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ABSTRACT

Transfer learning provides a powerful tool for incorporating data from related studies into a target study
of interest. In epidemiology and medical studies, the classification of a target disease could borrow infor-
mation across other related diseases and populations. In this work, we consider transfer learning for
high-dimensional Generalized Linear Models (GLMs). A novel algorithm, TransHDGLM, that integrates data
from the target study and the source studies is proposed. Minimax rate of convergence for estimation is
established and the proposed estimator is shown to be rate-optimal.

Statistical inference for the target regression coefficients is also studied. Asymptotic normality for a debi-
ased estimator is established, which can be used for constructing coordinate-wise confidence intervals of
the regression coefficients. Numerical studies show significant improvement in estimation and inference
accuracy over GLMs that only use the target data. The proposed methods are applied to a real data study
concerning the classification of colorectal cancer using gut microbiomes, and are shown to enhance the
classification accuracy in comparison to methods that only use the target data. Supplementary materials for
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1. Introduction

Generalized Linear Models (GLMs) are widely used in many
areas of statistical applications (Hastie, Tibshirani, and Fried-
man 2009). In genetic and other biomedical applications, the
number of covariates can be quite large and high-dimensional
GLMs are frequently adopted for classifying diseases and health-
related outcomes. In the age of big data, the availability of public
datasets makes it possible to improve the learning performance
of a new study by incorporating information from the exist-
ing ones. This is the goal of transfer learning, which aims to
incorporate the knowledge from different but related studies to
enhance the accuracy of the target study of interest (Torrey and
Shavlik 2010). Transfer learning has been successfully applied in
a range of different fields, including pattern recognition, natural
language processing, and drug discovery (Pan and Yang 2009;
Turki, Wei, and Wang 2017; Bastani 2018). In particular, transfer
learning for the GLMs has been used in image classification and
disease diagnosis (Hosny, Kassem, and Foaud 2018; Sevakula
et al. 2018). However, little is known about their statistical
guarantees.

In this article, we study transfer learning for high-dimensional
GLMs in the setting where the data are available from a target
study and multiple source studies. In the target study, we observe
np iid samples x?o) € RP and y;o) e YCR i=1...,n
drawn from a GLM with parameter 8 € RP. Assume that

the conditional distribution of ygo) given xgo) belongs to the
canonical exponential family with the following density function
(ignoring a multiplier not depending on )

Y0 T -y (x”)TB)

() - W

Fo21x”) oc exp

where c(0®) is a nuisance scale parameter, and v is the
known cumulant generating function of y; given x;. First, setting
V() = u?/2 and c(o) = o? in (1) recovers the (Gaussian)
linear model. Model (1) also includes other popular models
such as logistic, multinomial, and Poisson regression models.
The negative log-likelihood, which is also the loss function, for
the target data is

no
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In the high-dimensional regime where p can be much larger than
the sample size 1, the coefficient vector g is often assumed to be
sparse such that the number of nonzero elements of 8, denoted
by s, is much smaller than p.

In the setting of transfer learning, assume that we have obser-
vations from K different source studies. For k = 1,...,K, let
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(xl(k), ygk)), i =1,...,ng, denote the observations from the kth

study drawn from a GLM with density

) TwE P — g () Tw®)
C(O' (k)) ’

Fuir 7120 o exp (
(3)

where w® e RP is the coefficient vector for the kth study
satisfying w®) = g + 8% For convenience, we define §¥ = 0.
The similarity between the kth study and the target study is
captured by the contrast vector §®* = w® — B. The smaller
the magnitude of 8%, the higher the similarity. Let & denote the
similarity level such that max; <x<x ||8(k) g < h for some fixed
q € [0,1]. Specifically, g = 0 corresponds to the exact sparse
contrast vectors and when g > 0, 8 can have many nonzero
coeflicients but their magnitude decays relatively fast. The range
of q in consideration is flexible in applications and our proposed
method can adapt to q.

The goal is to optimally estimate and make inference for the
target parameter § € RP based on the available data from both
the target and source studies.

1.1. Related Work

In the conventional setting where only data from the target study
is available, estimation for high-dimensional GLMs has been
well-studied. Van de Geer (2008) uses ¢;-penalty and derives
an oracle inequality and estimation error rates. Negahban et al.
(2012) studies M-estimators and proves estimation error rates
under the restricted strong convexity condition. Huang and
Zhang (2012) considers convex loss functions with weighted
Lasso penalties. van de Geer et al. (2014) proposes a debiasing
procedure for inference by computing the correction score via
another Lasso on the Hessian matrix. Cai, Guo, and Ma (in press)
introduces a debiasing procedure for the GLMs with binary
outcomes via quadratic optimization. The idea of debiasing
has also been generalized to tackle high-dimensional propor-
tional hazards models (Fang, Ning, and Liu 2017), mixed-effects
models (Bradic, Claeskens, and Gueuning 2020; Li, Cai, and
Li 2020), and for multiple testing (Zhang and Cheng 2017;
Dezeure, Bithlmann, and Zhang 2017; Javanmard and Javadi
2019; Ma, Tony Cai, and Li 2020). Incorporating prior infor-
mation into high-dimensional regression models has also been
studied. Jiang, He, and Zhang (2016) considers GLM Lasso with
prior knowledge on the support of regression coefficients, where
the prior knowledge enters the model fitting via a penalty term.
Zhang et al. (2020) considers semi-supervised learning with iid
data, where the prior information is revealed in the existence of
a proxy of the outcome, which is observed for all the samples.
Transfer learning has been studied in different models. Cai
and Wei (2021) considers nonparametric classification and
establishes the minimax optimal rate and proposes an adaptive
classifier. Tripuraneni, Jin, and Jordan (2020) proposes an
algorithm in linear models that assumes all the source studies
and the target study share a common, low-dimensional linear
representation. Transfer learning in general functional classes
has been studied in Tripuraneni, Jordan, and Jin (2020) and
Hanneke and Kpotufe (2020). Bastani (2018) studies estimation
and prediction in high-dimensional linear models with one

source study, where the sample size of the source study is larger
than the number of covariates. Li, Cai, and Li (in press-a)
proposes methods for transfer learning in high-dimensional
linear models and establishes the minimax optimal rate. Li,
Cai, and Li (in press-b) introduces a method for estimation and
edge detection in high-dimensional Gaussian graphical models
with knowledge transfer. However, the methods established
in the aforementioned two papers cannot be directly used for
GLMs as the link functions in GLMs are nonlinear in general.
Takada and Fujisawa (2020) considers Lasso with transfer
learning based on an initial estimate of the regression coefficient
vector. Liang, Zhong, and Park (2020) studies high-dimensional
classification with auxiliary outcomes in the setting where the
same set of individuals are used to generate different outcomes,
which is different from our setting. In a concurrent work
(Tian and Feng 2022), they studied estimation and inference
in high-dimensional GLM with transfer learning following
the framework of Li, Cai, and Li (in press-a). They assume
uniformly bounded designs with g = 1 while we assume generic
sub-Gaussian designs and our algorithm adapts to g € [0,1].
Moreover, their theoretical results require some regularity
conditions on the Hessian matrices (Assumption 4 in their
Section 3.1) that are not needed in this work.

