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ABSTRACT

The genetic variability of toxicant responses among indisviduals in humans and mammalian models requires
practically untenable sample sizes to create comprehensive chemical hazard risk evaluations. To address this
need, tractable model systems enable reproducible and efficient experimental workflows to collect high-
replication measurements of exposure cohorts. Caenorhabditis elegans is a premier toxicology model that has
revolutionized our understanding of cellular responses to environmental pollutants and boasts robust genomic
resources and high levels of genetic variation across the species. In this study, we performed dose-response
analysis across 23 environmental toxicants using eight C. elegans strains representative of species-wide genetic
diversity. We observed substantial variation in EC10 estimates and slope parameter estimates of dose-response
curves of different strains, demonstrating that genetic background is a significant driver of differential toxi-
cant susceptibility. We also showed that, across all toxicants, at least one C. elegans strain exhibited a significantly
different EC10 or slope estimate compared to the reference strain, N2 (PD1074), indicating that population-wide
differences among strains are necessary to understand responses to toxicants. Moreover, we quantified the
heritability of responses (phenotypic variance attributable to genetic differences between individuals) to each
toxicant exposure and observed a correlation between the exposure closest to the species-agnostic EC10 estimate
and the exposure that exhibited the most heritable response. At least 20% of the variance in susceptibility to at
least one exposure level of each compound was explained by genetic differences among the eight C. elegans
strains. Taken together, these results provide robust evidence that heritable genetic variation explains differential
susceptibility across an array of environmental pollutants and that genetically diverse C. elegans strains should be
deployed to aid high-throughput toxicological screening efforts.

1. Introduction

levels. Although approaches to hazard risk assessments using mamma-
lian systems have translational appeal, they often suffer from low sta-

Hazard risk assessment of environmental chemicals is a top priority
of toxicological research. Over 350,000 chemicals are currently regis-
tered for use and production globally, of which tens of thousands are
either confidential or ambiguously described (Wang et al., 2020). This
staggering rate of production, paired with traditional means of hazard
safety testing, which typically uses mammalian or cell-based methods of
response evaluation, means that human populations are exposed to a
complex array of xenobiotic compounds with virtually unknown risk

tistical power because of necessarily limited sample sizes. These
approaches are also time-consuming and economically costly (Tralau
et al., 2012), drastically reducing their potential for thorough risk
assessment of a growing, sometimes multifactorial, collection of chem-
ical exposures (Brooks et al., 2020). Most importantly, meta-analyses
estimate that rodent systems predict human toxic effects approxi-
mately 50% of the time (Hartung, 2009; Knight et al., 2009), suggesting
that chemical risk assessment requires a more integrative approach.
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Caenorhabditis elegans is a free-living nematode that can be cheaply
reared in large samples in a matter of days, vastly accelerating the pace
and scale at which hazard risk evaluations can be performed compared
to most vertebrate models. Furthermore, studies using C. elegans provide
data from whole animals with intact neuromuscular, digestive, and
sensory systems unlike popular in vitro systems. C. elegans is a powerful
toxicology model that unites toxicologists with molecular geneticists so
that expertise in routes of chemical exposure, internal dosage-specific
effects, tissue distribution, and chemical metabolism is combined with
expertise in DNA damage, oxidative and osmotic stress, and regulation
of apoptosis and necrosis (Boyd et al., 2012; Hartman et al., 2021). All
three phases of xenobiotic metabolism are present in C. elegans, though
the conservation of specific gene families within each phase, such as the
cytochromes P450, UDP-glucuronosyltransferases (UGTs), sulfo-
transferase enzymes (SULTs), and ATP-binding cassette (ABC) trans-
porters (Hartman et al., 2021) have important differences. In addition to
being inexpensive and easy to use, C. elegans responses to dozens of
chemicals more accurately predict responses in rabbits and rats
compared to zebrafish models (Boyd et al., 2016). Furthermore,
meta-analyses indicate that rank-ordered toxicant sensitivity in several
rodent models correlates with responses in C. elegans (Hunt, 2017).
Finally, high-throughput approaches that measure phenotypic responses
in C. elegans facilitate chemical screens in large populations at high
replication (Andersen et al., 2015), providing a more facile and efficient
risk assessment methodology that is a viable alternative to mammalian
and cell-based systems. Therefore, toxicity assessments in C. elegans
provide an alternative to vertebrate models with significantly greater
scalability and potential to accelerate the characterization of molecular
targets of chemical exposures.

