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Abstract

Maize (Zea mays L.) is one of the three major cereal crops in the world. Leaf angle is

an important architectural trait of crops due to its substantial role in light

interception by the canopy and hence photosynthetic efficiency. Traditionally, leaf

angle has been measured using a protractor, a process that is both slow and

laborious. Efficiently measuring leaf angle under field conditions via imaging is

challenging due to leaf density in the canopy and the resulting occlusions. However,

advances in imaging technologies and machine learning have provided new tools for

image acquisition and analysis that could be used to characterize leaf angle using

three‐dimensional (3D) models of field‐grown plants. In this study, PhenoBot 3.0, a

robotic vehicle designed to traverse between pairs of agronomically spaced rows of

crops, was equipped with multiple tiers of PhenoStereo cameras to capture side‐

view images of maize plants in the field. PhenoStereo is a customized stereo camera

module with integrated strobe lighting for high‐speed stereoscopic image acquisition

under variable outdoor lighting conditions. An automated image processing pipeline

(AngleNet) was developed to measure leaf angles of nonoccluded leaves. In this

pipeline, a novel representation form of leaf angle as a triplet of keypoints was

proposed. The pipeline employs convolutional neural networks to detect each leaf

angle in two‐dimensional images and 3D modeling approaches to extract

quantitative data from reconstructed models. Satisfactory accuracies in terms of

correlation coefficient (r) and mean absolute error (MAE) were achieved for leaf

angle (r MAE> 0.87, < 5°) and internode heights (r MAE> 0.99, < 3.5cm). Our

study demonstrates the feasibility of using stereo vision to investigate the

distribution of leaf angles in maize under field conditions. The proposed system is

an efficient alternative to traditional leaf angle phenotyping and thus could

accelerate breeding for improved plant architecture.
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1 | INTRODUCTION

Improving plant productivity and efficiency has become an important

mission of plant breeding with the ever‐increasing world population

and climate change (Furbank & Tester, 2011). Understanding the

adaptation of plants to various environments relies on dissecting the

relationship between plant genotype (underlying genetic codes) and

phenotype (e.g., plant architecture). Such knowledge can potentially

aid in developing productive crop varieties and accelerate the plant

breeding progress (Gibbs et al., 2018). Given the importance of maize

as a cereal crop, plant breeders strive to generate high‐yielding,

stress‐tolerant maize varieties (Che et al., 2020; N. Wang et al., 2015).

Plant architecture plays an essential role in the interception of solar

radiation (Duan et al., 2016; Truong et al., 2015). However, maize

leaves are curved and this complicates how leaf curvature can be

described by a single system of equations (Ford et al., 2008). Leaf

curvature is influenced by not only ligule formation and growth, but

also other factors including stiffness of the leaf material, midrib

structure, vein density, leaf width, and length (Ford et al., 2008). As

major part of leaf curvature, leaf angle, has attracted attention over

decades for increasing crop yields (Lewis et al., 2014; Pendleton

et al., 1968). Leaf angle is defined as the angle between the plant

stem and leaf adaxial side of the blade (D. Tang et al., 2018). An

optimal arrangement of leaves from the top to the bottom of the

canopy can increase photosynthetic efficiency, thereby potentially

increasing grain yield per unit area (Dzievit et al., 2019; Mantilla‐

Perez et al., 2020; Ort et al., 2015). Leaf angle is associated with

increased productivity in maize (Hammer et al., 2009; Lewis

et al., 2014; Mansfield & Mumm, 2014; X.‐G. Zhu et al., 2010). A

canopy configuration with leaves at a more horizontal angle in the

lower canopy and a more upright angle in the upper canopy is most

desirable (Dzievit et al., 2019; X. Zhang et al., 2017).

Breeding for leaf angle requires measuring the leaf angles of

large numbers of field‐grown plants. The most common method is to

select representative plants and manually measure the angles of

typical leaves (Dzievit et al., 2019; Zhao et al., 2018). This slow

process often fails to capture variation among leaf angles from the

upper to lower portions of the crop canopy. Therefore, there is an

urgent need to develop automated, high‐throughput phenotyping

methods for leaf angle (Mantilla‐Perez et al., 2020; X. Zhang

et al., 2017).

Advances in high‐throughput plant phenotyping platforms and

sensing technologies provide an opportunity to improve the

efficiency of leaf angle measurement (Chen et al., 2021; Duan

et al., 2016; Mccormick et al., 2016; Y. Tang et al., 2020). Several

studies on methods for automated leaf angle measurements in maize

plants using two‐dimensional (2D) and three‐dimensional (3D) images

under controlled environments have recently been reported. For 2D

imaging, RGB cameras are extensively used in indoor phenotyping

systems to capture side‐view images of maize plants (Cabrera‐

Bosquet et al., 2016; Kenchanmane Raju et al., 2020; X. Zhang

et al., 2017). Most of the previous studies used binarization‐

skeletonization method for leaf segmentation and requires controlled

light conditions and viewing angles for image acquisition (Das

Choudhury et al., 2018; Kenchanmane Raju et al., 2020; Souza et al.,

2021). For example, Cabrera‐Bosquet et al. (2016) used the

PHENOARCH platform equipped with RGB cameras to capture 12

side‐view images of a single maize plant; the image with the most

information was selected for leaf angle measurement. These 2D

imaging‐based methods have a high throughput, but they require a

camera pose where the leaf‐stem plane is parallel to the image plane

to get accurate leaf angle measurement and are therefore not

suitable for in‐field leaf angle measurements. In contrast, 3D imaging

that includes depth information provides the opportunity to over-

come the limitations of 2D approaches (Apelt et al., 2015; Sun

et al., 2020). Several technologies have been developed to

reconstruct maize canopies and measure leaf angle in 3D space,

such as 3D laser scanning (Y. Wang et al., 2019), light detection and

ranging (LiDAR) (Thapa et al., 2018), structure from motion (Zermas

et al., 2020), and time‐of‐flight (ToF) imaging (Chaivivatrakul

et al., 2014). Y. Wang et al. (2019) compared the representative 3D

data acquisition approaches for maize phenotyping and obtained

reliable measurements of leaf angle. The skeletonization approach

has also been successfully used for interpreting the structure of 3D

canopies, where a 3D skeleton was created by point cloud slicing

along the growth direction (Bao, Tang, Breitzman, et al., 2019;