A related but different problem is multi-task learning (Zhang
and Yang 2017), where the goal is to jointly estimate all the
parameters for multiple tasks. Multi-task learning has been stud-
ied in various settings, including linear regression (Agarwal,
Negahban, and Wainwright 2012; Dondelinger, Mukherjee, and
The Alzheimer’s Disease Neuroimaging Initiative 2020) and
graphical models (Chen et al. 2010; Danaher, Wang, and Witten
2014). An optimal multi-task procedure does not necessarily
yield an optimal estimator for the target task in transfer learning.

1.2. Our Contributions

A novel algorithm is developed for estimation and inference in
high-dimensional GLMs with knowledge transfer. The proposed
method estimates the target parameter and contrast vectors
jointly via constrained ¢;-minimization. Minimax rate of con-
vergence is established and the proposed estimator is shown to
attain the optimal rate under mild conditions. The optimal rate
for transfer learning is faster than the corresponding rate in the
single-task setting under mild similarity conditions between the
source and target tasks.

A debiasing method is introduced in the transfer learning set-
ting. The debiased estimator of an individual coefhicient is shown
to be asymptotically normal and is then used for constructing
its confidence interval. It is shown that this debiased estimator
has a smaller magnitude of remaining bias in comparison to the
one in the single-task setting. As a result, the asymptotic nor-
mality holds under weaker sparsity conditions on f in transfer
learning when the source studies are sufficiently informative.
Consequently, inference for a given coefficient §; is no longer
restricted to the “ultra-sparse” regime for B. This reveals the
benefit of transfer learning for statistical inference.

1.3. Organization

The rest of the article is organized as follows. In Section 2, a
transfer learning algorithm using a constrained £; -minimization



for estimation in GLMs is introduced. Section 3 provides the
theoretical guarantees for our proposal and establishes the
minimax lower bound. In Section 4, a debiasing procedure
for inference of p; is provided and the resulting estimator
is shown to be asymptotically normal. To guarantee positive
transfer, an aggregation procedure is developed in Section 5.
Section 6 considers the numerical performance of our proposed
algorithms in comparison to some existing methods. The results
provide empirical evidence of the gain of transfer learning.
The proposed methods are applied to analyze a microbiome
dataset for classifying colorectal cancer in Section 7. The results
demonstrate the advantage of transfer learning. Section 8
concludes the article. The proofs and additional numerical
results are given in the supplementary materials (Li et al. 2021).

1.4. Notation

For two sequences of positive numbers {a,} and {b,}, we write
an < by ifa, < cb, for some universal constant ¢ € (0, 00), and

ay 2 byifa, > b, for some universal constant ¢’ € (0, 00). We
say ap, < b, ifa, < b, anda, 2 b,. We use ¢, C, ¢, 1,62, - - - »
and so on to denote universal constants. Their specific values
may vary from place to place. For an integer k > 0, [k] denotes
theset{1,2,...,k}. Foravector v € R? and a subset S C [d], we
use vs to denote the restriction of vector v to the index set S. We
write supp(v) := {j € [d] : v; # 0}. Let |[v], = (Z]d=1 |vj|P)1/P
for 0 < p < o0, and let ||v|o denote the number of nonzero
coordinates of v. For a function f : R — R, ||f|lc denotes
the essential supremum of |f| and f and f denote the first and
second derivatives, respectively. The sub-Gaussian norm of a
random variable u € Ris [uly, = sup;.,; I712EY! 4| and
the sub-Gaussian norm of a random vector U € R" is ||U]|| vy, =
SUP |y, =1,vern (U, V)lly,. Letzy be the (1 —a)th quantile of the
standard normal distribution.

2. Transfer Learning via Constrained £;-Minimization
2.1. Rationale from Moment Equations

To estimate 8 and {§© }sz1 , we start with the moment equations.
Let () = 8y ()/dm. The function ¥ (w) is nonlinear in
general. For instance, vp) = 1/ + exp(—p)) for logistic
regression. The score functions based on the likelihood func-
tions (1) and (3) satisfy

E [P = ()T B +50)} =0, k=0,....K
(4)
These (K+1) x p moment equations guarantee the identifiability
of the unknown parameters 8 and {S(k)}Ik{:l. As B and {S(k)}f:1
are assumed to be (approximately) sparse, we will consider a
sparsity-induced estimator based on the moment equations.

As opposed to transfer learning for linear models, we see
from (4) that there is no way to separate the estimation of § and
{8 (k) }I]f: | in GLMs. This brings additional challenges in devising
the algorithm and in the theoretical analysis. We propose a
constrained optimization algorithm for jointly estimating the
target parameter 8 and contrast vectors {S(k) }kK=1' For a param-
eter vector b € RP, we denote the empirical score function by
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LO®) =3 % x(k) (y(k) 1/'/((x§k>)Tb)). We consider

350 3®
(B,8 )

K

= argming g {AglBI+ Y mld¥h} )
k=1
HL<’<>(/3 - 6(">)H < g for0 <k <K
subject to >

K
HL<°> B+ Y LUB+ 6<’<>>H <
k=1 0

where Ag and A, 1 < k < K are the tuning parameters
and will be specified later. The objective function in (5) encour-
ages sparse solutions. Notice that there are (K + 2) x p con-
straints in (5) while there are (K + 1) x p unknown parameters.
All these constraints are essential. Specifically, the constraint
ILO(B)|loo < Ao is inherited from the target model, imposing
that B should be identified as the true parameter for the target
model. The constraint ||L® (8 + 8% |l < Ak comes from the
score functions from kth source study, imposing that §* should
be identified as w®) — B. The last constraint in (5) aggregates
the moment equations for all the studies in use. It ensures that
the estimation of B borrows information across source studies.
Specifically, imagining {S(k)}f:1 are known, the last constraint
ensures that 8 is estimated based on N = ZkK=o nk independent
samples and hence can lead to a faster convergence rate. We
formalize the transfer learning algorithm in Section 2.2.

2.2, Estimation of the Target Parameter

Let xgk) be the ith row of X® and y?k) be the ith element of
y®, k = 0,...,K. Our proposed algorithm, TransHDGLM, is
formalized in Algorithm 1.

