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Abstract

In many machine learning applications, it is im-

portant for the model to provide confidence scores

that accurately capture its prediction uncertainty.

Although modern learning methods have achieved

great success in predictive accuracy, generating

calibrated confidence scores remains a major chal-

lenge. Mixup, a popular yet simple data augmen-

tation technique based on taking convex combi-

nations of pairs of training examples, has been

empirically found to significantly improve con-

fidence calibration across diverse applications.

However, when and how Mixup helps calibra-

tion is still a mystery. In this paper, we theoret-

ically prove that Mixup improves calibration in

high-dimensional settings by investigating natural

statistical models. Interestingly, the calibration

benefit of Mixup increases as the model capacity

increases. We support our theories with experi-

ments on common architectures and datasets. In

addition, we study how Mixup improves calibra-

tion in semi-supervised learning. While incor-

porating unlabeled data can sometimes make the

model less calibrated, adding Mixup training miti-

gates this issue and provably improves calibration.

Our analysis provides new insights and a frame-

work to understand Mixup and calibration.

1. Introduction

Modern machine learning methods have dramatically im-

proved the predictive accuracy in many learning tasks (Si-

monyan & Zisserman, 2014; Srivastava et al., 2015; He

et al., 2016a). The deployment of AI-based systems in high

risk fields such as medical diagnosis (Jiang et al., 2012) re-

quires a predictive model to be trustworthy, which makes the

topic of accurately quantifying the predictive uncertainty an
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increasingly important problem (Thulasidasan et al., 2019).

However, as pointed out by Guo et al. (2017), many popu-

lar modern architectures such as neural networks are very

poorly calibrated. A variety of methods have been proposed

for quantifying predictive uncertainty including training

multiple probabilistic models with ensembling or bootstrap

(Osband et al., 2016) and re-calibration of probabilities on

a validation set through temperature scaling (Platt et al.,

1999), which usually involves much more complicated pro-

cedures and extra computation. Meanwhile, recent work

(Thulasidasan et al., 2019) has shown that models trained

with Mixup (Zhang et al., 2017), a simple data augmentation

technique based on taking convex combinations of pairs of

examples and their labels, are significantly better calibrated.

However, when and how Mixup helps calibration is still not

well-understood, especially from a theoretical perspective.

As our first contribution, we demonstrate that the calibra-

tion improvement brought by Mixup is more significant in

the high-dimensional settings, i.e. the number of param-

eters is comparable to the training sample size. Figure 1

shows a motivating experiment on CIFAR-10. The Expected

Calibration Error (ECE), which is a standard measure of

how un-calibrated a model is, is smaller with Mixup aug-

mentation compared to those without Mixup augmentation,

especially when the model is wider or deeper. We provide a

theoretical explanation for this phenomenon under several

natural statistical models. In particular, our theory holds

when the data distribution can be described by a Gaussian

generative model, which is very flexible and includes many

generative adversarial networks (GANs). In a Gaussian gen-

erative model, a function is used to map a Gaussian random

variable to an input vector of some models such as neural

networks. Because the function used to map a Gaussian ran-

dom variable is arbitrary and can be nonlinear, our theory is

applicable to a very broad class of data distributions.

As our second contribution, we investigate how Mixup

helps calibration in semi-supervised learning, which is rela-

tively under-explored. Labeled data are usually expensive

to obtain, and training models by combining a small amount

of labeled data with abundant unlabeled data plays an im-

portant role in AI (Chapelle et al., 2009). In light of this, we

investigate the effect of Mixup in semi-supervised learning,

where we focus on the commonly used pseudo-labeling al-

gorithm (Chapelle et al., 2009; Carmon et al., 2019). We
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Figure 1. Expected calibration error (ECE) calculated for a fully-

connected neural network on CIFAR-10. In (a), we fix the depth

and increase the width of the neural network; while in (b), we fix

the width and increase the depth of the neural network. Mixup aug-

mentation can reduce ECE especially for larger capacity models.

observe experimentally that the pseudo-labeling by itself

can sometimes hurt calibration. However, combining Mixup

with pseudo-labeling consistently improves calibration. We

provide theories to explain these findings.

As our third contribution, we further extend our results

to Maximum Calibration Error (MCE), which also demon-

strates similar phenomena as those for ECE.

Outline of the paper. Section 2 discusses related works

and introduces the notations. In Section 3, we present our

main theoretical results for ECE by showing that Mixup

improves calibration for classification problems in the

high-dimensional regime. Section 4 investigates the semi-

supervised learning setting and demonstrates the benefit of

further applying Mixup to the pseudo-labeling algorithm. In

Section 5, we extend our studies of calibration to MCE. Sec-

tion 6 concludes with a discussion of future work. Proofs

are deferred to the Appendix.

1.1. Related Work

Mixup is a popular data augmentation scheme that has been

shown to improve a model’s prediction accuracy (Zhang

et al., 2017; Thulasidasan et al., 2019; Guo et al., 2019). Re-

cent theoretical analysis shows that Mixup has an implicit

regularization effect that enables models to better general-

ize (Zhang et al., 2020). The focus of our work is not on

accuracy, but on calibration.

Modern learning models such as neural networks have

achieved remarkable performance nowadays in optimization

(Deng et al., 2020a; Ji et al., 2021b; Deng et al., 2021c; Ji

et al., 2021a; Kawaguchi et al., 2022). Even though the

generalization and prediction (Deng et al., 2020b; Zhang

et al., 2020; Deng et al., 2021a) of neural networks are

quite amazing, it has shown that neural networks tend to

be over-confident. A well-calibrated predictive model is

needed in many applications of machine learning, rang-

ing from economics (Foster & Vohra, 1997), personalized

medicine (Jiang et al., 2012), to weather forecasting (Gneit-

ing & Raftery, 2005), to fraud detection (Bahnsen et al.,

2014). The problem on producing a well-calibrated model

has received increasing attention in recent years (Naeini

et al., 2015; Lakshminarayanan et al., 2016; Guo et al.,

2017; Zhao et al., 2020; Foster & Stine, 2004; Kuleshov

et al., 2018; Wen et al., 2020; Huang et al., 2020). In real-

world settings, the input distributions are sometimes shifted

from the training distribution due to non-stationarity. The

predictive uncertainty under such out-of-distribution con-

dition was studied by Ovadia et al. (2019) and Chan et al.

(2020). Mixup has been empirically shown to improve

the calibration for deep neural networks in both the same

and out-of-distribution domains (Thulasidasan et al., 2019;

Tomani & Buettner, 2020). Ours is the first work to provide

theoretical explanation for this phenomenon.

Semi-supervised learning is a broad field in machine learn-

ing concerned with learning from both labeled and unlabeled

datasets (Chapelle et al., 2009). Prior work mostly focuses

on improving the prediction accuracy with unlabeled data

(Zhu et al., 2003; Zhu & Goldberg, 2009; Berthelot et al.,

2019) and adversarial robustness (Carmon et al., 2019; Deng

et al., 2021b). Recently, Chan et al. (2020) found that un-

labeled data improves Bayesian uncertainty calibration in

some experiments, but the relationship between using unla-

beled data and calibration, especially from the theoretical

perspective, is still largely unknown. All of the facts above

motivate our theoretical exploration in this paper.

2. Preliminaries

In this section, We introduce the notations and briefly re-

cap the mathematical formulation of Mixup and calibration

measures considered in this paper.

2.1. Notations

We denote the training data set by S =
{(x1, y1), · · · , (xn, yn)}, where xi ∈ X ⊆ R

d and

yi ∈ Y ⊆ R
m are drawn i.i.d. from a joint distribution

Px,y . The general parameterized loss is denoted by l(θ, z),
where θ ∈ Θ ⊆ R

p and zi = (xi, yi) denotes the input

and output pair. Let L(θ) = Ez∼Px,y
l(θ, z) denote the

standard population loss and Lstd
n (θ, S) =

∑n
i=1 l(θ, zi)/n

denote the standard empirical loss. In addition, we define

x̃i,j(λ) = λxi + (1 − λ)xj , ỹi,j(λ) = λyi + (1 − λ)yj ,

and z̃i,j(λ) = (x̃i,j(λ), ỹi,j(λ)) for λ ∈ [0, 1]. We use

tD1 + (1 − t)D2 for t ∈ (0, 1) to denote the mixture

distribution such that a sample coming from that distribution

is drawn with probabilities t and (1 − t) from D1 and

D2 respectively. In classification, the output yi is the

embedding of the class of xi; i.e., yi ∈ {0, 1}m is the

one-hot encoding of the class (with all entries equal to zero

except for the one corresponding to the class of xi), where

m is the total number of classes.
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2.2. Mixup

Mixup is a data augmentation technique, which linearly in-

terpolates the training sample pairs within the training data

set to create a new data set Smix(λ) = {(z̃i,j(λ))}ni,j=1,

with λ following a distribution Dλ supported on [0, 1].
Throughout the paper, we consider the most commonly

used Dλ — the Beta distribution Beta(α, β) for α, β > 0.

Typically, in a machine learning task, one wants to learn

a function f : X → Y from a function class F using the

training data set S ∈ (X × Y)n. Such a function is usu-

ally parametrized as fθ with some parameter θ. Let us

denote the learned parameter by θ̂ = M(S). In this paper,

we consider learning the parameter by the Mixup training

M(Smix(λ)). Due to the randomness in λ, we consider tak-

ing the expectation over λ. For example, a mapping could

either be an estimator, such as the empirical mean of input:

M(S) =
∑n

i=1 xi/n, or be the minimizer of a loss function:

M(S, θ) = argminθ
∑n

i=1 l(θ, zi)/n. The correspond-

ing transformed mappings obtained via Mixup are then

Eλ∼Dλ
M(Smix(λ)) =

∑n
i,j=1 Eλ∼Dλ

xi,j(λ)/n
2 and

Eλ∼Dλ
M(Smix(λ), θ) =

∑n
i,j=1 Eλ∼Dλ

l(θ, z̃i,j(λ))/n
2

respectively.