Xiang et al., 2019; Zermas et al., 2020), or voxel thinning (Gaillard

et al., 2020), or Laplacian contraction (Wu et al., 2019; C. Zhu

et al., 2020). However, the existing methods for detecting and

measuring leaf angle are more effective for maize plants with fully

expanded and sparsely distributed leaves, and have limited ability to

address the challenges in segmenting severely overlapped leaves in

the field.

Developing field‐based high‐throughput phenotyping systems

for agronomically grown maize plants remains difficult because of

the field and crop conditions including: (1) Narrow row spacing:

agronomically spaced maize crop rows are typically 0.76 m apart in

the United States, and therefore, the robotic vehicle must have a

narrow‐body to traverse between crop rows and the imaging

sensor must have a short working distance to acquire side‐view

images of maize plants; (2) Extreme plant height: Some maize

plants can grow 3‐m tall and more, requiring multiple tiers of

imaging sensors to cover the whole plant within the narrow

agronomic row spacing; (3) Uneven ground surface: Running a

narrow vehicle to image tall maize plants in a close vicinity on

uneven field surfaces demands real‐time balancing of the sensor

mast; (4) Occlusion of plant canopies: There are serious occlusions

of the plant organs (e.g., leaves, stalks) toward the imaging sensors

due to either plant orientation or interferences from the

neighboring plants, making 3D image analysis a necessity; (5)

Environmental variations: variable lighting and wind conditions in

the field can complicate the acquisition of high‐quality images.

Hence, the image sensor should have a high shutter speed and

consistent lighting to overcome motion blur and variable lighting.

Stereo vision with an active strobe lighting system provides a

practical way for such purpose.
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The leaf angle characterization of field‐grown maize plants is

regarded as one of the most challenging phenotyping tasks because

of the substantial overlap and occlusion in maize plant canopies; and

moreover, variable stem and leaf orientations relative to the camera

can affect their visibility near a leaf collar (Bao, Tang, Srinivasan,

et al., 2019). To address these challenges, Wu et al. (2019)

transported maize plants from the field to the greenhouse for 3D

scanning, the resultant point cloud was first preprocessed manually

and then skeletonized for leaf segmentation. As noted in the study,

the 3D scanner is sensitive to wind, and even light wind caused by

human moving would lead to overlaps and offsets in the point cloud.

Additionally, the image acquisition process is a fairly low‐throughput

and therefore not feasible for in‐field applications. To measure maize

plants in the field, Bao, Tang, Srinivasan, et al. (2019) developed an

automated system to characterize plant architectural traits based on

ToF 3D imaging. Plants were detected as 3D Hough lines and a

skeletonization algorithm was developed to separate stems and

leaves. However, the estimation of leaf angle suffered from occlusion

and overlapped canopies especially for the plants at late growth

stages. Additionally, this method requires increased interrow and

intra‐row spacing to reduce occlusions and to achieve a sufficient

field of view for the depth camera, and the images must be acquired

near or after sunset due to theToF camera's susceptibility to sunlight.

Due to the dense canopy and severe occlusion, especially during later

periods of plant growth, the segmentation of individual plants and

leaves can be difficult when plants are grown at agronomic field

densities. Therefore, several plot‐level architectural traits such as

plot‐based plant width (PPW) (Mantilla‐Perez et al., 2020) have been

developed to estimate leaf angle indirectly. However, such plot‐level

descriptors can be influenced by other architectural traits: for

example, longer leaves with the same leaf angles may result in a

larger PPW value. This method of leaf angle measurement was

seriously compromised because the severe occlusions generated by

the dense plant population and dense canopy of sorghum plants have

made automated leaf angle detection largely impossible. To the best

of our knowledge, no previous studies have been reported on

automatically measuring leaf angle of maize plants in the field with

30‐inch row spacing.

Following recent breakthroughs, deep convolutional neural net-

works (CNNs) have strong performance on image processing tasks in

field‐based plant phenotyping studies (Pérez‐Borrero et al., 2020;

Santos et al., 2020; Zou et al., 2020). Compared with traditional

computer vision methods, CNN‐based approaches can better cope with

the image‐by‐image variations caused by the differences in occlusion,

illumination, and viewpoints, hence providing new opportunities for

automation (Koirala et al., 2019; Vit et al., 2020). The morphological trait

characterization step in plant phenotyping can be treated as an object

detection problem, in which CNN models can be trained to find the

regions or points of interest (Jiang & Li, 2020). For example, in a study

measuring stem diameter in sorghum plants in the field, a region‐based

CNN model was used to detect sorghum stems in a given image (Xiang

et al., 2020). In another study, this model was used to identify points for

length phenotyping (Vit et al., 2020).