In comparison to (5), an extra constraint is bounded ¢5-

norm of each contrast vector S(k). Computationally, the joint
optimization in (6) is still a convex programming. In Section
G in the supplements, we provide an iterative algorithm as an
approximate solver of (6) and (7).

Different from the transfer learning for linear models, the
analysis of transfer learning for the GLMs has its unique chal-
lenges. The Oracle trans-Lasso algorithm in Li, Cai, and Li (in
press-a) performs estimation and prediction for the linear mod-
els with knowledge transfer. That algorithm cannot be directly
extended to the GLM setting because it assumes homogeneous
covariance matrices for all the informative studies. That algo-
rithm was further extended to deal with heterogeneous designs
and it has the same number of tuning parameters as in our Algo-
rithm 1. Another challenge is that the empirical Hessian matri-
ces can be ill-posed with inaccurate initial estimators even if the
oracle ones are all positive definite. Therefore, we try to avoid the
use of one-step estimators and propose a global solver instead.

3. Theoretical Guarantees for Estimation
Define the population Hessian matrices as
g =Bl ) i () AL T
—E [x§k> (x,?"))W((xﬁ"))Tw(k))] L k=1,.. K

We introduce two regularity conditions.
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Algorithm 1: TransHDGLM, transfer learning via con-
strained £;-minimization

Input : Target data (X©, y@), source data
{(X®,y®)K_ | tuning parameter
lo
Ak = CpNk gp ,0<k<K,and)gasin (8)
no N\ ng
onr some constant ¢, > 0.
Output: §.
~ 5
B.8" )
K
= argminﬁ,us(k) |I2§C{)‘l3 1811 + Z)&kua(k)”l}
k=1
(6)
[i0@+80)| <mvosksk
subject to >

Hi“’)(m FY 0@ 5“‘))” <A
k=1 00
(7)

Condition 3.1 (Sub-Gaussian designs and positive definite Hes-
sians). Fork=0,...,K, x?k) are independent distributed with
mean zero and covariance £ ® such that A (E®) < cy. For
k = 0,...,K, the population Hessian matrices Xg and X«
satisfy that Amin(Xg) > ¢p > 0and Apin(X,,w) > ¢ > 0. For

k=0,...,K, x?k) have finite sub-Gaussian norms.

Condition 3.2 (Sub-Gaussian random errors). For any k =
0,...,K, the random errors y?k) — ¢((x§k))—rw(k)) are indepen-
dent and have finite sub-Gaussian norms.

Condition 3.3 (Lipschitz condition for yr). The derivatives v (a)
and ¥ (a) exist for a € R. Moreover, ¥ (a) is uniformly bounded
and |log ¥ (a+ b) —log ¥ (a)| < Clb| foralla,b € R.

Condition 3.1 assumes independent sub-Gaussian designs
with positive definite covariance matrices. The positive definite-
ness of Hessian X« essentially requires that xZ}((xfk))Tw(k)) is
bounded away from zero with high probability and it is mild for
sub-Gaussian designs. The covariance matrix X * for different
studies can be different, that is, the distributions of the covariates
in different tasks are allowed to be heterogeneous. Condition 3.2
requires the random noises to be sub-Gaussian, which is typ-
ical in high-dimensional analysis for fast convergence rates.
Condition 3.3 is a Lipschitz condition on the link function.
Conditions 3.1, 3.2, and 3.3 are common in the study of the
GLMs, see Huang and Zhang (2012), Negahban et al. (2012),
Cai, Wang, and Zhang (2020) and the reference therein. It holds
for linear, logistic, and multinomial models. Beyond the GLMs,
some other models for binary outcomes can also applicable, such
as model (1.1) in Cai, Guo, and Ma (in press). The Poisson
or log-linear models have heavy-tailed distributions and may
not satisfy Condition 3.2. We comment that our method is still

applicable but the convergence rate may not be as sharp as what
we will establish in Theorem 3.1.

We now analyze the convergence rate of the estimator
obtained in Algorithm 1. Formally, the parameter space we
consider is

Oq(s,h) = {(,3,6(”,...,5“0) 1Blo < s, max 18P,
1<k<K
<h|IBll2 < Cmax 6P|, < C},
k<K

where g € [0, 1] enforces either a hard (q = 0) or soft (g € (0,1])
form of sparsity on the contrast vectors and C can be any positive
constant. Let nni, = ming<k<x nx and N = ZkK:o ng. In our
theoretical analysis, we take the tuning parameter Ag as

NG+ it = ®)

NG/ L 4 h? logf’)*—*/J) ifg € (0,1].

This tuning parameter Ag depends on the sparsity parameter
s and h. This is for establishing a desirable £;-error bound for
the proposed estimator, which is needed in the debiasing step
for statistical inference. As we will prove in Remark 3.1, for
estimation and prediction purposes where only ¢,-error bound
is sufficient, it suffices to choose Ag = c¢/Nlogp, which is
independent of k and s. The choice of ¢, depends on the sub-
Gaussian norms of the observations. In practice, the tuning
parameters can be chosen by cross-validation. Next, we define
the following quantity that will be used to characterize the rate
of convergence.

We are now ready to present the theoretical guarantees for the
output B of Algorithm 1.

no
hi(“82)1-a/2 if g € (0,1].

Theorem 3.1 (Convergence rate ofﬁ). Let g € [0,1] be a fixed
constant. Assume Conditions 3.1, 3.2, and 3.3 and the true
parameters are in ®g4(s, k). Suppose slogp/ng < c1, Tpyg <
c1, and Kng < ¢|N for some small enough constant ¢;. Taking
Mg and Aj as in Algorithm 1 with large enough constant c;, then
with probability at least 1 — exp(—c; min{log p, imin}), it holds
that

slogp 2
1B — B3 < cs E < N +Tno,th> 9)

18— Bl < ch—*< ,/l(’g + /T, q)

Remark 3.1. Under the conditions of Theorem 3.1, if we take
Ag = ciy/Nlogp, then (9) still holds with probability at least
1 — exp(—cy min{log p, fmin})-

(10)

Theorem 3.1 establishes the convergence rate of B under
mild regularity conditions for any fixed g € [0,1]. We first
highlight the gain of transfer learning over the single-task GLM
estimation. We know that the minimax optimal rate for single-
task GLM is slog p/ng. Theorem 3.1 implies that when N >> ng



and Ty, AW < slog p/no, B would admit a faster convergence
rate than the single-task minimax rate. In fact, Ty,,,q A h? is the
minimax error rate for estimating a p-dimensional vector with
sample size ng and £4-sparsity h. This term comes from the esti-
mation of contrast vectors. The condition Ty, g AR? < slogp/ng

is guaranteed by h <« s when g = 0 and by h < s,/logp/ng
when g = 1. Hence, when the similarity between source studies
and the target study is high, the estimation performance can
be improved by transfer learning. When q = 1 and informative
studies are used (h < s,/logp/ng), the rate in (9) recovers the
convergence rate of Oracle Trans-Lasso in linear models (Li,
Cai, and Li in press-a). If noninformative studies are included,
the TransHDGLM can have worse performance than single-
task lasso and we further develop an aggregated TransHDGLM
in Section 5 to tackle this case. We also remark that the £;-
error in Theorem 3.1 is useful for conducting statistical inference
for the target parameters, which will be further illustrated in
Section 4.