One approach to account for intra- and inter-species variation in
toxicant responses is to use uncertainty factors (UFs) to translate a
hazard’s point of departure (POD) between species with distinct expo-
sure routes and pharmacokinetic and pharmacodynamic capacities
(Piersma et al., 2011). POD calculations alone fail to directly account for
heritable genetic variation between individuals - variance in suscepti-
bility that can be explained by genetic differences that segregate among
individuals in a population (Zeise et al., 2013). Failing to account for
these differences leads to UFs serving as an imprecise proxy for
within-species variation in risk because the process is agnostic to
observed ranges of susceptibility in genetically diverse individuals.
Measuring hazard risk explicitly across many genetic backgrounds can
provide a direct empirical assessment of the merit of UFs as a method-
ology for quantifying population-wide variability caused by genetics.
Evaluations that can quantify the contributions of genetics to toxicant
response variation lay the foundation for quantitative genetic dissection,
with the specific goal of revealing novel mechanisms of toxicant sus-
ceptibility by identifying risk alleles. Wild strains of C. elegans harbor
rich genetic variation (Andersen et al., 2012; Cook et al., 2017; Lee et al.,
2021) and, by combining quantitative and molecular genetic ap-
proaches, offer the opportunity to discover genetic modifiers of toxicant
susceptibility (Andersen et al., 2015; Bernstein et al., 2019; Evans et al.,
2020; Zdraljevic et al., 2019). Quantifying the effects of genetics on
toxicant susceptibility in C. elegans is an important step towards a full
characterization of chemical hazard risk because the additive effects of
conserved genes can help us understand novel toxicant response biology
in humans. Additionally, the effects of these specific alleles can be
dissected in C. elegans using genetic crosses and state-of-the-art molec-
ular methods much faster than in mammalian systems.

In this study, we performed dose-response analysis across 25 toxi-
cants representing distinct chemical classes using eight strains of
C. elegans representative of species-wide genetic diversity. We used a
high-throughput imaging platform to assay development after exposing
arrested first larval stage animals to each toxicant in a dose-dependent
manner and used custom software (Di Tommaso et al., 2017; Nyaanga
et al.,, 2021; Wahlby et al., 2012) to measure phenotypic responses to
each compound. By estimating dose-response curves for each toxicant
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and fitting strain-specific model parameters, we demonstrated that
natural genetic variation is a key determinant of toxicant susceptibility
in C. elegans. Moreover, we showed that the specific alleles that segre-
gate between the eight strains in our cohort are responsible for heritable
variation in toxicant susceptibility, which implies that quantitative ge-
netic dissection of these responses has the potential to yield novel ge-
netic loci underlying toxicant susceptibility. Taking these observations
together, we propose that leveraging standing natural genetic variation
in C. elegans is a powerful and complementary tool for high-throughput
hazard risk assessments in translational toxicology.

2. Methods
2.1. Strains

The eight strains used in this study (PD1074, CB4856, MY16, RC301,
ECA36, ECA248, ECA396, XZ1516) are available from the C. elegans
Natural Diversity Resource (CeNDR) (Cook et al., 2017). Isolation de-
tails for the eight strains are included on CeNDR. Of the eight strains
used, two (PD1074 and ECA248) are referred to by their isotype names
(N2 and CB4855, respectively). Prior to measuring toxicant responses,
all strains were grown at 20 °C on 6 cm plates made with modified
nematode growth medium (NGMA) that contains 1% agar and 0.7%
agarose to prevent animals from burrowing (Andersen et al., 2014). The
NGMA plates were spotted with OP50 Escherichia coli as a nematode
food source. All strains were propagated for three generations without
starvation on NGMA plates prior to toxicant exposure. The specific
growth conditions for nematodes used in the high-throughput toxicant
response assay are described below (see Methods, High-throughput toxi-
cant response assay).

2.2. Nematode food preparation

We prepared a single batch of HB101 E. coli as a nematode food
source for all assays in this study. In brief, we streaked a frozen stock of
HB101 E. coli onto a 10 cm Luria-Bertani (LB) agar plate and incubated it
overnight at 37 °C. The following morning, we transferred a single
bacterial colony into a culture tube that contained 5 ml of 1x Horvitz
Super Broth (HSB). We then incubated that starter culture and a negative
control (1X HSB without bacteria) for 18 h at 37 °C with shaking at 180
rpm. We then measured the ODggo value of the starter culture with a
spectrophotometer (BioRad, smartspec plus), calculated how much of
the 18-h starter culture was needed to inoculate a one liter culture at an
ODggo value of 0.001, and used it to inoculate 14 4 L flasks that each
contained one liter of pre-warmed 1x HSB. We grew those 14 cultures for
15 h at 37 °C with shaking at 180 rpm until they were in the early sta-
tionary growth phase (Supplemental Fig. 1A). We reasoned that food
prepared from cultures grown to the early stationary phase (15 h) would
be less variable than food prepared from cultures in the log growth
phase. At 15 h, we removed the culture flasks from the incubator and
transferred them to a 4 °C walk-in cold room to arrest growth. We then
removed the 1X HSB from the cultures by three repetitions of pelleting
the bacterial cells with centrifugation, disposing of the supernatant, and
resuspending the cells in K medium. After the final wash, we resus-
pended the bacterial cells in K medium and transferred them to a 2 L
glass beaker. We measured the ODggg value of this bacterial suspension,
diluted it to a final concentration of ODggg 100 with K medium, ali-
quoted it to 15 ml conicals, and froze the aliquots at -80 °C for use in the
dose-response assays.