We focused on the problems associated with detecting and

measuring leaf angles along the entire height of maize plants based

on 3D models reconstructed from stereoscopic images. Motivated by

keypoint‐based human‐pose estimation, the topology of a leaf angle

was defined by a triplet of keypoints, including a point on the midrib

(M), a point on the stem (S), and a point near the leaf collar (C), and

the relationships between those three keypoints. We implemented

an anchor‐free model to detect the distinct regions of leaf collars and

to identify the points of interest for quantifying leaf angles. The

approach bypasses the challenges faced by individual leaf detection

and segmentation in field‐based images. The specific objectives were

to (1) implement a customized stereo‐vision‐based plant phenotyping

platform to image maize plant canopy at different heights in the field;

(2) develop an automated image processing pipeline to detect the

regions and keypoints of interest and characterize plant architecture

via a 3D modeling process and derive two important traits: leaf angle

and its associated node height; (3) evaluate the performance of the

proposed approach by comparing system‐derived measurements

with ground truth; and (4) explore the effectiveness of the newly

developed system for characterizing leaf angle variations in different

maize inbred lines in the field.

2 | METHODS

2.1 | PhenoBot 3.0 and PhenoStereo

PhenoBot 3.0 (Gai, 2020; Tuel, 2019) (Figure 1a) was used as the

robotic ground‐based sensor platform for data acquisition. The

platform is designed for field‐based plant phenotyping, especially for

tall‐growing plants such as maize and sorghum. With a unique narrow

body design (0.508‐m width) and a centrally articulated steering

mechanism, PhenoBot 3.0 is able to navigate between crop rows with

0.76‐m spacing (Gai et al., 2021). A sensor mast with adjustable

height (between 2.1 and 3.7 m) is mounted on the vehicle to support

an RTK‐GPS module and images sensors. To avoid collision with the

crop rows and keep a workable camera‐to‐object distance, the roll

angle of the sensor mast was actively controlled to maintain the mast

gravitationally vertical in the presence of uneven ground surfaces.

The self‐balanced sensor mast enables the phenotyping platform to

image plant sections at different heights to cover the whole canopy.

With the sensor mast and the image sensor configuration, PhenoBot

3.0 is capable of capturing various organ‐level phenotypic traits

located at different heights of maize plant canopy, such as leaf angle,

stem diameter, ear height, tassel size, and so on.

PhenoStereo (Xiang et al., 2020) camera was used to acquire

stereo imagery of maize plants in the field (Figure 1b). The custom‐

built stereo camera module houses two industrial color cameras

equipped with a lens of 4.0 mm focal length. To overcome the

variable outdoor lighting conditions, the module integrates an

embedded computer and a high‐intensity strobe lighting system for

high‐speed stereoscopic image capturing at a rate up to 14 frames

per second (FPS). In all experiments, the aperture of the lens and the
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strobe time were kept fixed at f/11 and 0.0015 s, respectively.

PhenoBot 3.0 was equipped with four tiers of PhenoStereo cameras

to capture side‐view and close‐range stereo images of maize plants in

the field (Figure 1a). The four cameras used in this study (from

bottom to top) were referred to as PT1–PT4. One camera (PT4) was

mounted on the sensor mast to photograph the canopy near the

maize tassel, and the other three were mounted on a customized

frame in the back of the vehicle. Given the 0.76‐m row spacing and

the camera specifications, the system configuration resulted in a

coverage of 2.22m of the canopy in the vertical direction.

The software control system (Figure 2) was implemented in

robot operation system (ROS) (Stanford Artificial Intelligence

Laboratory et al., 2018). Each PhenoStereo camera was a ROS

node, and a roscore node was run on the computer enclosed in

PT1. A graphic user interface (GUI) based on Robot Web Tools

(Toris et al., 2015) was developed to serve inputs and outputs.

During data collection, the camera parameters and control

commands were sent through the GUI and interacted with the

ROS nodes wirelessly through the rosbridge protocol (Crick

et al., 2017). In addition, the image stream was published by the

F IGURE 1 PhenoBot 3.0 and PhenoStereo. (a) PhenoBot 3.0 with a self‐balanced sensor mast. PhenoStereo cameras were mounted at four
different heights to capture side‐view images of maize plants. (b) PhenoStereo with a self‐contained embedded design and integrated strobe
lights. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Overview of the software architecture.

4 | XIANG ET AL.
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ROS nodes and displayed on the GUI through the mjpeg server to

adjust camera parameters and preview images.

2.2 | Data acquisition

The field image acquisition was carried out at two test sites with

different environmental conditions and multiple maize inbred lines.

The data sets for system validation including (1) PS‐Boone: PhenoBot

acquired with four sets of PhenoStereo cameras at the Agricultural

Engineering and Agronomy Research Farm of Iowa State University;

and (2) PS‐Ames: PhenoBot acquired with three sets of PhenoStereo

cameras at the Curtiss Farm of Iowa State University. A summary of

the data acquisition details is presented in Table 1. Two inbred lines,

B73 (Russell, 1972) and Mo17 (Zuber, 1973), were used to

investigate leaf angle architecture, and the remaining lines were

randomly selected and used for system validation. Imagery data were

collected on sunny days without the use of a shading structure. The

mounting positions of PhenoStereo cameras were adjusted to cover

the entire canopy. During data collection, Phenobot 3.0 navigated

between the crop rows with the PhenoStereo cameras capturing

side‐view images of plants (Figure 3a). The shutter speed was set to

0.0003 s to avoid motion blur induced by robot motion, wind, and

robot vibration. Images at different heights were collected and cross‐

registered to cover the entire canopy (Figure 3b–e).