We now discuss the regularity conditions in Theorem 3.1.
The condition slog p = O(ny) is standard for single-task sparse
regression. As h is relatively small, bounded T, 4 is not hard
to satisfy in applications. Except for Negahban et al. (2012),
most existing literature on single-task GLM requires uniformly
bounded designs or requires stricter slogp = O(,/ng). Our
analysis generalizes the restricted strong convexity analysis in
Negahban et al. (2012) to multiple heterogeneous datasets and
achieves mild regularity conditions.

Moreover, we establish the following lower bound result
showing that our proposed algorithm makes full use of the
auxiliary information as the convergence rate obtained in
Theorem 3.1 is in fact minimax rate-optimal.

Theorem 3.2 (Minimax lower bound). Suppose B is an estimator

based on ny iid samples {(xgo), ygo))}?il drawn from model (1),
and source samples {(xl(k), yfk))}?il drawn from model (3) for
1 < k < K. For Tgq N W < slogp/ny = o(1), we have

N | =

A slo
Plinf sup 1B—BI22 8L 1 Al >
B BeOy(sh) N

Remark 3.2 (Implications on multi-task GLM estimation). The
proposed TransHDGLM algorithm can also be used for multi-
task GLM learning, where the goal is to jointly estimate 8 and
(wh }X_, (Zhang and Yang 2017). Specifically, after fitting 8 and

~ ~(k
8® with the Algorithm 1, one can estimate w(®) by B + 3 ),
k = 1,...,K. Under the conditions of Theorem 3.1, it holds
that

K
", A an2 M 30 g2 slogp 2
ﬁllﬂ—ﬂllfr;ﬁllﬂﬁ —wP 3 <y — HTmarh

with probability at least 1 — exp(—c5 min{log p, imin}) for some
positive constants ¢4 and cs.

The proof follows directly from the proof of Theorem 3.1 and
is provided in the supplementary materials.
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4, Inference for the Target Parameters
4.1. A Debiased Estimator

We introduce a debiased estimator for §; based on [} , the output
of Algorithm 1. We will use the target data for debiasing. Specif-
ically, following the general debiasing recipe (Zhang and Zhang
2014; van de Geer et al. 2014; Javanmard and Montanari 2014),
define

Y @ T — () TR
no ’

B = fi+ (11)

where p; € R is the correction score approximating the jth
column of the inverse Hessian ):I;I. To obtain f/j € RP, we

v (ONT 2y (0, (0
LS (™) B ()T, and
then solve p; by the following constrained optimization

estimate X g by ’Z\f} =

j}j =argmin,,eRp vl (12)

e~ . logp
”EB}’—CJHOOSC)/ no °
0
maxj <j<nu I(x§ Nyl < ¢y +/logno,

where ¢, is a large enough constant depending on the sub-
Gaussian norms of the covariates. In (12), the correction score y f
is obtained via a constrained ¢; -optimization based on the target
Hessian matrix. The two constraints are linear and therefore the
optimization is convex and computationally efficient. The first
constraint guarantees that p ; approximates the jth column of

subject to

ZEI. The population Hessian matrix X g is approximated by an
empirical estimator based on the design of the target model and
fS. The second constraint is on the magnitude of |(x§0))T}7j|.
This constraint is employed in justifying the Lyapunov central
limit theorem for the sum of independent noises. Additionally,
we would like to point out that while the ¢;-minimization in
(12) encourages a sparse solution, the probabilistic limit of y; is
not necessarily sparse. Indeed, we will see that the optimization
in (12) is effective no matter the jth column of the true inverse
Hessian EEI is sparse or not. In other words, any feasible solu-
tion to (12) is a proper correction score for the debiasing task.
A similar constraint has been studied in Zhu and Bradic (2018)
for hypothesis testing in single-task high-dimensional linear
models. Here we extend this idea for constructing confidence
intervals in high-dimensional GLMs, and further to the transfer-
learning setting.

Our proposed debiasing scheme can also be used in single-
task GLMs, in which case one can replace B with, say, the single-
task generalized Lasso estimator (Van de Geer 2008). In compar-
ison, the Lasso-based debiasing for the GLMs (van de Geer et al.
2014) requires ):El to be sparse. Another method, Cai, Guo, and
Ma (in press), computes the correction score under the same
constraints as in (12) but the objective function is a quadratic
function of y. The theoretical benefits of the current method
will be demonstrated in detail in the next section.

Next, we provide a variance estimator for the debiased esti-
mator (11). In GLMs, the variance estimation necessitates to
estimate 01.2 = Var(ylgo) | (xgo))T B) for each individual 1 <
i < ng. Our variance estimator is given as follows. For linear
models, let 6i2 =37 ||y(0) - (xl(.o))TﬁH%/no. For models with

1
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c(o) = 1in (1), which includes logistic, multinomial, Poisson,
and log-linear models, let 62 = Iﬁ((xﬁo))T[i). We now define

the variance estimate of ngdb):

1 &
= — Y (&) T8}
e

(13)

We establish the asymptotic distribution of Bj(dh) for some

1 < j < p and show the variance estimator ’\7] is consistent in
the next section.

4.2. Asymptotic Normality

We next study the asymptotic distribution of ﬁj(db) for some 1 <
j < p. We first show that the limiting distribution of ,BA.(db) is
normal in linear models, and present the result beyond linear
models afterward.

In the following lemma, we prove that, with high probability,
the variance estimator /\7] in (13) converges to its limit and its
limit is lower bounded by a positive constant.

Lemma 4.1 (Asymptotic property of the variance estimator in
linear models).AAssume the conditions of Theorem 3.1 and
Y (1) = 1. For V; definedin (13), V; = - {(x(o))T }2 2
and some positive constant ¢y, it holds that

|’\7j — Vil = op(1) and V; > ¢y — op(1).

