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A B S T R A C T   

The genetic variability of toxicant responses among indisviduals in humans and mammalian models requires 
practically untenable sample sizes to create comprehensive chemical hazard risk evaluations. To address this 
need, tractable model systems enable reproducible and efficient experimental workflows to collect high- 
replication measurements of exposure cohorts. Caenorhabditis elegans is a premier toxicology model that has 
revolutionized our understanding of cellular responses to environmental pollutants and boasts robust genomic 
resources and high levels of genetic variation across the species. In this study, we performed dose-response 
analysis across 23 environmental toxicants using eight C. elegans strains representative of species-wide genetic 
diversity. We observed substantial variation in EC10 estimates and slope parameter estimates of dose-response 
curves of different strains, demonstrating that genetic background is a significant driver of differential toxi
cant susceptibility. We also showed that, across all toxicants, at least one C. elegans strain exhibited a significantly 
different EC10 or slope estimate compared to the reference strain, N2 (PD1074), indicating that population-wide 
differences among strains are necessary to understand responses to toxicants. Moreover, we quantified the 
heritability of responses (phenotypic variance attributable to genetic differences between individuals) to each 
toxicant exposure and observed a correlation between the exposure closest to the species-agnostic EC10 estimate 
and the exposure that exhibited the most heritable response. At least 20% of the variance in susceptibility to at 
least one exposure level of each compound was explained by genetic differences among the eight C. elegans 
strains. Taken together, these results provide robust evidence that heritable genetic variation explains differential 
susceptibility across an array of environmental pollutants and that genetically diverse C. elegans strains should be 
deployed to aid high-throughput toxicological screening efforts.   

1. Introduction 

Hazard risk assessment of environmental chemicals is a top priority 
of toxicological research. Over 350,000 chemicals are currently regis
tered for use and production globally, of which tens of thousands are 
either confidential or ambiguously described (Wang et al., 2020). This 
staggering rate of production, paired with traditional means of hazard 
safety testing, which typically uses mammalian or cell-based methods of 
response evaluation, means that human populations are exposed to a 
complex array of xenobiotic compounds with virtually unknown risk 

levels. Although approaches to hazard risk assessments using mamma
lian systems have translational appeal, they often suffer from low sta
tistical power because of necessarily limited sample sizes. These 
approaches are also time-consuming and economically costly (Tralau 
et al., 2012), drastically reducing their potential for thorough risk 
assessment of a growing, sometimes multifactorial, collection of chem
ical exposures (Brooks et al., 2020). Most importantly, meta-analyses 
estimate that rodent systems predict human toxic effects approxi
mately 50% of the time (Hartung, 2009; Knight et al., 2009), suggesting 
that chemical risk assessment requires a more integrative approach. 

* Correspondence to: Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall, 2205 Tech Drive, Evanston, IL 60208, USA. 
E-mail addresses: sam.widmayer@northwestern.edu (S.J. Widmayer), tcrombie@northwestern.edu (T.A. Crombie), JoyNyaanga2024@u.northwestern.edu 

(J.N. Nyaanga), kathrynevans2015@u.northwestern.edu (K.S. Evans), erik.andersen@northwestern.edu, erik.andersen@gmail.com (E.C. Andersen).   
1 ORCID: 0000-0002-1200-4768  
2 ORCID: 0000-0002-5645-4154  
3 ORCID: 0000-0002-1402-9213  
4 ORCID: 0000-0002-1388-8155  
5 ORCID: 0000-0003-0229-9651 

Contents lists available at ScienceDirect 

Toxicology 

journal homepage: www.elsevier.com/locate/toxicol 

https://doi.org/10.1016/j.tox.2022.153292 
Received 13 July 2022; Received in revised form 15 August 2022; Accepted 17 August 2022   

mailto:sam.widmayer@northwestern.edu
mailto:tcrombie@northwestern.edu
mailto:JoyNyaanga2024@u.northwestern.edu
mailto:kathrynevans2015@u.northwestern.edu
mailto:erik.andersen@northwestern.edu
mailto:erik.andersen@gmail.com
www.sciencedirect.com/science/journal/0300483X
https://www.elsevier.com/locate/toxicol
https://doi.org/10.1016/j.tox.2022.153292
https://doi.org/10.1016/j.tox.2022.153292
https://doi.org/10.1016/j.tox.2022.153292
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tox.2022.153292&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Toxicology 479 (2022) 153292