We measured the angle between the midrib of a leaf and the

stem segment below the leaf collar (Figure 4a); the supplementary

angle of the measured angle served as the leaf angle. The associated

node height of a leaf angle was defined as the vertical distance from

the ground to the leaf collar. Two types of ground‐truth data for leaf

angle were collected from manual measurements in the field and the

reconstructed 3D models, respectively. For field measurements, leaf

angles were measured using a protractor with its origin placed on the

leaf collar (Figure 4a). To measure leaf angles from 3D models, a

program was developed in which a user clicks four points (A, B, C, and

D) on the point cloud to identify the direction of the stem and the leaf

(Figure 4b). Node height ground‐truth data were obtained using a

tape measure in the field.

2.3 | Image processing

We developed a unique image processing pipeline named AngleNet

for leaf angle detection and characterization (Figure 5). A novel

presentation of maize leaf angle was proposed as a triplet of three

keypoints, including a point on the midrib (M), a point on the stem (S),

and a point near the leaf collar (C). As shown in Figure 5, each leaf

angle is defined by three keypoints connected by two line segments.

This pipeline consists of three major steps. First, a CNN‐based model

is trained to detect regions around leaf collars (Figure 5a) and three

keypoints in each region (Figure 5b). The model detects an object as a

center point and regresses other properties (e.g., width, height,

offset) of the object at the center point. By eliminating the predefined

set of anchor boxes, the model runs in an anchor‐free manner and

thereby is more efficient than bounding‐box‐based detectors. The

two line segments (CS and CM) formed by the three keypoints play

an important role in the leaf angle extraction step. The detection is

performed on the right image. To improve the computational

efficiency, a cropped image pair derived from left and right images

based on the detected region of interest (RoI) is then used for stereo

matching, and a disparity map is generated for 3D reconstruction

(Figure 5c). The coordinate system is defined as follows: the x‐axis is

parallel to the robotic vehicle's heading direction, the y‐axis is the

vertical direction of plant growth, and the z‐axis is perpendicular to

the x–y plane pointing towards the plants. In this study, (x, y)

represents the 2D image point coordinates in pixels, and (x, y, z)

represents the 3D coordinates of a 2D point. To include the detected

bounding boxes and ensure overlap between the left and right

images, the cropped region for the image pair is centered at (x, y) with

2*W width and 2*H height, where (x, y) is the center of the bounding

box detected in the right image, W and H are the width and height of

the bounding box, respectively. Finally, the detection results in the

2D images are reprojected onto their 3D coordinates based on stereo

camera calibration, and the random sample consensus (RANSAC)

algorithm is used to fit two 3D lines to quantify the leaf angle

(Figure 5d). At the same time, the node height is calculated based on

the y coordinate of the leaf collar.

2.3.1 | Keypoint triplets for leaf angle detection

An angle in 2D or 3D can be specified by a triplet of points and their

topology. For leaf angle measurements, the triplet includes a point

TABLE 1 The characteristics of the two data sets used for
system validation.

Data set PS4‐Boone PS3‐Ames

Location Agronomy Farm,
Boone, IA

Curtiss Farm, Ames, IA

Days after planting 97 73

Operation time 1–3 p.m., August
5, 2020

10–11 a.m., August
6, 2021

Crop row spacing 0.76m 3.35m

Number of plants
measured

10 6

Leaf angle range 15–50° 5–60°

Node height range 0.3–2.0 m 0.2–1.6m

Camera‐to‐object
distance

0.38–0.51m 0.51–0.64m

Frame rate 5 FPS 10 FPS

Driving speed ~1m/s ~2m/s

Weather conditions Bright sunlight,
light wind

Light sunlight,
moderate wind

XIANG ET AL. | 5
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near the leaf collar (C), a point on the midrib (M), and a point on the

stem (S). In this study, we aimed to identify the three keypoints with

predefined relationships of a leaf angle in 2D images and reproject

them into the 3D space to quantify the actual leaf angle. The region

near a leaf collar, where a leaf intersects with a stem, has a unique

appearance and provides a well‐defined condition for the detection

of keypoint C. However, defining keypoints S and M can be

ambiguous because many homogeneous points along the direction

of the midrib can be used to define a leaf angle. To solve this

problem, we used a bounding box centered at the leaf collar to define

the RoI (Figure 6). The width/length of the bounding box is around

350 pixels. Within each bounding box, the point on the centerline of

the midrib and close to the border of the bounding box was defined

as M (Figure 6). Similarly, the keypoint S was on the stem centerline

and near the border of the bounding box. In AngleNet, an RoI near

each leaf collar was first detected as a bounding box (Figure 5a).

Subsequently, the locations of keypoints M and S became

well‐defined with respect to the collar and the boundary, and

the triplet in the region inside the object bounding box could then be

identified (Figure 5b).

