
1.  Introduction
Irrigation accounts for more than 70% of total water withdrawals from surface and groundwater globally, which is 
critical for food production in arid and semi-arid regions (McDermid et al., 2021; Wisser et al., 2008). The inten-
sified global warming and population growth require irrigation expansion to relieve water stress and to maintain 
crop productivity (McDermid et al., 2021; Rosa et al., 2020). Increased irrigation water use demand exacerbates 
global water scarcity. To accurately quantify irrigation water use is the prerequisite for efficient agricultural water 
management and for designing effective water policies (Koch et al., 2020; Zaussinger et al., 2019). In addition, 
as irrigation is one of the direct human alterations of terrestrial water cycle (McDermid et al., 2021), the esti-
mations of irrigation water use could also help for tracking terrestrial water cycle and to investigate its feedback 
on regional climate (de Rosnay et al., 2003; Haddeland et al., 2006; L. Jiang et al., 2014; Lawston et al., 2015; 
Ozdogan et al., 2010). However, irrigation is not monitored in most places thus there is great uncertainty about 
its timing and amount. Current government irrigation data sets are obtained from the statistical surveys/reports 
and/or some simple estimation methods, such as soil moisture balance models (FAO, 2021) and energy consump-
tion coefficient method for irrigation pumping (Hurr & Litke, 1989). These data sets usually have coarse spatial 
resolutions and are static for multiple years, such as Food and Agriculture Organization (FAO)'s global irrigation 
water use data sets at the country level (FAO, 2021) and USGS's state-level irrigation water use data sets updated 
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every 5 yr (USGS, 2018). The lack of irrigation water use data sets at high spatio-temporal resolution hampers 
efficient regional water management, designing effective water policies, and understanding terrestrial water cycle 
in irrigated croplands (Koch et al., 2020; Kumar et al., 2015).

Estimations of irrigation water use has received significant attention in recent years (Foster et al., 2014; Haddeland 
et al., 2006; Jalilvand et al., 2019; Massari et al., 2021; Sun et al., 2017; Vörösmarty & Sahagian, 2000; Wisser 
et al., 2008). The existing literature on estimating irrigation water use is mainly classified into two categories. 
The first type is to incorporate some simplified soil/plant-based irrigation rules with predefined thresholds in the 
process-based models (de Rosnay et al., 2003; Haddeland et al., 2006; Lawston et al., 2015;Nie et al., 2022, 2018; 
Ozdogan et al., 2010), such as the most widely used maximum allowable depletion (MAD) irrigation scheme 
with 50% based on soil moisture (Ozdogan et al., 2010). However, irrigation decisions are complicated by many 
factors, such as farmers' preferences and irrigation infrastructures, thus these frameworks for estimating irrigation 
water use accompany large uncertainties from farmers' irrigation behavior and process-based models (Foster 
et al., 2014; Lamb et al., 2021; D. Wang & Cai, 2009).

Second, estimating irrigation water use relies on remote sensing-based soil moisture and/or evapotranspiration (ET) 
data sets, as irrigation increases soil moisture and ET significantly in the soil-plant-atmosphere-continuum. From 
the soil moisture perspective, some studies applied data assimilation methods, such as particle batch smoother, for 
estimating irrigation water use through integrating remotely sensed soil moisture retrievals (such as SMAP) into the 
process-based models (Abolafia-Rosenzweig et al., 2019; Filippucci et al., 2020; Kumar et al., 2015; Zaussinger 
et al., 2019). Some studies also used some simple inverted soil water balance models, such as SM2RAIN proposed 
by Brocca et al. (2013) for rainfall estimation at first and then adapted for quantifying irrigation (Brocca et al., 2018; 
Jalilvand et al., 2019). However, estimations of irrigation water use based on remotely sensed soil moisture retrievals 
is strongly connected with the quality of soil moisture data sets as well as some empirical parameters required in 
the inverted soil water balance models and/or process-based models, such as soil depth and water holding capacity 
(Jalilvand et al., 2021; Zappa et al., 2022; K. Zhang et al., 2022). Specifically, current satellite-based large-scale soil 
moisture data sets, which only provide soil moisture information in the shallow soil depth (<0.05 m), are limited 
by either coarse spatial resolutions (e.g., >10 km in SMOS L3 and SMAP L3 products; Al Bitar et al., 2017; Chan 
et al., 2016), or coarse temporal resolutions (6–12 days by using Sentinel-1 SAR information in soil moisture retrieval; 
Das et al., 2019). Some proposed approaches for soil moisture observations with higher spatial and temporal reso-
lution, such as optical approaches based on SWIR and NDVI (Babaeian et al., 2021, 2018; Sadeghi et al., 2017) and 
estimating soil moisture via assimilating the remote sensing retrievals (thermal infrared, TIR, and synthetic aperture 
radar, SAR; Lei et al., 2020), could help for estimating irrigation water use at high spatio-temporal resolution.

Estimations of irrigation water use based on remotely sensed ET observations has emerged in recent years. Most 
studies obtained net ET difference from dual modeling of ET as irrigation water use. Specifically, dual mode-
ling usually used remote sensing-based models (e.g., the two-source energy balance, TSEB, the Priestly-Taylor 
JPL, PT-JPL, and the Operational Simplified Surface Energy Balance, SSEBop) based on surface energy balance 
with irrigation impact and land surface models (e.g., Noah-MP) and/or hydrological models (e.g., the multi-
scale Hydrologic Model, mHM, and World-Wide Water, W3) without irrigation impact (Hain et al., 2015; Koch 
et al., 2020; Romaguera et al., 2012, 2014; D. Wang & Cai, 2007; C. Zhang & Long, 2021). However, the irri-
gation water use data sets from these studies usually had coarse temporal (monthly, seasonal, and annual) and/
or spatial (1–5 km) resolutions. Some studies estimated irrigation water use through long-term net water balance 
based on land surface/hydrological models with assimilation of satellite-based information, such as ET, soil 
moisture, leaf area index (LAI), and land surface temperature (LST; Van Dijk et al., 2018). However, these studies 
ignored the water unavailable for crop use, such as runoff, drainage, and deep percolation, and also had coarse 
temporal and/or spatial resolutions. Some researchers estimated irrigation water use using machine learning but 
required the detailed irrigation water use data sets, such as the in situ pumping records (Wei et al., 2022).

Model-data fusion approaches integrate models and observations to improve the accuracy of model predictions 
(Gettelman et al., 2022; Y.-P. Wang et al., 2009), which have been applied in many areas, including climate projec-
tions using the earth systems (Gettelman et al., 2022), terrestrial carbon cycles tracking (Keenan et al., 2012; Y.-P. 
Wang et al., 2009), and hydrological cycles simulations (Abrahart & See, 2002; Stampoulis et al., 2019). There 
are multiple model-data fusion methods, such as data assimilation, Bayesian inference, and model calibration 
(Gettelman et al., 2022; Guan et al., 2022; Liu & Gupta, 2007; Y.-P. Wang et al., 2009; J. Zhang et al., 2021a). 
The application of model-data fusion for estimating irrigation water use can be characterized as an inverse 
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application, analyzing model forcing (i.e., irrigation water use) from observations (e.g., soil moisture and/or 
ET) with irrigation impacts. This study aims to use the model-data fusion approaches (such as data assimilation) 
to estimate center-pivot irrigation water use at high spatio-temporal resolution (daily and field scale) based on 
the process-based model and the remotely sensed ET observations. There are two possible pathways: The first 
one is to continuously assimilate the remotely sensed ET observations into the process-based models to esti-
mate irrigation timing and amount concurrently. For the second pathway, we assume that the difference between 
the  remotely sensed ET observations with irrigation impacts and ET simulations from ecosys without irrigation 
impacts may reflect the irrigation signals. Thus, the ET difference can be used to check whether irrigation occurs 
or not (i.e., irrigation timing), and then data assimilation can be applied to determine irrigation amount.

In this study, we proposed a new model-data fusion framework with two configurations, that is, concurrent 
(CON) and sequential (SEQ), embedded in the particle filtering for estimating center-pivot irrigation water use at 
high spatio-temporal resolution (daily and field-scale). It was implemented through assimilating remotely sensed 
ET observations with irrigation impact into the advanced process-based agroecosystem model, ecosys. This study 
aims to address two research questions: (a) What is the efficacy of the new model-data fusion framework for esti-
mating irrigation water use at the daily and field scale? (b) What are the impacts of two major sources (systematic 
bias and variability, i.e., noise) of uncertainties of ET difference between observations and model simulations on 
degrading the estimation performance of irrigation water use at high spatio-temporal resolution? To answer these 
two research questions, two types of experiments using synthetic and real ET observations were conducted at two 
sets of irrigated fields with center-pivot irrigation systems in eastern and western Nebraska.

2.  Methodology
2.1.  Model-Data Fusion

The model-data fusion approach integrating a well-calibrated agroecosystem model and remotely sensed ET 
observations is applied for estimating irrigation water use at high spatio-temporal resolution (daily and field 
scale, i.e., determined by the field boundary from Common Land Unit, CLU) in this study (Figure 1a). The 
agroecosystem model is forced with climate and field data, then data assimilation (particle filtering) with two 
configurations (CONcurrent, CON, and SEQuential, SEQ) is used to update the water fluxes (ET and irrigation) 
from the agroecosystem model based on the remotely sensed ET observations. Specifically, remotely sensed 
ET observations with actual irrigation impact are assimilated into the agroecosystem model in real-time at the 
daily scale through particle filtering to determine when and how much irrigation has already been applied in the 
past. Irrigation signals are detected from the difference between remotely sensed ET observations with irrigation 
impact and ET simulations from the agroecosystem model without irrigation impacts.