2.3. Toxicant stock preparation

We prepared stock solutions of the 25 toxicants using either dimethyl
sulfoxide (DMSO) or water depending on the toxicant’s solubility. The
exact sources, catalog numbers, stock concentrations, and preparation
notes for each of the toxicants are provided (Supplemental Table 1).
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Fig. 1. High-throughput microscopy assay enables rapid analysis of C. elegans toxicant responses. Detailed descriptions of A) through D) can be found in
Methods; High-throughput toxicant dose-response assay. Detailed descriptions of E) can be found in Methods; Data collection, Data cleaning, LOAEL inference, Dose-response

model estimation. Created with BioRender.com.

Following preparation of the toxicant stock solutions, they were ali-
quoted to microcentrifuge tubes and stored at —20 °C for use in the dose-
response assays. Exposure ranges were chosen for each chemical based
on results from preliminary dose-response trials using only the N2 strain
and six concentrations in order to narrow the exposure range for the
larger eight strain experiments (data not shown).

2.4. High-throughput toxicant dose-response assay

For each replicate assay, populations of each strain were passaged for
three generations, amplified, and bleach-synchronized in triplicate
(Fig. 1A). We replicated the bleach synchronization to control for vari-
ation in embryo survival and subsequent effects on developmental rates
that could be attributed to bleach effects (Porta-de-la-Riva et al., 2012)
(Fig. 2A). Following each bleach synchronization, we dispensed
approximately 30 embryos into the wells of 96-well microplates in 50 pL
of K medium (Boyd et al., 2012). We randomly assigned strains to rows
of the 96-well microplates and varied the row assignments across the
replicate bleaches. We prepared four replicate 96-well microplates
within each of three bleach replicates for each toxicant and control
condition tested in the assay. We then labeled the 96-well microplates,
sealed them with gas permeable sealing film (Fisher Cat #14-222-043),
placed them in humidity chambers, and incubated them overnight at 20
°C with shaking at 170 rpm (INFORS HT Multitron shaker). The
following morning, we prepared food for the developmentally arrested
first larval stage animals (L1s) using frozen aliquots of HB101 E. coli
suspended in K medium at an optical density at 600 nm (ODggg) of 100
(see Methods, Nematode food preparation). We thawed the required
number of ODgpp100 HB101 aliquots at room temperature, combined
them into a single conical tube, diluted them to ODgpp30 with K me-
dium, and added kanamycin at 150 pM to inhibit further bacterial
growth and prevent contamination. Working with a single toxicant at a
time, we then transferred a portion of the ODgyo30 food mix to a
12-channel reservoir, thawed an aliquot of toxicant stock solution at
room temperature (see methods, Toxicant stock preparation), and diluted
the toxicant stock to a working concentration. The toxicant working
concentration was set to the concentration that would give the highest
desired exposure when added to the 96-well microplates at 1% of the
total well volume (the final concentration of the vehicle in all wells). We

then performed a serial dilution of the toxicant working solution using
the same diluent used to make the stock solution (Fig. 1C). The dilution
factors ranged from 1.1 to 2 depending on the toxicant used, but all
serial dilutions had 12 concentrations, including a 0 uM control. Con-
centrations were identified in a set of preliminary dose-response trials
using just the N2 strain across a broader exposure range. Each control
concentration was supplied at 1% of the total well volume in either
water or DMSO. Using a 12-channel micropipette, we added the toxicant
dilution series to the 12-channel reservoir containing the food mix at a
3% volume/volume ratio. Next, we transferred 25 uL of the ODgp30
food and toxicant mix from the 12-channel reservoir into the appro-
priate wells of the 96-well microplates to simultaneously feed the
arrested L1s at a final HB101 concentration of ODgo10 and expose them
to toxicant at one of 12 levels of the dilution series. We chose to feed at a
final HB101 concentration of ODgy10 because nematodes consistently
developed to L4 larvae after 48 h of feeding at 20 °C (Supplemental
Fig. 1B). Immediately after feeding, we sealed the 96-well microplates
with a gas permeable sealing film (Fisher Cat #14-222-043), returned
them to the humidity chambers, and started a 48-h incubation at 20 °C
with shaking at 170 rpm. The remainder of the 96-well microplates were
fed and exposed to toxicants in the same manner. After 48 h of incu-
bation in the presence of food and toxicant, we removed the 96-well
microplates from the incubator and treated the wells with sodium
azide (325 uL of 50 mM sodium azide in 1X M9) for 10 min to paralyze
and straighten the nematodes. We then immediately acquired images of
nematodes in the microplates using a Molecular Devices ImageXpress
Nano microscope (Molecular Devices, San Jose, CA) with a 2X objective
(Fig. 1D). We used the images to quantify the development of nematodes
in the presence of toxicants as described below (see Methods, Data
collection, and Data cleaning).