F IGURE 3 Data collection and visualization. (a) PhenoBot 3.0 with the four‐level stereo imaging configuration traversing between crop rows
with 0.76‐m spacing to capture side‐view images. (b–e) The plant canopy imaged at different heights. Point clouds (b), (c), (d), and (e) are
reconstructed 3D models from PT1, PT2, PT3, and PT4, respectively. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Two types of ground‐truth data collection of leaf
angle (γ). (a) The angle between the midrib and the stem was
measured using a protractor and the supplementary angle of the
measured angle served as the ground truth. (b) The angle of the AB
line and the extended DC line served as the ground truth when
manually clicking four points in the 3D point cloud. [Color figure can
be viewed at wileyonlinelibrary.com]

6 | XIANG ET AL.
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Anchor‐based detectors, such as Faster R‐CNN (Ren et al., 2017)

and YOLOv3 (Redmon & Farhadi, 2018), enumerate a nearly

exhaustive set of anchor boxes and classify each of them, which

can be inefficient and computationally complex. To overcome the

drawbacks of anchor‐based approaches, various anchor‐free detec-

tors that model an object as points instead of using a bounding box

have been developed (Kong et al., 2020; Law & Deng, 2018). We

employed an anchor‐free detector to detect the regions and

keypoints of interest for leaf angle characterization. The detector

represented each instance based on its features at the center point,

and the height and width of the object were regressed at the center

point without the predesigned set of anchors. The results were

obtained using a modified CenterNet (Zhou et al., 2019) architecture.

The region near a leaf collar was modeled as a single point located at

F IGURE 5 Automated image processing workflow of AngleNet for the characterization of 3D leaf angle. (a) Detection of RoIs denotated by
solid bounding boxes. The red solid bounding box is used as an example to illustrate the sequential processing steps. The red dashed bounding
box is the expanded area used for stereo matching. (b) Keypoint detection. Three keypoints are extracted from the heat map of the RoI: a point
near the leaf collar (C), a point on the midrib (M), and a point on the stem (S). (c) Stereo matching is carried out on the cropped stereoscopic
images, and a disparity map is generated. (d) A 3D model reconstructed from the disparity map and color images. The detection results in 2D
images were back‐projected to the 3D space, and two lines (white) were fitted to compute the actual leaf angle. The supplementary angle of
∠MCS was defined as the leaf angle in this study. The pipeline outputs two types of architecture‐related traits: leaf angle and its associated node
height. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 Schematic of the workflow of image annotation. The regions near leaf collars were first annotated by bounding boxes. Within
each box, three keypoints (M, C, S) were identified for leaf angle characterization. The keypoint C is the intersection of the stem centerline and
leaf midrib centerline. The point on the midrib centerline but near the border of the bounding box was annotated as the keypoint M. The same
principle was used for the annotation of keypoint S. [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 7 Illustration of our keypoint detection framework with hourglass backbone. Each hourglass module contains down‐sample and up‐
sample layers to capture and consolidate information. The network takes an image as input and produces probability heatmaps for each
keypoint. The final triplet estimate provided by the max activations across each heatmap is shown on the right. [Color figure can be viewed at
wileyonlinelibrary.com]

p = ( , )
x x y y+

2

+

2
1 2 1 2 , where x y( , )1 1 and x y( , )2 2 are the top left and bottom

right points of the bounding box of the region, respectively. The

detection of the object center is then transformed into a keypoint

detection problem. In this study, the model takes an image of size

W H× as input and aims to produce a ×
W

R

H

R
heatmap that represents

the probability of leaf collar centers. Here, R represents the output

stride and is set as 4 in this study. For the ground truth of heatmap,

the values at object center are set to 1 and the other negative

samples are set as 0. A single network is used to predict the keypoints

Ŷ , offsets Ô, and size Ŝ. To train a network, each center point of

object k is rendered by a Gaussian‐shaped peak Yxy and trained with

focal loss Lk (Equation 1). The local maximums in the heatmap are the

estimated centers, and height and width are predicted based on the

images at each center. In addition, a local offset loss Loff (Equation 2)

is trained to recover the discretization error caused by the resampling

process. Finally, the object size regressed from the center point is

trained with an L1 loss Lsize (Equation 3). The overall loss is the

weighted sum of three loss terms: focal loss L( )k , local offset loss L( )off ,

and size loss L( )size . The prediction of the leaf angle triplets is also a

keypoint estimation process. For an input image of size W H× , the

model outputs × × 3
W

R

H

R
heatmaps to predict the three keypoints (C,

S, and M) that form the leaf angle. The locations of the three

keypoints are regressed as offsets from the center. The ground‐truth

keypoint heat maps are trained with focal loss and local offset loss via

a process analogous to that used for center detection.




∑L

N

Y Y Y

Y Y Y
=
−1 (1 − ˆ ) log( ˆ ) if = 1

(1 − ) ( ˆ ) log(1 − ˆ ) otherwise
k

xy

xy
α

xy xy

xy
β

xy
α

xy

(1)

̃̃


 


∑L

N
O

p

R
p=

1 ˆ − − ,
p

poff (2)

∑L
N

S S=
1

|ˆ − |,
k

N

p ksize
=1

k (3)

where α and β are hyper‐parameters, N is the number of keypoints,

and R is the output stride size. Two backbone networks were tested

for this model: deep layer aggregation (DLA‐34) (Yu et al., 2017; Zhou

et al., 2019) and stacked hourglass network (HG‐104) (Law &

Deng, 2018; Newell et al., 2016). DLA‐34 is an image classification

network that implements deep layer aggregation structures to better

fuse feature hierarchy across layers. The aggregation architecture

employs hierarchical and iterative skip connections to encompass and

extend densely connected networks and feature pyramid network.

HG‐104 is a fully convolutional neural network that consists of two

sequential hourglass modules, each containing symmetric down‐

sample and up‐sample CNN layers with skip connections; originally

used for human pose estimation (Newell et al., 2016). With a bottom‐

up, top‐down structure, the network can capture information across

all scales of the image and consolidate the various relationship

associated with the leaf collar (Figure 7). HG‐104 has achieved state‐

of‐the‐art performance on other keypoint detection tasks (Wei

et al., 2020; Y. Zhang et al., 2018).