2.3. Calibration for classification

For a classification problem, if there are K classes, typ-

ically, for an input x, a probability vector ĥ(x) =
(p1(x), · · · , pK(x))⊤ ∈ R

K is obtained from the trained

model, where pi is the corresponding probability (or so-

called confidence score) that x belongs to the class i, and
∑K

i=1 pi = 1. Then, the output is ŷ = argmaxi pi(x).
The hope is that, for instance, given 1000 samples, each

with confidence 0.7, around 700 examples should be classi-

fied correctly. In other words, we expect for all v ∈ [0, 1],

P(ŷ = y|p̂ = v) ≈ v, where p̂ is the largest entry in ĥ(x)
and y is the true class x belongs to, which is termed as

prediction confidence.

Expected Calibration Error (ECE). The most prevalent

calibration metric is the Expected Calibration Error (Naeini

et al., 2015), which is defined as,

ECE = Ev∼Dp̂
[|P(ŷ = y|p̂ = v)− v|] , (1)

where Dp̂ is the distribution of p̂. While ECE is widely

used, we note that recents works (Nixon et al., 2019; Kumar

et al., 2019) found that some methods of estimating ECE in

practice (such as the binning method) is sometimes undesir-

able and can produce biased estimator under some specially

constructed data distributions. Throughout this paper, in

our theories, we mainly focus on the population version of

calibration error as defined in (1), which does not suffer

from any such bias.

Maximum Calibration Error (MCE). Another widely

used calibration metric is the Maximum Calibration Error

(Naeini et al., 2015), which is defined as

MCE = max
v∈[0,1]

|P(ŷ = y|p̂ = v)− v|.

Again, in our theory, we will only consider this population

version of MCE. A predictor p̂ with ECE/MCE equal to 0 is

said to be perfectly calibrated.

3. Calibration in Supervised Learning

Although Mixup has been shown to improve the test ac-

curacy (Zhang et al., 2017; Guo et al., 2019; Zhang et al.,

2020), there has been much less understanding of how it

affects model calibration 1. In this section, we focus on

investigating when and how Mixup improves calibration.

3.1. Problem set-up

As a confirmation of the phenomenon suggested in Figure 1

in the introduction, our theoretical results demonstrate that

Mixup indeed improves calibration, and the improvement

is especially significant in the high-dimensional regime.

Here, by high-dimensional regime, we mean when the num-

ber of parameters in the model, p, is comparable to the

sample size n, i.e. p/n > c for some constant c > 0. In

other words, the improvement in calibration by using Mixup

is more significant in the over-parameterized case or when

the ratio between p and n is a constant asymptotically larger

than 0. Moreover, we also prove that Mixup helps calibra-

tion on out-of-domain data, which is critical for machine

learning applications.

In order to derive tractable analysis, we first study the con-

crete and natural Gaussian model. The Gaussian model is a

popular setting for understanding phenomena happening in

more complex models due to its tractability in theory and

its ability to partially capture some essence of the phenom-

ena. Indeed, the Gaussian model has been widely used in

theoretical investigations of more complex machine learn-

ing models such as neural networks in adversarial learning

(Schmidt et al., 2018; Carmon et al., 2019; Dan et al., 2020;

Deng et al., 2021b). We further extend our analysis to the

very flexible Gaussian generative models in Section 3.4.

The Gaussian model. We consider a common model used

for theoretical machine learning analysis: a mixture of two

spherical Gaussians with one component per class (Carmon

et al., 2019):

Definition 3.1 (Gaussian model). For θ∗ ∈ R
p and σ >

0, the (θ∗, σ)-Gaussian model is defined as the following

1Models with better test accuracy are not necessarily better
calibrated.
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distribution over (x, y) ∈ R
p × {1,−1}:

x | y ∼ N (y · θ∗, σ2I), for i = 1, 2, ..., n,

and y follows the Bernoulli distribution P(y = 1) = P(y =
−1) = 1/2.

For simplicity, we first consider the case where σ is known,

and the only unknown parameter is µ. The case where σ
is unknown is a special example of the general Gaussian

generative model that we will consider in Section 3.4.

Algorithms. In this section, we focus on studying the

following linear classifier for the Gaussian classification.

Specifically, the classifier follows the celebrated Fisher’s

rule (Johnson et al., 2002), or so-called linear discriminant

analysis, which is also considered by Carmon et al. (2019)

to study the adversarial robustness. The classifier is con-

structed as

Ĉ(x) = sgn(θ̂⊤x), (2)

where θ̂ =
∑n

i=1 xiyi/n. Given θ̂ and x, the output y ob-

tained via classifier Ĉ can be equivalently defined by the

following process: we first obtain the confidence vector

h(x) = (p1(x), p−1(x))
⊤, and then output y = Ĉ(x) =

argmaxk∈{−1,1} pk(x). Here, for k ∈ {−1, 1}, the confi-

dence score pk(x) represents an estimator of P(y = k|x)
and therefore takes the following form:

pk(x) =
1

e−2k·θ̂⊤xi/σ2 + 1
. (3)

In comparison, by applying Mixup to the above algorithm,

we first obtain {x̃i,j(λ), ỹi,j(λ)}ni,j=1, which leads to an-

other classifier

Ĉmix(x) = sgn(θ̂mix⊤x), (4)

where θ̂mix = Eλ∼Dλ

∑n
i,j=1 x̃i,j(λ)ỹi,j(λ)/n

2. Here,

given the randomness of λ, we take expectation with re-

spect to λ in the same way as in the previous study (Zhang

et al., 2017), though this is unnecessary in our theoretical

analysis. The confidence score obtained by Ĉmix can be

obtained similarly to that in Eq. (3) with θ̂ being replaced

by θ̂mix.

3.2. Mixup helps calibration in classification

We follow the convention in high-dimensional statistics,

where the parameter dimension p grows along with the

sample size n, and state our theorem in the large n, p regime

where both n and p goes to infinity.

Throughout the paper, we use the term “with high probabil-

ity” to indicate that the event happens with probability at

least 1− o(1), where o(1) → 0 as n → ∞ and the random-

ness is taken over the training data set. In the following, we

show that the condition p/n = Ω(1) is necessary and the

fact that Mixup improves calibration is a high-dimensional

phenomenon.

Let us denote the ECE calculated with respect to Ĉ and Ĉmix

by ECE(Ĉ) and ECE(Ĉmix) respectively. Our first theorem

states that Mixup indeed improves calibration for the above

algorithm under the Gaussian model.

Theorem 3.1. Under the settings described above, there

exists c2 > c1 > 0, when p/n ∈ (c1, c2) and ‖θ‖2 < C for

some universal constants C > 0 (not depending on n and

p), then for sufficiently large p and n, there exist α, β > 0,

such that when the distribution Dλ is chosen as Beta(α, β),
with high probability,

ECE(Ĉmix) < ECE(Ĉ).

The above theorem states that when p is comparable to n
and p/n is not too small, applying Mixup leads to a better

calibration than without applying Mixup. In the very next

theorem, we further demonstrate that the condition “ p and

n are comparable” is necessary for Mixup to reach a smaller

ECE.

Theorem 3.2. There exists a threshold τ = o(1) such that if

p/n ≤ τ and ‖θ‖2 < C for some universal constant C > 0,

given any constants α, β > 0 (not depending on n and p),

when n is sufficiently large, we have, with high probability,

ECE(Ĉ) < ECE(Ĉmix).

In Theorem 3.2, we can see if p is too small compared with

n, then applying Mixup cannot have any gain and even hurts

the calibration.

Usually, in the implementation of Mixup, we first fix α and

β before training, and the above theorem reveals the fact that

in the low-dimensional regime, where p/n is sufficiently

close to 0, the Mixup could not help calibration with high

probability. Moreover, combined with Theorem 3.3 stated

below, which characterizes the monotonic relationship be-

tween p/n and the improvement brought by Mixup, we can

see Mixup helps calibration more when the dimension is

higher.

For the ease of presentation, for all β > 0, let us define

Beta(0, β) as the degenerated distribution which takes the

only value at 0 with probability one. We also define Ĉmix
α,β

as the classifier where we apply Mixup with distribution

λ ∼ Beta(α, β).

Theorem 3.3. For any constant cmax > 0, p/n → cratio ∈
(0, cmax), when θ is sufficiently large (still of a constant

level), we have for any β > 0, with high probability, the

change of ECE by using Mixup, characterized by

d

dα
ECE(Ĉmix

α,β ) |α→0+
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is negative, and monotonically decreasing with respect to

cratio.

In Theorem 3.3, the derivative with respect to α is inter-

preted as follows. Since for any β > 0, Beta(0, β) is the

degenerated distribution at 0, θ̂mix(0, β) corresponds to the

output without Mixup. Therefore, increasing α from 0 to

some positive value implies applying Mixup. Thus, The-

orem 3.3 suggests that in high-dimensions, increasing the

interpolation range in Mixup decreases ECE.

Intuition behind our results. In the high-dimensional

regime, especially in the over-parameterized case (p > n),

the models have more flexibility to set the confidence vec-

tors. For instance, for trained neural networks, the entries

of the confidence vectors for many data points are all close

to zero except for one entry, whose value is close to 1, be-

cause the model is trained to memorize the training labels.

Mixup mitigates this problem by using linear interpolation

that creates one-hot encoding terms with entry values lying

between (0, 1), which pushes the value of entries to diverge.