2.1.1.  Concurrent and Sequential Configurations

Two configurations embedded in the data assimilation (particle filtering) for estimating irrigation water use are 
proposed, including the CONcurrent (CON) and SEQuential (SEQ) (Figures 1b and 1c). CON uses data assimila-
tion for each time period to investigate whether irrigation occurs or not at the daily scale and to estimate correspond-
ing daily irrigation water use amount concurrently (Figure 1b). SEQ first determines whether irrigation occurred 
or not based on ET difference at the daily scale, and then applies data assimilation at the days with the occurring 
irrigation to estimate daily irrigation water use amount sequentially (Figure 1c). Specifically, particle filtering is 
selected as the sequential data assimilation approach. The daily irrigation events are set as the particles in the parti-
cle filtering, and they are randomly generated from the random distribution with given irrigation ranges [0, β 𝐴𝐴 × Imax] 
mm (β, needs to be calibrated) at the daily scale (Equation 1). If the weight of the irrigation particle with 0 mm 
amount is maximum among all the particles (irrigation events with different amounts) on the target day, CON claims 
that there is no irrigation on that day. Otherwise, irrigation occurs on the target day, and the daily irrigation amount 
is determined as the weighted average of all the irrigation particles. Different from CON, SEQ first determines 
whether irrigation occurs or not based on the daily relative difference of ET (the ratio of ET difference to ET simu-
lation) on the target day. Specifically, there is no irrigation event on the target day for the case that the daily relative 
difference of ET between remotely sensed observation with irrigation impact and model simulation without irriga-
tion impact is smaller than the set threshold (α, needs to be calibrated; Equation 2). However, if the daily relative 
difference of ET reaches the threshold (α), irrigation is assumed as the reason for the large difference of ET. Thus, 
irrigation occurs on the target day and daily irrigation amount is the weighted average of all the irrigation particles. 
In addition, estimating irrigation water use is also constrained by the pumping wells and field area (Equation 3).
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Figure 1.  Framework of (a) the proposed model-data fusion approach with two configurations (CON and SEQ) for estimating irrigation water use at high 
spatio-temporal resolution. (b) Concurrent (CON) determines whether irrigation occurs or not and irrigation water use amount concurrently. (c) Sequential (SEQ) first 
determines whether irrigation occurred or not and then estimates irrigation water use amount sequentially. Three parameters need to be calibrated for CON and SEQ, 
including threshold for relative difference of ET (α), irrigation duration (dT), and irrigation range (β).
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In addition, once irrigation starts, it usually continues for several days (i.e., irrigation duration, dT, needs to 
be calibrated). The reason is that center-pivot irrigation systems usually take several days to complete an irri-
gation cycle due to the large irrigated field, and irrigation will be delayed if a rainfall event exceeds certain 
amounts during the irrigation cycle, such as the 6.5 mm day −1 for 1-day delay, 13 mm day −1 for 2-day delay, and 
45.5 mm day −1 for 7-day delay set in J. Gibson et al. (2017). Thus, irrigation duration (dT) is complicated by 
multiple factors, such as irrigation systems and climate status.

𝐼𝐼
𝑛𝑛

𝑡𝑡
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where 𝐴𝐴 𝐴𝐴
𝑛𝑛

𝑡𝑡
 is the irrigation particle n at time period t (mm d −1); β is the parameter needed to be calibrated to 

determine the irrigation ranges to generate all the irrigation particles; N is the particle size; ETt,obs is the remotely 
sensed ET observation with irrigation impact at time period t (mm d −1); 𝐴𝐴 ET

′

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 is the model simulation of ET 

without irrigation impact before data assimilation at time period t (mm d −1); α is the set threshold of the relative 
difference of ET; and Imax is the maximum allowed irrigation amount (mm d −1), which is usually determined by 
the capacity of pumping wells of surface water and groundwater for irrigation (gallon per minute, GPM) and the 
field area (Sfield, acre) (Equation 3, 1 gallon = 1/27,154 acre-inch, 1 inch = 25.4 mm).

2.1.2.  Data Assimilation Through Particle Filtering

Data assimilation, one typical method of model-data fusion, can effectively correct state estimations to reduce 
uncertainties from process-based models and observations (Moradkhani,  2008; Weerts & El Serafy,  2006; J. 
Zhang, Cai, et al., 2021). Particle filtering, one of the sequential data assimilation schemes based on Monte Carlo 
algorithms, is used in this study. The key idea is to determine the final irrigation amount through the weighted 
average of all the irrigation particles (Weerts & El Serafy, 2006).

Specifically, all the daily irrigation particles are generated from random distribution (Equation 1), then are incor-
porated into the advanced agroecosystem model to obtain ET simulations with the impacts of different irrigation 
water use amounts. Note that we combine the uncertainties from the process-based model and observations 
together, rather than quantifying the ET uncertainties from the process-based model and observations separately. 
The reason is that the true-values of ET are difficult to obtain without eddy covariance techniques, thus it is 
difficult to quantify the ET uncertainties from remotely sensed observations. The combined ET uncertainties are 
represented by the Gaussian distribution (bias, μs−o, and standard deviation, σs−o) of ET difference between ET 
simulations from the calibrated process-based model and remotely sensed ET observations both with irrigation 
impacts. Then, the probability of all the irrigation particles is determined by the daily ET difference between 
model simulations with different irrigation particles and remotely sensed observations based on pre-determined 
Gaussian distribution of ET difference (Equation 4). The ET uncertainties can be reduced through the probability 
calculation with the pre-determined Gaussian distributions with the parameters (bias, μs−o, and standard devia-
tion, σs−o). The associated weights (wt) for all the irrigation particles are determined as the normalized probabil-
ities (Equation 5).

As irrigation impact is incorporated into the advanced agroecosystem model through the assimilation of remotely 
sensed ET observations in real-time at the daily scale, the weights of all the particles are determined to be diverse 
without weight degeneracy. Thus, the resampling scheme is not adopted in this study to simplify its process. 
Lastly, the final irrigation amount is estimated as the minimum of maximum allowed irrigation amount (Imax) and 
estimations of irrigation water use, which is determined based on the weighted average of all the particles with 
their associated weights considering the irrigation application efficiency (λ in Equation 6). Note that the irriga-
tion application efficiency of the center pivots is set as 85% to account for the irrigation water loss unavailable 
for crop use (U.S. GAO, 2019). In general, three parameters (threshold for relative difference of ET, α, irrigation 
duration, dT, and irrigation range, β) are needed to be calibrated for CON and SEQ.
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𝜆𝜆

⎞

⎟

⎟

⎟
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⎠

� (6)

where 𝐴𝐴 ΔET
𝑛𝑛

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 is the difference of ET between ET simulations (𝐴𝐴 ET

𝑛𝑛

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 , mm d −1) from the process-based model 

with the impacts of irrigation particle n and remotely sensed ET observation (ETt,obs, mm d −1) with actual irriga-
tion impacts at time period t (mm d −1); the ET difference is assumed to follow the Gaussian distribution with the 
pre-determined parameters of mean (μs−o) and standard deviation (σs−o); 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

(

ΔET
𝑛𝑛

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

)

 is the probability of ET 
difference of irrigation particle n at time period t; 𝐴𝐴 𝐴𝐴

𝑛𝑛

𝑡𝑡
 is the associated weight of the irrigation particle n at time 

period t; λ is the irrigation application efficiency of the center pivots (set as 85% in this study); 𝐴𝐴 𝐴𝐴
∗

𝑡𝑡
 is the estimated 

irrigation amount at time period t (mm d −1).

2.2.  The Process-Based Model: Ecosys

The ecosys model is used in the model-data fusion as the process-based model. Ecosys is an advanced agroeco-
system model based on biophysical and biochemical mechanisms, and it uses the multi-layered soil-root-canopy 
system to track the water, energy, carbon, and nutrient cycles at the hourly scale (Grant,  1995,  1997; Grant 
et al., 1993). More details about the ecosys model can be found in Appendix A. We will implement the sensitivity 
analysis and model calibration for the ecosys model before we use it to estimate irrigation water use. Sensitive 
parameters related to phenology, canopy carbon assimilation, stomatal conductance, and root water uptake of 
maize and soybean are screened out using the Sobol method. Then, sensitive parameters of maize and soybean are 
calibrated separately by minimizing the normalized root mean square error (NRMSE) of daily ET and LAI using 
eddy covariance measurements in eastern Nebraska and satellite-based data sets in western Nebraska (Equation 7). 
The NRMSE metric is used to avoid the impacts of different magnitudes of ET and LAI. Irrigation impact is 
considered through incorporating farmer irrigation records and/or the auto-irrigation scheme based on soil mois-
ture. If farmer irrigation records are available at the field level, they can be provided as the forcing in model calibra-
tion. Otherwise, the auto-irrigation scheme in the ecosys model with the widely used soil-based MAD-50% with 
a depth of 0.92 m in the top nine soil layers is applied to incorporate irrigation impact in model calibration (i.e., 
irrigation is triggered to fill current soil moisture to field capacity when MAD increases above the MAD threshold 
of 0.5; Malejane et al., 2018). Finally, the planting date within the ranges from USDA NASS weekly Crop Progress 
Reports in western Nebraska is calibrated individually for each site-year to minimize NRMSE of daily ET and LAI.

min ���NRMSE =
⎛

⎜

⎜

⎝

√

√

√

√
1

� × �

�
∑

�=1

�
∑

�=1

(ET�,�,��� − ET�,�,���)2∕�(ET���)
⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

√

√

√

√
1

� × �

�
∑

�=1

�
∑

�=1

(LAI�,�,��� − LAI�,�,���)2∕�(LAI���)
⎞

⎟

⎟

⎠

� (7)

where ETt,sim and ETt,obs represent ET of model simulation and observation at time period t (mm d −1); LAIt,sim 
and LAIt,obs represent LAI of model simulation and observation at time period t (m 2 m −2); σ(ETobs) and σ(LAIobs) 
are the standard deviations of observed ET and LAI; T and S are the total number of days and irrigated fields, 
respectively.