By Lemma 4.1, V; is the probabilistic limit of ’\71 and it is

0) }"O

only a function of {x; 1 in linear models. In fact, V; is the

asymptotic variance of ﬂj( ©0)yn ¥ o
models.

conditioning on {x; ’},2, in linear

Theorem 4.1 (Asymptotic normality of /§j(dh) for linear models).
For any fixed 1 < j < p, under the same conditions as those in
Theorem 3.1 and ¥ (t) = w. It holds that

Bj(dh) — Bj = rem; + zj,
where
slogp 172 [slogp
remj = Op | — + T, —_—
Lj P \/N_n() no,q 1o
and

[fo D
=z — N(0,1).
7 J

In Theorem 4.1, we decompose the limiting distribution of
ﬁj(db) into two parts: an asymptotically normal part z; and a
remaining bias part rem;. To have the asymptotic normality, one
needs the asymptotically normal part to dominate the bias term,
that is, rem; = op(n, '/2) This leads to the following sparsity
conditions for asymptotic normality, which are

slogp « x/ﬁandslongno,q < L (14)

In the single-task setting, the minimax optimal rate in Cai and
Guo (2017) implies that it is necessary to require slog p < /1.
We see that the requirement in (15) is much weaker when we
have a large amount of source data (N >> np) and these data
share the similarity with our target (/710 Try,q < 1). The condi-

tion /ngTy,q < 1holds when h = o(y/ng/logp) if =0 and
when h,/logp = o(1) for q = 1. In words, when the similarity of
the source studies are sufficiently large, that is, when h is suffi-
ciently small, the asymptotic normality of Bj(db) requires weaker
sparsity conditions than the debiased estimator in the single-task
setting. Additionally, while we require a much weaker condition,
the length of the proposed confidence interval in the transfer
learning setting has the same order (n, 1/2) as that in the single-
task setting. In applications, these results imply more accurate
coverage probabilities with the debiased transfer learning esti-
mator without inflating the lengths of confidence intervals.

We remark that the results of Theorem 4.1 do not require the
sparsity of inverse Hessian £ ~!. When (=1} j is sufficiently
sparse, standard arguments can be leveraged to show that [|p; —

{2’1}4 |1 = op(1). That is, 3]-(db) can adapt to the sparsity of
the inverse Hessian. The advantage of p; is that it is robust to
non-sparse inverse Hessian and can achieve semi-parametric
efficiency (van de Geer et al. 2014) for sparse inverse Hessian. In
comparison, the quadratic optimization-based debiasing (Javan-
mard and Montanari 2014) does not assume sparse X ! but the
semi-parametric efficiency is not shown.

We now derive the asymptotic normality for the proposed

ﬂ(db) beyond linear models In this case, y] depends on ﬂ

and hence depends on yi given x? ). This leads to technical
difficulties in justifying the asymptotic normality in GLMs. For
the GLMs, we first impose a high-level Condition 4.1 and prove
the main theorem. We will later verify this condition in different
settings.

Condition 4.1 (Independence of the correction score). There exists

0 0
Py -

1//((3650))—r B) are independent with mean zero. Assume that the
correction score computed via (12) satisfies ||)7j - yJ‘7||1 =

op((logp)~1/2).

some y € RP? such that conditioning on y¢ f 2 and {x

Condition 4.1 essentially requires that the estimated y; con-
verges to a “deterministic” vector y¢ in £;-norm. Here, “deter-
ministic” means that y" is independent of the random noises

(O) -y ((x(o))T B). We verify this condition in different cases in

Sectlon A of the supplementary materials.
We first establish the consistency of the proposed variance
estimator VJ in (13).

Lemma 4.2 (Asymptotic property of the variance estimator in
GLMs). Assume the conditions of Theorem 3.1 and Condi—
tion 4.1. For V defined in (13), V{ = no ((x(o))Ty")2
and some positive constant co, we have

|'\7j — V7l =o0p(1) and V; = co — op(1).

By Lemma 4.2, Vj" is the probabilistic limit of ’\7] and it is
independent of the random noises by Condition 4.1 in GLMs. In



0
@) and vy

We mention that Lemma 4.2 can be viewed as a generalization
of Lemma 4.1 beyond linear models. This is because, in the case
that ¥ (1) = u, Condition 4.1 always holds with yj“ = }7]».

fact, V]f’ is the variance of ,3@) conditioning on {x

Hence, Lemma 4.2 recovers Lemma 4.1 when w(u) = U, that
is, in linear models.

Theorem 4.2 (Asymptotic normality for ,3j(db) in GLMs). Assume
the conditions of Theorem 3.1 and Condition 4.1. It holds that

5(db
'Bj( ) _ ﬁj = rem; + z;,

where
rem; — Op | L108PV198M 12 [slogplogr
’ TNmg e T
and

n
2z 5 N, .
Vi

In Theorem 4.2, we see that the remaining bias term rem; has
an extra /log 1y term comparing to the results for linear models
(Theorem 4.1). This inflation comes from the uncertainty in the
weights of the Hessian matrix, which is estimated based on j.
This extra term also appears in Cai, Guo, and Ma (in press) for
the single-task debiased estimator. Implied by Theorem 4.2, the
sparsity condition for asymptotic normality in GLMs is

slogp <« /N/logng and Ty, 4lognoslogp < 1.

With the target study only, the analysis in Cai, Guo, and Ma (in
press) requires slogp < /no/logng for the asymptotic nor-
mality. Again, this shows that transfer learning helps reduce the
remaining bias when the source studies are sufficiently similar to
the target one. We can conclude that the confidence interval I; =

[ ﬁj(db) — Zg/24/ ’\7] /1o, Bj(db) + Za/24/ ’\7] /1ol is asymptotically
valid for the GLMs when the conditions of Theorem 4.2 and (15)
hold.

(15)

5. Aggregated TransHDGLM with Positive Transfer
Warranty

As seen in the theoretical analysis, the performance of transfer
learning depends on the level of similarity, h, which is typically
unknown. When A is large, incorporating the source studies into
the analysis can potentially reduce the estimation and inference
accuracy of the target parameter. To guard against such “negative
transfer;” we propose an additional aggregation step based on the
likelihood.

Given a collection of initial estimators, an aggregation pro-
cedure (Rigollet and Tsybakov 2011; Dai, Rigollet, and Zhang
2012) selects the best or a convex combination of the initial esti-
mators by minimizing certain empirical risk measures based on
the observed data. Here our primary goal is to prevent negative
transfer and we propose a simple step to aggregate two initial
estimators, the estimator obtained by using the target samples
only, and the estimator obtained using combined dataset. More
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specifically, we propose our final procedure, aggregated Tran-
sHDGLM, shorthanded as “aTransHDGLM,” that aggregates the
transfer learning estimator $ with the single-task GLM Lasso
B(mlt), which is formally given below.