2

Caenorhabditis elegans is a free-living nematode that can be cheaply 
reared in large samples in a matter of days, vastly accelerating the pace 
and scale at which hazard risk evaluations can be performed compared 
to most vertebrate models. Furthermore, studies using C. elegans provide 
data from whole animals with intact neuromuscular, digestive, and 
sensory systems unlike popular in vitro systems. C. elegans is a powerful 
toxicology model that unites toxicologists with molecular geneticists so 
that expertise in routes of chemical exposure, internal dosage-specific 
effects, tissue distribution, and chemical metabolism is combined with 
expertise in DNA damage, oxidative and osmotic stress, and regulation 
of apoptosis and necrosis (Boyd et al., 2012; Hartman et al., 2021). All 
three phases of xenobiotic metabolism are present in C. elegans, though 
the conservation of specific gene families within each phase, such as the 
cytochromes P450, UDP-glucuronosyltransferases (UGTs), sulfo
transferase enzymes (SULTs), and ATP-binding cassette (ABC) trans
porters (Hartman et al., 2021) have important differences. In addition to 
being inexpensive and easy to use, C. elegans responses to dozens of 
chemicals more accurately predict responses in rabbits and rats 
compared to zebrafish models (Boyd et al., 2016). Furthermore, 
meta-analyses indicate that rank-ordered toxicant sensitivity in several 
rodent models correlates with responses in C. elegans (Hunt, 2017). 
Finally, high-throughput approaches that measure phenotypic responses 
in C. elegans facilitate chemical screens in large populations at high 
replication (Andersen et al., 2015), providing a more facile and efficient 
risk assessment methodology that is a viable alternative to mammalian 
and cell-based systems. Therefore, toxicity assessments in C. elegans 
provide an alternative to vertebrate models with significantly greater 
scalability and potential to accelerate the characterization of molecular 
targets of chemical exposures. 

One approach to account for intra- and inter-species variation in 
toxicant responses is to use uncertainty factors (UFs) to translate a 
hazard’s point of departure (POD) between species with distinct expo
sure routes and pharmacokinetic and pharmacodynamic capacities 
(Piersma et al., 2011). POD calculations alone fail to directly account for 
heritable genetic variation between individuals - variance in suscepti
bility that can be explained by genetic differences that segregate among 
individuals in a population (Zeise et al., 2013). Failing to account for 
these differences leads to UFs serving as an imprecise proxy for 
within-species variation in risk because the process is agnostic to 
observed ranges of susceptibility in genetically diverse individuals. 
Measuring hazard risk explicitly across many genetic backgrounds can 
provide a direct empirical assessment of the merit of UFs as a method
ology for quantifying population-wide variability caused by genetics. 
Evaluations that can quantify the contributions of genetics to toxicant 
response variation lay the foundation for quantitative genetic dissection, 
with the specific goal of revealing novel mechanisms of toxicant sus
ceptibility by identifying risk alleles. Wild strains of C. elegans harbor 
rich genetic variation (Andersen et al., 2012; Cook et al., 2017; Lee et al., 
2021) and, by combining quantitative and molecular genetic ap
proaches, offer the opportunity to discover genetic modifiers of toxicant 
susceptibility (Andersen et al., 2015; Bernstein et al., 2019; Evans et al., 
2020; Zdraljevic et al., 2019). Quantifying the effects of genetics on 
toxicant susceptibility in C. elegans is an important step towards a full 
characterization of chemical hazard risk because the additive effects of 
conserved genes can help us understand novel toxicant response biology 
in humans. Additionally, the effects of these specific alleles can be 
dissected in C. elegans using genetic crosses and state-of-the-art molec
ular methods much faster than in mammalian systems. 

In this study, we performed dose-response analysis across 25 toxi
cants representing distinct chemical classes using eight strains of 
C. elegans representative of species-wide genetic diversity. We used a 
high-throughput imaging platform to assay development after exposing 
arrested first larval stage animals to each toxicant in a dose-dependent 
manner and used custom software (Di Tommaso et al., 2017; Nyaanga 
et al., 2021; Wählby et al., 2012) to measure phenotypic responses to 
each compound. By estimating dose-response curves for each toxicant 

and fitting strain-specific model parameters, we demonstrated that 
natural genetic variation is a key determinant of toxicant susceptibility 
in C. elegans. Moreover, we showed that the specific alleles that segre
gate between the eight strains in our cohort are responsible for heritable 
variation in toxicant susceptibility, which implies that quantitative ge
netic dissection of these responses has the potential to yield novel ge
netic loci underlying toxicant susceptibility. Taking these observations 
together, we propose that leveraging standing natural genetic variation 
in C. elegans is a powerful and complementary tool for high-throughput 
hazard risk assessments in translational toxicology. 

2. Methods 

2.1. Strains 

The eight strains used in this study (PD1074, CB4856, MY16, RC301, 
ECA36, ECA248, ECA396, XZ1516) are available from the C. elegans 
Natural Diversity Resource (CeNDR) (Cook et al., 2017). Isolation de
tails for the eight strains are included on CeNDR. Of the eight strains 
used, two (PD1074 and ECA248) are referred to by their isotype names 
(N2 and CB4855, respectively). Prior to measuring toxicant responses, 
all strains were grown at 20 ◦C on 6 cm plates made with modified 
nematode growth medium (NGMA) that contains 1% agar and 0.7% 
agarose to prevent animals from burrowing (Andersen et al., 2014). The 
NGMA plates were spotted with OP50 Escherichia coli as a nematode 
food source. All strains were propagated for three generations without 
starvation on NGMA plates prior to toxicant exposure. The specific 
growth conditions for nematodes used in the high-throughput toxicant 
response assay are described below (see Methods, High-throughput toxi
cant response assay). 