2.5. Data collection

We wrote custom software packages designed to extract animal
measurements from images collected on the Molecular Devices
ImageXpress Nano microscope (Fig. 1E). CellProfiler is a widely used
software program for characterizing and quantifying biological data
from image-based assays (Carpenter et al., 2006; Kamentsky et al., 2011;
McQuin et al., 2018). A collection of CellProfiler modules known as the
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strains, e.g., nickel chloride (though for nickel chloride, strain variation is high at high exposure levels, see Fig. 5); and D) strong responses with moderate variation

among strains, e.g., pyraclostrobin.

WormToolbox were developed to extract morphological features of in-
dividual C. elegans animals from images from high-throughput C. elegans
phenotyping assays like the one that we use here (Wahlby et al., 2012).
We estimated worm models and wrote custom CellProfiler pipelines
using the WormToolbox in the GUI-based instance of CellProfiler. We
then wrote a Nextflow pipeline (Di Tommaso et al., 2017) to run
command-line instances of CellProfiler in parallel on the Quest High
Performance Computing Cluster (Northwestern University) because
each experimental block in this study produced many thousands of well
images. This workflow can be found at https://github.com/Andersen
Lab/cellprofiler-nf. Our custom CellProfiler pipeline generates animal
measurements by using four worm models: three worm models tailored
to capture animals at the L4 larval stage, in the L2 and L3 larval stages,
and the L1 larval stage, respectively, as well as a “multi-drug high dose”
(MDHD) model, to capture animals with more abnormal body sizes
caused by extreme toxicant responses. We used R/easyXpress (Nyaanga
etal., 2021) to filter measurements from worm objects within individual
wells that were statistical outliers using the function setFlags(), which

identifies outlier animal measurements using Tukey’s fences (Tukey,
1977). We then parsed measurements from multiple worm models down
to single measurements for single animals using the modelSelection()
function. These measurements comprised our raw dataset.

2.6. Data cleaning

All data management and statistical analyses were performed using
the R statistical environment (version 4.0.4). Our high-throughput im-
aging platform produced thousands of images across each experimental
block. It is unwieldy to manually curate each individual well image to
assess the quality of animal measurement data. Therefore, we took
several steps to clean the raw data using heuristics indicative of high-
quality animal measurements suitable for downstream analysis.

1) We began by censoring experimental blocks for which the coefficient
of variation (CV) of the number of animals in control wells was greater
than 0.6 (Supplemental Fig. 2A). Experiments containing wells that
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meet this criterion in control wells are expected to produce less
precise estimates of animal lengths in wells in which animals have
been exposed to chemicals that typically increase the variance of the
body length trait (Supplemental Fig. 2B).

We then reduced the data to wells containing between five and thirty
animals, under the null hypothesis that the number of animals is an
approximation of the expected number of embryos originally titered
into wells (approximately 30). This filtering step screened for two
problematic features of well images in our experiment. First, given
that our analysis relied on well median animal length measurements,
we excluded wells with fewer than five animals to reduce sampling
error. Second, insoluble compounds or bacterial clumps were often
identified as animals by CellProfiler (Supplemental Fig. 3) and would
vastly inflate the well census and spuriously deflate the median an-
imal length in wells containing high concentrations of certain
toxicants.

3) After the previous two data processing steps, we removed statistical

4

5

)

~

outlier measurements within each concentration for each strain for
every toxicant to reduce the likelihood that statistical outliers in-
fluence dose-response curve fits.

Next, we removed measurements from all exposures of each toxicant
that were no longer represented in at least 80% of the independent
assays because of previous data filtering steps, or had fewer than 10
measurements per strain.