This could be partially addressed in our analysis above, as

the magnitude of the confidence is closely related to ‖θ̂‖,

i.e. when ‖θ̂‖ is large, the confidence scores are more likely

to be close to 0 or 1. Mixup, as a form of regularization

(Zhang et al., 2020), could shrink ‖θ̂‖ and avoid too extreme

confidence scores.

Additional supporting experiments. To complement

our theory, we further provide more experimental evidence

on popular image classification data sets with neural net-

works. We used the fully-connected neural networks with

various values of the width (i.e. the number of neurons

per hidden layer) and the depth (i.e., the number of hidden

layers). For the experiments on the effect of the width, we

fixed the depth to be 8 and varied the width from 10 to 3000.

For the experiments on the effect of the depth, the depth

was varied from 1 to 24 (i.e., from 3 to 26 layers includ-

ing input/output layers) by fixing the width to be 400 with

data-augmentation and 80 without data-augmentation. We

used the following standard data-augmentation operations

using torchvision.transforms for both data sets:

random crop (via RandomCrop(32, padding=4) and

random horizontal flip (via RandomHorizontalFlip)

for each image. In this experiment, we used the standard

data sets — CIFAR-10 and CIFAR-100 (Krizhevsky & Hin-

ton, 2009). We used stochastic gradient descent (SGD) with

mini-batch size of 64. We set the learning rate to be 0.01

and momentum coefficient to be 0.9. We used the Beta dis-

tribution Beta(α, α) with α = 1.0 for Mixup. The results

are reported in Figure 1 and 2 with a fully-connected neural

network. Consistently across all the experiments, Mixup

reduces ECE for larger capacity models and can hurt ECE

for small models, which matches our theory. For reasons
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Figure 2. Expected calibration error (ECE). (a), (b): CIFAR-10

without data augmentation; (c), (d): CIFAR-100 with data augmen-

tation; (e), (f): CIFAR-100 without data augmentation.

of space, since our focus is mainly on the calibration, the

empirical results regarding test accuracy for each figure are

deferred to the Appendix.

3.3. Improvement for out-of-domain data

In this section, we evaluate the quality of predictive un-

certainty on out-of-domain inputs. It has been found em-

pirically that in the out-of-domain setting, Mixup can also

enhance the reliability of prediction and boost the perfor-

mance in calibration comparing to the standard training

(without Mixup) (Thulasidasan et al., 2019; Tomani & Buet-

tner, 2020). To explain the above phenomenon, using the

similar analysis as those for Theorem 3.1, we provide the

following theorem.

Theorem 3.4. Let us consider the ECE evaluated on the

out-of-domain Gaussian model with mean parameter θ′,
that is, P(y = 1) = P(y = −1) = 1/2, and x | y ∼
N (y·θ′, σ2I), for i = 1, 2, ..., n. If we have (θ′−θ∗)⊤θ∗ ≤
p/(2n), then when p and n are sufficiently large, with high

probability,

ECE(Ĉmix; θ′, σ) < ECE(Ĉ; θ′, σ),

where ECE(·; θ′, σ) denotes the expected calibration error

calculated with respect to the out-of-domain distribution –

the Gaussian model with parameters θ′ and σ, while Ĉmix
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and Ĉ are still obtained via (2) and (4) via the in-domain

training data.

The above theorem states the continuity of the boosting

effect of Mixup over the domain shift. As long as the domain

shift is not too large, Mixup still helps calibration.

3.4. Gaussian generative model

Now let us consider a more general class of distributions,

the Gaussian generative model, which is a flexible distri-

bution and has been commonly considered in the machine

learning literature. For example, many common deep gener-

ative models such as Generative Adversarial Nets (GANs)

(Goodfellow et al., 2014) are Gaussian generative models,

where the input is a Gaussian sample.

Definition 3.2 (Gaussian generative model). For θ∗ ∈ R
p

and g : Rp → R
d (d ≥ p), the (θ∗, g)-Gaussian model is

defined as the following distribution over (x, y) ∈ R
d ×

{1,−1}, x = g(z), where:

z | y ∼ N (y · θ∗, I), for i = 1, 2, ..., n,

and y follows the Bernoulli distribution P(y = 1) = P(y =
−1) = 1/2.

Now suppose we can learn an h ∈ {h : h ◦
g is an identity mapping in R

p} approximately such that

the estimator ĥ satisfies the following condition.

Assumption 3.1. For any given v ∈ R
p, k ∈ {−1, 1}, there

exists a θ∗ ∈ R
p, such that given y = k, the probability

density function of R1 = v⊤ĥ(x) and R2 = v⊤h(x) =
v⊤z ∼ N(k · b⊤θ∗, ‖v‖2) satisfies that pR1

(u) = pR2
(u) ·

(1 + δu) for all u ∈ R where δu satisfies ER1
[|δu|] = o(1)

when n → ∞.

As a special case of Definition 3.2, we consider the Gaussian

model with unknown σ. Estimating σ by

σ̂ =

√

√

√

√‖
n
∑

i=1

(xi − yiθ̂)‖2/pn

will satisfy Assumption 3.1 when ‖θ∗‖ < C for some uni-

versal constant C. In practice, for more general cases, we

can learn such h following the framework of GANs. For

example,

ĥ = argminh max
k∈{−1,1}

W(h(x), z | y),

where z is the Gaussian mixture defined in Definition 3.2

with θ∗ = 1p/
√
p and σ = 1, and W(·, ·) denotes the

Wasserstein distance. Due to the flexibility of h, the choice

of θ∗ and σ will not impact the training process.

Now we consider the following two classifiers:

Ĉ(x) = sgn(θ̂⊤ĥ(x)),

where θ̂ =
∑n

i=1 ĥ(xi)yi/n, and

Ĉmix(x) = sgn(θ̂mix⊤ĥ(x))

where

θ̂mix =

n
∑

i,j=1

Eλ∼Dλ
(λĥ(xi)+ (1−λ)ĥ(xj)) · ỹi,j(λ)/n2.

Similarly, for a generic θ̂, the confidence scores are given

by

pk(x) = 1/(e−2k·θ̂⊤ĥ(x) + 1).

We then have the following result showing that under the

more general Gaussian generative model, the Mixup method

could still provably lead to an improvement on the calibra-

tion.

Theorem 3.5. Under the settings described above with As-

sumption 3.1, there exists c2 > c1 > 0, when p/n ∈ (c1, c2),

ĥ is L-Lipschitz, and ‖θ‖2 < C for some universal con-

stants L,C > 0 (not depending on n and p), then for suf-

ficiently large p and n, there exist α, β > 0 for the Mixup

distribution Dλ = Beta(α, β), such that, with high proba-

bility,

ECE(Ĉmix) < ECE(Ĉ).

4. Mixup Improves Calibration in

Semi-supervised Learning

Data augmentation by incorporating cheap unlabeled data

from multiple domains is a powerful way to improve pre-

diction accuracy especially when there is limited labeled

data. One of the commonly used semi-supervised learning

algorithms is the pseudo-labeling algorithm (Chapelle et al.,

2009), which first trains an initial classifier Ĉinit on the

labeled data, then assigns pseudo-labels to the unlabeled

data using the Ĉinit. Lastly, using the combined labeled

and pseudo-labeled data to perform supervised learning and

obtain a final classifier Ĉfinal. Previous work has shown

that the pseudo-labeling algorithm has many benefits such

as improving prediction accuracy and robustness against

adversarial attacks (Carmon et al., 2019). However, as we

observe from Figure 3c and 3d, incorporating unlabeled

data via the pseudo-labeling algorithm does not always im-

prove calibration; sometimes pseudo-labeling even hurts

calibration. We find that further applying Mixup at the last

step of pseudo-labeling algorithm mitigates this issue and

improves calibration as shown in Figure 3. The details of

the experimental setup are included in the Appendix

We justify the empirical findings above by theoretically

analyzing the calibration in the semi-supervised learning

setting. Specifically, we assume we have nl labeled data

points {xi, yi}nl

i=1 and nu unlabeled data points {xu
i }nu

i=1
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Figure 3. ECE calculated for ResNets on varieties of data sets. In (a) and (b), using only pseudo-label algorithm improves calibration,

while in (c) and (d), using only pseudo-label algorithm hurts calibration. Further applying Mixup in the last step of pseudo-label algorithm

promotes calibration in both cases. The pseudo-labels (or p-labels in short) are inserted into training at the midpoint of the entire training:

i.e., at epoch = 100 for (a), (b) and (d) and epoch = 200 for (c).

i.i.d. sampled from the (θ∗, σ)-Gaussian model in Defini-

tion 3.1. The pseudo-labeling algorithm is the same as the

one considered in Carmon et al. (2019), which is shown in

Algorithm 1.

We then present two theorems. The first theorem demon-

strates that when the labeled data is not sufficient, then

under some mild conditions, the unlabeled data will help

the calibration. The second theorem characterizes settings

Algorithm 1 The pseudo-labeling algorithm

Step 1: Obtain an initial classifier

Ĉinit(x) = sgn(θ̂⊤initx),

where θ̂init =
∑nl

i=1 xiyi/nl.

Step 2: Apply Ĉinit on the unlabeled data set {xu
i }nu

i=1, and

obtain pseudo-labels yui = Ĉinit(xu
i ) for i ∈ [nu].

Step 3: Obtain the final classifier Ĉfinal(x) =

sgn(θ̂⊤finalx), where

θ̂final =
1

nl + nu

(

nl
∑

i=1

xiyi +

nu
∑

i=1

xu
i y

u
i

)

where the standard pseudo-labeling algorithm (Algorithm

1) makes calibration worse and increases ECE.

