
tygSSURGO and SOC%gSSURGO + Bulk_DensityRaCA) and the baseline were 
greater than that between combinations with RaCA SOC% (SOC%RaCA +

Bulk_DensitygSSURGO) and the baseline. The median of ΔSOC difference 
caused by SOC% difference was about 3.1 gC/m2/year, with ranges from 
−11.9 to 16.6 gC/m2/year; while the median of ΔSOC difference caused 
by Bulk_Density difference was about 0.2 gC/m2/year, with ranges from 
−1.0 to 1.2 gC/m2/year across all the RaCA cropland sites in the Mid
west (Fig. 4b). This result means that SOC% had larger impacts on the 
calculation of cropland carbon budgets compared with Bulk_Density. 

3.3. Sensitivity of cropland carbon budgets to SOC% and Bulk_Density 

To analyze the sensitivity of cropland carbon budgets to different 
SOC% and Bulk_Density levels, we selected 9 counties over Illinois, 
Iowa, and Indiana (Fig. 2a), and simulated carbon budgets in these 
counties using ecosys by changing topsoil SOC% and Bulk_Density sys
tematically (Fig. 5). Overall, almost all carbon budget components 
showed higher sensitivity to changes in SOC% than to changes in 
Bulk_Density, especially for ΔSOC. For example, the magnitude of 
simulated ΔSOC increased quickly with the increase of SOC% 
throughout all the selected counties (Fig. 5a), while the simulated ΔSOC 
had changed slightly with respect to the change of Bulk_Density 
(Fig. 5g). 

The response of different carbon budget components to variation in 
SOC% showed similar patterns for all the selected counties (Fig. 5a-f). 
The plant-related components of carbon budgets (i.e., GPP, Ra, and 
Harvest) increased markedly with the increase of SOC% when SOC% is 
smaller than 2.0%, and increased more slowly when SOC% is above 
2.0% (Fig. 5b, d, e). However, ecosystem respiration, Reco, showed 

higher sensitivity to the change of SOC% even in the high SOC% region 
(i.e., SOC% > 2.0%) compared with other plant-related components. In 
Reco, Rh was more sensitive to the change of SOC% than Ra at high SOC%, 
and Rh dominated the increases of Reco with the increases of SOC% at 
high SOC%. Thus, among other cropland carbon budget components, 
the changes in Rh primarily drove ΔSOC changes at different SOC% 
levels. 

Compared with the sensitivity of carbon budgets to different SOC% 
levels, there was less sensitivity of carbon budgets to the changes in 
Bulk_Density, especially within low Bulk_Density regions (Fig. 5g-l). 
GPP, Reco, Harvest, Ra, and Rh showed little sensitivity to changes in 
Bulk_Density in regions where Bulk_Density was lower than 1.5 Mg/m3, 
but showed greater sensitivity to the change of Bulk_Density in the high 
Bulk_Density region (Fig. 5h-l). This is due to the soil porosity being 
smaller at higher Bulk_Density, which results in smaller soil water and 
oxygen storage/exchange capacities, and limits crop water and N uptake 
as well as the microbial activity. 

3.4. Quantifying the uncertainties in cropland carbon budgets induced by 
uncertainties in SOC% and Bulk_Density in the U.S. Midwest 

To quantify the impacts of uncertainty from SOC% and Bulk_Density 
on the calculation of cropland carbon budgets in the U.S. Midwest, we 
ran ecosys at the county scale for Illinois, Iowa, and Indiana states and at 
the soil map unit scale for Champaign County of Illinois, and perturbed 
the topsoil SOC% and Bulk_Density based on the uncertainties obtained 
from the comparison of RaCA and gSSURGO datasets (Fig. 3). 

Overall, the uncertainty of cropland carbon budgets induced by SOC 
% uncertainty was larger than that induced by Bulk_Density uncertainty, 
especially for ΔSOC, Reco and Rh (Fig. 6), which was consistent with the 
sensitivity analysis results in Section 3.3 (Fig. 5). This finding was 
consistent with the county-level simulations for the three states and also 
with the soil map unit scale simulations for Champaign County of Illinois 
(Fig. 6). Specifically, for Illinois, Iowa, and Indiana states, the un
certainties of ΔSOC, Reco and Rh induced by SOC% uncertainty were 
higher than that induced by Bulk_Density uncertainty for most counties 
(Fig. 7). The relative uncertainties in calculated carbon budget compo
nents induced by initial SOC% uncertainty were 1.1%, 2.4%, 2.1%, 1.1% 
and 3.6% for GPP, Harvest, Reco, Ra, and Rh, respectively. In contrast, the 
relative uncertainties in calculated carbon budget components induced 
by initial Bulk_Density uncertainty were 0.3%, 0.4%, 0.3%, 0.3% and 
0.3% for GPP, Harvest, Reco, Ra, and Rh, respectively from the simula
tions for Illinois, Iowa, and Indiana states (Fig. 6). As the residual of the 
major carbon budget components (ΔSOC ≈ GPP - Harvest - Reco), the 
25th and 75th percentiles of multi-year averaged ΔSOC were −29.8 and 