Two different data sets with rectified stereo images were

annotated for training and testing. In the first data set, 620 images

were manually labeled with a bounding box around each leaf collar.

The second data set contained 240 images, in which each leaf angle

was marked with a triplet of three dots. The annotated images were

randomly split into training, validation, and test data sets at a ratio of

7:2:1. To further increase the diversity of the input images and the

robustness of the network, we applied image augmentation

techniques including randomly flip 50% of the images, randomly

8 | XIANG ET AL.
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scaling (between 0.8 and 1.2), and horizontal/vertical shifting

(between 0.9 and 1.1). The Adam optimizer (Kingma & Ba, 2014)

was used to minimize the loss function of AngleNet. The trained

models that achieved the best performance on the test data set were

used for leaf angle characterization. AngleNet was implemented with

PyTorch (Paszke et al., 2017). A high‐performance workstation with a

NVIDIA Titan Xp GPU, a 2.2‐GHz Xeon Gold 5120 CPU, and 32GB

RAM were used to train the models.

2.3.2 | 3D reconstruction of the canopy

Measuring leaf angle from 2D images can be inaccurate due to

variable leaf poses relative to the camera. Therefore, the 3D models

of the canopy were reconstructed for leaf angle measurement. The

3D reconstruction process involves four steps: calibration, rectifica-

tion, stereo matching, and triangulation. Stereo matching is particu-

larly crucial for reconstructing a dense 3D canopy model. In the first

step, each stereo camera is calibrated with a checkerboard pattern to

obtain the intrinsic parameters (e.g., focal length, pixel size, principal

point, baseline, and distortion coefficients) and extrinsic parameters

(e.g., camera pose). The lens distortion is then removed and the

stereoscopic image pair is rectified using the intrinsic parameters so

that the two image planes are row‐aligned. Subsequently, stereo

matching takes the rectified image pair as input and computes a

disparity map by finding corresponding points between the left and

right images. The disparities are inversely proportional to the depth

values (Figure 5c). Finally, the process of triangulation back‐projects

the disparity map to 3D coordinates to generate a point cloud

(Figure 5d). Here, the background in the reconstructed point cloud

was removed by filtering out points with depth values greater

than 0.8 m.

Stereo matching is a photogrammetric technique that recon-

structs depth information based on a stereoscopic image pair

(Mehltretter & Heipke, 2021). Compared with structure from motion

(SfM), a commonly used 3D reconstruction technique in photogram-

metry, two‐view stereo imaging requires a minimum number of input

images, which makes it practical for in‐field applications. Many

traditional algorithms, such as semiglobal matching (Hirschmüller,

2008), have been developed to detect stereo correspondence.

However, stereo matching for field crops can still be challenging

due to low‐texture surfaces, heavy occlusions, and variable lighting

conditions. Recent breakthroughs in machine learning and deep

learning techniques have achieved impressive results in stereo

correspondence matching (Poggi et al., 2020). One of the most

impactful works in this area describes MC‐CNN (Zbontar &

Lecun, 2016), a CNN‐trained algorithm to robustly predict the

similarity of two image patches. In the current study, we used a state‐

of‐the‐art stereo‐matching method known as 3D‐MST (Li et al., 2017)

to compute disparity images for the input stereo pairs and

reconstruct the dense canopy. This algorithm uses MC‐CNN for

matching cost computation and features a cost‐aggregation method

with minimum spinning tree (MST)‐based support region filtering. A

multi‐MST structure was developed to reduce the computational

complexity, and a PatchMatch random search strategy was imple-

mented to efficiently find the 3D labels of each pixel. A 3D‐MST is

one of the top‐ranking algorithms in the Middlebury 3.0 benchmark

(https://vision.middlebury.edu/stereo/) and has generated convinc-

ing results for reconstructing dense plant canopies in the field

(Bao, Tang, Breitzman, et al., 2019).

2.3.3 | Trait extraction

Two‐ to three‐dimensional reprojection

Through keypoint detection, a triplet of points (C, M, and S) and two

edges (CM and CS) were created for each leaf angle (Figure 5b).

These detection results were reprojected into the 3D point cloud

using the intrinsic parameters of the stereo camera (Figure 5d). After

reprojection, the 3D positions of the targets were represented in the

left camera's rectified coordinate system, where the origin is located

at the projection center of the left camera and the y‐axis represents

the direction perpendicular to the ground plane pointing upward.

Estimation of leaf angle

Ideally, the 3D coordinates of the three keypoints can be used for

angle measurement. However, there are some cases related to the

absence of depth measurements or problematic depth measurement

with large errors in some pixels. To increase the robustness of

measuring an angle, the two edges (CM and CS) formed by the three

keypoints were used to estimate leaf angle. Co‐registration of color

and 3D images provides the 3D locations of the two edges. However,

projecting a line segment to a point cloud results in a dimensionality

increment, an operation that does not generally result in a unique 3D

line. In addition, it is possible that some remaining noise might be

present in the resulting 3D patch in the point cloud. Such noise points

can arise from curved leaf blades, occlusions, or stereo‐matching

errors. To robustly determine the 3D locations of the CM and CS

edges, the RANSAC algorithm (Fischler & Bolles, 1981) was

implemented to fit lines in the 3D space. The algorithm iteratively

fits a line based on two randomly selected points. The line fit with the

most inliers is regarded as the final fit. For each edge, the RANSAC

line fitting algorithm takes all the candidate points in the 3D patch

(the red/blue points in Figure 5d) as input and outputs a position

vector p and a direction vector d that determine a line.