Finally, we normalized the data by (1) regressing variation attrib-
utable to assay and technical replicate effects and (2) normalizing

these extracted residual values with respect to the average control
phenotype. For each compound, we estimated a linear model using
the raw phenotype measurement as the response variable and both
assay and technical replicate identity as explanatory variables
following the formula median wormlength um ~ Metadata Experiment
+ bleach using the Im() function in base R. We then extracted the
residuals from this linear model for each exposure and subtracted
normalized phenotype measurements in each exposure from the
mean normalized phenotype in control conditions. These normalized
phenotype measurements were used in all downstream statistical
analyses.

2.7. LOAEL inference

We determined the lowest observed adverse effect level (LOAEL) for
each compound by performing a one-way analysis of variance using the
normalized phenotype measurements as a response variable and toxi-
cant dosage as an explanatory variable. We then performed a Tukey post
hoc test, filtered to only comparisons to control exposures, and deter-
mined the lowest exposure that exhibited a significantly different
phenotypic response as distinguished by an adjusted p-value less than
0.05. This analysis was performed on all phenotype measurements, as
well as for each strain individually to determine if genetic background
differences explain differences in LOAEL for each toxicant.
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2.8. Dose-response model estimation and statistics

We estimated overall and strain-specific dose-response models for
each compound by fitting a log-logistic regression model using R/drc
(Ritz et al., 2015). The log-logistic model that we used specified four
parameters: b, the slope of the dose-response curve; c, the upper
asymptote of the dose-response curve; d, the lower asymptote of the
dose-response curve; and e, the specified effective exposure. This model
was fit to each compound using the drc::drm() function with strain
specified as a covariate for parameters b and e, allowing us to estimate
strain-specific dose-response slopes and effective exposures, as well as a
specified lower asymptote d at -600, which is the theoretical normalized
length of animals at the L1 larval stage. We used the drc::ED() function to
extract strain-specific EC10 values, and extracted the strain-specific
slope values using base R. We quantified the relative resistance to
each compound across all each strain pairs based on their estimated
EC10 values using the drc::EDcomp() function, which uses an approxi-
mate F-test to determine whether the variances (represented by
delta-specified confidence intervals) calculated for each strain-specific
dose-response model’s e parameter estimates are significantly
different. We quantified the relative slope steepness of dose-response
models estimated for each strain within each compound using the drc::
compParm() function, which uses a z-test to compare means of each b
parameter estimate. Results shown are filtered to just comparisons
against N2 dose-response parameters (Figs. 2 and 3), and significantly
different estimates in both cases were determined by correcting to a
family-wise type I error rate of 0.05 using Bonferroni correction. To
determine whether strains were significantly more resistant or suscep-
tible to more toxicants or chemical classes by chance, we conducted
1000 Fisher exact tests using the fisher.test() function with 2000 Monte
Carlo simulations.

2.9. Broad-sense and narrow-sense heritability calculations

Phenotypic variance can be partitioned into variance caused by ge-
netic differences or genetic variance (Vs) and residual variance
explained by other factors (Vg). We extracted the among strain variance
(V) and the residual variance (Vg) from the model and calculated
broad-sense heritability (5% with the equation = Ve / (Vg+Vg). We
estimated the H? using the Ime4 (v1.1.27.1) R package to fit a linear
mixed-effects model to the normalized phenotype data with strain as a
random effect. Genetic variance (V) can be partitioned into additive
(V4) and non-additive (Vy4) variance components. Additive genetic
variance is the amount of genetic variance that can be explained by the
discrete collection of variants that differ in a specific population.
Narrow-sense heritability (H?) is defined as the ratio of additive genetic
variance over the total phenotypic variance (Vp), i.e., K = Va/ Vp. We
generated a genotype matrix using the genomatrix profile of NemaScan, a
GWAS analysis pipeline (Widmayer et al., 2022), using the variant call
format (VCF) file generated in the latest CeNDR release (https://www.
elegansvariation.org/data/release/latest). We then calculated h? using
the sommer (v4.1.5) R package by calculating the variance-covariance
matrix (My) from this genotype matrix using the sommer::A.mat func-
tion. We estimated V, using the linear mixed-effects model function
sommer::mmer with strain as a random effect and M, as the covariance
matrix. We then estimated h? and its standard error using the sommer::
vpredict function.