Fig. 4. (a) Comparison of ΔSOC simulated with gSSURGO and RaCA soil datasets; and (b) the difference of ΔSOC simulated using different combinations of 
gSSURGO and RaCA SOC% and Bulk_Density data, compared with the baseline simulations with SOC% and Bulk_Density from RaCA at the RaCA cropland sites in the 
U.S. Midwest. In the boxplots of (b), the center marks the medians, and the edges mark the 25th and 75th percentiles of the ΔSOC difference between the simulations 
with different SOC% and Bulk_Density combinations and the baseline among all the simulated sites, respectively. 
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Fig. 5. The sensitivity of cropland carbon budgets to the change of SOC% and Bulk_Density at selected counties (labeled from 1 to 9) highlighted in Fig. 2a.  
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4.8 gC/m2/year across the selected counties with an uncertainty of 13.7 
gC/m2/year and 0.7 gC/m2/year induced by uncertainties in initial SOC 
% and Bulk_Density, respectively (Fig. 6). In the southern part of Illinois, 
Iowa, and Indiana states, the uncertainties of ΔSOC, Reco and Rh induced 
by SOC% uncertainty were higher than that in the northern part (Fig. 7g, 
j, l), which was opposite to the distribution of SOC% (Fig. S3). This 
spatial contrast was caused by the larger sensitivity of ΔSOC and Rh to 
SOC% at low SOC% conditions, as shown in Fig. 5. For the simulations 
for Champaign County of Illinois, the uncertainty of all carbon budget 
components induced by SOC% uncertainty was greater than that 
induced by Bulk_Density uncertainty, especially for ΔSOC, Reco, and Rh 
across almost all the soil map units (Fig. 8). These results were consistent 
with the county scale simulations at Illinois, Iowa, and Indiana states 
(Fig. 7), but the spatial heterogeneity of uncertainties in simulated 
carbon budgets induced by both SOC% and Bulk_Density uncertainties 
at Champaign County of Illinois (Fig. 8) was much smaller than that at 
Illinois, Iowa, and Indiana states (Fig. 7), because the spatial variations 
of soil and climate conditions in Champaign County of Illinois were 
much smaller than those at regional scale of Illinois, Iowa, and Indiana 
states (Fig. S3 and S4). 

We further investigated the variation of ΔSOC and its uncertainty 
across a range of different soil and climate conditions. Both ΔSOC and its 
uncertainty showed negative correlation with initial SOC% at the county 
scale in Illinois, Iowa, and Indiana (Fig. 9a and b) and at the soil map 
unit scale in Champaign County of Illinois (Fig. 9e and f); this means that 
the uncertainty in calculated ΔSOC was larger at low SOC% regions than 
in high SOC% regions under the same SOC% uncertainty level. In Illi
nois, Iowa, and Indiana, ΔSOC and its uncertainty were also influenced 
by air temperature (Fig. 9c and d). The response of ΔSOC to SOC% and 
air temperature in Illinois, Iowa, and Indiana was consistent with the 

simulated response in RaCA cropland sites (Fig. S2). For counties with 
the same level of SOC%, larger ΔSOC uncertainty existed in the counties 
with higher air temperature under the same SOC% uncertainty level 
(Fig. 9d). This may be due to enhanced microbial activity and soil 
respiration under higher temperature conditions, thus Rh and its un
certainty are larger when air temperature is higher under the same SOC 
% and SOC% uncertainty levels. 

3.5. Uncertainty of calculated soil carbon credits induced by SOC stock 
uncertainty 

To quantify the impacts of uncertainty from SOC% and Bulk_Density 
on the calculation of soil carbon credits, we used the hypothetical 
addition of cover crops in the corn-soybean rotation system as an 
example. We ran ecosys at the county scale for Illinois, Iowa, and Indiana 
under the scenarios with and without cover crops, and perturbed the 
topsoil SOC% and Bulk_Density based on the uncertainty obtained from 
comparison of the RaCA and gSSURGO datasets (Fig. 3). The un
certainties of soil carbon credits induced by uncertainties in SOC% and 
Bulk_Density were smaller than the uncertainties of carbon budgets 
under the same SOC% and Bulk_Density uncertainty levels (Fig. 10c-d vs 
Fig. 6). The soil carbon credits generated from adopting winter cover 
crops ranged from 11.7 to 18.7 gC/m2/year (25% to 75% of the 
counties) with a median value of 15.7 gC/m2/year across Illinois, Iowa, 
and Indiana. The relative uncertainty in soil carbon credits induced by 
initial SOC% uncertainty was less than 3.6% for 90% of counties, and 
less than 2.4% for 75% of counties, and the relative uncertainty in soil 
carbon credits induced by initial Bulk_Density uncertainty was less than 
5.6% and less than 2.6% for 90% and 75% of the selected counties, 
respectively (Fig. 10). 