We show in the supplement that the truncated estimators

Bt has the same convergence rate as B but 3t has sparsity
no larger than the order of s. This facilitates upper-bounding
the ¢,-error of B and further prepares B for the downstream
statistical inference. In Step 2 of Algorithm 2, the independent
target samples can be obtained by a sample splitting of the
target samples before the analysis. Hence, we consider n =
no. The computed 4 is a weight vector to combine two initial
estimators. We also comment that the optimization of ) can be
replaced with the Q-aggregation (Dai, Rigollet, and Zhang 2012)
or its variations, which can achieve the same convergence rate
but sharper constants. As an illustration, we focus on a more
intuitive aggregation based on the likelihood as in Step 2.

Algorithm 2: aTransHDGLM, an aggregated transfer
learning algorithm
Input : ﬁ(mlt), ;§, and some samples from the target
study which are independent of (B (mlt), [} ),

denoted by {((igo))—r, )750))}111 for n = cong
with ¢y bounded away from 0 and 1.
Output: /§
Step 1: Thresholding B:

Bl = Bi1(Bj| = rg/N). (16)

Step 2: Aggregation based on the likelihood. For
E _ (ﬁ(lmt),ﬁt) c RPXZ,

n

N = argminy o, positive simplex 2 :
i=1

x {5 G By — w(@™) B .

Output ;§ = Ef]

Theorem 5.1 shows that the aggregated estimator B is guar-
anteed to be no worse than the single-task estimator with high
probability, which demonstrates that it provides a positive trans-
fer warranty.

Theorem 5.1 (Consequences of aggregation). Assuming Condi-
tions 3.1, 3.2, and 3.3 hold. Let g € [0, 1] be a fixed constant.
Assume that the true parameters are in ®,4(s, h), slogp/ny <
1> Thyq < c1, and Kng < c1N, for some positive constant c;.
Then with probability at least 1 — exp(—cj min{logp, #min}) —
exp(—cit),

3 2

A cye, (slo slo cat

1B 13 < 0 (T, e HOBL) S
L N no cLh

1B — Bl < csv/5lB — Bllz.
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Theorem 5.1 essentially shows that the aggregated estimator
v it
B has no slower convergence rate than those obtained by ﬂ(ml :

and ,Bt. It implies that ||B — ﬂ||% <

< slogp/ng with high
probability as long as s # 0. Hence, the performance of B
is robust to a large h, that is, low similarity levels. We also
obtained the convergence rate in £;-norm by using the sparsity
of /Ai(mn) and the sparsity of the thresholded estimator ﬁt. The
cost of aggregation is of order 1/ng, which is negligible in most
scenarios of interest. For example, when g = 0, as long as h > 1
and s > 1, the cost of aggregation is always dominated by the
second term. Hence, in practice, it is almost no harm to perform
an aggregation step.

The inference results based on § can be similarly proved. Let
v (db N v
B ]( ) be the debiased estimator in (11) with 8 replaced by 8. The

v (db ~ ~
score p f for ﬂ; ) is computed based on X B instead of X B The

v (db
asymptotic normality of 8 ]( ) can be similarly established (see
Section F in the supplementary materials).

6. Simulation Studies

We study the numerical performance of our proposal and other
comparable methods. We set np = --- = ng = 200, p =

500, and s = 10. We set 8., = (0.8,0.65,0.50, . ..,—0.55) T and
(k)
i
N(0, £®) independently. We consider two configurations of the
covariance matrices.

Bi = 0forj > s Fork = 0,...,K, we generate x;~ ~

(a) Fork =0,...,K, we consider Toeplitz matrices {Z*® Y=
(k/(K + 2)U~1,
(b) We consider equi-correlated 0 =
q ik
0 _
o=
matrix A® where each entry equals 0.1 with probabil-

ity 0.1 and equals 0 with probability 0.9. We set X0 =
ATA® + 1, k=1,....K.

0.3 for j # k and

1. For each k = 1,...,K, we generate a random

In both (a) and (b), the design matrices are heterogeneous
among studies. The target covariance matrix O s sparse in
(a) but not in (b). Hence, (b) provides a challenging setting for
statistical inference.

To accommodate the practical setting that some source stud-
ies can be very far from the target study, we define A C
{1,...,K} to be the set of informative studies. Specifically, we
generate & ® in two ways.

(i) For k € A, let Hi be a random subset of {1,...,p} with
|Hi| = h € {2,6,10}. For k ¢ A, let Hy be a random subset
of {1,...,p} with |[Hg| =50.Fork =1,...,K, we set(Sj(k) =

0.3 for j € Hy and 8]-(k) = 0 otherwise.

(ii) For k € A, 89 ~ N(0,(h/50)) for j < 100 and h €
{2,6,10} and 8].(k) = 0 otherwise. For k ¢ A, 8].(k) ~
N(0,0.5%) for j < 100 and 8].(k) = 0 otherwise.

We see that in both (i) and (ii), {8 }rc are sparser than

{8 ke ac. Moreover, {8}, 4c are even denser than B and
we treat studies in .A° as noninformative studies. In (i), 8% is

exact sparse and in (ii), 8® are approximately sparse. We will
consider four scenarios generated by (a) and (b) crossing (i) and
(ii), denoted by (a-i), (a-ii), (b-i), and (b-ii), respectively. Each
configuration is replicated with 300 independent experiments.
In the main article, we report two settings generated by (a-i)
and (b-i). The results for (a-ii) and (b-ii) are analogous and are
reported in the supplementary materials (Section G).

We compare five methods numerically. The first one is
generalized Lasso based on the target study, denoted as “GLM
Lasso” The second one is Algorithm 1, denoted by “Tran-
sHDGLM”. The third method is Algorithm 1 based on target
and informative source studies. That is, we apply Algorithm 1
with {1,...,K} replaced by A. We denote this method by
“Oracle TransHDGLM” as it depends on the oracle A. The
fourth method is Algorithm 2, denoted by “aTransHDGLM”.
The last one is a simple aggregated estimator, denoted by
“Simple-Agg”. It first applies the GLM Lasso to each task and
then aggregate these K + 1 estimators using the optimization
in Section 5. This method can be viewed as a meta-analysis
paradigm with adaptive weights. It is widely used in applications
for its simplicity and we include it as another benchmark
method. For the inference results, we construct confidence
intervals with Oracle TransHDGLM, aTransHDGLM, and
the single-task method in van de Geer et al. (2014). The
detailed implementation of different methods is illustrated in
the supplementary materials.