2.3.  Experimental Design

Two types of experiments are designed in this study, including synthetic and real experiments using synthetic and 
real ET observations, respectively. The first type of experiments (i.e., synthetic experiments) use the synthetic ET 
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observations to quantify the impacts of different magnitude of ET uncertainties on the estimation performance 
of irrigation water use. The performance of estimating irrigation water use through the proposed model-data 
fusion framework is degraded by the uncertainties of ET difference between observations and simulations from 
process-based models, which are systematic bias and variability (i.e., standard deviation, treated as noise). The 
synthetic ET observations are generated by adding random synthetic perturbations (ETpert) to ET simulations 
from the process-based model with synthetic irrigation records. The perturbations can be attributed to the uncer-
tainties of ET difference between observations and model simulations both with irrigation impact. Thus, three 
groups of scenarios (including B, V, and BV) are applied to investigate the impacts on degrading the estimation 
performance of irrigation water use resulting from bias, variability, and the combinations of bias and variability, 
separately. The first group of six scenarios (B1, B2, B3, B4, B5, and B6) are designed with ET perturbations result-
ing from different magnitudes of bias (1%, 10%, 20%, 30%, 40%, and 50% of ET observations) but no noise. 
The second group of six scenarios (V1, V2, V3, V4, V5, and V6) are designed with ET perturbations resulting from 
different magnitudes of variability (1%, 10%, 20%, 30%, 40%, and 50% of ET observations) but no bias. The third 
group of six scenarios (BV1, BV2, BV3, BV4, BV5, and BV6) are designed with ET perturbations resulting from 
different combinations of bias and noise (VB1: bias 1% and noise 1%; VB2: bias 10% and noise 10%; VB3: bias 
10% and noise 30%; VB4: bias 30% and noise 10%; VB5: bias 30% and noise 30%; and VB6: bias 50% and noise 
50% of ET observations).

The second type of experiments (i.e., real experiments) are the real cases for estimating irrigation water use using 
real ET observations. Ten replicates of real experiments are applied for each site-year to investigate the robustness 
of the proposed model-data fusion framework for estimating irrigation water use. Irrigation season for each site-
year is determined as the period from the first irrigation day to the last irrigation day based on farmer irrigation 
records in this study.

Three statistical indexes between estimations of irrigation water use and farmer irrigation records are calculated 
for each site-year at different temporal scales (daily, weekly, and monthly) for two types of experiments using 
synthetic and real ET observations, including Pearson correlation coefficient (r, Equation 8), root mean square 
error (RMSE, Equation 9), and BIAS (Equation 10).

𝑟𝑟 =

𝑇𝑇
∑

𝑡𝑡=1

(

𝐼𝐼
∗

𝑡𝑡
− 𝐼𝐼∗

)(

𝐼𝐼𝑡𝑡 − 𝐼𝐼

)

√

𝑇𝑇
∑

𝑡𝑡=1

(

𝐼𝐼
∗

𝑡𝑡
− 𝐼𝐼∗

)2 𝑇𝑇
∑

𝑡𝑡=1

(

𝐼𝐼𝑡𝑡 − 𝐼𝐼

)2

� (8)

RMSE =

√

√

√

√

𝑇𝑇
∑

𝑡𝑡=1

(

𝐼𝐼
∗

𝑡𝑡
− 𝐼𝐼𝑡𝑡

)2

𝑇𝑇

� (9)

BIAS =

𝑇𝑇
∑

𝑡𝑡=1

(

𝐼𝐼𝑡𝑡 − 𝐼𝐼
∗

𝑡𝑡

)

𝑇𝑇

� (10)

where 𝐴𝐴 𝐴𝐴
∗

𝑡𝑡
 is the final estimated irrigation amount at time period t (mm d −1); It is the irrigation amount based on 

farmer irrigation records at time period t (mm d −1); 𝐴𝐴 𝐼𝐼
∗

 and 𝐴𝐴 𝐼𝐼  are the averages of estimations of irrigation water 
use and farmer irrigation records, respectively; T is the total time periods with the unit of day, week, and month.

3.  Study Area and Data Sets
3.1.  Study Area

Two sets of irrigated fields in eastern and western Nebraska, one of the largest irrigated states in the U.S., were 
selected for this study (Figure 2a). The first set of irrigated fields in eastern Nebraska were two AmeriFlux sites 
(US-Ne1 and US-Ne2, https://ameriflux.lbl.gov/) with center pivot irrigation systems, which were located at 
the University of Nebraska-Lincoln's (UNL) Eastern Nebraska Research and Education Center (ENREC) with 
annual precipitation around 700–800 mm (Figure 2b). US-Ne1 had continuous maize cropping systems, while 
US-Ne2 had maize-soybean rotation cropping systems. The second set of irrigated fields were 29 fields located 
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in Keith and Deuel counties in western Nebraska, planted with maize or soybean with annual precipitation around 
400–500 mm (Figure 2c and Table S1 in Supporting Information S1).

3.2.  Data Sets

3.2.1.  Satellite-Based ET and LAI Data Sets

BESS-STAIR ET and LAI data sets at high spatial (30 m) and temporal (daily) resolutions (C. Jiang et al., 2020) 
during the growing seasons (May–October) in 2015–2016 were used as the satellite-based ET and LAI observa-
tions for the second set of irrigated fields in western Nebraska (Table 1). The grid-scale (30 m) ET and LAI data 
sets were further processed into the field-scale ET and LAI data sets based on the averages of all grids within 
the field boundary from CLU. Breathing Earth System Simulator (BESS) is a satellite-driven biophysical model, 
coupling atmosphere and canopy radiative transfer, canopy photosynthesis, and evapotranspiration processes 
for water, energy, and carbon cycles (C. Jiang & Ryu,  2016). The satellite fusion algorithm, SaTellite dAta 
IntegRation (STAIR), integrated Landsat data sets with high spatial resolution and MODIS data sets with high 
temporal resolution to generate daily 30 m resolution surface spectral reflectance under all-sky conditions (Luo 
et al., 2018, 2020). The daily 30 m surface spectral reflectance data was used to drive the BESS model to generate 
BESS-STAIR ET and LAI data sets at high spatio-temporal resolution (30 m and daily; C. Jiang et al., 2020). 
Its satisfactory performance has been demonstrated by benchmarking with 12 eddy covariance sites across the 
U.S. Corn Belt and by constraining process-based models (such as Noah-MP) on croplands (C. Jiang et al., 2020; 
Yang et al., 2020).

Figure 2.  Spatial distribution of two sets of irrigated fields in Nebraska. (a) Location of two sets of irrigated fields with dramatic precipitation difference in Nebraska 
with the spatial distribution of center pivot irrigation systems (http://snr.unl.edu/data/geographygis/water.aspx). (b) Field boundary of two irrigated fields (US-Ne1 and 
US-Ne2) with Cropland Data Layer (CDL) in 2002 in eastern Nebraska (annual precipitation around 700–800 mm). (c) Field boundary of 29 irrigated fields with CDL 
in 2016 in western Nebraska (annual precipitation around 400–500 mm). For the name of each field, the last four digits denote the numbers of irrigated fields, while the 
remaining digits denote the County FIPS Codes. The numbers 101 and 49 represent Keith and Deuel counties in Nebraska, respectively. The field boundary data was 
obtained from Common Land Unit, United States Department of Agriculture.
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3.2.2.  Farmer Irrigation Records at the Field Level

Daily farmer irrigation records at the first set of irrigated fields (two eddy-covariance sites: US-Ne1 and 
US-Ne2) during the period 2001–2012 were obtained from the Carbon Sequestration Program (CSP) at 
the UNL ENREC near Mead, Nebraska (http://csp.unl.edu/Public/sites.htm; Table 1). For the second set of 
irrigated fields in western Nebraska, daily farmer irrigation records during the period from 2015 to 2016 
were processed based on the hourly raw data downloaded from AgSense and FieldNET irrigation software 
provided by the Nebraska Chapter of The Nature Conservancy through the Western Nebraska Irrigation Project 
(Table 1). The spatially distributed maps of annual and field-scale irrigation water use at the second set of irri-
gated fields in western Nebraska during the period from 2015 to 2016 were shown in Figure S1 in Supporting 
Information S1.