Fig. 6. The uncertainty of carbon budget components induced by the uncertainties of SOC% and Bulk_Density in (a) Illinois, Iowa, and Indiana states and (b) 
Champaign County of Illinois. In the boxplots of (a) and (b), the central marks the medians, and the edges mark the 25th and 75th percentiles of the carbon budget 
components uncertainties, respectively. For (a), the boxplots were based on the county scale simulations of carbon budgets over Illinois, Iowa, and Indiana states. For 
(b), the boxplots were based on the soil map unit scale simulations of carbon budgets over Champaign County, Illinois. 
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Fig. 7. Simulated carbon budgets and their uncertainties induced by SOC% or Bulk_Density uncertainty for Illinois, Iowa, and Indiana states.  
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Fig. 8. Simulated carbon budgets and their uncertainties induced by SOC% or Bulk_Density uncertainty in cropland for Champaign County of Illinois.  
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Fig. 9. Relationship of ΔSOC (left column) and its uncertainty (right column) with initial SOC% and air temperature under the same SOC% uncertainty level at the 
county scale for Illinois, Iowa, and Indiana states and at the soil map unit scale for Champaign County of Illinois. 
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4. Discussion 

In this study, we analyzed the impacts of SOC% and Bulk_Density 
uncertainty on the calculation of cropland carbon budgets and soil 
carbon credits in the U.S. Midwestern corn-soybean rotation system 
using the advanced agroecosystem model, ecosys. Specifically, we con
ducted the following analyses: (1) Compared the simulated carbon 
budgets using the RaCA-based and gSSURGO-based soil properties at 
RaCA cropland sampling sites in the U.S. Midwest. (2) Analyzed the 
sensitivity of cropland carbon budgets to SOC% and Bulk_Density levels 
for Illinois, Iowa, and Indiana states. (3) Quantified the uncertainties of 
cropland carbon budgets induced by uncertainties in initial SOC% and 
Bulk_Density, and investigated their variation across a range of soil and 
climate conditions. (4) Analyzed the impacts of SOC% and Bulk_Density 
uncertainty on the calculation of soil carbon credits for Illinois, Iowa, 
and Indiana states. In the following, we will first address the potential 
limitations of this research, including the comparison of RaCA and 
gSSURGO soil datasets and the use of the ecosys model, and then syn
thesize the results to answer the questions proposed in the Introduction 
Section 1. 

4.1. Limitations of comparison between RaCA and gSSURGO soil datasets 
and use of the ecosys model 

The comparison of gSSURGO and RaCA datasets reveals that signif
icant inconsistency exists in these two datasets for both SOC% and 
Bulk_Density. These inconsistencies may come from several aspects. 
First, there is scale mismatch between gSSURGO and RaCA, as gSSURGO 
is a gridded dataset derived by upscaling the point-based samples to soil 
map units, while RaCA is a point-based-only sampling dataset. Second, 
the measurement methods of both SOC% and Bulk_Density in gSSURGO 

and RaCA are different. Third, there is a temporal shift between 
gSSURGO and RaCA field sampling, and changes in land management 
during that period may change the SOC% and Bulk_Density. Finally, we 
calculated the SOC% of gSSURGO from SOM by treating 58% of SOM as 
SOC, and this conversion factor may introduce some uncertainty to the 
comparison (Pribyl, 2010). 

Though there are some limitations in the direct comparison of RaCA 
and gSSURGO soil datasets (i.e., gSSURGO is at soil map unit scale, 
while RaCA is at point scale), these are the best and also the most widely 
used soil datasets we could use to address the current research goals 
related to uncertainty of SOC stock data and its impact on the quantified 
carbon budget. As stated before, quantification of carbon budget and soil 
carbon credits currently needs to rely on process-based models, and SOC 
stock data are among the most important input data for models. 
Although the RaCA dataset is based on soil samples collected more 
recently than the gSSURGO dataset, it only provides soil information at 
some sampling sites, and the sparse distribution of RaCA sampling sites 
limits its application. The gSSURGO SOC stock dataset has its un
certainties from soil sampling methodology, the interpolation methods 
based on soil map unit, and majority of gSSURGO raw data were 
collected 40 years ago and thus it may not be fully representative of the 
current situation (though SOC change is relatively slow). However, 
gSSURGO is the only dataset currently available for quantifying crop
land carbon budgets at field scale across the Midwest or for the 
contiguous U.S. 

The results presented in this study were obtained from the ecosys 
model, which explicitly and mechanistically simulates the biophysical 
and biogeochemical processes and their impacts on carbon budgets of 
the ecosystem. Besides complicated aboveground processes (crop 
growth, canopy energy balance, hydraulic and stomatal controls on 
water use and carbon uptake), ecosys also simulates dynamics of water, 