The RANSAC‐based line fitting algorithm can deal with a

moderate amount of noise in the point cloud. However, we observed

that when a 2D line was reprojected onto a curved leaf blade, the

corresponding 3D patch tended to be discontinuous in the 3D space.

In this case, the fitted line generated by the RANSAC algorithm did

not effectively represent the direction of the midrib. To solve this

problem, a fitting score was defined to remove these lines. The fitting

score was defined as the ratio of the inliers to the total number of

input points, where point pt was regarded as an inlier if its distance

(Equation 4) to the detected line was <0.005m. An edge was

regarded as valid for a leaf angle measurement if the fitting score was

XIANG ET AL. | 9
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larger than 0.8; otherwise, the fit and the corresponding 3D patch

were rejected from further analysis. Finally, the direction vectors of

two valid edges were used to estimate leaf angle (Equation 5).

d p pt

d
dis =

‖ × ( − )‖

‖ ‖
, (4)

( )
α

π
=

arccos
*180°,

d d

d d

∙

‖ ‖‖ ‖
s m

s m (5)

where ds and dm are the direction vectors of CM and CS in the 3D

space, respectively, v‖ ‖ is the Euclidean norm of the vector v , x| | is the

absolute value of x , and α is the leaf angle.

Estimation of node height

Node height is defined as the distance in the vertical direction

between the leaf collar and the ground plane. In this study, the y

coordinate of the detected keypoint C was used to calculate node

height. However, the corresponding y coordinates of point C in

the 3D point cloud are based on the local coordinate system of

each stereo camera. To generate comparable node height values,

the node height was estimated by adding the vertical distance

between the camera and the ground to the y coordinates of

point C.

2.4 | Accuracy assessment

The performance of the newly developed algorithm was evaluated in

terms of its accuracy in accomplishing two critical steps: the

detection of leaf collars in 2D images, and the estimation of leaf

angle and node height in 3D point clouds.

2.4.1 | Detection accuracy assessment

The performance of the AngleNet model in bounding‐box detection

was evaluated by average precision (AP) (Equation 6). In addition,

intersection over union (IoU, Equation 7) was used as an indicator of

position and shape accuracy. IoU is defined as the ratio of

intersection area over the union area of the predicted value and

ground truth.

∗∑ Recall k Recalls k Precisions k Recall n

Precisions n

AP = [ ( ) − ( + 1)] ( ) ( )

= 0, ( ) = 1

k

k n

=0

= −1

(6)

IoU =
Area of Overlap

Area of Union
× 100%, (7)

where n is the number of thresholds.

To evaluate the performance of keypoint detection, pixel error

(PE) and normalized error (NE) were utilized. Pixel error (Equation 8)

is defined as the Euclidean distance between the predicted point x y( , )

and the ground truth x y( , )gt gt . Normalized error (Equation 9) is

calculated as the PE value normalized by the length of the leaf angle

skeleton.

x x y yPE = ( − ) + ( − )gt
2

gt
2 (8)

CS CM
NE =

PE

| | + | |
× 100%, (9)

where CS| | and CM| | are the lengths of line segments CS and CM

(Figure 5b), respectively, in pixels.

2.4.2 | Accuracy assessment of leaf angle and node
height estimations

We investigated the accuracy of leaf angle measurements by

comparing the AngleNet‐derived values, ground truth measured in

the field, and ground truth manually measured in the 3D point clouds,

as described in Section 2.1.2. The node height was evaluated by

comparing system‐derived measurements to in‐field manual mea-

surements. The Pearson correlation coefficient (r, Equation 10),

coefficient of determination (R2, Equation 11), and mean absolute

error (MAE, Equation 12) were used as statistical metrics to evaluate

the system performance in estimating leaf angle and node height.

r
x x y y

x x y y
=

∑( − ¯)( − ¯)

∑( − ¯) ∑( − ¯)
,

i i

i i
2 2 (10)

R
y y

y y
= 1 −

∑( ˆ − ¯)

∑( − ¯)
,

i

i

2
2

2 (11)

∑
n

x yMAE =
1

| − |,
i

n

i i
=1

(12)

where xi and yi denote actual values from manual measurements and

estimated values measured by AngleNet, respectively. x̄ and ȳ

represent the mean of the values. ŷi is the predicted value of y for

observation i, and n is the total number of measurements.

3 | RESULTS

PhenoBot with multiple tiers of PhenoStereo cameras located at

different heights was able to cover the entire maize canopy.

Representative examples captured by the four camera sets

(PT1–PT4) are shown in Figure 8. Overall, the AngleNet model

successfully addressed various challenges in leaf angle measurement.

AngleNet was robust to diverse leaf poses relative to the camera,

which resulted in different viewing angles, including the (1) side view

of the lower side of the leaf blade (Figure 8a, PT1); (2) side view of

the upper side of the leaf blade (Figure 8a, PT2); (3) front view of the

lower side of the leaf blade (Figure 8a, PT3); and (4) front view of the

upper side of the leaf blade (Figure 8a, PT4). Among these viewing

angles, (1) and (4) were optimal cases because the midrib was fully

exposed to the camera and the leaf angle was located at a plane

parallel to the image plane. PT2 posed a challenge for the detection

10 | XIANG ET AL.
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F IGURE 8 Typical examples of leaf angle measurements with intermediate results along the entire height of maize plants. (a) The RoIs
detected from original images, which were generated by the four camera heads at different heights. (b) Heat maps produced by the AngleNet
model, representing the probability that each pixel represents the location of each keypoint. (c) Detection results extracted from the prediction
heat map. The red and blue edges represent the directions of the midrib and stem, respectively. (d) Leaf angle measurements in 3D point cloud,
where the white lines are fitted from the two detected edges in 3D space. [Color figure can be viewed at wileyonlinelibrary.com]
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of keypoint M due to poor midrib visibility, while PT3 required an

accurate 3D model for measuring the true leaf angle because the leaf

pose was perpendicular to the image plane. The results illustrate that

the trained CNN model could accurately detect RoIs and keypoints

for leaf angles with various leaf orientations and under different

illumination and occlusion conditions.