Theorem 4.1. Suppose C1

√

p/nl ≤ ‖θ‖ ≤ C2

√

p/nl for

some universal constant C1 < 1/2 and C2 > 2, when p/nl,

‖θ‖, nu are sufficiently large, we have with high probability,

ECE(Ĉfinal) < ECE(Ĉinit).

Meanwhile, in some cases, for instance, when the labeled

data is sufficient, the pseudo-labeling algorithm may hurt

the calibration, as shown in the following theorem.

Theorem 4.2. If C1‖θ‖ < C2, p < C3 for some constants

C1, C2, C3 > 0. Let nl and nu → ∞, then with high

probability,

ECE(Ĉinit) < ECE(Ĉfinal).

The above two theorems suggest that the pseudo-labeling

algorithm is not able to robustly guarantee improvement in

calibration. In the following, we show that we can mitigate

this issue by applying Mixup to the last step in Algorithm

1. Specifically, we consider the following classifier with

Mixup:

Ĉmix,final(x) = sgn(θ̂⊤mix,finalx),
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Figure 4. Maximum Calibration Error (MCE) calculated with vary-

ing network depth. Mixup augmentation can reduce MCE espe-

cially for larger capacity models (deeper networks) compared to

these models trained without Mixup.

where

θ̂final,mix(λ) = Eλ∼Dλ
[

1

nl + nu

nl+nu
∑

i=1

xl,u
i,j (λ)y

l,u
i,j (λ)].

Here {xl,u
i,j (λ), y

l,u
i,j (λ)}nl+nu

i,j=1 is the data set obtained by

applying Mixup to the pooled data set by combining

{xi, yi}nl

i=1 and {xu
i , y

u
i }nu

i=1. We then have the following

result showing Mixup helps the calibration in the semi-

supervised setting.

Theorem 4.3. Under the setup described above, and denote

the ECE of Ĉfinal and Ĉmix,final by ECE(Ĉfinal) and

ECE(Ĉmix,final) respectively. If C1 < ‖θ‖ < C2 for

some universal constants C1, C2 (not depending on n and p),

then for sufficiently large p and nl, nu, there exists α, β > 0,

such that when the Mixup distribution λ ∼ Beta(α, β), with

high probability, we have

ECE(Ĉmix,final) < ECE(Ĉfinal).

From Theorem 4.3, we can see that even though incorpo-

rating unlabeled data can sometimes make the model less

calibrated, adding Mixup training consistently (i.e., under

the same conditions of either Theorem 4.1 or Theorem 4.2)

mitigates this issue and provably improves calibration.

5. Extension to Maximum Calibration Error

Here we further investigate how Mixup helps calibration

under maximum calibration error. Similar conclusions can

be reached for MCE as those for ECE in Section 3.2, demon-

strating that the effects of Mixup can be found across com-

mon calibration metrics.

Theorem 5.1. Under the settings described in Theorem 3.1,

there exists c2 > c1 > 0, when p/n ∈ (c1, c2) and ‖θ‖2 <
C for some universal constants C > 0 (not depending on

n and p), then for sufficiently large p and n, there exist

α, β > 0, such that when the distribution Dλ is chosen as

Beta(α, β), with high probability,

MCE(Ĉmix) < MCE(Ĉ).

From the above theorem, we can see Mixup can also help

decrease the maximum calibration error. Comparing with

ECE, from Figure 4, we can similarly observe that when the

model capacity is small, Mixup does not really help. We

here provide the following theorem to further illustrate that

point.

Theorem 5.2. There exists a threshold τ = o(1) such that if

p/n ≤ τ and ‖θ‖2 < C for some universal constant C > 0,

given any constants α, β > 0 (not depending on n and p),

when n is sufficiently large, we have, with high probability,

MCE(Ĉ) < MCE(Ĉmix).

Lastly, we provide a similar theorem as Theorem 3.3 to

further illustrate that Mixup helps in the high-dimensional

(overparametrized) regime.

Theorem 5.3. For any constant cmax > 0, p/n → cratio ∈
(0, cmax), when θ is sufficiently large (still of a constant

level), we have for any β > 0, with high probability, the

change of ECE by using Mixup, characterized by

d

dα
MCE(Ĉmix

α,β ) |α→0+

is negative, and monotonically decreasing with respect to

cratio.

6. Conclusion and Discussion

Mixup is a popular data augmentation scheme and it has

been empirically shown to improve calibration in machine

learning. In this paper, we provide a theoretical point of view

on how and when Mixup helps the calibration, by studying

data generative models. We identify that the calibration

improvement induced by Mixup is a high-dimensional phe-

nomenon, and that such reduction in ECE becomes more

substantial when the dimension is compared to the number

of samples. This suggests that Mixup can be especially

helpful for calibration in low sample regime where post-hoc

calibration approaches like Platt-scaling are not commonly

used. We further study the relationship between Mixup

and calibration in a semi-supervised setting when there

is an abundance of unlabeled data. Using unlabeled data

alone can hurt calibration in some settings, while combining

Mixup with pseudo-labeling can mitigate this issue.

Our work points to a few promising further directions. Since

there are many variants of Mixup (Berthelot et al., 2019;

Verma et al., 2019; Roady et al., 2020; Kim et al., 2020),

it would be interesting to study how these extensions of

Mixup affect calibration. Another interesting direction is to

use the analysis and framework developed in this paper to

study the semi-supervised setting where the unlabeled data

come from a different domain than the target one. It would

be interesting to study how the calibration will change by

leveraging the out-of-domain unlabeled data.
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Appendix

A. Technical Details

A.1. Proof of Theorem 3.1

Theorem A.1 (Restatement of Theorem 3.1). Under the settings described in the main paper, if p/n → c and ‖θ‖2 < C
for some universal constants c, C > 0 (not depending on n and p), then for sufficiently large p and n, there exist α, β > 0,

such that when the distribution Dλ is chosen as Beta(α, β), with high probability,

ECE(Ĉmix) < ECE(Ĉ).

Proof. For the clarity of technical proofs, let us write the true parameter θ∗ as θ, and denote θ̂(0) = 1
n

∑n
i=1 xiyi.

Additionally, since we assume σ is known in the main paper, without loss of generality (otherwise we can consider the data

as xi/σ), we let σ = 1 throughout the proof.

For the mixup estimator, we have

θ̂(λ) =
1

n2

n
∑

i,j=1

(λxi + (1− λ)xj)(yi + (1− λ)yj)

=
1

n2

n
∑

i,j=1

(λ2xiyi + (1− λ)2xjyj + λ(1− λ)xiyj + λ(1− λ)xjyi)

=[1− 2λ(1− λ)]
1

n

n
∑

i=1

xiyi + 2λ(1− λ)
1

n

n
∑

i=1

xi ·
1

n

n
∑

i=1

yi.

Then when λ ∼ Beta(α, β), we have

θ̂mix = E
λ
[θ̂(λ)] =

(α2 + β2)(α+ β + 1) + 2αβ

(α+ β)2(α+ β + 1)
θ̂(0) +

2αβ(α+ β)

(α+ β)2(α+ β + 1)

1

2n

n
∑

i=1

xi ·
1

n

n
∑

i=1

yi

For the ease of presentation, we write

θ̂(t) = (1− t)θ̂(0) + tǫ,

where ǫ = 1
n

∑n
i=1 xi · 1

n

∑n
i=1 yi.

It is easy to see t ∈ (0, 1] when α ∈ [0,∞) and β ∈ (0,∞).

Under our model assumption, we have ‖ 1
n

∑n
i=1 xi‖ = Op(

√

p
n ), | 1n

∑n
i=1 yi| = Op(

√

1
n ), and therefore ‖ǫ‖ = Op(

√
p

n ).

Now let us consider the expected calibration error

ECE = E
v=(θ̂(t))⊤X

|E[Y = 1 | f̂(X) =
1

e−2v + 1
]− 1

e−2v + 1
|.

We further expand this quantity as

E[Y = 1 | f̂(X) =
1

e−2v + 1
] =E[Y = 1 | θ̂(t)⊤X = v]

=
P(θ̂(t)⊤X = v | Y = 1)

P(θ̂⊤X = v | Y = 1) + P(θ̂(t)⊤X = v | Y = −1)

=
e
− (v−θ̂(t)⊤θ)2

2‖θ̂(t)‖2

e
− (v−θ̂(t)⊤θ)2

2‖θ̂(t)‖2 + e
− (v+θ̂(t)⊤θ)2

2‖θ̂(t)‖2

=
1

e
− 2θ̂(t)⊤θ

‖θ̂(t)‖2
·v
+ 1

.
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Since
θ̂(t)⊤θ

‖θ̂(t)‖2
= ((1−t)θ̂(0)+tǫ)⊤θ

‖(1−t)θ̂(0)+tǫ)‖2
2

= 1
1−t

θ̂(0)⊤θ

‖θ̂(0)‖2
+OP (

√
p

n ) and θ̂(t)⊤X = (1− t)θ̂(0)⊤X +OP (
√
p

n ), we then have

ECE = E
v=(θ̂(t))⊤X

|E[Y = 1 | f̂(X) =
1

e−2v + 1
]− 1

e−2v + 1
|

= E
v=(θ̂(t))⊤X

[| 1

e
− 2θ̂(t)⊤θ

‖θ̂(t)‖2
·v
+ 1

− 1

e−2v + 1
|]

= E
v=(1−t)(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

(1−t)‖θ̂(0)‖2
·v
+ 1

− 1

e−2v + 1
|] +OP (

√
p

n
)

= E
v=(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|] +OP (

√
p

n
).