Fig. 10. The impacts of initial SOC stock uncertainty on the calculation of soil carbon credits. (a) An example illustrating the calculation of soil carbon credits for the 
corn-soybean rotation system assuming hypothetical adoption of winter cover crop since the winter of 2000 in Champaign County of Illinois; (b)-(d) refer to: (b) 
simulated soil carbon credits, (c) uncertainty of soil carbon credits induced by SOC% uncertainty, and (d) uncertainty of soil carbon credits induced by Bulk_Density 
uncertainty, assuming hypothetical adoption of winter cover crop since the winter of 2000 in the states of Illinois, Iowa, and Indiana. 
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carbon, oxygen and nutrient content, and microbial activities in soil. 
Specifically related to SOC dynamics, ecosys explicitly simulates the 
dynamics of five organic matter-microbe complexes in soil (Grant et al., 
1993; Grant, 2013), which can easily be mapped to the measurable 
particulate organic carbon (POC) and mineral-associated organic carbon 
(MAOC) pools (Cotrufo et al., 2019). We previously had validated the 
model performance in simulating the major carbon budget components 
(i.e., GPP, Reco, NEE, and yield) and their responses to environmental 
conditions at both site scale and regional scale, benchmarked with flux 
tower observations, remotely sensed GPP dataset and county scale NASS 
crop yield data (Zhou et al., 2021a). Thus based on the comprehensive 
processes included by ecosys and the prior validations of the ecosys 
performance, we are confident about the reliability of using the ecosys 
model to simulate the impacts of SOC stock uncertainty on the calcu
lation of carbon budgets. Although the results presented in this study are 
based on ecosys simulations, the proposed methodology to quantify the 
impacts of SOC stock uncertainty on the calculation of carbon budgets 
and soil carbon credits should also be applicable to other soil biogeo
chemistry models like CENTURY, Daycent, DNDC, and MEMS (Parton 
et al., 1988; Li et al., 1994; Zhang et al., 2021c; Cotrufo et al., 2022). 

4.2. What are the impacts of SOC stock uncertainty on the calculation of 
cropland carbon budgets in the U.S. Midwest? 

To analyze the impacts of SOC stock uncertainty on model-based 
calculation of cropland carbon budgets, we separated uncertainty in 
SOC stock into those caused by SOC% or Bulk_Density. Our results 
revealed that the uncertainty in SOC% has larger impacts on the 
calculation of cropland carbon budgets compared with that in Bulk_
Density (Figs. 4-8). 

The calculated cropland carbon budget is sensitive to the SOC% 
level, especially at low SOC% regions, and the soil carbon sequestration 
potential (i.e., ΔSOC) is higher in lower SOC% regions (Fig. 5a-f). Based 
on the ecosys simulations, we found that the simulated carbon budget 
components show large sensitivity to SOC% at the county scale in Illi
nois, Iowa, and Indiana and at the soil map unit scale in Champaign 
County of Illinois (Figs. 6-8), but the impacts of SOC% are different for 
plant-related (i.e., GPP, Ra, and Harvest) and soil-related (i.e., Rh and 
ΔSOC) carbon budget components. Plant-related carbon budget com
ponents show larger sensitivity to SOC% levels in regions with SOC 
concentration less than 2%, and less sensitivity to SOC% levels in re
gions with larger SOC concentration (> 2%). In contrast, soil-related 
carbon budget components show higher sensitivity to SOC% levels 
under both low and high SOC% conditions compared with plant-related 
carbon budget components. Under high SOC% conditions, heterotrophic 
microbial populations are larger than those under low SOC% conditions 
as long as there are no limitations from soil moisture, temperature, and 
oxygen. The above results can be largely explained by the processes 
included in the ecosys model. Heterotrophic respiration and soil 
mineralization are more accelerated under high SOC% conditions. With 
higher mineralization rates in higher SOC% soils, the soil can provide 
more N, P and S to support plant growth. However, the amount of nu
trients that can be uptaken by plants is limited by the plant nutrient 
uptake ability, which is determined by root length and root distribution, 
soil oxygen concentration, soil water content, soil temperature, and 
inorganic N/P availability. Thus, the plant-related carbon budget com
ponents are more sensitive to SOC% levels for low SOC% regions, and 
less sensitive to SOC% levels for high SOC% regions. 

Our simulation shows that Bulk_Density has less impact on the 
calculation of carbon budgets than that of SOC% (Fig. 5). The simulated 
carbon budgets show smaller sensitivity to Bulk_Density under normal 
Bulk_Density regions (i.e., <1.5 Mg/m3), but show larger sensitivity to 
Bulk_Density at higher Bulk_Density regions for both plant and soil- 
related carbon budget components (Fig. 5). With the increase of Bulk_
Density, the soil porosity decreases, which reduces soil water holding 
capacity and oxygen transfer capacity. At high Bulk_Density region, such 

impacts may become large because water and oxygen become the 
limiting factors for plants and microbial growth under low soil porosity 
conditions, particularly in high rainfall regions, which may result in 
large impacts on both plant and soil related carbon budget components. 

4.3. How do local soil and climate conditions regulate the impacts of SOC 
stock uncertainty on the calculation of cropland carbon budgets? 