2.2. Nematode food preparation 

We prepared a single batch of HB101 E. coli as a nematode food 
source for all assays in this study. In brief, we streaked a frozen stock of 
HB101 E. coli onto a 10 cm Luria-Bertani (LB) agar plate and incubated it 
overnight at 37 ºC. The following morning, we transferred a single 
bacterial colony into a culture tube that contained 5 ml of 1x Horvitz 
Super Broth (HSB). We then incubated that starter culture and a negative 
control (1X HSB without bacteria) for 18 h at 37 ºC with shaking at 180 
rpm. We then measured the OD600 value of the starter culture with a 
spectrophotometer (BioRad, smartspec plus), calculated how much of 
the 18-h starter culture was needed to inoculate a one liter culture at an 
OD600 value of 0.001, and used it to inoculate 14 4 L flasks that each 
contained one liter of pre-warmed 1x HSB. We grew those 14 cultures for 
15 h at 37 ºC with shaking at 180 rpm until they were in the early sta
tionary growth phase (Supplemental Fig. 1A). We reasoned that food 
prepared from cultures grown to the early stationary phase (15 h) would 
be less variable than food prepared from cultures in the log growth 
phase. At 15 h, we removed the culture flasks from the incubator and 
transferred them to a 4 ºC walk-in cold room to arrest growth. We then 
removed the 1X HSB from the cultures by three repetitions of pelleting 
the bacterial cells with centrifugation, disposing of the supernatant, and 
resuspending the cells in K medium. After the final wash, we resus
pended the bacterial cells in K medium and transferred them to a 2 L 
glass beaker. We measured the OD600 value of this bacterial suspension, 
diluted it to a final concentration of OD600 100 with K medium, ali
quoted it to 15 ml conicals, and froze the aliquots at -80 ºC for use in the 
dose-response assays. 

2.3. Toxicant stock preparation 

We prepared stock solutions of the 25 toxicants using either dimethyl 
sulfoxide (DMSO) or water depending on the toxicant’s solubility. The 
exact sources, catalog numbers, stock concentrations, and preparation 
notes for each of the toxicants are provided (Supplemental Table 1). 
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Following preparation of the toxicant stock solutions, they were ali
quoted to microcentrifuge tubes and stored at –20 ºC for use in the dose- 
response assays. Exposure ranges were chosen for each chemical based 
on results from preliminary dose-response trials using only the N2 strain 
and six concentrations in order to narrow the exposure range for the 
larger eight strain experiments (data not shown). 

2.4. High-throughput toxicant dose-response assay 

For each replicate assay, populations of each strain were passaged for 
three generations, amplified, and bleach-synchronized in triplicate 
(Fig. 1A). We replicated the bleach synchronization to control for vari
ation in embryo survival and subsequent effects on developmental rates 
that could be attributed to bleach effects (Porta-de-la-Riva et al., 2012) 
(Fig. 2A). Following each bleach synchronization, we dispensed 
approximately 30 embryos into the wells of 96-well microplates in 50 µL 
of K medium (Boyd et al., 2012). We randomly assigned strains to rows 
of the 96-well microplates and varied the row assignments across the 
replicate bleaches. We prepared four replicate 96-well microplates 
within each of three bleach replicates for each toxicant and control 
condition tested in the assay. We then labeled the 96-well microplates, 
sealed them with gas permeable sealing film (Fisher Cat #14-222-043), 
placed them in humidity chambers, and incubated them overnight at 20 
ºC with shaking at 170 rpm (INFORS HT Multitron shaker). The 
following morning, we prepared food for the developmentally arrested 
first larval stage animals (L1s) using frozen aliquots of HB101 E. coli 
suspended in K medium at an optical density at 600 nm (OD600) of 100 
(see Methods, Nematode food preparation). We thawed the required 
number of OD600100 HB101 aliquots at room temperature, combined 
them into a single conical tube, diluted them to OD60030 with K me
dium, and added kanamycin at 150 µM to inhibit further bacterial 
growth and prevent contamination. Working with a single toxicant at a 
time, we then transferred a portion of the OD60030 food mix to a 
12-channel reservoir, thawed an aliquot of toxicant stock solution at 
room temperature (see methods, Toxicant stock preparation), and diluted 
the toxicant stock to a working concentration. The toxicant working 
concentration was set to the concentration that would give the highest 
desired exposure when added to the 96-well microplates at 1% of the 
total well volume (the final concentration of the vehicle in all wells). We 

then performed a serial dilution of the toxicant working solution using 
the same diluent used to make the stock solution (Fig. 1C). The dilution 
factors ranged from 1.1 to 2 depending on the toxicant used, but all 
serial dilutions had 12 concentrations, including a 0 µM control. Con
centrations were identified in a set of preliminary dose-response trials 
using just the N2 strain across a broader exposure range. Each control 
concentration was supplied at 1% of the total well volume in either 
water or DMSO. Using a 12-channel micropipette, we added the toxicant 
dilution series to the 12-channel reservoir containing the food mix at a 
3% volume/volume ratio. Next, we transferred 25 µL of the OD60030 
food and toxicant mix from the 12-channel reservoir into the appro
priate wells of the 96-well microplates to simultaneously feed the 
arrested L1s at a final HB101 concentration of OD60010 and expose them 
to toxicant at one of 12 levels of the dilution series. We chose to feed at a 
final HB101 concentration of OD60010 because nematodes consistently 
developed to L4 larvae after 48 h of feeding at 20 ºC (Supplemental 
Fig. 1B). Immediately after feeding, we sealed the 96-well microplates 
with a gas permeable sealing film (Fisher Cat #14-222-043), returned 
them to the humidity chambers, and started a 48-h incubation at 20 ºC 
with shaking at 170 rpm. The remainder of the 96-well microplates were 
fed and exposed to toxicants in the same manner. After 48 h of incu
bation in the presence of food and toxicant, we removed the 96-well 
microplates from the incubator and treated the wells with sodium 
azide (325 µL of 50 mM sodium azide in 1X M9) for 10 min to paralyze 
and straighten the nematodes. We then immediately acquired images of 
nematodes in the microplates using a Molecular Devices ImageXpress 
Nano microscope (Molecular Devices, San Jose, CA) with a 2X objective 
(Fig. 1D). We used the images to quantify the development of nematodes 
in the presence of toxicants as described below (see Methods, Data 
collection, and Data cleaning). 