Now let us consider the quantity
θ̂(0)⊤θ

‖θ̂(0)‖2
.

Since we have θ̂(0) = θ + ǫn with ǫn = 1
n

∑n
i=1 xiyi − θ, this implies

θ̂(0)⊤θ

‖θ̂(0)‖2
=

‖θ‖2 + ǫ⊤n θ

‖θ‖2 + ‖ǫn‖2 + 2ǫ⊤n θ
∼

‖θ‖2 + 1√
n
‖θ‖

‖θ‖2 + p
n +OP (

√
p

n ) + 1√
n
‖θ‖

,

where the last equality uses the fact that ‖ǫn‖2 d
=

χ2
p

n =
p+OP (

√
p)

n = p
n +OP (

√
p

n ).

By our assumption, we have p/n ∈ (c1, c2) and ‖θ‖ < C, implying that there exists a constant c0 ∈ (0, 1), such that with

high probability

θ̂(0)⊤θ

‖θ̂(0)‖2
≤ c0.

Then on the event E = { θ̂(0)⊤θ

‖θ̂(0)‖2
≤ c0}, if we choose t = 1− c0, we will then have for any v ∈ R,

| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
| < | 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2v + 1
|,

and moreover, the difference is lower bounded by | 1
e−2v+1 − 1

e−2c0v+1
|. Use the fact that (since v and c0 does not depend

on n),

E
v=(θ̂(t))⊤X

| 1

e−2v + 1
− 1

e−2c0v + 1
| = Ω(1),

we then have the desired result

ECE(Ĉmix) < ECE(Ĉ).

A.2. Proof of Theorem 3.2

Theorem A.2 (Restatement of Theorem 3.2). In the case where p/n → 0 and ‖θ‖2 < C for some universal constant

C > 0, given any constants α, β > 0 (not depending on n and p), we have, with high probability,

ECE(Ĉ) < ECE(Ĉmix).

Proof. According to the proof in Theorem 3.1, we have

ECE(Ĉ) = E
v=(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2v + 1
|],
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and

ECE(Ĉmix) = E
v=(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|] +OP (

√
p

n
),

where t ∈ (0, 1) is a fixed constant when α, β > 0 are some fixed constants.

When p/n → 0, then

θ̂(0)⊤θ

‖θ̂(0)‖2
∼

‖θ‖2 + 1√
n
‖θ‖

‖θ‖2 + p
n +OP (

√
p

n ) + 1√
n
‖θ‖

= 1 +OP (
p

n
) = 1 + oP (1).

Therefore, we have

ECE(Ĉ) = E
v=(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2v + 1
|]

= E
v=(θ̂(0))⊤X

[| 1

e−2v+1
− 1

e−2v + 1
|] +OP (

p

n
)

=OP (
p

n
) = oP (1)

and

ECE(Ĉmix) = E
v=(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|] +OP (

√
p

n
)

= E
v=(θ̂(0))⊤X

[| 1

e−2v+1
− 1

e−2(1−t)v + 1
|] +OP (

p

n
)

Since Ev=(θ̂(0))⊤X [| 1
e−2v+1 − 1

e−2(1−t)v+1
|] = Ω(1) when t ∈ (0, 1) is a fixed constant, we then have the desired result that

ECE(Ĉ) < ECE(Ĉmix).

A.3. Proof of Theorem 3.3

Theorem A.3 (Restatement of Theorem 3.3). For any constant cmax > 0, p/n → cratio ∈ (0, cmax), when θ is sufficiently

large (still of a constant level), we have for any β > 0, with high probability, the change of ECE by using Mixup,

characterized by
d

dα
ECE(Ĉmix

α,β ) |α→0+

is negative, and monotonically decreasing with respect to cratio.

Proof. Recall that

ECE(Ĉmix) = E
v=(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|] +OP (

√
p

n
).

The case α = 0 corresponds to the case where t = 0. Since | 1

e
−

2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+1

− 1
e−2(1−t)v+1

| as a function of v is symmetric

around 0, we have that when t is sufficiently small (such that 1− t > θ̂(0)⊤θ

‖θ̂(0)‖2
with high probability)

E
v=(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|] = E

v=|(θ̂(0))⊤X|
[| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|]

= E
v=|(θ̂(0))⊤X|

[
1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
].
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Then let us take the derivative with respect to t, we get

E
v=|(θ̂(0))⊤X|

[− e−2(1−t)v · 2v
(e−2(1−t)v + 1)2

].

Therefore, the derivative evaluated at t = 0 equals to

E
v=|(θ̂(0))⊤X|

[− e−2v · 2v
(e−2v + 1)2

],

which is negative.

We then only need to show it is monotonically decreasing in the rest of this proof.

Again, by symmetry, we only need to consider the distribution of X as N(θ, I). We have θ̂(0)⊤X ∼ N(θ̂(0)⊤θ, ‖θ̂(0)⊤‖2).
Since we have θ̂(0) = θ + ǫn with ǫn = 1

n

∑n
i=1 xiyi − θ, we then have θ̂(0)⊤θ = ‖θ‖2 + OP (

1√
n
), and ‖θ̂(0)‖2 =

‖θ‖2 + p/n+O( 1√
n
). In order to show Ev=|(θ̂(0))⊤X|[− e−2v·2v

(e−2v+1)2 ] is monotonically decreasing, it’s sufficient to show that

E
Z∼N(0,1)

µ+ σZ

e−2(µ+σZ) + e2(µ+σZ) + 2

is monotonically increasing in σ ∈ (0, cmax) when µ is sufficiently large. Let us then take derivative with respect σ, we have

E
Z∼N(0,1)

Z(e−2(µ+σZ) + e2(µ+σZ) + 2)− (µ+ σZ) · 2Z · (e2(µ+σZ) − e−2(µ+σZ))

(e−2(µ+σZ) + e2(µ+σZ) + 2)2
.

It suffices to show when µ is sufficiently large, this term is positive.

In fact, when µ is sufficiently large, it suffices to look at dominating term EZ∼N(0,1)[
−2µ·Z·e2(µ+σZ)

e4(µ+σZ) ], for which we have

E
Z∼N(0,1)

[
−2µ · Z · e2(µ+σZ)

e4(µ+σZ)
] = −2µ · E

Z∼N(0,1)
[Z · e−2(µ+σZ)] > 0.

We complete the proof.

A.4. Proof of Theorem 3.4

Theorem A.4 (Restatement of Theorem 3.4). Let us consider the ECE evaluated on the out-of-domain Gaussian model

with mean parameter θ′, that is, P(y = 1) = P(y = −1) = 1/2, and

x | y ∼ N (y · θ′, σ2I), for i = 1, 2, ..., n,

If we have (θ′ − θ∗)⊤θ∗ ≤ p/(2n), then when p and n are sufficiently large, there exist α, β > 0, such that when the

distribution Dλ is chosen as Beta(α, β), with high probability,

ECE(Ĉmix; θ′, σ) < ECE(Ĉ; θ′, σ),

Proof. When the distribution has mean θ′, using the same analysis before, we obtain

E[Y = 1 | f̂(X) =
1

e−2v + 1
] =E[Y = 1 | θ̂(t)⊤X = v]

=
P(θ̂(t)⊤X = v | Y = 1)

P(θ̂⊤X = v | Y = 1) + P(θ̂(t)⊤X = v | Y = −1)

=
1

e
− 2θ̂(t)⊤θ′

‖θ̂(t)‖2
·v
+ 1

.
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Again, following the same analysis above, it’s suffices to show that with high probability,

θ̂(0)⊤θ′

‖θ̂(0)‖2
< 1.

Again, we use θ̂(0) = θ + ǫn with ǫn = 1
n

∑n
i=1 xiyi − θ, we then have

θ̂(0)⊤θ′

‖θ̂(0)‖2
=

θ⊤θ′

‖θ‖2 + p/n
+OP (

1√
n
) =

θ⊤(θ′ − θ) + ‖θ‖2
‖θ‖2 + p/n

+OP (
1√
n
).

If we have (θ′ − θ∗)⊤θ∗ ≤ p/(2n), then when p and n are sufficiently large, there exist α, β > 0, such that when the

distribution Dλ is chosen as Beta(α, β), with high probability,

θ̂(0)⊤θ′

‖θ̂(0)‖2
< 1.

and therefore

ECE(Ĉmix; θ′, σ) < ECE(Ĉ; θ′, σ),

A.5. Proof of Theorem 3.5

Theorem A.5 (Restatement of Theorem 3.5). Under the settings described above with Assumption 3.1, if p/n → c, g, ĥ is

L-Lipschitz, and ‖θ‖2 < C for some universal constants c, L, C > 0 (not depending on n and p), then for sufficiently large

p and n, there exist α, β > 0 for the Mixup distribution Dλ = Beta(α, β), such that, with high probability,

ECE(Ĉmix) < ECE(Ĉ).

Proof. Let us first recall Assumption 3.1:

Assumption A.1 (Assumption 3.1 in the main text). For any given v ∈ R
p, k ∈ {−1, 1}, there exists a θ∗ ∈ R

p, such that

given y = k, the probability density function of R1 = v⊤ĥ(x) and R2 = v⊤h(x) = v⊤z ∼ N(k · b⊤θ∗, ‖v‖2) satisfies

that pR1(u) = pR2(u) · (1 + δu) for all u ∈ R where δu satisfies ER1 [|δu|2] = o(1) when n → ∞.