The uncertainty of calculated cropland carbon budgets (i.e., ΔSOC) 
caused by initial SOC stock uncertainty is mainly induced by the un
certainty in SOC%, such impact is modulated by local climate and soil 
conditions. Our simulated results show that regions with lower SOC% 
have larger uncertainty in calculated carbon budget components than 
that for higher SOC% regions under the same SOC% uncertainty level 
and climate conditions. Regions with higher temperature also have 
larger uncertainty in calculated carbon budget components, ceteris 
paribus. Thus, locations with lower SOC% and higher temperature have 
larger uncertainty in calculated carbon budgets compared with locations 
with higher SOC% and lower temperature under the same SOC% un
certainty level (Fig. 9d and f). At low SOC% regions, both plant and soil 
related carbon budget components show larger sensitivity to SOC% 
levels compared with that at high SOC% regions (Fig. 5a-f), which may 
result in the pattern that the uncertainty of ΔSOC induced by SOC% 
uncertainty is larger at lower SOC% regions. For higher temperature 
regions, the microbial activity and heterotrophic respiration is higher 
when soil temperature is below the optimal temperature for microbial 
growth (Yvon-Durocher et al., 2012). Thus, in higher temperature re
gions, the uncertainty of ΔSOC induced by SOC% uncertainty is larger 
than that in lower temperature regions under the same SOC% and SOC% 
uncertainty level due to the increase of heterotrophic respiration. 

4.4. How large are the impacts of uncertainty in SOC% and Bulk_Density 
on calculated soil carbon credits in the U.S. Midwest? 

The impacts of SOC% and Bulk_Density uncertainties on the calcu
lation of soil carbon credits are much smaller compared to its impacts on 
the calculation of carbon budgets. The relative uncertainties of calcu
lated soil carbon credits induced by SOC% or Bulk_Density uncertainty 
are less than 3.6% or 5.6%, respectively, for 90% of selected counties 
across the U.S. Midwest assuming planting cover crops (Fig. 10). The 
uncertainty of calculated ΔSOC induced by SOC% uncertainty is about 
13 gC/m2/year across the U.S. Midwest, and the ratio of soil carbon 
credits uncertainty to ΔSOC uncertainty is about 4%. The much smaller 
impact of soil stock uncertainty on the calculation of soil carbon credits 
is mostly due to the unique definition of soil carbon credits. Soil carbon 
credits quantify the relative difference of soil carbon changes between 
two counterfactual scenarios, i.e., the scenario with intervention man
agement practices and the business-as-usual scenario. Since the impacts 
of SOC stock uncertainty on ΔSOC under these two counterfactual sce
narios tend to be in the same direction with a similar magnitude, the 
uncertainty of calculated soil carbon credits (ΔSOC difference between 
these two scenarios) induced by SOC stock uncertainty has been 
significantly mitigated. Our results demonstrate that the uncertainty of 
the public soil data only has a relatively small impact on the calculation 
of soil carbon credits, which means that current publicly-available soil 
datasets like gSSURGO and RaCA can be used for calculating soil carbon 
credits with high accuracy. 

4.5. Practical implications of our finding 

Uncertainties in SOC stock exist in both in-situ soil sampling mea
surement and gridded SOC datasets, arising from measurement un
certainties of SOC% and Bulk_Density, as well as the interpolation 
method used for generating the gridded data. We found that the un
certainty in SOC% has a larger impact on the calculation of cropland 
carbon budgets than that in Bulk_Density. We thus recommend efforts to 
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further reduce uncertainty of SOC% measurements. Novel approaches, 
such as remote sensing (Wang et al., 2022; Gholizadeh et al., 2021; 
Sanderman et al., 2021), can be used to estimate topsoil SOC% at large 
scale to reduce the topsoil SOC% uncertainty. Although the uncertainty 
in Bulk_Density has less impact on the calculation of cropland carbon 
budgets compared with that in SOC%, we still recommend to have ac
curate Bulk_Density measurements especially at high Bulk_Density re
gions, because both plant-related and soil-related carbon budget 
components are sensitive to Bulk_Density levels at high Bulk_Density 
regions. 

To enhance soil carbon sequestration, several farming practices have 
been suggested, such as planting cover crops and reduced tillage, but 
their potential in enhancing SOC stock needs to be assessed locally. 
Process-based models are used to quantify cropland carbon budget and 
soil carbon credits of these farming practices with the inputs of local soil 
and climatic information (Basche et al., 2016; Huang et al., 2020). Errors 
in initial SOC stock data will be propagated to the calculations of 
cropland carbon budgets and soil carbon credits (Guan et al., 2022). 
From our results, the uncertainty of SOC% appears to have large impacts 
on the calculated cropland carbon budgets, but only a slight impact on 
the calculated soil carbon credits (Fig. 10). These results suggest that 
quantifying soil carbon credits from intervention practices may not 
require in-field soil sampling for the baseline, and the current public soil 
data such as gSSURGO can largely fulfill the needs. This finding has 
important implications for the agricultural carbon credit market, 
considering the high cost and low scalability of soil sampling. 

As initial SOC stock (or reference SOC stock) is one of the basic inputs 
to generate greenhouse gas (GHG) inventories using process-model- 
based approaches at regional scale, based on our results, we recom
mend to explicitly consider the uncertainty of GHG emissions induced 
by initial SOC stock uncertainty in the GHG inventories. Therefore, the 
proposed approach to quantify the impacts of SOC stock uncertainty in 
this study built a foundation that can be applied to other process-based 
modeling approaches or industry protocols to assess the uncertainties of 
soil carbon credits. 