Table 1 
The Details of Data Sets Used for Estimating Irrigation Water Use in Two Types of Experiments at Two Sets of Irrigated Fields in Eastern and Western Nebraska

Experiments type
Location of irrigated fields 

(time period) Data sets Sources

Real experiments using real 
ET observations

Eastern Nebraska (2001–2012) ET AmeriFlux

LAI UNL-ENREC's CSP

Irrigation records (season: start/end date) UNL-ENREC's CSP

Meteorological data AmeriFlux

Management data (crop type, planting/harvest date, planting 
density, fertilization records)

UNL-ENREC's CSP

Soil properties gSSURGO data sets

Western Nebraska 
(2015–2016)

ET BESS-STAIR data sets

LAI STAIR data sets

Irrigation records (season: start/end date) AgSense and FieldNET 
(irrigation software)

Meteorological data NLDAS-2

Field boundary Common Land Unit (CLU)

Management data Crop type Cropland Data Layer (CDL)

Planting date Initial: USDA NASS weekly 
Crop Progress Reports; 

final: calibrated

Harvest date, planting density, 
fertilization records, tillage 

practice

Harvested on October 31; 
planting density (maize: 
8.4 plants m −2; soybean: 

37.1 plants m −2); fertilizer: 
18 g N m −2 and 5 g P 

m −2 yr −1 applied 2 days 
before planting; no tillage

Soil properties gSSURGO data sets

Synthetic experiments using 
synthetic ET observations 
and synthetic irrigation 
records

Eastern Nebraska (2001–2012) Synthetic ET observations Simulations from the ecosys 
model added with 

perturbations resulting 
from systematic bias 
and variability (check 
Section 3.2.3 for more 

details)

Synthetic irrigation records (season: start/end date) Carbon Sequestration Program 
(CSP)

Meteorological, management, and soil data Same as real experiments in 
eastern Nebraska
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3.2.3.  Synthetic ET Observations and Irrigation Records

Synthetic ET observations for synthetic experiments (Section 2.3) were generated by adding random synthetic 
perturbations (ETpert) to ET simulations from the ecosys model with synthetic irrigation records (Table 1). ET 
perturbations (ETpert) resulting from different magnitudes of bias (1%–50% of ET observations) were generated 
for the first group of six scenarios (B1, B2, B3, B4, B5, and B6 in Equation 11). ET perturbations (ETpert) resulting 
from different magnitudes of variability (i.e., standard deviation, treated as noise, 1%–50% of ET observations) 
were generated for the second group of six scenarios (V1, V2, V3, V4, V5, and V6 in Equation 12). ET perturba-
tions (ETpert) resulting from different combinations of bias and noise were generated for the third group of six 
scenarios (BV1, BV2, BV3, BV4, BV5, and BV6 in Equation 13), including scenarios for both small bias and noise, 
small bias but large noise, large bias but small noise, and both large bias and noise. ET simulations from ecosys 
have already incorporated irrigation impact through farmer irrigation records, which were treated as synthetic 
irrigation records. Farmer irrigation records for the irrigated fields in eastern Nebraska were obtained from 
UNL-ENREC's CSP (Table 1).

𝐵𝐵1, . . . , 𝐵𝐵𝑘𝑘, . . . , 𝐵𝐵6 ∶ ET𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾𝑘𝑘 × ET𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝛾𝛾𝑘𝑘 ∈ [1%, 10%, 20%, 30%, 40%, 50%]� (11)

𝑉𝑉1, . . . , 𝑉𝑉𝑘𝑘, . . . , 𝑉𝑉6 ∶ ET𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁(0, 𝜀𝜀𝑘𝑘 × ET𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), 𝜀𝜀𝑘𝑘 ∈ [1%, 10%, 20%, 30%, 40%, 50%]� (12)

𝐵𝐵𝐵𝐵1, . . . , 𝐵𝐵𝐵𝐵𝑘𝑘, . . . , 𝐵𝐵𝐵𝐵6 ∶ ET𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁(𝛾𝛾𝑘𝑘 × ET𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝜀𝜀𝑘𝑘 × ET𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)�

(𝛾𝛾𝑘𝑘, 𝜀𝜀𝑘𝑘) ∈ [(1%, 1%); (10%, 10%); (10%, 30%); (30%, 10%); (30%, 30%); (50%, 50%)]� (13)

where ETt,pert denoted ET perturbation at time period t (mm d −1), which represented the difference between ET 
observations and simulations from process-based models both with irrigation impact; Bk represented the kth 
scenario of the first group of synthetic experiments to investigate the impacts of bias on degrading the estimation 
performance of irrigation water use; Vk represented the kth scenario of the second group of synthetic experiments 
to investigate the impacts of variability (noise) on degrading the estimation performance of irrigation water use; 
BVk represented the kth scenario of the third group of synthetic experiments to investigate the impacts of the 
combination of bias and variability (noise) on degrading the estimation performance of irrigation water use; γk 
represented the ratio of ET observations for bias for the kth scenario; and εk represented the ratio of ET observa-
tions for variability (noise) for the kth scenario.

3.2.4.  Other Ancillary Data

The first set of irrigated fields (US-Ne1 and US-Ne2) in Mead, eastern Nebraska had the complete data sets from 
AmeriFlux during the period 2001–2012, including water (ET), energy (sensible and latent heat), and carbon 
(gross primary production-GPP and net ecosystem exchange-NEE) fluxes and hourly gap-filled meteorological 
data (i.e., humidity, downward shortwave radiation, precipitation, air temperature, and wind speed; Table 1). The 
golden standard data sets of field management and crop growth data, including planting/harvest dates, planting 
density, fertilization records, and LAI, were obtained from UNL-ENREC's CSP (http://csp.unl.edu/Public/sites.
htm).

For the second set of irrigated fields in western Nebraska, the hourly meteorological data (i.e., humidity, down-
ward shortwave radiation, precipitation, air temperature, and wind speed) was obtained from North American 
Land Data Assimilation System (NLDAS-2). BESS-STAIR ET and LAI data sets were processed into the daily 
and field-scale ET and LAI observations, while detailed field management and other crop growth data were 
unavailable. Crop type and field boundary were obtained from Cropland Data Layer and CLU, respectively. 
The initial planting date of the second set of irrigated fields was obtained from USDA NASS weekly Crop 
Progress Reports, and crops were harvested on October 31. For fertilizer, 18g N m −2 and 5g P m −2 per year 
were applied 2 days before planting for corn while no fertilizer was applied for soybean. Other land manage-
ment practices were set as the same across all the irrigated fields in western Nebraska, including tillage practice 
(no-tillage) and planting density (8.4 plants m −2 for corn and 37.1 plants m −2 for soybean). In addition, soil 
properties (field capacity, wilting point, saturated hydraulic conductivity, etc) at two sets of irrigated fields in 
eastern and western Nebraska with a maximum root-zone depth of 2.0 m were obtained from the gSSURGO 
data set (Table 1).
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4.  Results
4.1.  Ecosys Model Performance

The sensitive parameters of the ecosys model for maize and soybean were screened out using the Sobol method, 
respectively (Figures S2 and S3 in Supporting Information S1). The identified sensitive parameters of the ecosys 
model for maize and soybean were then calibrated separately in eastern and western Nebraska. For the irri-
gated AmeriFlux fields (US-Ne1 and US-Ne2) in eastern Nebraska with detailed ground-based management 
data, the daily and monthly ecosys-simulated ET and LAI of maize and soybean matched very well with the 
eddy-covariance and ground-based observations (Figures 3a–3d and Figures S4a–S4d in Supporting Informa-
tion S1). Both R 2 of daily ET of maize and soybean were 0.87, and R 2 of monthly ET of maize and soybean were 
0.94 and 0.96, respectively. For LAI, R 2 of maize and soybean at the daily scale were 0.81 and 0.75, respectively; 
and R 2 of maize and soybean at the monthly scale were 0.83 and 0.91, respectively. Ecosys could also capture 
the magnitude and seasonal patterns of ET and LAI with high accuracy at US-Ne1 and US-Ne2 (Figure S5 in 
Supporting Information  S1). However, as there were no available ground-based management observations at 
the 29 irrigated fields in western Nebraska, the planting date for each site-year was calibrated using daily and 
field-scale satellite-based ET and LAI data sets (Table S1 in Supporting Information S1). The scatter of daily and 
monthly ecosys-simulated ET and LAI with the satellite-based observations distributed evenly on both sides of 
the 1-to-1 line at the field level (Figures 3e–3h and Figures S4e–S4h in Supporting Information S1). R 2 of daily 
ET of maize and soybean were 0.49 and 0.47, respectively, and R 2 of monthly ET of maize and soybean were 0.91 
and 0.85, respectively. For LAI, R 2 of maize and soybean at the daily scale were 0.93 and 0.80, respectively; and 
R 2 of maize and soybean at the monthly scale were 0.94 and 0.83, respectively.

4.2.  Experiments With Synthetic ET Observations

The first type of synthetic experiments (including three groups of scenarios B, V, and BV, more details in 
Section 2.3) using synthetic ET observations (details in Section 3.2.3) for estimating irrigation water use were 
conducted at two AmeriFlux fields (US-Ne1 and US-Ne2) in eastern Nebraska during the period from 2001 
to 2012. Synthetic ET observations for three groups of scenarios were generated by adding random synthetic 
perturbations (ETpert) resulting from bias (scenarios B), noise (scenarios V), and the combination of bias and 
noise (scenarios BV) to virtual observations, that is, ET simulations from ecosys with synthetic irrigation records 
(details in Section 3.2.3). Based on the performance comparison among different particle sizes (8, 10, 20, 30, 
and 40), we chose the particle size (N = 10) in this study via the tradeoff between performance and computation 
time. Three parameters (threshold for relative difference of ET, α, irrigation range, β, and irrigation duration, dT) 
of the proposed model-data fusion with CON and SEQ configurations were calibrated manually as 0.02, 3.0, and 
1.0, respectively.