Using the similar analysis from above, we have

E[Y = 1 | f̂(X) =
1

e−2v + 1
] =E[Y = 1 | θ̂(t)⊤ĥ(X) = v]

=
P(θ̂(t)⊤ĥ(X) = v | Y = 1)

P(θ̂⊤ĥ(X) = v | Y = 1) + P(θ̂(t)⊤ĥ(X) = v | Y = −1)

=
e
− (v−θ̂(t)⊤θ)2

2‖θ̂(t)‖2

e
− (v−θ̂(t)⊤θ)2

2‖θ̂(t)‖2 + e
− (v+θ̂(t)⊤θ)2

2‖θ̂(t)‖2

(1 + δv)

=
1

e
− 2θ̂(t)⊤θ

‖θ̂(t)‖2
·v
+ 1

(1 + δv).

Then by Assumption 3.1 and use the fact that | 1

e
−

2θ̂(t)⊤θ

‖θ̂(t)‖2
·v
+1

| ≤ 1, we have the expected calibration error as

ECE = E
v=(θ̂(t))⊤X

|E[Y = 1 | f̂(X) =
1

e−2v + 1
]− 1

e−2v + 1
|

= E
v=(θ̂(t))⊤X

[| 1

e
− 2θ̂(t)⊤θ

‖θ̂(t)‖2
·v
+ 1

− 1

e−2v + 1
|] + o(1)
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Then, by Assumption 3.1, we have E[|v⊤(ĥ(x) − z)|] → 0, where z ∼ 1
2N(−θ, I) + 1

2N(θ, I), which implies

‖ 1
n

∑n
i=1 ĥ(xi)− 1

n

∑n
i=1 zi‖ = o(

√
p). Since ‖ 1

n

∑n
i=1 zi‖ = OP (

√
p

n ), and | 1n
∑n

i=1 yi| = Op(
√

1
n ), we have

‖ 1
n

n
∑

i=1

ĥ(xi) ·
1

n

n
∑

i=1

yi‖ = op(

√

p

n
) = op(1).

As a result, using the same analysis as those in Section A.1, we have

θ̂mix =

n
∑

i,j=1

Eλ∼Dλ
(λĥ(xi) + (1− λ)ĥ(xj)) · ỹi,j(λ)/n2 = (1− t)θ̂(0) + op(1),

and therefore
θ̂(t)⊤θ

‖θ̂(t)‖2
= ((1−t)θ̂(0)+tǫ)⊤θ

‖(1−t)θ̂(0)+tǫ)‖2
2

= 1
1−t

θ̂(0)⊤θ

‖θ̂(0)‖2
+ oP (1) and θ̂(t)⊤X = (1− t)θ̂(0)⊤X + oP (1), we then have

ECE = E
v=(θ̂(t))⊤X

|E[Y = 1 | f̂(X) =
1

e−2v + 1
]− 1

e−2v + 1
|

= E
v=(θ̂(t))⊤X

[| 1

e
− 2θ̂(t)⊤θ

‖θ̂(t)‖2
·v
+ 1

− 1

e−2v + 1
|]

= E
v=(1−t)(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

(1−t)‖θ̂(0)‖2
·v
+ 1

− 1

e−2v + 1
|] + oP (1)

= E
v=(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|] + oP (1).

Again, it boils down to studying the quantity
θ̂(0)⊤θ

‖θ̂(0)‖2
, and it suffices to show this quantity is smaller than 1 with high

probability.

Using the same analysis above, recall that we have E[|v⊤(ĥ(x)− z)|] → 0 for any v with ‖v‖ < C. Let θ̃ = Ex[ĥ(x)] and

plugging in v = θ̃, we then obtain |θ̃⊤(θ̃ − θ)| = o(1). Also, plugging in v = θ, we obtain |θ⊤(θ̃ − θ)| = o(1). Combining

these two pieces, we obtain

‖θ̃ − θ‖ = o(1).

As a result, we have

‖θ̂(0)‖2 = ‖ 1

2n

n
∑

i=1

ŷih(xi)‖ ≥ ‖ 1

2n

n
∑

i=1

yiĥ(xi)− E[ĥ(x)]‖+ ‖E[ĥ(x)]‖ = ΩP (

√

p

n
) + ‖θ‖+ o(1),

where the term ΩP (
√

p
n ) is derived as follows.

First of all, we write

‖ 1

2n

n
∑

i=1

ŷih(xi)− E[ĥ(x)]‖2 =

p
∑

j=1

(
1

2n

n
∑

i=1

ŷihj(xi)− E[ĥj(x)])
2.

For each coordinate, we have V ar(zj) = 1 and

|V ar(ĥj(xi))− 1| = o(1). (5)

Additionally, since ĥ(x) is sub-gaussian, combining with the inequality (5), we have that ĥj(xi) has subgaussian norm

lower bounded by some constant, which implies

‖ 1
n

n
∑

i=1

ŷih(xi)− E[ĥ(x)]‖2 =

p
∑

j=1

(
1

n

n
∑

i=1

ŷihj(xi)− E[ĥj(x)])
2 = ΩP (

p

n
).

Additionally, we have

‖θ̂(0)⊤θ‖ ≤ ‖θ‖+ o(1).

Therefore, we have with high probability,

θ̂(0)⊤θ

‖θ̂(0)‖2
< 1.
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Verification of the unknown σ case When σ is unknown, we estimate σ by σ̂ =
√

‖∑n
i=1(xi − yiθ̂)‖2/pn. It’s easy to

see |σ̂−σ| = OP (1/
√
n). We then let ĥ(x) = x/σ̂, and verify for any v ∈ R

p with ‖v‖ ≤ C, R1 = v⊤ĥ(x) = v⊤x/σ̂ and

R2 = v⊤x/σ satisfies that pR1
(u) = pR2

(u) · (1 + δu) for all u ∈ R where δu satisfies ER1
[|δu|2] = o(1) when n → ∞.

We have ĥ and g are all Lipschitz with constant 2σ.

When y=1, we have

pR1(u) =
1√

2πσ/σ̂
exp{− (u− v⊤θ)2

2σ2/σ̂2
}, pR2(u) =

1√
2π

exp{− (u− v⊤θ)2

2
}

Denote g(a) = 1√
2πa

exp{− (u−v⊤θ)2

2a2 }, we then have g′(a) = − 1√
2πa2

exp{− (u−v⊤θ)2

2a2 } + 1√
2πa

exp{− (u−v⊤θ)2

2a2 } ·
(u−v⊤θ)2

a3 and therefore g′(1) = − 1√
2π

exp{− (u−v⊤θ)2

2 }+ 1√
2π

exp{− (u−v⊤θ)2

2 } · (u− v⊤θ)2.

We then have

δu =
pR1(u)− pR2(u)

pR2
(u)

= [(u− v⊤θ)2 − 1] · (σ
2

σ̂2
− 1) = OP (

(u− v⊤θ)2 − 1√
n

).

Since Eu∼R1 [((u− v⊤θ)2 − 1)2] = O(1), we have ER1 [|δu|2] = o(1) when n → ∞.

A.6. Proof of Theorem 4.1

Theorem A.6 (Restatement of Theorem 4.1). Suppose C1

√

p/nl ≤ ‖θ‖ ≤ C2

√

p/nl for some universal constant

C1 < 1/2 and C2 > 2, when p/nl, ‖θ‖, nu are sufficiently large, we have with high probability,

ECE(Ĉfinal) < ECE(Ĉinit).

Proof. According to the proof in the above section, we have

ECE(Ĉfinal) = E
v=(θ̂final)⊤X

[| 1

e
−

2θ̂⊤
final

θ

‖θ̂final‖
2 ·v

+ 1

− 1

e−2v + 1
|],

and

ECE(Ĉinit) = E
v=(θ̂init)⊤X

[| 1

e
− 2θ̂⊤

init
θ

‖θ̂init‖
2 ·v

+ 1

− 1

e−2v + 1
|].

For the initial estimator, we use θ̂init = θ̂(0) = θ + ǫn with ǫn = 1
n

∑n
i=1 xiyi − θ, we then have

θ̂(0)⊤θ

‖θ̂(0)‖2
=

‖θ‖2
‖θ‖2 + p/nl

+OP (
1√
nl

).

When C1

√

p/nl ≤ ‖θ‖ ≤ C2

√

p/nl, we have

θ̂⊤initθ

‖θ̂init‖2
=

θ̂(0)⊤θ

‖θ̂(0)‖2
≤ C2

2

C2
2 + 1

.

In the case where we combine the unlabeled data, we follow the similar analysis of Carmon et al. (2019) to study the property

of yui . Let bi be the indicator that the i-th pseudo-label is incorrect, so that xu
i ∼ N((1− 2bi)y

u
i θ, I) := (1− 2bi)y

u
i θ+ ǫui .

Then we can write

θ̂final = γθ + δ̃,

where γ = 1
nu

∑nu

i=1(1− 2bi) and δ̃ = 1
nu

∑nu

i=1 ǫ
u
i y

u
i .

We then derive concentration bounds for ‖δ̃‖2 and θ⊤δ̃. Recall that yui = sgn(θ̂⊤initx
u
i ), we choose a coordinate system

such that the first coordinate is in the direction of θ̂init, and let v(i) denote the i-th entry of vector v in this coordinate system.

Then yui = sgn(x
u(1)
i ) = sgn(θ⊤θ̂init + ǫ

u(1)
i ).
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Under this coordinate system, for j ≥ 2, we have ǫ
u(j)
i are independent with yui and therefore ǫ

u(j)
i yui ∼ N(0, 1) for all

j ≥ 2. For the first coordinate, since θ⊤θ̂init = ΩP (1), we have |E[ǫu(1)i yui ]| = |E[ǫu(1)i sgn(θ⊤θ̂init + ǫ
u(1)
i )]| = ΩP (1).