2.10. Data availability
All code and data used to replicate the data analysis and figures

presented are available for download at https://github.com/And
ersenLab/toxin_dose_responses.
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3. Results

We performed dose-response assessments using a microscopy-based
high-throughput phenotyping assay (Fig. 1) for developmental delay
in response to 25 toxicants belonging to five major chemical classes:
metals (9), insecticides (8), herbicides (3), fungicides (4), flame re-
tardants (1). Dose-response assessments for each compound were con-
ducted using eight C. elegans strains representative of the genetic
variation present across the species. We first quantified the population-
wide lowest observed adverse effect level (LOAEL) for each compound
(Supplemental Table 2). We then cleaned and normalized phenotype
data in order to censor measurements obtained at problematic concen-
trations of various compounds and harmonized phenotypic responses
across technical replicates (see Methods). Out of the 25 toxicants, twelve
toxicants elicited variable LOAELs among the panel of strains: the in-
secticides aldicarb, chlorfenapyr, carbaryl, chlorpyrifos, and malathion;
the fungicides pyraclostrobin and chlorothalonil; the metals manganese
(II) chloride, methylmercury chloride, nickel chloride, and silver nitrate;
and the flame retardant triphenyl phosphate (one-way ANOVA, Tukey
HSD; pagj < 0.05).

We next estimated dose-response curves for each compound to more
precisely describe the contributions of genetic variation to different
dynamics of susceptibility among strains (Fig. 1). To accomplish this
step, we modeled four-parameter log-logistic dose-response curves for
each compound using normalized median animal length as the pheno-
typic response. The slope (b) and effective concentration (e) parameters
of each dose-response model were estimated using strain as a covariate,
allowing us to extract strain-specific dose-response parameters. Unde-
fined EC10 estimates (estimates greater than the maximum exposure)
were observed for at least one strain from two compounds (chlorfenapyr
and manganese(II) chloride). Additionally, we observed virtually uni-
form responses and high within-strain phenotypic variance across the
dose-response curves of deltamethrin and malathion across all strains.
We speculate that this high variance is in part driven by insoluble par-
ticles in culture wells that interfered with reliable inference of animal
lengths and have consequently excluded these four compounds from
further dose-response analyses (Supplemental Fig. 4).

Dose-response models using strain as a covariate explained signifi-
cantly more variation than those models without the strain covariate for
the other 21 compounds (F-test; p < 0.001). We observed substantial
variation in effective concentration between toxicants within classes of
chemicals (Two-way ANOVA; p < 0.001) but not across strains (Two-
way ANOVA; p > 0.163) (Fig. 3A, Supplemental Table 3). All fungicides
and herbicides exhibited significantly different EC10 estimates (two-
way ANOVA, Tukey HSD; pqqj < 0.003). EC10 estimates for propoxur
were not significantly different from aldicarb, nor were the estimates for
methomyl compared to chlorpyrifos (two-way ANOVA, Tukey HSD; pqg;
> 0.934) but EC10 estimates for all other compounds within the insec-
ticide class were significantly different (two-way ANOVA, Tukey HSD;
Pagj < 0.001). EC10 estimates for lead(I) nitrate were significantly
different from all other tested metals (two-way ANOVA, Tukey HSD; pqq;
< 0.001). EC10 estimates for arsenic trioxide were significantly different
from all tested metals (two-way ANOVA, Tukey HSD; pyg; < 0.050),
except nickel chloride (two-way ANOVA, Tukey HSD; pqqi = 0.068).
EC10 estimates for all other metals were not significantly different from
each other (two-way ANOVA, Tukey HSD; pqgj > 0.392). These results
suggest that susceptibility to different toxicants in C. elegans is quite
variable both between and within chemical classes.

Most differences in EC10 were explained by differences among
compounds of different classes. However, variation in EC10 estimates
caused by genetic differences among strains were pervasive (Fig. 3B). In
order to quantify these differences, we calculated the relative resistance
to all compounds exhibited by each strain in pairwise comparisons of
EC10 estimates among all strains (Supplemental Table 4). For example,
comparing two strains with EC10 estimates of 5yM and 10 pM in
response to a chemical, the relative resistance of the second strain would
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Fig. 4. Variation in dose-response slope estimates can be explained by genetic differences among strains. A) Strain-specific slope estimates for each toxicant
are displayed for each strain. Standard errors for each strain- and toxicant-specific slope estimate are indicated by the line extending from each point. B) For each
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denote strains without significantly different slopes than the N2 strain. The broad category to which each toxicant belongs is denoted by the strip label for each facet.

equal 1. To contextualize these differences, we filtered down to com-
parisons between the reference strain N2 and all others and subse-
quently calculated the difference in potency with respect to the
laboratory reference strain. In total, we observed 66 instances across 18
compounds where at least one strain was significantly more resistant or
sensitive than the reference strain N2 using EC10 as a proxy (Student’s t-
test, Bonferroni correction; psqj < 0.05) with paraquat and propoxur
being the exceptions (Fig. 3B). Twenty-two strain comparisons showed
greater resistance than responses in the N2 strain, and 44 strain com-
parisons showed greater susceptibility across all compounds. Relative
resistance was more generalized across strains, with four different
strains exhibiting significant sensitivity to at least three toxicants with
respect to the N2 strain. Of the instances in which a strain was signifi-
cantly more sensitive than the N2 strain, 47.8% of the cases were either
the ECA396 or MY16 strains, which were the two strains with the
greatest number of compounds that elicited sensitivity. Furthermore, the
observed frequency of strains with significantly greater toxicant sensi-
tivity with respect to the N2 strain was significantly different than ex-
pected under the null (see Methods; Fisher’s exact test; p < 0.05),
suggesting that diverse C. elegans strains are not equally likely to be
susceptible or resistant with respect to the commonly used reference
strain N2.