2.5. Data collection 

We wrote custom software packages designed to extract animal 
measurements from images collected on the Molecular Devices 
ImageXpress Nano microscope (Fig. 1E). CellProfiler is a widely used 
software program for characterizing and quantifying biological data 
from image-based assays (Carpenter et al., 2006; Kamentsky et al., 2011; 
McQuin et al., 2018). A collection of CellProfiler modules known as the 

Fig. 1. High-throughput microscopy assay enables rapid analysis of C. elegans toxicant responses. Detailed descriptions of A) through D) can be found in 
Methods; High-throughput toxicant dose-response assay. Detailed descriptions of E) can be found in Methods; Data collection, Data cleaning, LOAEL inference, Dose-response 
model estimation. Created with BioRender.com. 
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WormToolbox were developed to extract morphological features of in
dividual C. elegans animals from images from high-throughput C. elegans 
phenotyping assays like the one that we use here (Wählby et al., 2012). 
We estimated worm models and wrote custom CellProfiler pipelines 
using the WormToolbox in the GUI-based instance of CellProfiler. We 
then wrote a Nextflow pipeline (Di Tommaso et al., 2017) to run 
command-line instances of CellProfiler in parallel on the Quest High 
Performance Computing Cluster (Northwestern University) because 
each experimental block in this study produced many thousands of well 
images. This workflow can be found at https://github.com/Andersen 
Lab/cellprofiler-nf. Our custom CellProfiler pipeline generates animal 
measurements by using four worm models: three worm models tailored 
to capture animals at the L4 larval stage, in the L2 and L3 larval stages, 
and the L1 larval stage, respectively, as well as a “multi-drug high dose” 
(MDHD) model, to capture animals with more abnormal body sizes 
caused by extreme toxicant responses. We used R/easyXpress (Nyaanga 
et al., 2021) to filter measurements from worm objects within individual 
wells that were statistical outliers using the function setFlags(), which 

identifies outlier animal measurements using Tukey’s fences (Tukey, 
1977). We then parsed measurements from multiple worm models down 
to single measurements for single animals using the modelSelection() 
function. These measurements comprised our raw dataset. 

2.6. Data cleaning 

All data management and statistical analyses were performed using 
the R statistical environment (version 4.0.4). Our high-throughput im
aging platform produced thousands of images across each experimental 
block. It is unwieldy to manually curate each individual well image to 
assess the quality of animal measurement data. Therefore, we took 
several steps to clean the raw data using heuristics indicative of high- 
quality animal measurements suitable for downstream analysis.  

1) We began by censoring experimental blocks for which the coefficient 
of variation (CV) of the number of animals in control wells was greater 
than 0.6 (Supplemental Fig. 2A). Experiments containing wells that 

Fig. 2. Toxicant responses vary among genetically diverse C. elegans strains. Normalized length measurements for each strain at each toxicant exposure are 
shown on the y-axis, and the concentration of each toxicant is shown on the x-axis. Each dose-response curve is colored according to the strain. Does-response curves 
for each toxicant can be found in Supplemental Fig. 5.We observed a wide range of responses that can be combined into four general groups: A) subtle responses with 
little variation among strains, e.g., 2,4-D; B) subtle responses with moderate variation among strains, e.g., carbaryl; C) strong responses with little variation among 
strains, e.g., nickel chloride (though for nickel chloride, strain variation is high at high exposure levels, see Fig. 5); and D) strong responses with moderate variation 
among strains, e.g., pyraclostrobin. 
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meet this criterion in control wells are expected to produce less 
precise estimates of animal lengths in wells in which animals have 
been exposed to chemicals that typically increase the variance of the 
body length trait (Supplemental Fig. 2B).  

2) We then reduced the data to wells containing between five and thirty 
animals, under the null hypothesis that the number of animals is an 
approximation of the expected number of embryos originally titered 
into wells (approximately 30). This filtering step screened for two 
problematic features of well images in our experiment. First, given 
that our analysis relied on well median animal length measurements, 
we excluded wells with fewer than five animals to reduce sampling 
error. Second, insoluble compounds or bacterial clumps were often 
identified as animals by CellProfiler (Supplemental Fig. 3) and would 
vastly inflate the well census and spuriously deflate the median an
imal length in wells containing high concentrations of certain 
toxicants.  

3) After the previous two data processing steps, we removed statistical 
outlier measurements within each concentration for each strain for 
every toxicant to reduce the likelihood that statistical outliers in
fluence dose-response curve fits.  

4) Next, we removed measurements from all exposures of each toxicant 
that were no longer represented in at least 80% of the independent 
assays because of previous data filtering steps, or had fewer than 10 
measurements per strain. 