Then we have

p
∑

j=1

(
1

nu

nu
∑

i=1

ǫ
u(j)
i yui )

2 = (
1

nu

nu
∑

i=1

ǫ
u(1)
i yui )

2 +

p
∑

j=2

(
1

nu

nu
∑

i=1

ǫ
u(j)
i yui )

2 = ΩP (1) +
p+Op(

√
p)

nu
.

The same analysis also yields

|δ̃⊤θ| = | 1
nu

nu
∑

i=1

ǫ
u(1)
i yui θ1 +

p
∑

j=2

1

nu

nu
∑

i=1

ǫ
u(j)
i yui θj | = ΩP (|θ1|) +OP (‖θ‖2/

√
n).

Moreover, the proportion of misclassified samples converge the misclassification error produced by Ĉinit:

γ =
1

nu

nu
∑

i=1

(1− 2bi) → 1− exp(−c‖θ‖2) +OP (
1

n
).

This implies

θ̂⊤finalθ

‖θ̂final‖2
=

γ‖θ‖2 + δ̃⊤θ

γ2‖θ‖2 + ‖δ̃‖2 + 2δ̃⊤θ
∼ γ‖θ‖2 +ΩP (|θ1|)

γ2‖θ‖2 +ΩP (
nu+p
nu

) + ΩP (|θ1|)
.

When ‖θ‖ is sufficiently large (which implies p/nl is sufficiently large), we have

C2
2

C2
2 + 1

<
θ̂⊤finalθ

‖θ̂final‖2
< 1,

implying

θ̂⊤initθ

‖θ̂init‖2
<

θ̂⊤finalθ

‖θ̂final‖2
< 1,

and therefore

ECE(Ĉfinal) < ECE(Ĉinit).

A.7. Proof of Theorem 4.2

Theorem A.7 (Restatement of Theorem 4.2 ). If ‖θ‖ < C for some constant C > 2, given fixed p and let nl and nu → ∞
with p fixed, then with high probability probability,

ECE(Ĉinit) < ECE(Ĉfinal).

Proof. Using the same analysis as in the above section, we have

ECE(Ĉfinal) = E
v=(θ̂final)⊤X

[| 1

e
−

2θ̂⊤
final

θ

‖θ̂final‖
2 ·v

+ 1

− 1

e−2v + 1
|],

and

ECE(Ĉinit) = E
v=(θ̂init)⊤X

[| 1

e
− 2θ̂⊤

init
θ

‖θ̂init‖
2 ·v

+ 1

− 1

e−2v + 1
|].
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For the initial estimator, we use θ̂init = θ̂(0) = θ + ǫn with ǫn = 1
n

∑n
i=1 xiyi − θ, we then have

θ̂(0)⊤θ

‖θ̂(0)‖2
=

‖θ‖2
‖θ‖2 + p/nl

+OP (
1√
nl

).

When ‖θ‖ < C for some constant C > 2, given p fixed and nl → ∞, we have

θ̂⊤initθ

‖θ̂init‖2
=

θ̂(0)⊤θ

‖θ̂(0)‖2
→ 1.

For the semi-supervised classifier, when ‖θ‖ < C and nu → ∞, we have

θ̂⊤finalθ

‖θ̂final‖2
=

γ‖θ‖2 + δ̃⊤θ

γ2‖θ‖2 + ‖δ̃‖2 + 2δ̃⊤θ
∼ γ‖θ‖2 +ΩP (|θ1|)

γ2‖θ‖2 +ΩP (
nu+p
nu

) + ΩP (|θ1|)
< 1.

As a result,

θ̂⊤finalθ

‖θ̂final‖2
<

θ̂⊤initθ

‖θ̂init‖2
≤ 1,

and therefore

ECE(Ĉinit) < ECE(Ĉfinal).

A.8. Proof of Theorem 4.3

Theorem A.8 (Restatement of Theorem 4.3 ). Under the setup described above, and denote the ECE of Ĉfinal and

Ĉmix,final by ECE(Ĉfinal) and ECE(Ĉmix,final) respectively. If C1 < ‖θ‖2 < C2 for some universal constants C1, C2

(not depending on n and p), then for sufficiently large p and nl, nu, there exists α, β > 0, such that when the Mixup

distribution λ ∼ Beta(α, β), with high probability, we have

ECE(Ĉmix,final) < ECE(Ĉfinal).

Proof. Using the same analysis as those in Section A.1, we have

Using the similar analysis from above, we have

E[Y = 1 | f̂(X) =
1

e−2v + 1
] =E[Y = 1 | θ̂⊤X = v]

=
P(θ̂⊤X = v | Y = 1)

P(θ̂⊤X = v | Y = 1) + P(θ̂⊤X = v | Y = −1)

=
1

e
− 2θ̂⊤θ

‖θ̂‖2
·v
+ 1

.

Then we have the expected calibration error as

ECE = E
v=(θ̂(t))⊤X

|E[Y = 1 | f̂(X) =
1

e−2v + 1
]− 1

e−2v + 1
|

= E
v=(θ̂(t))⊤X

[| 1

e
− 2θ̂(t)⊤θ

‖θ̂(t)‖2
·v
+ 1

− 1

e−2v + 1
|] + o(1)

Then, since ‖ 1
nu

∑nu

i=1 x
u
i ‖ = OP (

√
p

nu
), and | 1n

∑n
i=1 y

u
i | = Op(

√

1
nu

), we have

‖ 1

nu

nu
∑

i=1

xu
i · 1

nu

nu
∑

i=1

yui ‖ = Op(

√
p

nu
) = op(1).



When and How Mixup Improves Calibration

As a result, using the same analysis as those in Section A.1, and denote θ̂(0) = θ̂final we have

θ̂final,mix =
n
∑

i,j=1

Eλ∼Dλ
(λĥ(xi) + (1− λ)ĥ(xj)) · ỹi,j(λ)/n2 = (1− t)θ̂(0) + op(1),

and therefore
θ̂(t)⊤θ

‖θ̂(t)‖2
= 1

1−t
θ̂(0)⊤θ

‖θ̂(0)‖2
+ oP (1) and θ̂(t)⊤X = (1− t)θ̂(0)⊤X + oP (1), we then have

ECE = E
v=(θ̂(t))⊤X

|E[Y = 1 | f̂(X) =
1

e−2v + 1
]− 1

e−2v + 1
|

= E
v=(θ̂(t))⊤X

[| 1

e
− 2θ̂(t)⊤θ

‖θ̂(t)‖2
·v
+ 1

− 1

e−2v + 1
|]

= E
v=(1−t)(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

(1−t)‖θ̂(0)‖2
·v
+ 1

− 1

e−2v + 1
|] + oP (1)

= E
v=(θ̂(0))⊤X

[| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|] + oP (1).

Again, it boils down to studying the quantity
θ̂(0)⊤θ

‖θ̂(0)‖2
, and it suffices to show this quantity is smaller than 1 with high

probability.

To see this, when C1 < ‖θ‖2 < C2 and nu, p sufficiently large, we have with high probability,

θ̂⊤finalθ

‖θ̂final‖2
=

γ‖θ‖2 + δ̃⊤θ

γ2‖θ‖2 + ‖δ̃‖2 + 2δ̃⊤θ
∼ γ‖θ‖2 +ΩP (|θ1|)

γ2‖θ‖2 +ΩP (
nu+p
nu

) + ΩP (|θ1|)
< 1.

Therefore, there exists α, β > 0, such that when the Mixup distribution λ ∼ Beta(α, β), with high probability, we have

ECE(Ĉmix,final) < ECE(Ĉfinal).

A.9. Proof of Theorem 5.1

Theorem A.9 (Restatement of Theorem 5.1). Under the settings described in Theorem 3.1, there exists c2 > c1 > 0, when

p/n ∈ (c1, c2) and ‖θ‖2 < C for some universal constants C > 0 (not depending on n and p), then for sufficiently large p
and n, there exist α, β > 0, such that when the distribution Dλ is chosen as Beta(α, β), with high probability,

MCE(Ĉmix) < MCE(Ĉ).

Proof. Following the calculation of Theorem 3.1, we consider the maximum calibration error,

MCE = max
v

|E[Y = 1 | f̂(X) =
1

e−2v + 1
]− 1

e−2v + 1
|.

In addition, we have

E[Y = 1 | f̂(X) =
1

e−2v + 1
] =

1

e
− 2θ̂(t)⊤θ

‖θ̂(t)‖2
·v
+ 1

,

where

t =
2αβ(α+ β)

(α+ β)2(α+ β + 1)
.

Let us denote ρ = θ̂(t)⊤θ

‖θ̂(t)‖2
. Since

θ̂(t)⊤θ

‖θ̂(t)‖2
= ((1−t)θ̂(0)+tǫ)⊤θ

‖(1−t)θ̂(0)+tǫ)‖2
2

= 1
1−t

θ̂(0)⊤θ

‖θ̂(0)‖2
+OP (

√
p

n ). As a result,
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MCE =max
v

|E[Y = 1 | f̂(X) =
1

e−2v + 1
]− 1

e−2v + 1
|

=max
v

| 1

e
− 2θ̂(t)⊤θ

‖θ̂(t)‖2
·v
+ 1

− 1

e−2v + 1
|

=max
v

| 1

e
− 2θ̂(0)⊤θ

(1−t)‖θ̂(0)‖2
·v
+ 1

− 1

e−2v + 1
|+OP (

√
p

n
)

=max
v

| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|+OP (

√
p

n
).

Now let us consider the quantity
θ̂(0)⊤θ

‖θ̂(0)‖2
.