6.1. Classification Errors

In every experiment, we evaluate the classification errors in
an independent target sample with sample size 200. From
Figure 1, we see that the performance of single-task GLM Lasso
does not change as the informative sample size changes. The
Oracle TransHDGLM significantly reduces the classification
errors in comparison to the GLM Lasso as the informative
sample size increases. It is always no worse than the GLM Lasso
because it never incorporates noninformative samples. The
TransHDGLM method reduces classifications errors when a
significant proportion of the source samples are informative.
This is because it uses all the source studies and when few studies
are informative, the errors can be large according to Section 4.
The aTransHDGLM method also improves classification
accuracy when the informative sample size is relatively large.
On the other hand, the aggregation step in aTransHDGLM
achieves robustness to negative transfer in the sense that
the performance of aTransHDGLM is always no worse than
the single-task GLM Lasso. When |A| is close to K, the
TransHDGLM has slightly smaller errors than aTransHDGLM.
This is because TransHDGLM does not split the samples for
aggregation but aTransHDGLM does. However, robustness can
be more important than the mild gain in accuracy and hence
aTransHDGLM should be favorable over TransHDGLM in most
practical applications. The “Simple-Agg” method has limited
improvement when the informative samples are large and its
performance is very sensitive to the levels of h. By comparing
the plots at different levels of h, we see that the performances
of Oracle TransHDGLM, TransHDGLM, and aTransHDGLM
are getting slightly worse as h increases, which agrees with our
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Figure 1. Classification errors in setting a-i (first row) and in setting b-i (second row). The dotted horizontal line is the average classification errors given by oracle .

theoretical analysis. The overall performance also demonstrates
that our method is robust to heterogeneous design matrices. The
estimation errors are reported in the supplementary materials

(Section G).

6.2. Confidence Intervals

We construct 95% two-sided confidence intervals for B;,
j 1,...,p. We compare our proposed debiased Oracle
TransHDGLM and debiased aTransHDGLM with the single-
task inference method for the GLMs (van de Geer et al. 2014).
In Table 1, we report the results in setting a-i, where the
inverse Hessian matrix X ;! is relatively sparse. All the methods
have reliable coverages for 8; = 0. For fj = 0.5, we see that the
single-task method has coverage probabilities lower than the
nominal level. This is mainly due to the large remaining bias of
the single-task debiased estimators, which have been studied
in Li (2020). The proposed debiased Oracle TransHDGLM
and debiased aTransHDGLM have improvements in coverage
probabilities for B; # 0 without inflating the length of
confidence intervals. The increased coverage probabilities are
due to the smaller remaining bias of the debiased transfer
learning estimator, which agrees with our theoretical results. In
Table 2, we report the inference results in b-i which gives a non-
sparse X ;'. For the true signals, the debiased transfer learning

B
estimators have significantly higher coverage probabilities than

the single-task debiased method. This again demonstrates
the smaller remaining bias of the debiased transfer learning
estimators.

7. Application to the Colorectal Cancer Data

We apply our method to several human gut microbiome studies
Concerning Colorectal Cancer (CRC). These are case-control
studies where the response indicates whether an individual has
CRC and the covariates are the common genera and phyla of
the microbiomes and three other covariates (age, gender, and
BMI). The raw data is publicly available at https://zenodo.org/
record/840333#.X6qTRS9h3u2 and has been studied in Duvallet
et al. (2017). We analyze the data from three studies, referred
to as Zackular, Zeller, and Baxter, which are collected in United
States/Canada, France, and United States, respectively. These
studies are all related to the CRC but are measured in dif-
ferent populations. Hence, it is likely that these studies share
some similarities but the underlying true models may not be
identical. Therefore, it is proper to apply transfer learning to
these studies. The sample sizes of Zackular, Zeller, and Baxter
studies are 83, 127, and 488, respectively. Some genera and phyla
of the microbiomes are relatively rare and are removed from
the analysis if their abundance are zero in more than 90% of
the samples in each study. Altogether, 146 genera and phyla of
the microbiomes and three covariates (p = 149) remain in the
analysis. The covariates are standardized before analysis.
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Table 1. Average coverage probabilities (standard deviations) for 83 = 0.5 and 813 = 0 in setting a-i.

h |A| van de Geer et al. (2014) Debiased Oracle TransHDGLM Debiased aTransHDGLM

0.5 0 0.5 0 0.5 0
2 1 0.937(0.154) 0.987(0.153) 0.947(0.154) 0.983(0.152) 0.930(0.150) 0.987(0.149)
2 2 0.920(0.156) 0.977(0.153) 0.930(0.156) 0.967(0.152) 0.933(0.152) 0.967(0.149)
2 3 0.897(0.155) 0.973(0.153) 0.913(0.156) 0.970(0.153) 0.900(0.152) 0.970(0.151)
2 4 0.950(0.155) 0.970(0.153) 0.967(0.157) 0.957(0.153) 0.963(0.154) 0.967(0.151)
2 5 0.917(0.155) 0.987(0.154) 0.927(0.156) 0.980(0.154) 0.930(0.156) 0.980(0.154)
6 1 0.943(0.155) 0.973(0.154) 0.947(0.152) 0.980(0.151) 0.947(0.151) 0.973(0.150)
6 2 0.933(0.157) 0.977(0.155) 0.947(0.152) 0.980(0.151) 0.937(0.150) 0.977(0.150)
6 3 0.933(0.156) 0.983(0.155) 0.937(0.152) 0.983(0.151) 0.933(0.150) 0.980(0.150)
6 4 0.910(0.156) 0.973(0.154) 0.917(0.153) 0.963(0.151) 0.927(0.151) 0.963(0.151)
6 5 0.933(0.156) 0.967(0.154) 0.947(0.153) 0.967(0.151) 0.957(0.153) 0.967(0.151)
10 1 0.950(0.156) 0.957(0.154) 0.937(0.152) 0.957(0.150) 0.937(0.152) 0.953(0.150)
10 2 0.953(0.157) 0.980(0.155) 0.967(0.152) 0.973(0.150) 0.957(0.150) 0.970(0.149)
10 3 0.920(0.158) 0.963(0.156) 0.923(0.152) 0.967(0.150) 0.923(0.151) 0.963(0.150)
10 4 0.943(0.157) 0.970(0.155) 0.963(0.151) 0.970(0.150) 0.957(0.152) 0.970(0.150)
10 5 0.913(0.156) 0.987(0.154) 0.933(0.152) 0.977(0.150) 0.933(0.153) 0.973(0.151)
Table 2. Average coverage probabilities (standard deviations) for 83 = 0.5 and 813 = 0in setting b-i.
h |A| van de Geer et al. (2014) Debiased Oracle TransHDGLM Debiased aTransHDGLM