5) Finally, we normalized the data by (1) regressing variation attrib
utable to assay and technical replicate effects and (2) normalizing 

these extracted residual values with respect to the average control 
phenotype. For each compound, we estimated a linear model using 
the raw phenotype measurement as the response variable and both 
assay and technical replicate identity as explanatory variables 
following the formula median_wormlength_um ~ Metadata_Experiment 
+ bleach using the lm() function in base R. We then extracted the 
residuals from this linear model for each exposure and subtracted 
normalized phenotype measurements in each exposure from the 
mean normalized phenotype in control conditions. These normalized 
phenotype measurements were used in all downstream statistical 
analyses. 

2.7. LOAEL inference 

We determined the lowest observed adverse effect level (LOAEL) for 
each compound by performing a one-way analysis of variance using the 
normalized phenotype measurements as a response variable and toxi
cant dosage as an explanatory variable. We then performed a Tukey post 
hoc test, filtered to only comparisons to control exposures, and deter
mined the lowest exposure that exhibited a significantly different 
phenotypic response as distinguished by an adjusted p-value less than 
0.05. This analysis was performed on all phenotype measurements, as 
well as for each strain individually to determine if genetic background 
differences explain differences in LOAEL for each toxicant. 

Fig. 3. Variation in EC10 estimates can be explained by genetic differences among strains. A) Strain-specific EC10 estimates for each toxicant are displayed for 
each strain. Standard errors for each strain- and toxicant-specific EC10 estimate are indicated by the line extending from each point. B) For each toxicant, each 
strain’s relative resistance to that toxicant compared to the N2 strain is shown. Relative resistance above 1, for example, denotes an EC10 value 100% higher than the 
N2 strain. Solid points denote strains with significantly different relative resistance to that toxicant (F-test and subsequent Bonferroni correction with a padj < 0.05, see 
Methods; Dose-response model estimation), and faded points denote strains not significantly different than the N2 strain. The broad category to which each toxicant 
belongs is denoted by the strip label for each facet. 
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2.8. Dose-response model estimation and statistics 

We estimated overall and strain-specific dose-response models for 
each compound by fitting a log-logistic regression model using R/drc 
(Ritz et al., 2015). The log-logistic model that we used specified four 
parameters: b, the slope of the dose-response curve; c, the upper 
asymptote of the dose-response curve; d, the lower asymptote of the 
dose-response curve; and e, the specified effective exposure. This model 
was fit to each compound using the drc::drm() function with strain 
specified as a covariate for parameters b and e, allowing us to estimate 
strain-specific dose-response slopes and effective exposures, as well as a 
specified lower asymptote d at -600, which is the theoretical normalized 
length of animals at the L1 larval stage. We used the drc::ED() function to 
extract strain-specific EC10 values, and extracted the strain-specific 
slope values using base R. We quantified the relative resistance to 
each compound across all each strain pairs based on their estimated 
EC10 values using the drc::EDcomp() function, which uses an approxi
mate F-test to determine whether the variances (represented by 
delta-specified confidence intervals) calculated for each strain-specific 
dose-response model’s e parameter estimates are significantly 
different. We quantified the relative slope steepness of dose-response 
models estimated for each strain within each compound using the drc:: 
compParm() function, which uses a z-test to compare means of each b 
parameter estimate. Results shown are filtered to just comparisons 
against N2 dose-response parameters (Figs. 2 and 3), and significantly 
different estimates in both cases were determined by correcting to a 
family-wise type I error rate of 0.05 using Bonferroni correction. To 
determine whether strains were significantly more resistant or suscep
tible to more toxicants or chemical classes by chance, we conducted 
1000 Fisher exact tests using the fisher.test() function with 2000 Monte 
Carlo simulations. 

2.9. Broad-sense and narrow-sense heritability calculations 

Phenotypic variance can be partitioned into variance caused by ge
netic differences or genetic variance (VG) and residual variance 
explained by other factors (VE). We extracted the among strain variance 
(VG) and the residual variance (VE) from the model and calculated 
broad-sense heritability (H2) with the equation H2 = VG / (VG+VE). We 
estimated the H2 using the lme4 (v1.1.27.1) R package to fit a linear 
mixed-effects model to the normalized phenotype data with strain as a 
random effect. Genetic variance (VG) can be partitioned into additive 
(VA) and non-additive (VNA) variance components. Additive genetic 
variance is the amount of genetic variance that can be explained by the 
discrete collection of variants that differ in a specific population. 
Narrow-sense heritability (h2) is defined as the ratio of additive genetic 
variance over the total phenotypic variance (VP), i.e., h2 = VA / VP. We 
generated a genotype matrix using the genomatrix profile of NemaScan, a 
GWAS analysis pipeline (Widmayer et al., 2022), using the variant call 
format (VCF) file generated in the latest CeNDR release (https://www. 
elegansvariation.org/data/release/latest). We then calculated h2 using 
the sommer (v4.1.5) R package by calculating the variance-covariance 
matrix (MA) from this genotype matrix using the sommer::A.mat func
tion. We estimated VA using the linear mixed-effects model function 
sommer::mmer with strain as a random effect and MA as the covariance 
matrix. We then estimated h2 and its standard error using the sommer:: 
vpredict function. 