Three indexes (r, RMSE, and BIAS) between estimations of irrigation water use and synthetic irrigation records 
at daily, weekly, and monthly scales under three groups of scenarios (B, V, and BV) were summarized in the 
boxplots (Figures 4 and 5, and Figure S6 in Supporting Information S1). Results indicated that the perturbations 
resulting from noise had larger impacts on degrading the estimation performance of irrigation water use than 
those resulting from bias. Pearson correlation coefficients (r) of scenarios V (perturbations resulting from noise) 
were lower than those of scenarios B (perturbations resulting from bias; Figure 4). For scenarios BV, r of scenar-
ios BV2 and BV4 with smaller noise (10%) were higher than those of scenarios BV3 and BV5 with larger noise 
(30%). In addition, r decreased with the perturbations resulting from noise (scenarios V), while there was little 
difference for scenarios B with different magnitudes of perturbations resulting from bias. The reason was that 
bias correction embedded in particle filtering (Equation 4) could effectively remove the impacts of perturbations 
resulting from bias. For another two indexes (RMSE and BIAS), the similar patterns also were indicated by  the 
results in Figure 5 and Figure S6 in Supporting Information S1. RMSE and BIAS of scenarios V (perturba-
tions  resulting from noise) were larger than those of scenarios B (perturbations resulting from bias). For scenarios 
BV, RMSE and BIAS of scenarios BV2 (bias: 10%, noise: 10%) and BV4 (bias: 30%, noise: 10%) were lower than 
those of scenarios BV3 (bias: 10%, noise: 30%) and BV5 (bias: 30%, noise: 30%), which had larger noise but same 
bias. In addition, RMSE and BIAS increased with the perturbations resulting from noise (scenarios V), while 
there was little difference for scenarios B with different magnitudes of perturbations resulting from bias. For the 
performance at different temporal scales, the statistical indexes (r and RMSE) between estimations of irrigation 
water use and farmer irrigation records were different, except BIAS. Particularly, the statistical indexes (r and 
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Figure 3.  Comparison of observed and calibrated evapotranspiration (ET; daily and monthly) of maize and soybean at the irrigated fields in eastern (a–d) and western 
(e–h) Nebraska. Black dashed lines indicate the 1-to-1 line. Note that western Nebraska used satellite-based observations and eastern Nebraska used eddy covariance 
observations.
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RMSE) performed the best at the monthly scale but worst at the daily scale, while the statistical index (BIAS) had 
little difference among different temporal scales (daily, weekly, and monthly).

Taking US-Ne1 (a continuous maize cropping system) in 2004 as an example, CON and SEQ could effectively 
detect synthetic irrigation records with high accuracy for scenario BV1 with the combinations of small bias and 
small noise (1%, 1%) (Figure 6 and Figure S7 in Supporting Information S1). The overlapped irrigation in red 
bar denoted that the estimations of irrigation water use from CON and SEQ (i.e., irrigation estimations, black 
bar with hatches) hit farmer irrigation records (blue bar). Daily ET difference between ET simulations from the 
ecosys model before data assimilation (without irrigation impact, red dashed lines) and ET observations (with 
irrigation impact, blue solid lines) were calculated on each day in real-time. The daily ET differences were 
removed by incorporating daily irrigation events, thus daily ET simulations from the ecosys model before data 
assimilation without irrigation impact on the target day could be corrected as ET simulations after data assimi-
lation (black solid lines) in real-time with irrigation impact for the next day. Estimations of irrigation water use 
from CON only missed the irrigation event on 22 July 2004 for 1 day (Figure 6), while SEQ missed irrigation 
events for 6 days (Figure S7 in Supporting Information S1). It indicated that CON performed slightly better 
than SEQ for scenario BV1. Meanwhile, cumulative estimations of irrigation water use was close to cumulative 
synthetic irrigation records, demonstrating the satisfactory performance of CON and SEQ on estimating irriga-
tion water use at high spatio-temporal resolution (daily and field-scale).

Figure 4.  Box plots of Pearson correlation coefficient (r) between estimations of irrigation water use using concurrent configuration and farmer irrigation records at 
daily, weekly, and monthly scales under scenarios (B, V, BV) at US-Ne1 and US-Ne2 in eastern Nebraska during the period 2001–2012. (a–c) Six scenarios (B1, B2, B3, 
B4, B5, and B6) investigating the impacts on degrading the estimation performance of irrigation water use resulting from bias. (d–f) Six scenarios (V1, V2, V3, V4, V5, and 
V6) investigating the impacts on degrading the estimation performance of irrigation water use resulting from noise. (g–i) Six scenarios (BV1, BV2, BV3, BV4, BV5, and 
BV6) investigating the impacts on degrading the estimation performance of irrigation water use resulting from the combination of bias and noise. Pearson correlation 
coefficient (r) was calculated for each site-year at different temporal scales (daily, weekly, and monthly).
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4.3.  Estimations of Irrigation Water Use Using Real ET Observations in Nebraska

Estimations of irrigation water use using real ET observations was conducted at two sets of irrigated fields 
in eastern and western Nebraska. Based on the results of the ecosys model calibration (Section 4.1), the best 
distributions of daily ET difference between ecosys simulations and observations both with irrigation impact 
for maize and soybean in eastern and western Nebraska were screened out as Gaussian distributions (Figure 
S8 in Supporting Information S1). The mean and standard deviation of Gaussian distributions were estimated 
for bias correction (Equation  4) embedded in particle filtering for estimating irrigation water use. Particle 
size in the real experiments (N = 10) was selected as the same as the synthetic experiments. In addition, three 
parameters of the proposed model-data fusion framework with CON and SEQ configurations were manually 
calibrated separately in eastern and western Nebraska, that is, α = 0.05, β = 1.5, dT = 3 in eastern Nebraska 
and α = 0.05, β = 3.0, dT = 7 in western Nebraska. Irrigation range (β) and irrigation duration (dT) in west-
ern Nebraska were larger than those in eastern Nebraska, and this could be explained by climatic differences. 
Specifically, the climate in western Nebraska (annual precipitation around 450 mm) was much drier than that 
in eastern Nebraska (annual precipitation around 750 mm), thus requiring more irrigation water use. Based on 
the calibrated parameters, estimating irrigation water use at high spatio-temporal resolution was conducted by 
the proposed model-data fusion with CON and SEQ configurations for each site-year in eastern and western 
Nebraska.

Figure 5.  Box plots of RMSE between estimations of irrigation water use using concurrent configuration and farmer irrigation records at daily, weekly, and monthly 
scales under scenarios (B, V, BV) at US-Ne1 and US-Ne2 in eastern Nebraska during the period 2001–2012. (a–c) Six scenarios (B1, B2, B3, B4, B5, and B6) investigating 
the impacts on degrading the estimation performance of irrigation water use resulting from bias. (d–f) Six scenarios (V1, V2, V3, V4, V5, and V6) investigating the impacts 
on degrading the estimation performance of irrigation water use resulting from noise. (g–i) Six scenarios (BV1, BV2, BV3, BV4, BV5, and BV6) investigating the impacts 
on degrading the estimation performance of irrigation water use resulting from the combination of bias and noise. RMSE were calculated for each site-year at different 
temporal scales (daily, weekly, and monthly).
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The estimations of irrigation water use at the monthly and annual scales matched well with farmer irrigation 
records for all the site-years in Nebraska (Figure 7). At the monthly scale, Pearson correlation coefficients of 
CON and SEQ configurations were 0.80 (p-value < 0.001) and 0.81 (p-value < 0.001), respectively, with bias of 
0.19  and −0.88 mm/m (Figure 7a). Both bimodal distributions with the peak around 0 and 100 mm/m were found 
for farmer irrigation records and estimations of irrigation water use. At the annual scale, 95% confidence intervals 
of estimations of irrigation water use were very close to the 1-to-1 line, with Pearson correlation coefficients of 
0.55 (p-value < 0.001) and 0.47 (p-value < 0.001) for CON and SEQ configurations, respectively (Figure 7b). For 
the performance comparison between CON and SEQ, we found that SEQ performed better than CON in eastern 
Nebraska, while there was little difference between CON and SEQ in western Nebraska (Figure 8 and Table 2). 
For the spatial performance comparison between eastern and western Nebraska, we found that CON and SEQ 
performed better in eastern Nebraska than those in western Nebraska, that is, higher r and lower RMSE and BIAS 
in eastern Nebraska (Figure 8 and Table 2). In addition, there was little difference in estimating irrigation water 
use between fields planted with maize and soybean (Table 2 and Figure S9 in Supporting Information S1).

Figure 6.  (a) Time series of estimations of irrigation water use using the proposed model-data fusion with concurrent configuration for synthetic experiment of 
scenario BV1 (the combinations of low bias, 1%, and low noise, 1%) during the growing season in 2004 at US-Ne1 (a continuous maize cropping system). (b) Time 
series of evapotranspiration (ET) observations, ET simulations from the ecosys model after data assimilation, and ET simulations from the ecosys model before data 
assimilation in real-time without irrigation impact during the irrigation season in 2004 at US-Ne1. The overlapped irrigation (red bar) denoted that the estimations 
of irrigation water use (i.e., irrigation estimations, black bar with hatches) hit farmer irrigation records (blue bar). ET simulations from the ecosys model before data 
assimilation without irrigation impact on the target day were corrected in real-time with irrigation impact for the next day.
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Taking the fields (1013503, 1011702, and 1011960) which grew maize in 2015 in western Nebraska as examples, 
the model-data fusion with CON and SEQ configurations successfully detected most of the irrigation events 
at the daily scale (the overlapped irrigation events, red bar) but still with some missing (blue bar) or redundant 
irrigation events (black bar with hatches) (Figure 9, and Figures S10–S14 in Supporting Information S1). The 
daily ET difference between model simulations before data assimilation (without irrigation impact, red dashed 
lines) and daily ET observations (with irrigation impact, blue solid lines) were used for irrigation detection in real 
time (Figure 9, and Figures S10–S14 in Supporting Information S1). Then, 10 irrigation particles with different 
amounts in the particle filtering were incorporated into the ecosys model to account for the impacts of irrigation 
with different amounts in real-time on each day (Figure S15 in Supporting Information S1). The final daily irriga-
tion amount was determined by the weighted average of all the irrigation particles, and it was assimilated into the 
ecosys model to remove the ET difference in real-time. Thus, daily ET simulations from the ecosys model before 
data assimilation without irrigation impacts (red dashed lines) could be updated into ET simulations after data 
assimilation with irrigation impacts (black solid lines) in real-time. In addition, the 95% confidence interval of 
cumulative estimations of irrigation water use based on 10 replicates were narrow and covered cumulative farmer 
irrigation records for most time periods (Figure 9, and Figures S10–S14 in Supporting Information S1). All these 
results demonstrated that the proposed model-data fusion with CON and SEQ configurations were robust and 
reliable for estimating irrigation water use at high spatio-temporal resolution.