5. Conclusion 

In conclusion, by simulating the U.S. Midwestern cropland carbon 
budgets, we assessed the impacts of SOC stock uncertainty on the 
calculation of cropland carbon budgets and soil carbon credits under 
corn-soybean rotations. Our results reveal the following important 
findings. (1) The gSSURGO-based calculation of cropland carbon bud
gets shows a large discrepancy with the RaCA-based calculation of 
cropland carbon budgets. (2) The SOC% uncertainty has larger impacts 
on the calculation of cropland carbon budgets for most of the carbon 
budget components compared to Bulk_Density, especially for ΔSOC and 
Reco. (3) The uncertainty of ecosystem respiration, especially hetero
trophic respiration, is the major contributor of uncertainty in calculated 
cropland carbon budgets induced by SOC% uncertainty. (4) Both ΔSOC 
and its uncertainty show negative correlation with initial SOC%; while 
ΔSOC shows negative correlation with air temperature, and uncertainty 
of ΔSOC shows positive correlation with air temperature. (5) The un
certainty of SOC% and Bulk_Density has a much smaller impact on the 
calculation of soil carbon credits. These analyses provided insights on 
how uncertainties in initial SOC stock affect the quantification of crop
land carbon budgets and soil carbon credits, and highlighted that (i) 
high-accuracy SOC% measurement is needed to quantify the cropland 
carbon budgets; and (ii) current publicly-available soil datasets can be 
used for quantifying soil carbon credits with a relatively small uncer
tainty. The approach to quantify the impacts of SOC stock uncertainty on 
cropland carbon budgets and soil carbon credits used in this study can be 
applied to other models and used to assess uncertainties of carbon 
sequestration potential of various farming practices. 
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Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., 
Guevara, M.A., Vargas, R., MacMillan, R.A., Batjes, N.H., Leenaars, J.G.B., 
Ribeiro, E., Wheeler, I., Mantel, S., Kempen, B., 2017. SoilGrids250m: Global 
gridded soil information based on machine learning. PloS One 12 (2), e0169748. 
https://doi.org/10.1371/journal.pone.0169748. 

Hollinger, S.E., Bernacchi, C.J., Meyers, T.P., 2005. Carbon budget of mature no-till 
ecosystem in North Central Region of the United States. Agric. For. Meteorol. 130 
(1–2), 59–69. https://doi.org/10.1016/j.agrformet.2005.01.005. 

Huang, Y., Yu, Y., Zhang, W., Sun, W., Liu, S., Jiang, J., Wu, J., Yu, W., Wang, Y., 
Yang, Z., 2009. Agro-C: A biogeophysical model for simulating the carbon budget of 
agroecosystems. Agric. For. Meteorol. 149 (1), 106–129. https://doi.org/10.1016/j. 
agrformet.2008.07.013. 

Huang, Y., Ren, W., Grove, J., Poffenbarger, H., Jacobsen, K., Tao, B., Zhu, X., 
McNear, D., 2020. Assessing synergistic effects of no-tillage and cover crops on soil 
carbon dynamics in a long-term maize cropping system under climate change. Agric. 
For. Meteorol. 291 (108090), 108090 https://doi.org/10.1016/j. 
agrformet.2020.108090. 

Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M.F., Bampa, F., van Wesemael, B., 
Harrison, R.B., Guerrini, I.A., Richter Jr, D.D., Rustad, L., Lorenz, K., Chabbi, A., 
Miglietta, F., 2014. Current status, uncertainty and future needs in soil organic 
carbon monitoring. Sci. Total Environ. 468–469, 376–383. https://doi.org/10.1016/ 
j.scitotenv.2013.08.026. 

Jian, J., Du, X., Reiter, M.S., Stewart, R.D., 2020. A meta-analysis of global cropland soil 
carbon changes due to cover cropping. Soil Biol. Biochem. 143 (107735), 107735 
https://doi.org/10.1016/j.soilbio.2020.107735. 

Jiang, C., Guan, K., Wu, G., Peng, B., Wang, S., 2021. A daily, 250 m and real-time gross 
primary productivity product (2000–present) covering the contiguous United States. 
Earth Syst. Sci. Data 13 (2), 281–298. https://doi.org/10.5194/essd-13-281-2021. 

Jin, Z., Archontoulis, S.V., Lobell, D.B., 2019. How much will precision nitrogen 
management pay off? An evaluation based on simulating thousands of corn fields 
over the US Corn-Belt. Field Crops Res. 240, 12–22. https://doi.org/10.1016/j. 
fcr.2019.04.013. 

Jung, M., Vetter, M., Herold, M., Churkina, G., Reichstein, M., Zaehle, S., Ciais, P., 
Viovy, N., Bondeau, A., Chen, Y., Trusilova, K., Feser, F., Heimann, M., 2007. 
Uncertainties of modeling gross primary productivity over Europe: A systematic 
study on the effects of using different drivers and terrestrial biosphere models. 
Global Biogeochem. Cycles 21 (4). https://doi.org/10.1029/2006gb002915. 