2.10. Data availability 

All code and data used to replicate the data analysis and figures 
presented are available for download at https://github.com/And 
ersenLab/toxin_dose_responses. 

3. Results 

We performed dose-response assessments using a microscopy-based 
high-throughput phenotyping assay (Fig. 1) for developmental delay 
in response to 25 toxicants belonging to five major chemical classes: 
metals (9), insecticides (8), herbicides (3), fungicides (4), flame re
tardants (1). Dose-response assessments for each compound were con
ducted using eight C. elegans strains representative of the genetic 
variation present across the species. We first quantified the population- 
wide lowest observed adverse effect level (LOAEL) for each compound 
(Supplemental Table 2). We then cleaned and normalized phenotype 
data in order to censor measurements obtained at problematic concen
trations of various compounds and harmonized phenotypic responses 
across technical replicates (see Methods). Out of the 25 toxicants, twelve 
toxicants elicited variable LOAELs among the panel of strains: the in
secticides aldicarb, chlorfenapyr, carbaryl, chlorpyrifos, and malathion; 
the fungicides pyraclostrobin and chlorothalonil; the metals manganese 
(II) chloride, methylmercury chloride, nickel chloride, and silver nitrate; 
and the flame retardant triphenyl phosphate (one-way ANOVA, Tukey 
HSD; padj < 0.05). 

We next estimated dose-response curves for each compound to more 
precisely describe the contributions of genetic variation to different 
dynamics of susceptibility among strains (Fig. 1). To accomplish this 
step, we modeled four-parameter log-logistic dose-response curves for 
each compound using normalized median animal length as the pheno
typic response. The slope (b) and effective concentration (e) parameters 
of each dose-response model were estimated using strain as a covariate, 
allowing us to extract strain-specific dose-response parameters. Unde
fined EC10 estimates (estimates greater than the maximum exposure) 
were observed for at least one strain from two compounds (chlorfenapyr 
and manganese(II) chloride). Additionally, we observed virtually uni
form responses and high within-strain phenotypic variance across the 
dose-response curves of deltamethrin and malathion across all strains. 
We speculate that this high variance is in part driven by insoluble par
ticles in culture wells that interfered with reliable inference of animal 
lengths and have consequently excluded these four compounds from 
further dose-response analyses (Supplemental Fig. 4). 

Dose-response models using strain as a covariate explained signifi
cantly more variation than those models without the strain covariate for 
the other 21 compounds (F-test; p < 0.001). We observed substantial 
variation in effective concentration between toxicants within classes of 
chemicals (Two-way ANOVA; p < 0.001) but not across strains (Two- 
way ANOVA; p ≥ 0.163) (Fig. 3A, Supplemental Table 3). All fungicides 
and herbicides exhibited significantly different EC10 estimates (two- 
way ANOVA, Tukey HSD; padj ≤ 0.003). EC10 estimates for propoxur 
were not significantly different from aldicarb, nor were the estimates for 
methomyl compared to chlorpyrifos (two-way ANOVA, Tukey HSD; padj 
≥ 0.934) but EC10 estimates for all other compounds within the insec
ticide class were significantly different (two-way ANOVA, Tukey HSD; 
padj ≤ 0.001). EC10 estimates for lead(II) nitrate were significantly 
different from all other tested metals (two-way ANOVA, Tukey HSD; padj 
< 0.001). EC10 estimates for arsenic trioxide were significantly different 
from all tested metals (two-way ANOVA, Tukey HSD; padj ≤ 0.050), 
except nickel chloride (two-way ANOVA, Tukey HSD; padj = 0.068). 
EC10 estimates for all other metals were not significantly different from 
each other (two-way ANOVA, Tukey HSD; padj ≥ 0.392). These results 
suggest that susceptibility to different toxicants in C. elegans is quite 
variable both between and within chemical classes. 

Most differences in EC10 were explained by differences among 
compounds of different classes. However, variation in EC10 estimates 
caused by genetic differences among strains were pervasive (Fig. 3B). In 
order to quantify these differences, we calculated the relative resistance 
to all compounds exhibited by each strain in pairwise comparisons of 
EC10 estimates among all strains (Supplemental Table 4). For example, 
comparing two strains with EC10 estimates of 5 μM and 10 μM in 
response to a chemical, the relative resistance of the second strain would 
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equal 1. To contextualize these differences, we filtered down to com
parisons between the reference strain N2 and all others and subse
quently calculated the difference in potency with respect to the 
laboratory reference strain. In total, we observed 66 instances across 18 
compounds where at least one strain was significantly more resistant or 
sensitive than the reference strain N2 using EC10 as a proxy (Student’s t- 
test, Bonferroni correction; padj < 0.05) with paraquat and propoxur 
being the exceptions (Fig. 3B). Twenty-two strain comparisons showed 
greater resistance than responses in the N2 strain, and 44 strain com
parisons showed greater susceptibility across all compounds. Relative 
resistance was more generalized across strains, with four different 
strains exhibiting significant sensitivity to at least three toxicants with 
respect to the N2 strain. Of the instances in which a strain was signifi
cantly more sensitive than the N2 strain, 47.8% of the cases were either 
the ECA396 or MY16 strains, which were the two strains with the 
greatest number of compounds that elicited sensitivity. Furthermore, the 
observed frequency of strains with significantly greater toxicant sensi
tivity with respect to the N2 strain was significantly different than ex
pected under the null (see Methods; Fisher’s exact test; p < 0.05), 
suggesting that diverse C. elegans strains are not equally likely to be 
susceptible or resistant with respect to the commonly used reference 
strain N2. 