The total deviation from remotely sensed ET and precipitation during the growing seasons (i.e., the estimation of 
minimum irrigation water use based on water balance (Imin = max[ETobs − Pobs, 0])) (Irmak et al., 2011; Van Dijk 
et  al.,  2018) was compared with the estimations of irrigation water use based on CON and SEQ configura-
tions and actual irrigation records applied by farmers (Figure 10). The boxplots indicated that the estimation 
of minimum irrigation water use based on water balance (mean: 120.59  and 73.92 mm/yr in eastern and west-
ern Nebraska) were much lower than the estimations of irrigation water use using CON (mean: 195.22   and 
284.26 mm/yr in eastern and western Nebraska) and SEQ (mean: 243.60 and 258.31 mm/yr in eastern and west-
ern Nebraska) and farmer irrigation records (mean: 226.14 and 274.67 mm/yr in eastern and western Nebraska; 

Figure 7.  Scatter plots of farmer irrigation records and estimations of irrigation water use at the (a) monthly and (b) annual scales using the proposed model-
data fusion framework with concurrent (CON) and sequential (SEQ) configurations across 76 site-years in Nebraska. Black dashed lines indicated the 1-to-1 
relationship. Red and blue lines were the regression lines of estimations of irrigation water use with 95% confidence intervals. The p-values were represented the 
symbols (ns meaning p > 0.05; * meaning p ≤ 0.05; ** meaning p ≤ 0.01; *** meaning p ≤ 0.001). The probability density functions in the top and right sides denoted 
the kernel density estimations of farmer irrigation records and estimations of irrigation water use.
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Figures 10a and 10c). The estimations of irrigation water use based on CON and SEQ configurations were close 
to the farmer irrigation records in eastern and western Nebraska. It indicated that our proposed model-data fusion 
framework with CON and SEQ configurations was reliable for the estimations of irrigation water use. In addition, 
we analyzed the relationships between irrigation water use and precipitation during the growing seasons to check 
the sensitivity of irrigation water use to climate variability (Figures 10b and 10d). Irrigation water use decreased 
with the increasing precipitation, which were reflected in four cases (r < 0), indicating that irrigation water use 
was smaller in wet years with higher precipitation, especially in eastern Nebraska (r = −0.60). We also found that 
the fitted regression lines with 95% confidence intervals of the estimations of irrigation water use based on CON 
and SEQ were close to those of farmer irrigation records in eastern and western Nebraska, further demonstrating 

Figure 8.  Box plots of the statistical indexes (r, RMSE, and BIAS) of estimations of irrigation water use using the proposed model-data fusion framework with 
concurrent (CON) and sequential (SEQ) configurations at different temporal scales (daily, weekly, and monthly) for all site-years in (a–c) eastern and (d–f) western 
Nebraska. The statistical indexes were calculated for each site-year. There were 24 and 52 site-years in eastern and western Nebraska, respectively.

Table 2 
The Statistical Indexes (r, RMSE, and BIAS) of the Estimations of Irrigation Water Use Using the Proposed Model-Data Fusion Framework With Concurrent (CON) 
and Sequential (SEQ) Configurations at Different Temporal Scales (Weekly, Monthly, and Annually) in the Irrigated Fields Planted With Maize and Soybean in 
Eastern and Western Nebraska

Eastern Nebraska Western Nebraska Maize Soybean

Temporal 
scales Methods r (p-value)

BIAS 
(mm)

RMSE 
(mm) r (p-value)

BIAS 
(mm)

RMSE 
(mm) r (p-value)

BIAS 
(mm)

RMSE 
(mm) r (p-value)

BIAS 
(mm)

RMSE 
(mm)

Weekly CON 0.68 (***) −1.26 11.30 0.56 (***) 0.37 12.41 0.60 (***) −0.34 11.95 0.63 (***) 1.60 12.81

SEQ 0.70 (***) 0.71 11.40 0.58 (***) −0.63 12.11 0.62 (***) −0.36 11.85 0.65 (***) 0.72 12.22

Monthly CON 0.82 (***) −5.01 30.83 0.78 (***) 1.47 29.79 0.80 (***) −1.34 29.66 0.79 (***) 6.29 32.27

SEQ 0.86 (***) 2.83 27.48 0.78 (***) −2.50 29.61 0.81 (***) −1.45 28.86 0.81 (***) 2.84 29.75

Annual CON 0.45 (*) −30.92 90.23 0.48 (***) 9.59 75.36 0.50 (***) −8.64 78.36 0.81 (**) 40.24 87.78

SEQ 0.61 (**) 17.46 72.02 0.38 (**) −16.36 74.09 0.43 (***) −9.29 72.54 0.69 (*) 18.15 79.14

Note. The p-values were represented the symbols (ns meaning p > 0.05; * meaning p ≤ 0.05; ** meaning p ≤ 0.01; *** meaning p ≤ 0.001). There were 24 and 52 
site-years in eastern and western Nebraska, respectively. There were 66 and 10 site-years planted with maize and soybean in Nebraska, respectively.
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the reliability of the proposed model-data fusion framework with CON and SEQ configurations for estimating 
irrigation water use.

In addition, the difference between farmer irrigation records and the water balance case could be treated as water 
loss unavailable for crop use (water loss = max[Iobs + Pobs − ETobs, 0]) from five potential sources, including 
runoff, deep percolation, air evaporation, plant interception, and leakage in the irrigation systems, ignoring the 
change of soil water storage (Irmak et al., 2011; Van Dijk et al., 2018). For the water balance case, we found that 
about one-third (33.56%) of available water (including precipitation and irrigation) was not used by crops across 
all the site-years (2015–2016 at 29 fields) located in Keith and Deuel counties in western Nebraska. The unused 
water fraction (33.56%) in western Nebraska was larger than that during 2001–2012 at two AmeriFlux sites 

Figure 9.  (a) Time series of estimations of irrigation water use using the proposed model-data fusion with sequential configuration at the field (1013503) which grew 
maize during the growing season in 2015 in western Nebraska. (b) Time series of evapotranspiration (ET) observations, ET simulations from the ecosys model after 
data assimilation, and ET simulations from the ecosys model before data assimilation in real-time without irrigation impact at the field (1013503) during the irrigation 
season in 2015 in western Nebraska. The overlapped irrigation (red bar) denoted that the estimations of irrigation water use (i.e., irrigation estimations, black bar 
with hatches) hit farmer irrigation records (blue bar). ET simulations from the ecosys model before data assimilation without irrigation impact on the target day were 
corrected in real-time with irrigation impact for the next day. The gray area denoted 95% confidence interval of cumulative estimations of irrigation water use with 10 
replicates.
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(US-Ne1 and US-Ne2) (17.47%) in eastern Nebraska. It was consistent with previous studies that total irrigation 
water use in Nebraska could potentially be reduced up to 25%–40% without hurting crop yields (K. E. Gibson 
et al., 2019). In addition, we found that water loss increased with precipitation (Figures 10b and 10d), indicat-
ing that farmers applied more excess irrigation with higher precipitation during the growing seasons. All these 
results suggested that the farmers' irrigation behavior at the research fields in Nebraska might be suboptimal for 
water saving, especially at the irrigated fields in western Nebraska. Thus, there should be a large opportunity to 
improve irrigation efficiency in Nebraska by adopting more efficient irrigation scheduling technologies (J. Zhang 
et al., 2021b; J. Zhang et al., 2021c).

Figure 10.  The comparison of field-scale irrigation water use among four cases (concurrent [CON], sequential [SEQ], water balance, irrigation records) during 
the growing seasons at all site-years in eastern and western Nebraska. Boxplots of irrigation water use from four cases at all site-years in (a) eastern and (c) western 
Nebraska. Relationships between irrigation water use from four cases and precipitation during the growing seasons in (b) eastern and (d) western Nebraska. CON 
and SEQ denoted the estimations of irrigation water use using the proposed model-data fusion framework with CON and SEQ configurations, respectively. Water 
balance denoted the estimations of irrigation water use based on water balance, that is, Imin = max[ETobs − Pobs, 0]. Irrigation records represented the recorded irrigation 
water use applied by farmers for each site-year. The lines in (b and d) denoted the regression lines with 95% confidence intervals. r and p were Pearson correlation 
coefficients and p-values, respectively.
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5.  Discussion
5.1.  Impacts of ET Uncertainties on the Efficacy of the Proposed Model-Data Fusion

The proposed model-data fusion approach with CON and SEQ configurations for estimating center-pivot irri-
gation water use at high spatio-temporal resolution (daily and field-scale) is successfully applied in synthetic 
and real experiments at two sets of irrigated fields in eastern and western Nebraska. The fundamental theory 
behind this approach to estimate center-pivot irrigation water use is the difference between remotely sensed ET 
observations with irrigation impacts and ET simulations from the process-based ecosys model without irrigation 
impacts. The daily irrigation events are estimated by assimilating the remotely sensed ET observations into the 
ecosys model via particle filtering with multiple irrigation events. Thus, the uncertainties of observed and simu-
lated ET have critical impacts on the efficacy of the proposed model-data fusion approach with CON and SEQ 
configurations.

If there are relatively small uncertainties in the remotely sensed ET observations and ET simulations from the 
ecosys model, the ET difference can largely be attributed to the irrigation, and our proposed model-data fusion 
can effectively detect all the irrigation events, as shown in the synthetic experiment of scenario BV1 (the combi-
nations of low bias, 1%, and low noise, 1%) in Figure 6. However, the uncertainties in the ET observations and 
simulations are unavoidable and unquantifiable. In this study, we combine the uncertainties from process-based 
model and observations together, and attribute the ET uncertainties into two sources (i.e., bias and noise). The 
ET uncertainties are represented by the Gaussian distribution (bias, μs−o, and standard deviation, i.e., noise, σs−o) 
of ET difference between the simulations from the calibrated process-based model and remotely sensed obser-
vations both with irrigation impact. The synthetic experiments (i.e., three groups of scenarios including bias-B, 
noise-V, and bias and noise-BV) indicated that the ET uncertainties with noise had larger impacts on degrading 
the performance of the proposed model-data fusion to estimate irrigation water use than those with bias. The 
reason is that bias correction embedded in particle filtering could effectively remove the ET uncertainties result-
ing from bias, while the ET uncertainties resulting from noise is difficult to be removed via particle filtering.