Strain-specific slope (b) estimates for each dose-response model
varied substantially as well but followed different patterns than those
estimates observed for EC10 (Fig. 4A, Supplemental Table 5). We again
observed substantial variation in slope estimates between toxicants
within chemical classes (two-way ANOVA; p < 0.001) but not across

strains (two-way ANOVA; p > 0.074). Slope estimates for pyraclostrobin
were significantly lower than all other fungicides (two-way ANOVA,
Tukey HSD; pggj < 0.0002). Slope estimates for 2,4-D were significantly
lower than those estimates for the other two herbicides (two-way
ANOVA, Tukey HSD; paqj < 0.0001). Among insecticides, the only slope
estimates that were not significantly different from each other were
methomyl and aldicarb (two-way ANOVA, Tukey HSD; pgg; = 0.999).
Slope estimates for nickel chloride were significantly different from all
other metals (two-way ANOVA, Tukey HSD; pog; < 0.031).

We next compared the relative steepness of dose-response slope es-
timates compared to the N2 reference strain, analogously to our EC10
relative potency analysis (all strain-by-strain comparisons can be found
in Supplemental Table 6) and observed 76 significantly different slope
steepness comparisons with the reference strain (Fig. 4B). The greatest
number of significantly different slope estimates among strains were
observed in insecticides, which comprised 24 (31%) of the comparisons.
Four strains exhibited at least ten significantly different slope estimates
(CB4855, CB4856, MY16, XZ1516), and five strains (CB4855, CB4856,
ECA396, MY16, RC301) exhibited more instances of significantly shal-
lower dose-response slopes than N2. Furthermore, the number of
significantly shallower dose-response slopes for each strain compared to
the N2 strain was significantly different from that expected under the
null (see Methods; Fisher’s exact test; p = 0.041).

Taken together, these results suggest that genetic differences be-
tween C. elegans strains mediate differential susceptibility and tox-
icodynamics across a diverse range of toxicants. In order to quantify the
degree of phenotypic variation attributable to segregating genetic
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Fig. 6. EC10 estimates from genetically diverse individuals predict ex-
posures eliciting heritable responses. The log-transformed exposure that
elicited the most heritable response to each toxicant (y-axis) is plotted against
the log-transformed exposure of that same toxicant nearest to the inferred EC10
from the dose-response assessment. The exposure closest to the EC10 across all
toxicants exhibited significant explanatory power to determine the exposure
that elicited heritable phenotypic variation.

differences among strains, we first estimated the broad-sense heritability
of the phenotypic response for each exposure of every compound. We
observed a wide spectrum of broad-sense and narrow-sense heritability
estimates across compounds and exposure ranges (Fig. 5). Excluding
control exposures, the average broad-sense heritability across all expo-
sures of each compound ranged from 0.05 (atrazine) to 0.36 (chlor-
pyrifos), and narrow-sense heritability ranged from 0.05 (copper(II)
chloride) to 0.37 (chlorpyrifos). Motivated by the wide range of additive
genetic variance estimates that we observed across exposures of each
compound, we asked how closely the exposures that exhibited the
greatest narrow-sense heritability aligned with EC10s estimated for each
compound. We compared the narrow-sense heritabilities between the
exposure closest to the estimated EC10 and the exposures that exhibited
the maximum narrow-sense heritability for each of the 21 compounds
with definitive EC10 estimates. We observed a strong relationship be-
tween the exposures that approximate the EC10 for each compound and
the exposures that yielded the greatest narrow-sense heritability (Fig. 6).
Interestingly, although the correlation between these two endpoints was
strong, the dosage of each compound that exhibited the greatest additive
genetic variance was always greater than the exposure that approxi-
mated the EC10 for that compound, demonstrating that the additive
genetic variation responsible for the greatest differences in toxicant re-
sponses among C. elegans strains is typically revealed at greater exposure
levels than the average estimated EC10.