Strain-specific slope (b) estimates for each dose-response model 
varied substantially as well but followed different patterns than those 
estimates observed for EC10 (Fig. 4A, Supplemental Table 5). We again 
observed substantial variation in slope estimates between toxicants 
within chemical classes (two-way ANOVA; p < 0.001) but not across 

strains (two-way ANOVA; p ≥ 0.074). Slope estimates for pyraclostrobin 
were significantly lower than all other fungicides (two-way ANOVA, 
Tukey HSD; padj ≤ 0.0002). Slope estimates for 2,4-D were significantly 
lower than those estimates for the other two herbicides (two-way 
ANOVA, Tukey HSD; padj < 0.0001). Among insecticides, the only slope 
estimates that were not significantly different from each other were 
methomyl and aldicarb (two-way ANOVA, Tukey HSD; padj = 0.999). 
Slope estimates for nickel chloride were significantly different from all 
other metals (two-way ANOVA, Tukey HSD; padj ≤ 0.031). 

We next compared the relative steepness of dose-response slope es
timates compared to the N2 reference strain, analogously to our EC10 
relative potency analysis (all strain-by-strain comparisons can be found 
in Supplemental Table 6) and observed 76 significantly different slope 
steepness comparisons with the reference strain (Fig. 4B). The greatest 
number of significantly different slope estimates among strains were 
observed in insecticides, which comprised 24 (31%) of the comparisons. 
Four strains exhibited at least ten significantly different slope estimates 
(CB4855, CB4856, MY16, XZ1516), and five strains (CB4855, CB4856, 
ECA396, MY16, RC301) exhibited more instances of significantly shal
lower dose-response slopes than N2. Furthermore, the number of 
significantly shallower dose-response slopes for each strain compared to 
the N2 strain was significantly different from that expected under the 
null (see Methods; Fisher’s exact test; p = 0.041). 

Taken together, these results suggest that genetic differences be
tween C. elegans strains mediate differential susceptibility and tox
icodynamics across a diverse range of toxicants. In order to quantify the 
degree of phenotypic variation attributable to segregating genetic 

Fig. 4. Variation in dose-response slope estimates can be explained by genetic differences among strains. A) Strain-specific slope estimates for each toxicant 
are displayed for each strain. Standard errors for each strain- and toxicant-specific slope estimate are indicated by the line extending from each point. B) For each 
toxicant, the relative steepness of the dose-response slope inferred for that strain compared to the N2 strain is shown. Solid points denote strains with significantly 
different dose-response slopes (Student’s t-test and subsequent Bonferroni correction with a padj < 0.05, see Methods; Dose-response model estimation), and faded points 
denote strains without significantly different slopes than the N2 strain. The broad category to which each toxicant belongs is denoted by the strip label for each facet. 
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Fig. 5. Variation in toxicant responses is heritable among genetically diverse C. elegans strains. The broad-sense (x-axis) and narrow-sense heritability (y-axis) 
of normalized animal length measurements was calculated for each concentration of each toxicant (Methods; Broad-sense and narrow-sense heritability calculations). 
The color of each cross corresponds to the log-transformed exposure for which those calculations were performed. The horizontal line of the cross corresponds to the 
confidence interval of the broad-sense heritability estimate obtained by bootstrapping, and the vertical line of the cross corresponds to the standard error of the 
narrow-sense heritability estimate. 
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differences among strains, we first estimated the broad-sense heritability 
of the phenotypic response for each exposure of every compound. We 
observed a wide spectrum of broad-sense and narrow-sense heritability 
estimates across compounds and exposure ranges (Fig. 5). Excluding 
control exposures, the average broad-sense heritability across all expo
sures of each compound ranged from 0.05 (atrazine) to 0.36 (chlor
pyrifos), and narrow-sense heritability ranged from 0.05 (copper(II) 
chloride) to 0.37 (chlorpyrifos). Motivated by the wide range of additive 
genetic variance estimates that we observed across exposures of each 
compound, we asked how closely the exposures that exhibited the 
greatest narrow-sense heritability aligned with EC10s estimated for each 
compound. We compared the narrow-sense heritabilities between the 
exposure closest to the estimated EC10 and the exposures that exhibited 
the maximum narrow-sense heritability for each of the 21 compounds 
with definitive EC10 estimates. We observed a strong relationship be
tween the exposures that approximate the EC10 for each compound and 
the exposures that yielded the greatest narrow-sense heritability (Fig. 6). 
Interestingly, although the correlation between these two endpoints was 
strong, the dosage of each compound that exhibited the greatest additive 
genetic variance was always greater than the exposure that approxi
mated the EC10 for that compound, demonstrating that the additive 
genetic variation responsible for the greatest differences in toxicant re
sponses among C. elegans strains is typically revealed at greater exposure 
levels than the average estimated EC10. 