For the ET uncertainties in the real experiments, the noise (i.e., standard deviation) in eastern Nebraska is 
smaller than that in western Nebraska for maize and soybean (Figure S8 in Supporting Information S1). Thus, the 
proposed model-data fusion approach with CON and SEQ configurations has better performance on the estima-
tions of irrigation water use in eastern Nebraska with smaller ET uncertainties than that in western Nebraska with 
larger ET uncertainties. The fundamental reason for smaller ET uncertainties in eastern Nebraska (i.e., smaller 
noise in eastern Nebraska in Figure S8 in Supporting Information S1) is that the irrigated fields (US-Ne1 and 
US-Ne2) in eastern Nebraska use the eddy covariance-based ET observations and ET simulations from the ecosys 
model with the complete field management data sets from UNL-ENREC's CSP, while the irrigated fields in west-
ern Nebraska use the satellite-based BESS-STAIR ET observations and ET simulations from the ecosys model 
without detailed field management data sets. Note that the irrigated fields in western Nebraska are more realistic 
compared to the irrigated fields (US-Ne1 and US-Ne2) in eastern Nebraska, which have the gold standard of 
scientific observations. For most irrigated fields, the BESS-STAIR ET data set can be used as ET observations, 
while the management information is usually unknown due to lack of open access, technological knowledge, or 
held by private companies, which increases the ET uncertainties for the estimations of irrigation water use.

5.2.  Uncertainty Reduction Pathways

This study has demonstrated that the ET uncertainties have significant negative impacts on the efficacy of the 
proposed model-data fusion with CON and SEQ configurations for the estimations of irrigation water use. We 
will discuss the possible pathways for reducing the uncertainties from both data and model perspectives. From 
the data perspective, ET observations with higher accuracy could reduce the ET uncertainties and improve the 
estimations of irrigation water use. For example, the real experiments for estimating irrigation water use using 
eddy covariance measurements of ET in eastern Nebraska performed better than those using satellite-based 
BESS-STAIR ET measurements in western Nebraska (Figure 8 and Table 2). The reason was that ET obser-
vations from eddy covariance measurements were more accurate than the satellite-based ET observations. It 
further confirmed the importance of ET observations for estimating irrigation water use based on the model-data 
fusion framework. To improve remotely sensed ET observations can be possibly achieved by constraining the 
satellite-based ET models (Courault et al., 2005) with LST data set, as LST reflects the cooling effects due to 
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irrigation and in turn can be used to improve ET observations (J. Zhang et al., 2021a). However, the existing 
satellite-based LST data sets usually could not fulfill high resolutions in space and time simultaneously; for 
example, MODIS LST data is at the daily step (snapshot) but at 1 km resolution; Landsat LST resampled data is at 
30 m resolution but has 16-day interval; and ECOSTRESS LST data is at 70 m resolution but has irregular revisit 
time (Cook, 2014; Cook et al., 2014; Li et al., 2021). In addition, existing global satellite LST products generally 
show large daytime uncertainties (e.g., bias = 2°C and RMSE = 3.5°C) in croplands (Li et al., 2021), which might 
be propagated to ET observations. More advanced satellite thermal sensors (Wright et al., 2020), multi-satellite 
LST fusion algorithms (Xu & Cheng, 2021), and data-model fusion algorithms (X. Zhang, Zhou, et al., 2021) will 
potentially lead to the development of high-quality LST products at high spatio-temporal resolution in the future, 
ultimately for remotely sensed ET data sets with high accuracy.

The possible pathways from the model perspective (including inputs, process, and parameters) for reducing the 
uncertainties will be discussed here. (a) More detailed field-scale management data collection (such as planting 
date, fertilizer records, and irrigation systems) could effectively reduce the uncertainties of model simulations of 
ET and thus improve the estimations of irrigation water use (Massari et al., 2021). Especially, irrigation seasons 
(starting and ending day) could effectively improve the estimations of irrigation water use. Irrigation seasons 
are determined based on farmer irrigation records in this study, while they are usually unknown at large-scale 
and need more investigation in the future. The year-specific irrigation seasons could be approximated based on 
local farmers' experience and year-specific climate rainfall information, such as mid-June to mid-September for 
maize in 2022 at North Platte, western Nebraska (UNL, 2022). (b) Advanced ecosystem models with full phys-
ical mechanisms, such as plant hydraulics and plant growth fulfilled in the ecosys model, could improve crop 
water use (i.e., ET) simulations, thus accurate ET difference between observations and simulations could help for 
estimating irrigation water use. (c) Parameters related to crop phenology, photosynthetic, and soil hydrological 
properties in the ecosystem models had large impacts on ET simulations. More reliable and high-fidelity observa-
tions, such as remotely sensed GPP and LAI data sets (C. Jiang et al., 2021; Kimm et al., 2020; Wu et al., 2020), 
could be applied to constrain these parameters in the ecosystem models to obtain reliable crop water use and 
hydrological simulations.

5.3.  Implications of the Current Study

Estimating irrigation water use at high spatio-temporal resolution in this study can contribute to sustainable 
regional water management and understanding groundwater depletion for sustainable groundwater management 
in groundwater-dependent irrigated regions. The proposed model-data fusion framework for estimating irrigation 
water use can be applied in the irrigated agricultural lands with different crops and/or multiple cropping systems 
at large-scale. The remotely sensed BESS-STAIR ET, GPP, and LAI data sets at high-spatiotemporal resolutions 
(daily and field-scale) can be used to constrain the process-based models at large-scale. However, the parameters 
(ET difference threshold and irrigation duration) need to be calibrated with some necessary information, such 
as the field-scale irrigation water use at some sample fields or total irrigation water use at large-scale regions. 
The application of this model-data fusion framework to estimate irrigation water use can be treated as water 
footprint estimation in the irrigated lands. Current existing water footprint data sets have coarse spatial and 
temporal resolutions, and our study can provide water footprint data sets at the daily and field scale. Long-term 
water footprint data sets can be used to investigate the spatio-temporal variability of irrigation efficiency, thus 
to evaluate different irrigation conservation programs, such as the Local Enhanced Management Area program 
in Kansas (Deines et al., 2021) and the widespread adoption of low-energy precision application technologies 
(McCarthy et al., 2020). Then, potential regions with low irrigation efficiency but water scarcity can be iden-
tified to reform regional water policies to regulate farmers' irrigation water use for sustainable water manage-
ment (Foster et al., 2020; D. Wang & Cai, 2007). In addition, water footprint data sets at high spatio-temporal 
resolution can be used to understand groundwater pumping and recharge rate patterns for long-term aquifer 
conservation in groundwater-dependent irrigated regions, such as the High Plains Aquifer (HPA). Agriculture 
in Nebraska, Kansas, and Texas largely depends on groundwater pumping in the HPA for irrigation, but there is 
large spatial variability for the groundwater level changes, that is, slight groundwater level declines in northern 
HPA (Nebraska) while serious groundwater level declines in southern HPA (Kansas and Texas; Nie et al., 2018; 
Scanlon et al., 2012). Application of our methods in HPA may provide a pathway to investigate the primary 
causes of the disparities for groundwater level changes and the possible strategies for groundwater sustainability 
in the HPA.
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Estimating irrigation water use at high spatio-temporal resolution can also help farmers to achieve sustainable 
irrigation. The proposed method in this study can effectively reflect farmers' irrigation behavior, thus its applica-
tions at large-scale can be used to understand the spatio-temporal variability of farmers' irrigation practices and 
to estimate water loss fractions unavailable for crop use (Foster et al., 2019). Water loss fractions (such as around 
one-third in western Nebraska) can indicate how much space is left for irrigation improvements. Thus, estimat-
ing irrigation water use at high spatio-temporal resolution can help to improve farmers' irrigation practices with 
more science-based irrigation methods in regions with low irrigation efficiencies and high water loss fractions (J. 
Zhang et al., 2021b; J. Zhang et al., 2021c). In addition, estimations of irrigation water use can compensate for 
the missing irrigation records if farmers do not provide, then accurate soil water budgets at the field level can be 
provided for precision irrigation with the estimations of irrigation water use as past water inputs. Furthermore, 
accurate soil water budgets with the estimations of irrigation water use can also help to estimate ecosystem 
carbon, energy, and nitrogen budgets, thus for modeling crop growth and precision nitrogen management.

Last but not least, the estimations of irrigation water use (irrigation timing and amount) in this study can help the 
ecosystem and hydrological models to track terrestrial water and energy cycles in the irrigated regions. Irrigation 
is the major anthropogenic disturbance of terrestrial water and energy cycles in the irrigated agricultural lands 
(McDermid et al., 2021), as irrigation performs as water inputs and affects surface energy budget (i.e., energy 
partitioning between latent and sensible heat fluxes). The estimations of irrigation water use reflecting farmers' 
irrigation behavior in this study can be used to investigate the direct impacts of irrigation on regional water and 
energy budgets with land-atmosphere feedbacks. The traditional criterion-based irrigation scheduling (such as 
maximum allowable depletion, MAD-50%) set in the ecosystem and hydrological models cannot reflect farmers' 
irrigation decisions (de Rosnay et al., 2003; Haddeland et al., 2006), as farmers' irrigation decisions are compli-
cated due to many factors, such as irrigation infrastructures, farmers' preferences, and climate conditions (Foster 
et al., 2020; D. Wang & Cai, 2007). The proposed method in this study offers a pathway to estimate irrigation 
water use at high spatio-temporal resolution reflecting farmers' irrigation behavior.