4. Discussion

One of the central goals of toxicology is to achieve precise chemical
risk assessments in populations characterized by diversity over broad
socioeconomic, environmental, and genetic scales. At the level of initial
screening in model organisms, these assessments have typically been
limited to a single strain or cell line’s genetic background. However,
given the sheer number of uncharacterized toxicants being produced, it
is economically infeasible to rely entirely on mammalian systems to
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rigorously evaluate these hazards on a reasonable time scale. Research
using C. elegans as a model is a staple of toxicology, particularly when it
comes to identifying key regulators of cellular responses to metal and
pesticide exposures (Hartman et al., 2021; Hunt, 2017). However, these
discoveries have typically relied on perturbing a single genome (and
therefore a singular collection of “wild-type” alleles) using RNA inter-
ference or knockout alleles for individual genes. In this study, we
expanded the scope of C. elegans-based chemical hazard evaluations to
consider the effects of naturally occurring genetic variants in the
C. elegans species by performing dose-response analysis using the N2
laboratory-adapted reference strain as well as seven wild strains repre-
senting the major axes of species-wide genetic variation. We conducted
these analyses using a high-throughput microscopy assay that facilitates
rigorous control over experimental noise, genetic effects, and toxic
exposure across millions of C. elegans individuals from each of our eight
genetic backgrounds. This paradigm allowed us to precisely estimate the
effects of genetics on impaired development in the presence of a toxicant
and tease them apart from experimental noise. Estimating toxic end-
points of chemical hazards has been previously executed using
high-throughput screening of C. elegans responses (Boyd et al., 2012;
Evans et al., 2018). In our study, we have leveraged and expanded on
these types of platforms by explicitly estimating genetic effects on
dose-response parameters.

One goal of dose-response analysis is to identify a point of departure
(POD) for exposure to a certain compound (e.g., a dosage at which a
population begins to respond adversely to a hazard) based on empirical
data. We demonstrated that EC10 estimates and slope parameters vary
significantly between genetically distinct C. elegans strains and that, in
fact, the N2 reference strain exhibits a significantly different dose-
response profile than at least one other strain with respect to every
toxicant we assessed. Additionally, strain-agnostic EC10 estimates are
correlated with, but generally lower than, the exposure at which we
observed the largest additive genetic variance. These observations sug-
gest that previous analyses of toxicity in C. elegans might suffer from
“genetic blindspots” in that significant intrinsic drivers of population-
level toxicity are being systematically ignored, which then masks a
source of complexity in toxicant susceptibility. For example, we
observed that the strains ECA396 and MY16 are significantly more
sensitive than other strains across more toxicants than expected by
chance. The susceptibility profiles of these strains underscore the need
to assess hazard risk across individuals that are intrinsically susceptible
or resistant to understand the implications of dose-response endpoints.
Because our high-throughput assay only reports the magnitude of
developmental delay over one generation as a trait, it remains unknown
whether the resistance that we observed in these strains, or for a given
toxicant more broadly, extend to other toxicity endpoints (e.g., germline
mutagenesis, effects on reproduction, metabolic signatures, or neuro-
toxicity). The toxicants in our study belong to classes of chemicals with
documented effects on all these organ systems, so the identification of
putatively resistant genetic backgrounds could represent fertile ground
for the discovery of novel pathways that potentiate well characterized
stress responses.

An open question in toxicogenomics is the degree to which variation
in human disease and development can be explained by our chemical
environment, and whether these contributions exceed those from ge-
netic differences among individuals. Our study suggests that for any
given compound, we can find a dosage for which at least 20% of the
variation in developmental delay can be explained by genetic differ-
ences between C. elegans strains. Furthermore, we show empirical sup-
port for the notion that toxic endpoints derived in experimental studies
from one genetic background cannot be neatly translated across genet-
ically diverse individuals. These findings build upon similar analyses
conducted using human cell lines derived from the 1000 Genomes
Project (Abdo et al., 2015), which revealed substantial heritability of
dose-response endpoints. Given that high-throughput platforms exist
that facilitate these analyses, stakeholders in toxicology (1) should
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prioritize the derivation of PODs derived in genetically diverse model
organism populations and (2) should, to all extents possible, report
heritability estimates of toxicant responses when multiple genetic
backgrounds are used. These steps would ensure that they can precisely
quantify this source of uncertainty in hazardous chemical evaluations.
Given that the ranked susceptibility to toxicants is correlated between
C. elegans and other mammalian systems (Hunt, 2017), high-throughput
phenotyping systems provide a complementary platform for chemical
hazard assessment that also accounts for genetic variability. Also, given
the high heritability estimates of the compounds that we tested, quan-
titative genetic analyses such as genome-wide association studies in
genetically diverse model organisms provide an opportunity to identify
conserved genes that mediate population-level differences in toxicant
susceptibility.
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