Kucharik, C.J., Brye, K.R., Norman, J.M., Foley, J.A., Gower, S.T., Bundy, L.G., 2001. 
Measurements and modeling of carbon and nitrogen cycling in agroecosystems of 
southern Wisconsin: Potential for SOC sequestration during the next 50 years. 
Ecosystems 4 (3), 237–258. https://doi.org/10.1007/s10021-001-0007-2. 

Lal, R., 2002. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 116 (3), 
353–362. https://doi.org/10.1016/s0269-7491(01)00211-1. 

Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food 
security. Science 304 (5677), 1623–1627. https://doi.org/10.1126/ 
science.1097396. 

Li, C., Frolking, S., Harriss, R., 1994. Modeling carbon biogeochemistry in agricultural 
soils. Global Biogeochem. Cycles 8 (3), 237–254. https://doi.org/10.1029/ 
94gb00767. 

Li, Y., Shahbaz, M., Zhu, Z., Deng, Y., Tong, Y., Chen, L., Wu, J., Ge, T., 2021. Oxygen 
availability determines key regulators in soil organic carbon mineralisation in paddy 
soils. Soil Biol. Biochem. 153, 108106. https://doi.org/10.1016/j. 
soilbio.2020.108106. 

W. Zhou et al.                                                                                                                                                                                                                                   

https://doi.org/10.1029/2010jg001312
https://doi.org/10.1126/sciadv.aat1869
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0065
https://doi.org/10.4141/s04-083
https://doi.org/10.1016/j.still.2021.105017
https://doi.org/10.1016/j.still.2021.105017
https://doi.org/10.1111/j.1365-2389.2009.01157.x
https://doi.org/10.2134/agronj1989.00021962008100030011x
https://doi.org/10.2134/agronj1989.00021962008100030011x
https://doi.org/10.2134/agronj1989.00021962008100030011x
https://doi.org/10.1016/0168-1923(89)90007-5
https://doi.org/10.1016/0168-1923(89)90007-5
https://doi.org/10.1007/bf00011333
https://doi.org/10.2136/sssaj1997.03615995006100040023x
https://doi.org/10.2136/sssaj1997.03615995006100040023x
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0110
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0110
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0110
https://doi.org/10.5194/bg-10-7703-2013
https://doi.org/10.1016/j.ecolmodel.2014.05.015
https://doi.org/10.1016/j.ecolmodel.2014.05.015
https://doi.org/10.1029/2006jg000302
https://doi.org/10.1016/0168-1923(89)90008-7
https://doi.org/10.1016/0168-1923(89)90008-7
https://doi.org/10.1016/0038-0717(93)90046-e
https://doi.org/10.2136/sssaj2001.651205x
https://doi.org/10.2136/sssaj2001.651205x
https://doi.org/10.1046/j.1365-2486.2003.00549.x
https://doi.org/10.1046/j.1365-2486.2003.00549.x
https://doi.org/10.2134/agronj2006.0308
https://doi.org/10.2134/agronj2011.0158
https://doi.org/10.2134/agronj2011.0158
https://doi.org/10.1029/2018jg004644
https://doi.org/10.1029/2018jg004644
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0165
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0165
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0165
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0165
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0170
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0170
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0170
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0170
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0170
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0170
http://refhub.elsevier.com/S0016-7061(22)00561-4/h0170
https://doi.org/10.1111/gcb.13136
https://doi.org/10.1111/gcb.13136
https://doi.org/10.1016/j.rse.2017.06.043
https://doi.org/10.31223/x5qw7j
https://doi.org/10.2136/sssaj1990.03615995005400020026x
https://doi.org/10.2136/sssaj1990.03615995005400020026x
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1016/j.agrformet.2005.01.005
https://doi.org/10.1016/j.agrformet.2008.07.013
https://doi.org/10.1016/j.agrformet.2008.07.013
https://doi.org/10.1016/j.agrformet.2020.108090
https://doi.org/10.1016/j.agrformet.2020.108090
https://doi.org/10.1016/j.scitotenv.2013.08.026
https://doi.org/10.1016/j.scitotenv.2013.08.026
https://doi.org/10.1016/j.soilbio.2020.107735
https://doi.org/10.5194/essd-13-281-2021
https://doi.org/10.1016/j.fcr.2019.04.013
https://doi.org/10.1016/j.fcr.2019.04.013
https://doi.org/10.1029/2006gb002915
https://doi.org/10.1007/s10021-001-0007-2
https://doi.org/10.1016/s0269-7491(01)00211-1
https://doi.org/10.1126/science.1097396
https://doi.org/10.1126/science.1097396
https://doi.org/10.1029/94gb00767
https://doi.org/10.1029/94gb00767
https://doi.org/10.1016/j.soilbio.2020.108106
https://doi.org/10.1016/j.soilbio.2020.108106


Geoderma 429 (2023) 116254

19

Li, Z., Tian, D., Wang, B., Wang, J., Wang, S., Chen, H.Y.H., Xu, X., Wang, C., He, N., 
Niu, S., 2019. Microbes drive global soil nitrogen mineralization and availability. 
Glob. Change Biol. 25 (3), 1078–1088. https://doi.org/10.1111/gcb.14557. 