Since we have θ̂(0) = θ + ǫn with ǫn = 1
n

∑n
i=1 xiyi − θ, this implies

θ̂(0)⊤θ

‖θ̂(0)‖2
=

‖θ‖2 + ǫ⊤n θ

‖θ‖2 + ‖ǫn‖2 + 2ǫ⊤n θ
∼

‖θ‖2 + 1√
n
‖θ‖

‖θ‖2 + p
n +OP (

√
p

n ) + 1√
n
‖θ‖

,

where the last equality uses the fact that ‖ǫn‖2 d
=

χ2
p

n =
p+OP (

√
p)

n = p
n +OP (

√
p

n ).

By our assumption, we have p/n ∈ (c1, c2) and ‖θ‖ < C, implying that there exists a constant c0 ∈ (0, 1), such that with

high probability

θ̂(0)⊤θ

‖θ̂(0)‖2
≤ c0.

Then on the event E = { θ̂(0)⊤θ

‖θ̂(0)‖2
≤ c0}, if we choose t = 1− c0, we will then have for any v ∈ R,

| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
| < | 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2v + 1
|,

and moreover, the difference between LHS and RHS is lower bounded by | 1
e−2v+1 − 1

e−2c0v+1
|. Thus, we have

MCE(Ĉmix) < MCE(Ĉ).

A.10. Proof of Theorem 5.2

Theorem A.10 (Restatement of Theorem 5.2). There exists a threshold τ = o(1) such that if p/n ≤ τ and ‖θ‖2 < C for

some universal constant C > 0, given any constants α, β > 0 (not depending on n and p), when n is sufficiently large, we

have, with high probability,

MCE(Ĉ) < MCE(Ĉmix).

Proof. According to the proof in Theorem 5.1, we have

MCE(Ĉ) = max
v

| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2v + 1
|,

and

MCE(Ĉmix) = max
v

| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|+OP (

√
p

n
),
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where t ∈ (0, 1) is a fixed constant when α, β > 0 are some fixed constants.

When p/n → 0, then

θ̂(0)⊤θ

‖θ̂(0)‖2
∼

‖θ‖2 + 1√
n
‖θ‖

‖θ‖2 + p
n +OP (

√
p

n ) + 1√
n
‖θ‖

= 1 +OP (
p

n
) = 1 + oP (1).

Therefore, we have

MCE(Ĉ) =max
v

[| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2v + 1
|]

=max
v

[| 1

e−2v+1
− 1

e−2v + 1
|] +OP (

p

n
)

=OP (
p

n
) = oP (1)

and

MCE(Ĉmix) =max
v

| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|+OP (

√
p

n
)

=| 1

e−2v+1
− 1

e−2(1−t)v + 1
|+OP (

p

n
)

Since maxv | 1
e−2v+1 − 1

e−2(1−t)v+1
| = Ω(1) when t ∈ (0, 1) is a fixed constant, we then have the desired result that

MCE(Ĉ) < MCE(Ĉmix).

A.11. Proof of Theorem 5.3

Theorem A.11 (Restatement of Theorem 5.3). For any constant cmax > 0, p/n → cratio ∈ (0, cmax), when θ is sufficiently

large (still of a constant level), we have for any β > 0, with high probability, the change of ECE by using Mixup,

characterized by
d

dα
MCE(Ĉmix

α,β ) |α→0+

is negative, and monotonically decreasing with respect to cratio.

Proof. Recall that

MCE(Ĉmix) = max
v

| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|+OP (

√
p

n
).

The case α = 0 corresponds to the case where t = 0. Since | 1

e
−

2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+1

− 1
e−2(1−t)v+1

| as a function of v is symmetric

around 0, we have that when t is sufficiently small (such that 1− t > θ̂(0)⊤θ

‖θ̂(0)‖2
with high probability)

max
v

| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
| =max

v>0
| 1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
|

=max
v>0

[
1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
].

Let us denote

v∗ = argmaxv>0[
1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+ 1

− 1

e−2(1−t)v + 1
].
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For the term

ξ(t) =
1

e
− 2θ̂(0)⊤θ

‖θ̂(0)‖2
·v∗

+ 1

− 1

e−2(1−t)v∗ + 1
,

let us take the derivative with respect to t, we get

d

dt
ξ(t) = − e−2(1−t)v∗ · 2v∗

(e−2(1−t)v∗ + 1)2
.

Therefore, the derivative evaluated at t = 0 equals to

− e−2v∗ · 2v∗
(e−2v∗ + 1)2

,

for v∗ > 0, which is negative.

Recall that we have θ̂(0) = θ + ǫn with ǫn = 1
n

∑n
i=1 xiyi − θ, this implies

θ̂(0)⊤θ

‖θ̂(0)‖2
=

‖θ‖2 + ǫ⊤n θ

‖θ‖2 + ‖ǫn‖2 + 2ǫ⊤n θ
∼

‖θ‖2 + 1√
n
‖θ‖

‖θ‖2 + p
n +OP (

√
p

n ) + 1√
n
‖θ‖

,

where the last equality uses the fact that ‖ǫn‖2 d
=

χ2
p

n =
p+OP (

√
p)

n = p
n +OP (

√
p

n ).

Consider the case when cratio = c1 and cratio = c2, where 0 < c1 < c2, we want to prove that,

−e−2v∗(c1) · 2v∗(c1)
(e−2v∗(c1) + 1)2

> −e−2v∗(c2) · 2v∗(c2)
(e−2v∗(c2) + 1)2

,

where v∗(c1) > 0 and v∗(c2) > 0 are the maximizers of 1

e
−

2θ̂(0)⊤θ

‖θ̂(0)‖2
·v
+1

− 1
e−2(1−t)v+1

when cratio = c1 and cratio = c2

respectively.

Since

− e−2v∗ · 2v∗
(e−2v∗ + 1)2

is a decreasing function of v∗, and with high probability

θ̂(0)⊤θ

‖θ̂(0)‖2
∣

∣

∣

cratio=c1
>

θ̂(0)⊤θ

‖θ̂(0)‖2
∣

∣

∣

cratio=c2
.

Thus, we only need to show that the maximizer v∗(ρ) defined by

v∗(ρ) = argmaxv>0[
1

e−2ρ·v + 1
− 1

e−2(1−t)v + 1
]
∣

∣

∣

t→0+

is an decreasing function of ρ for ρ ∈ [0, 1) (since
θ̂(0)⊤θ

‖θ̂(0)‖2
∈ [0, 1)).

As we know that v∗(ρ) is the solution of the following equation:

2ρv∗(ρ)

e2ρv∗(ρ) + e−2ρv∗(ρ) + 2
=

2v∗(ρ)

e2v∗(ρ) + e−2v∗(ρ) + 2
.

From Figure 5, we can directly see that v∗(ρ) increases as ρ decreases. We complete the proof.
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Figure 5. Illustration plot for the function 2x/(e2 + e−2x + 2).

B. Experimental setup and additional numerical results

To complement our theory, we further provide more experimental evidence on popular image classification data sets with

neural networks. In Figures 1 and 2, we used fully-connected neural networks and ResNets with various values of the width

(i.e., the number of neurons per hidden layer) and the depth (i.e., the number of hidden layers). For the experiments on the

effect of the width, we fixed the depth to be 8 and varied the width from 10 to 3000. For the experiments on the effect of the

depth, the depth was varied from 1 to 24 (i.e., from 3 to 26 layers including input/output layers) by fixing the width to be 400

with data-augmentation and 80 without data-augmentation. We used the following standard data-augmentation operations

using torchvision.transforms for both data sets: random crop (via RandomCrop(32, padding=4)) and

random horizontal flip (via RandomHorizontalFlip) for each image. We used the standard data sets — CIFAR-10

and CIFAR-100 (Krizhevsky & Hinton, 2009). We employed SGD with mini-batch size of 64. We set the learning rate to be

0.01 and momentum coefficient to be 0.9. We used the Beta distribution Beta(α, α) with α = 1.0 for Mixup.

In Figure 3, we adopted the standard data sets, Kuzushiji-MNIST (Clanuwat et al., 2019), Fashion-MNIST (Xiao et al., 2017),

and CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009). We used SGD with mini-batch size of 64 and the learning

rate of 0.01. The Beta distribution Beta(α, α) with α = 1.0 was used for Mixup. We used the standard pre-activation

ResNet with 18 layers and ReLU activations (He et al., 2016b). For each data set, we randomly divided each training data

(100%) into a labeled training data (50%) and a unlabeled training data (50%) with the 50-50 split. Following the theoretical

analysis, we first trained the ResNet with labeled data until the half of the last epoch in each figure. Then, the pseudo-labels

were generated by the ResNet and used for the final half of the training.

We run experiments with a machine with 10-Core 3.30 GHz Intel Core i9-9820X and four NVIDIA RTX 2080 Ti GPUs

with 11 GB GPU memory.

Figure 6 shows that Mixup also tend to reduce test loss for larger capacity models. The experimental setting of Figure 6 is

the exactly same as that of Figures 1 and 2. Here, relative test loss of a particular case is defined by
test loss of a particular case

test loss of no mixup base case
.

Figures 7–8 show that Mixup can reduce ECE2 particularly for larger capacity models.

Figure 4 uses the same setting as that of Figures 1 and 2. Similarly to Figure 4, Figure 9 below shows that Mixup can reduce

MCE particularly for larger capacity models with varying degrees of depth and width. The setting of Figure 9 is the same as

that of Figures 1 and 2 with the data-augmentation.
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Figure 8. ECE2 without data-augmentation
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Figure 6. Relative test loss: (a), (b): CIFAR-10 without data augmentation; (c), (d): CIFAR-10 with data augmentation; (e), (f): CIFAR-100

without data augmentation; (g), (h): CIFAR-100 with data augmentation.
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Figure 7. ECE2 with data-augmentation
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Figure 9. Maximum Calibration Error (MCE)