0.5 0 0.5 0 0.5 0
2 1 0.893(0.178) 0.967(0.176) 0.917(0.174) 0.960(0.173) 0.910(0.173) 0.963(0.172)
2 2 0.883(0.176) 0.957(0.175) 0.913(0.175) 0.957(0.174) 0.907(0.172) 0.947(0.171)
2 3 0.903(0.176) 0.963(0.174) 0.927(0.176) 0.957(0.172) 0.913(0.171) 0.950(0.169)
2 4 0.933(0.176) 0.977(0.174) 0.963(0.175) 0.973(0.172) 0.960(0.172) 0.963(0.170)
2 5 0.927(0.176) 0.963(0.176) 0.953(0.176) 0.963(0.174) 0.953(0.176) 0.967(0.175)
6 1 0.913(0.179) 0.960(0.178) 0.920(0.173) 0.980(0.172) 0.917(0.177) 0.973(0.172)
6 2 0.920(0.177) 0.960(0.177) 0.927(0.172) 0.957(0.173) 0.920(0.172) 0.960(0.172)
6 3 0.903(0.176) 0.970(0.175) 0.913(0.172) 0.960(0.171) 0.903(0.171) 0.957(0.171)
6 4 0.920(0.177) 0.967(0.175) 0.937(0.172) 0.960(0.171) 0.933(0.171) 0.963(0.170)
6 5 0.920(0.175) 0.967(0.175) 0.927(0.171) 0.967(0.171) 0.927(0.172) 0.970(0.171)
10 1 0.883(0.177) 0.960(0.176) 0.890(0.172) 0.960(0.171) 0.880(0.172) 0.960(0.171)
10 2 0.900(0.176) 0.970(0.177) 0.910(0.171) 0.973(0.171) 0.910(0.171) 0.973(0.172)
10 3 0.903(0.177) 0.983(0.174) 0.917(0.172) 0.980(0.170) 0.913(0.172) 0.983(0.169)
10 4 0.910(0.178) 0.980(0.176) 0.940(0.171) 0.980(0.171) 0.930(0.171) 0.980(0.170)
10 5 0.890(0.177) 0.977(0.176) 0.917(0.172) 0.973(0.171) 0.917(0.172) 0.973(0.171)

We consider Zackular, Baxter, and Zeller as the target study
individually and use the other two studies as source studies. We
first look at the classification errors given by our proposed trans-
fer learning method and the single-task method, the GLM Lasso.
The results based on leave-one-out prediction are reported in
Table 3. Specifically, we iteratively use one sample from the
target data as the test sample and the rest of the data as training
samples. We see that the TransHDGLM, aTransHDGLM, and
Simple-Agg all have smaller classification errors for the target
Zackular. This demonstrates the improvement of transfer learn-
ing. Furthermore, we see that aTransHDGLM is robust in the
sense that its classification error is always no larger than the
single-task method. Both TransHDGLM and Simple-Agg are
not as robust as aTransHDGLM. This demonstrates the benefit
of aggregation. We also see the improvement of transfer learning
in Zackular study is the most significant. One potential reason is
that the sample size of Zackular study is the smallest and transfer
learning has the potential to contribute more improvements. In
the Baxter study, the target sample size is significantly larger than
the overall source sample size. Hence, one would expect that
transfer learning may not lead to significant improvements.

We also construct 95% confidence intervals for each regres-
sion coefficient in the target study. We calculate the confidence
intervals using the single-task method (van de Geer et al. 2014)
and our proposed debiased aTransHDGLM. In the Zackular

Table 3. Misclassification rates given by the single-task method (GLM Lasso), Tran-
sHDGLM, aTransHDGLM, and a simple aggregation method (Simple-Agg) described
in Section 6 based on leave-one-out prediction for three studies.

Target ~ Samplesize GLMLasso TransHDGLM aTransHDGLM Simple-Agg
Zackular 83 33.7% 26.7% 25.3% 26.7%
Zeller 127 29.1% 31.5% 27.6% 31.5%
Baxter 488 23.0% 21.3% 21.3% 24.6%

Table 4. Significant covariates based on the single-task method or the proposed
method at 95% confidence level in the Zackular study.

No.  Variables van de Geer et al. (2014) Debiased aTransHDGLM

cCl p-value cl p-value
1 BMI 0.595 + 046 0.011* 0.536 + 045  0.020*
2 ClostridiumXVIIl  —0.681 +£0.51 0.009*  —0.555+0.47 0.021*
3 Enterobacter 0432 + 044  0.052 0.445 + 044  0.047*

NOTE: The p-values with * are significant at 95% confidence level.

study (Table 4), two covariates are significant at 95% confi-
dence level using the single-task method and three covariates
are significant at 95% confidence level using the debiased aTran-
sHDGLM. Our findings agree with some existing studies on
CRC. For example, BMI has been shown to be positively cor-
related with the risk of CRC in multiple studies (Zheng et al.
2018; Campbell et al. 2021). Clostridium group XVIII has been
found negatively correlated with the occurrence of CRC (Baxter



et al. 2014) and Enterobacter can potentially promote CRC
(Yurdakul, Yazgan-Karatas, and $ahin 2015). The results for
Zeller study and Baxter Study are reported in Tables 3 and 4
in the supplementary files, respectively. In the Zeller study, 10
covariates are selected using the single-task method with the
95% CI not including zero and 18 covariates are selected using
the transfer learning method with the 95% CI not including
zero. In the Baxter Study, 13 covariates are selected using the
single-task method with the 95% CI not including zero and 16
covariates are selected using the transfer learning method with
the 95% CI not including zero.

8. Discussion

This work proposes and analyzes a transfer learning algorithm
for high-dimensional generalized linear models, which can be
applied to nonlinear predictions such as classification. The algo-
rithm admits minimax optimal convergence rates under certain
conditions. We have studied the asymptotic normality of the
debiased transfer learning estimator, which can be applied to
make inference for each regression coefficient. The proposed
method demonstrates robust performance in numerical experi-
ments and real studies.

To guard against adverse transfer, we applied an aggregation
procedure to combine single-task Lasso GLM estimator and
the proposed TranHDGLM estimator to ensure that the per-
formance is not worse than the single-task estimator. Alterna-
tively, we can select possible informative auxiliary studies using
a similar method as that of Li, Cai, and Li (in press-a). We
first order the auxiliary tasks according to the magnitude of
||(X(k))Ty(k)/nk — (XTyO /4115, where a smaller magni-
tude implies higher similarity. Based on the similarity measures,
we construct candidates of informative sets and apply Tran-
sHDGLM to each set. Finally, we aggregate these TransHDGLM
estimates to obtain the final estimate of 8. As we show in the
supplementary materials (Figure 4, Section E), such a procedure
indeed improves over aTransHDGLM when only a proportion
of source studies are informative.

As transfer learning involves samples from multiple studies,
it is important to keep privacy protection into consideration. It
would be interesting to adopt differential privacy (Dwork and
Roth 2014; Cai, Wang, and Zhang 2021) into the current transfer
learning framework, and modify TransHDGLM (Algorithm 1)
in a way such that the produced estimators and confidence
intervals are differentially private and therefore prevent the indi-
vidual information in the training data being leaked.

Supplementary Materials

In the supplementary materials, we provide the proofs of theorems and
more results for numerical experiments and data applications.
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