Liang, J., Zhou, Z., Huo, C., Shi, Z., Cole, J.R., Huang, L., Konstantinidis, K.T., Li, X., 
Liu, B., Luo, Z., Penton, C.R., Schuur, E.A.G., Tiedje, J.M., Wang, Y.-P., Wu, L., 
Xia, J., Zhou, J., Luo, Y., 2018. More replenishment than priming loss of soil organic 
carbon with additional carbon input. Nat. Commun. 9 (1), 3175. https://doi.org/ 
10.1038/s41467-018-05667-7. 

Loecke, T., Roecker, S., Beaudette, D., Seqeira, C., Benham, E., Ferguson, R., Scheffe, K., 
Larry, W., 2016. Rapid Carbon Assessment (RaCA): Methodology, Sampling, and 
Summary. U.S. Department of Agriculture, Natural Resources Conservation Service. 

Luo, Z., Baldock, J., Wang, E., 2017. Modelling the dynamic physical protection of soil 
organic carbon: Insights into carbon predictions and explanation of the priming 
effect. Glob. Change Biol. 23 (12), 5273–5283. https://doi.org/10.1111/gcb.13793. 

Meersmans, J., Van Wesemael, B., Van Molle, M., 2009. Determining soil organic carbon 
for agricultural soils: a comparison between the Walkley & Black and the dry 
combustion methods (north Belgium). Soil Use Manag. 25 (4), 346–353. https://doi. 
org/10.1111/j.1475-2743.2009.00242.x. 

Mekonnen, Z.A., Grant, R.F., Schwalm, C., 2017. Carbon sources and sinks of North 
America as affected by major drought events during the past 30 years. Agric. For. 
Meteorol. 244–245, 42–56. https://doi.org/10.1016/j.agrformet.2017.05.006. 

Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., 
Chaplot, V., Chen, Z.-S., Cheng, K., Das, B.S., Field, D.J., Gimona, A., Hedley, C.B., 
Hong, S.Y., Mandal, B., Marchant, B.P., Martin, M., McConkey, B.G., Mulder, V.L., 
O’Rourke, S., Richer-de-Forges, A.C., Odeh, I., Padarian, J., Paustian, K., Pan, G., 
Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., 
Vågen, T.-G., van Wesemael, B., Winowiecki, L., 2017. Soil carbon 4 per mille. 
Geoderma 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002. 

Mishra, U., Drewniak, B., Jastrow, J.D., Matamala, R.M., Vitharana, U.W.A., 2017. 
Spatial representation of organic carbon and active-layer thickness of high latitude 
soils in CMIP5 earth system models. Geoderma 300, 55–63. https://doi.org/ 
10.1016/j.geoderma.2016.04.017. 

Murphy, B.W., 2015. Impact of soil organic matter on soil properties—a review with 
emphasis on Australian soils. Soil Res. 53 (6), 605. https://doi.org/10.1071/ 
sr14246. 

Novick, K.A., Metzger, S., Anderegg, W.R.L., Barnes, M., Cala, D.S., Guan, K., Hemes, K. 
S., Hollinger, D.Y., Kumar, J., Litvak, M., Lombardozzi, D., Normile, C.P., Oikawa, P., 
Runkle, B.R.K., Torn, M., Wiesner, S., 2022. Informing Nature-based Climate 
Solutions for the United States with the best-available science. Glob. Change Biol. 28 
(12), 3778–3794. https://doi.org/10.1111/gcb.16156. 

Ogle, S.M., Alsaker, C., Baldock, J., Bernoux, M., Breidt, F.J., McConkey, B., Regina, K., 
Vazquez-Amabile, G.G., 2019. Climate and Soil Characteristics Determine Where No- 
Till Management Can Store Carbon in Soils and Mitigate Greenhouse Gas Emissions. 
Sci. Rep. 9 (1), 11665. https://doi.org/10.1038/s41598-019-47861-7. 

Oldfield, E.E., Bradford, M.A., Wood, S.A., 2019. Global meta-analysis of the relationship 
between soil organic matter and crop yields. SOIL 5 (1), 15–32. https://doi.org/ 
10.5194/soil-5-15-2019. 

Parton, W.J., Stewart, J.W.B., Cole, C.V., 1988. Dynamics of C, N, P and S in grassland 
soils: a model. Biogeochemistry 5 (1), 109–131. https://doi.org/10.1007/ 
bf02180320. 

Peng, B., Guan, K., Pan, M., Li, Y., 2018. Benefits of seasonal climate prediction and 
satellite data for forecasting U.S. maize yield. Geophys. Res. Lett. 45 (18), 
9662–9671. https://doi.org/10.1029/2018gl079291. 

Peng, B., Guan, K., Zhou, W., Jiang, C., Frankenberg, C., Sun, Y., He, L., Köhler, P., 2020. 
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