4. Discussion 

One of the central goals of toxicology is to achieve precise chemical 
risk assessments in populations characterized by diversity over broad 
socioeconomic, environmental, and genetic scales. At the level of initial 
screening in model organisms, these assessments have typically been 
limited to a single strain or cell line’s genetic background. However, 
given the sheer number of uncharacterized toxicants being produced, it 
is economically infeasible to rely entirely on mammalian systems to 

rigorously evaluate these hazards on a reasonable time scale. Research 
using C. elegans as a model is a staple of toxicology, particularly when it 
comes to identifying key regulators of cellular responses to metal and 
pesticide exposures (Hartman et al., 2021; Hunt, 2017). However, these 
discoveries have typically relied on perturbing a single genome (and 
therefore a singular collection of “wild-type” alleles) using RNA inter
ference or knockout alleles for individual genes. In this study, we 
expanded the scope of C. elegans-based chemical hazard evaluations to 
consider the effects of naturally occurring genetic variants in the 
C. elegans species by performing dose-response analysis using the N2 
laboratory-adapted reference strain as well as seven wild strains repre
senting the major axes of species-wide genetic variation. We conducted 
these analyses using a high-throughput microscopy assay that facilitates 
rigorous control over experimental noise, genetic effects, and toxic 
exposure across millions of C. elegans individuals from each of our eight 
genetic backgrounds. This paradigm allowed us to precisely estimate the 
effects of genetics on impaired development in the presence of a toxicant 
and tease them apart from experimental noise. Estimating toxic end
points of chemical hazards has been previously executed using 
high-throughput screening of C. elegans responses (Boyd et al., 2012; 
Evans et al., 2018). In our study, we have leveraged and expanded on 
these types of platforms by explicitly estimating genetic effects on 
dose-response parameters. 

One goal of dose-response analysis is to identify a point of departure 
(POD) for exposure to a certain compound (e.g., a dosage at which a 
population begins to respond adversely to a hazard) based on empirical 
data. We demonstrated that EC10 estimates and slope parameters vary 
significantly between genetically distinct C. elegans strains and that, in 
fact, the N2 reference strain exhibits a significantly different dose- 
response profile than at least one other strain with respect to every 
toxicant we assessed. Additionally, strain-agnostic EC10 estimates are 
correlated with, but generally lower than, the exposure at which we 
observed the largest additive genetic variance. These observations sug
gest that previous analyses of toxicity in C. elegans might suffer from 
“genetic blindspots” in that significant intrinsic drivers of population- 
level toxicity are being systematically ignored, which then masks a 
source of complexity in toxicant susceptibility. For example, we 
observed that the strains ECA396 and MY16 are significantly more 
sensitive than other strains across more toxicants than expected by 
chance. The susceptibility profiles of these strains underscore the need 
to assess hazard risk across individuals that are intrinsically susceptible 
or resistant to understand the implications of dose-response endpoints. 
Because our high-throughput assay only reports the magnitude of 
developmental delay over one generation as a trait, it remains unknown 
whether the resistance that we observed in these strains, or for a given 
toxicant more broadly, extend to other toxicity endpoints (e.g., germline 
mutagenesis, effects on reproduction, metabolic signatures, or neuro
toxicity). The toxicants in our study belong to classes of chemicals with 
documented effects on all these organ systems, so the identification of 
putatively resistant genetic backgrounds could represent fertile ground 
for the discovery of novel pathways that potentiate well characterized 
stress responses. 

An open question in toxicogenomics is the degree to which variation 
in human disease and development can be explained by our chemical 
environment, and whether these contributions exceed those from ge
netic differences among individuals. Our study suggests that for any 
given compound, we can find a dosage for which at least 20% of the 
variation in developmental delay can be explained by genetic differ
ences between C. elegans strains. Furthermore, we show empirical sup
port for the notion that toxic endpoints derived in experimental studies 
from one genetic background cannot be neatly translated across genet
ically diverse individuals. These findings build upon similar analyses 
conducted using human cell lines derived from the 1000 Genomes 
Project (Abdo et al., 2015), which revealed substantial heritability of 
dose-response endpoints. Given that high-throughput platforms exist 
that facilitate these analyses, stakeholders in toxicology (1) should 

Fig. 6. EC10 estimates from genetically diverse individuals predict ex
posures eliciting heritable responses. The log-transformed exposure that 
elicited the most heritable response to each toxicant (y-axis) is plotted against 
the log-transformed exposure of that same toxicant nearest to the inferred EC10 
from the dose-response assessment. The exposure closest to the EC10 across all 
toxicants exhibited significant explanatory power to determine the exposure 
that elicited heritable phenotypic variation. 
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prioritize the derivation of PODs derived in genetically diverse model 
organism populations and (2) should, to all extents possible, report 
heritability estimates of toxicant responses when multiple genetic 
backgrounds are used. These steps would ensure that they can precisely 
quantify this source of uncertainty in hazardous chemical evaluations. 
Given that the ranked susceptibility to toxicants is correlated between 
C. elegans and other mammalian systems (Hunt, 2017), high-throughput 
phenotyping systems provide a complementary platform for chemical 
hazard assessment that also accounts for genetic variability. Also, given 
the high heritability estimates of the compounds that we tested, quan
titative genetic analyses such as genome-wide association studies in 
genetically diverse model organisms provide an opportunity to identify 
conserved genes that mediate population-level differences in toxicant 
susceptibility. 
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