6.  Conclusions
We have demonstrated that our proposed model-data fusion framework with CON and SEQ configurations is 
effective for estimating center-pivot irrigation water use at the daily and field scale. The irrigation signals are 
detected by the difference between remotely sensed ET observations with irrigation impacts and ET simulations 
from the agroecosystem (ecosys) model without irrigation impacts. The uncertainties of remotely sensed ET 
observations and ET simulations from the ecosys model have critical impacts on the efficacy of the proposed 
model-data fusion approach with CON and SEQ configurations. We conclude two major findings based on two 
types of experiments using synthetic and real ET observations in Nebraska: (a) Three groups of scenarios (bias-B, 
noise-V, and bias and noise-BV) for the synthetic experiments indicated that, among two sources of ET uncertain-
ties (bias and noise), noise had larger impacts on degrading the performance of the proposed model-data fusion to 
estimate irrigation water use than those with bias. Systematic bias can be removed by bias correction embedded in 
the particle filtering. (b) The proposed model-data fusion framework with CON and SEQ configurations offered a 
pathway to estimate center-pivot irrigation water use at high spatio-temporal resolution. The estimations of irriga-
tion water use at the monthly and annual scales matched well with farmer irrigation records, with RMSE less than 
30 mm/m and 80 mm/yr, absolute BIAS less than 1 mm/m and 6 mm/yr, and r around 0.80 and 0.50, respectively. 
Although detecting daily irrigation records was very challenging, our method still gave a good performance with 
RMSE, BIAS, and r around 2.90, 0.03, and 0.4 mm/d, respectively. The proposed model-data fusion framework 
for estimating irrigation water use at high spatio-temporal resolution could contribute to regional water manage-
ment, sustainable irrigation, and better tracking terrestrial water and energy cycles.

Appendix A
Ecosys, an advanced agroecosystem model based on biophysical and biochemical mechanisms, uses the 
multi-layered soil-root-canopy system to track the water, energy, carbon, and nutrient cycles (Grant, 1995, 1997; 
Grant et al., 1993). Ecosys can simulate major agricultural management practices, including irrigation (Grant 
et al., 2007, 2004), fertilizer (Grant, Juma, Robertson, Izaurralde, & McGill, 2001), crop rotation (Grant, 1997), 
and tillage (Grant, 1997), which has been extensively validated in many agricultural ecosystems (Grant, 1995; 
Grant et al., 2007; Grant & Flanagan, 2007; Grant et al., 2001, 2011, 1993, 1999; Mezbahuddin et al., 2020; 
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Zhou et  al.,  2021). The hourly crop water uptake, carbon assimilation, and energy fluxes are determined 
through the hourly two-stage convergence of canopy temperature and canopy water potential in the first and 
second stages, respectively. Canopy temperature (Tc) is calculated for the first-order closure of canopy energy 
balance (Equation A1), including canopy net radiation (Rn(c)), canopy latent heat (LEc, Equation A2), canopy 
sensible heat (Hc, Equation A4), and canopy heat storage (Gc, Equation A5). There are two sources for the 
canopy LEc, including canopy evaporation from free water on crop leaf surfaces (LEc−e, Equation A3a) and 
canopy transpiration (LEc−t, Equation A3b). Then, canopy water potential (ψc) is calculated for canopy water 
balance between root water uptake from multiple soil layers and capacitance (left term in Equation A6) and 
canopy transpiration (right term in Equation  A6) based on the closure of canopy energy balance. Canopy 
transpiration is jointly controlled by aerodynamic resistance (ra) and canopy stomatal resistance (rc), which is 
controlled by two mechanisms, including canopy photosynthesis and canopy turgor potential. In addition to 
the net radiation retained by the canopy (Rn(c)), the remaining net radiation is retained by soil surface (Rn(g)), 
and fulfilled the closure of soil energy balance (Equation A7). The soil surface latent heat (LEg) includes two 
sources (Equation A8): the evaporation from surface litter (LEg−l, Equation A9a) and the evaporation from soil 
surface (LEg−s, Equation A9b). More details about the soil-plant water relations in ecosys can be found in Grant 
et al. (2020, 1999).

Canopy energy exchange:

𝑅𝑅𝑛𝑛(𝑐𝑐) + LE𝑐𝑐 +𝐻𝐻𝑐𝑐 + 𝐺𝐺𝑐𝑐 = 0� (A1)

LE𝑐𝑐 = LE𝑐𝑐−𝑒𝑒 + LE𝑐𝑐−𝑡𝑡� (A2)

LE𝑐𝑐−𝑒𝑒 = 𝐹𝐹𝑐𝑐𝐿𝐿𝐿𝐿(𝑒𝑒𝑎𝑎 − 𝑒𝑒𝑐𝑐)∕𝑟𝑟𝑎𝑎� (A3a)

LE𝑐𝑐−𝑡𝑡 = 𝐹𝐹𝑐𝑐𝐿𝐿𝐿𝐿(𝑒𝑒𝑎𝑎 − 𝑒𝑒𝑐𝑐)∕(𝑟𝑟𝑎𝑎 + 𝑟𝑟𝑐𝑐)� (A3b)

𝐻𝐻𝑐𝑐 = 𝐹𝐹𝑐𝑐𝐶𝐶𝑎𝑎(𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑐𝑐)∕𝑟𝑟𝑎𝑎� (A4)

𝐺𝐺𝑐𝑐 = 𝐶𝐶𝑐𝑐(𝑇𝑇𝑐𝑐(𝑡𝑡−1) − 𝑇𝑇𝑐𝑐(𝑡𝑡))� (A5)
∑

n

(𝜓𝜓𝑐𝑐 − 𝜓𝜓𝑠𝑠𝑠𝑠𝑠) ∕ (𝑟𝑟𝑠𝑠𝑠𝑠𝑠 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑟𝑟𝑎𝑎𝑎𝑎𝑎) +𝑋𝑋𝑐𝑐𝛿𝛿𝛿𝛿𝑐𝑐∕𝛿𝛿𝛿𝛿 = (𝑒𝑒𝑎𝑎 − 𝑒𝑒𝑐𝑐)∕(𝑟𝑟𝑎𝑎 + 𝑟𝑟𝑐𝑐)� (A6)

Soil surface energy exchange: 

𝑅𝑅𝑛𝑛(𝑔𝑔) + LE𝑔𝑔 +𝐻𝐻𝑔𝑔 + 𝐺𝐺𝑔𝑔 = 0� (A7)

LE𝑔𝑔 = LE𝑔𝑔−𝑙𝑙 + LE𝑔𝑔−s� (A8)

LE𝑔𝑔−𝑙𝑙 = 𝐿𝐿(𝑒𝑒𝑎𝑎 − 𝑒𝑒𝑔𝑔−𝑙𝑙)∕𝑟𝑟𝑔𝑔−𝑙𝑙� (A9a)

LE𝑔𝑔−𝑠𝑠 = 𝐿𝐿(𝑒𝑒𝑎𝑎 − 𝑒𝑒𝑔𝑔−𝑠𝑠)∕𝑟𝑟𝑔𝑔−𝑠𝑠� (A9b)

where Fc is the fraction of shortwave irradiance retained by the canopy (m 2 canopy area m −2 ground area); L is 
the latent heat of water evaporation (MJ m −3); υ is the specific volume of water (m 3 Mg −1); ea is atmospheric 
vapor density at air temperature and ambient humidity; ec is canopy vapor density at Tc and ψc; Ca is heat capacity 
of atmosphere (MJ m −3 K −1); Ta is air temperature (K); Cc is areal heat capacity of the canopy (MJ m −2 K −1); 
ψs is the water potential in soil layer n; rs,n is the radial resistance from soil to root surfaces in soil layer n; rr,n is 
the radial resistance from those surfaces to root axes in soil layer n; ra,n is the axial resistances from root axes to 
canopy in soil layer n; Xc is canopy capacitance; Hg and Gg represent the soil sensible heat and soil heat storage, 
respectively; eg−l and eg−s represent the surface litter vapor density and the soil surface vapor density, respectively; 
and rg−l and rg−s represent the surface litter boundary layer resistance and the soil surface boundary layer resist-
ance, respectively.
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Data Availability Statement
Ecosys can be freely downloaded from GitHub (https://github.com/jinyun1tang/ECOSYS; Tang & Grant, 2020). 
The field measurements (including irrigation records) at two irrigated fields (US-Ne1 and US-Ne2) in east-
ern Nebraska can be freely accessed from http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/ (Pastorello 
et al., 2020). Actual farmer irrigation records at 29 irrigated fields in western Nebraska are collected from AgSense 
and FieldNET irrigation software provided by the Nebraska Chapter of The Nature Conservancy through the 
Western Nebraska Irrigation Project. The meteorological variables from the North American Land Data Assimi-
lation System (NLDAS-2) can be freely accessed from https://ldas.gsfc.nasa.gov/nldas/v2/forcing (NASA, 2022). 
The soil information from the Gridded Soil Survey Geographic Database (gSSURGO) data sets can be freely 
accessed from https://data.nal.usda.gov/dataset/gridded-soil-survey-geographic-database-gssurgo (Staff, 2022). 
The BESS-STAIR ET data sets (daily and field-scale) during the growing seasons from 2015 to 2016 at 29 fields 
in western Nebraska used in the real experiments are shared via GitHub (https://github.com/Jingwenzhang92/
BESS-STAIR-ET), and are deposited in Zenodo permanently (https://doi.org/10.5281/zenodo.7251009; C. Jiang 
& Zhang, 2022).
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