Figure 8d shows the qualitative results of 3D reconstruction and

line fitting. Despite the background complexity and exposure differences,

the stereo‐matching algorithm effectively reconstructed 3D models

of the maize canopy across different heights. In addition, 3D‐MST

performed quite well in handling leaf blades with a homogeneous

appearance (color and texture), which allowed reconstructing accurate

3D models with smooth and continuous plant surfaces. This superior

reconstruction quality provided a reliable 3D point distribution for

RANSAC line fitting. The RANSAC‐based algorithm robustly detected

the line that represented the direction of a midrib/stem (Figure 8d). In

addition, the algorithm was insensitive to the random noise introduced

by the reprojection of a 2D line to a 3D patch.

3.1 | Detection performance

We evaluated the object detection performance of the AngleNet model

at two stages. During the first stage, the RoI is localized by detecting a

rectangular bounding box, and during the second stage, the triplet of

keypoints is detected. Two different feature extraction backbones were

tested, and the one with optimal performance was used for AngleNet.

Figure 9 shows the Precision–Recall curves of the proposed model

trained with DLA‐34 and HG‐104. The model trained with DLA‐34 can

produce more accurate predictions than HG‐104, supported by a higher

precision value at the same recall value and IoU threshold. However, the

model trained with HG‐104 can achieve higher maximum recall values,

indicating the model has a higher ability to find all the relevant cases.

Overall, the model trained with HG‐104 backbone produced better

results, as illustrated by the larger AP values both at IoU(0.5) and IoU(0.7).

The trained model achieved an AP of 0.908 at IoU(0.5) on the test data

set, highlighting the effectiveness of the model in detecting the RoI for

leaf angle measurements. For the second stage, the detector with an

HG‐104 backbone successfully identified 279 of 282 angles, while the

model trained with the DLA‐34 backbone detected 263 samples. No

false detections were produced by either model. Based on the detection

rate, the HG‐104 was used as the backbone model for keypoint

detection in AngleNet.

To evaluate the localization accuracy, we calculated the mean and

standard deviation (Table 2) for PE and NE described in Section 2.3.1.

Overall, the deviations were less than 3% of the length of the leaf angle

skeleton for all keypoints, indicating strong model robustness. Keypoint

M produced higher PE and NE than the two other keypoints. The largest

pixel errors for the three classes of keypoints in the test data set were

mainly caused by occlusions (Figure 10). However, as shown in the

examples in Figures 8 and 10, most deviations were along the direction

F IGURE 9 Precision–recall (PR) curves of models trained with
DLA‐34 and HG‐104 in detecting leaf collars on the test data set with
different IoU thresholds and corresponding AP values. An ideal PR
curve should pass through the top‐right corner (i.e., 100% for both
precision and recall). [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Euclidean distance (in pixels) between the detected
keypoints and ground truth normalized by the length of the leaf
angle skeleton.

Pixel error (PE) Normalized error (NE, %)
Keypoint Mean SD Mean SD

C 6.55 5.18 1.78 1.29

M 10.41 10.08 2.93 3.19

S 5.52 4.45 1.52 1.26

F IGURE 10 The largest pixel errors of keypoints C, M, and S in
the test data set. (a) Manually labeled ground truth. (b) Keypoint
detection results produced by AngleNet. [Color figure can be viewed
at wileyonlinelibrary.com]
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of the midrib/stem, which has minimal impact on angle measurement.

To statistically evaluate the effectiveness of the keypoint predictions,

we compared the angles estimated based on the detection results to the

angles computed based on manually labeled keypoints. The mean and

standard deviation of the angle errors were 1.94° and 1.67°,

respectively.

3.2 | Accuracy of leaf angle estimates

The leaf angle estimates obtained using the proposed approach were

highly correlated (r > 0.87, MAE < 5°) with in‐field measurements

(Figure 11a,b). For both data sets, the intercept of the fit line was

positive, indicating a general overestimation of leaf angles compared

to the ground truth. The errors in leaf angle estimation were due to a

number of factors, including keypoint location errors, inaccurate line

fitting, and the inability to reconstruct an accurate 3D model.

Another possible source of random error is errors in ground‐truth

collection. Compared with field‐based ground truth, the estimated

leaf angles had a stronger correlation with the references from the

point cloud data (Figure 11c,d). Possible reasons for this include the

following: (1) the second ground‐truth collected from point cloud

excludes the errors caused by 3D reconstruction; (2) due to the time

interval between imaging and measuring, the leaf angle may have

F IGURE 11 Comparison of AngleNet‐derived leaf angles with reference measurements. (a,b) Comparison of estimated leaf angles with in‐
field manual measurements collected using a protractor of PS4‐Boone and OS3‐Ames, respectively. (c,d) Comparison of estimated leaf angles
with reference measurements manually measured from the 3D point clouds of PS4‐Boone and PS3‐Ames, respectively. [Color figure can be
viewed at wileyonlinelibrary.com]
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changed physically due to differences in wind and sunlight condi-

tions, thereby affecting in‐field ground‐truth measurements; and (3)

measuring leaf angles in the field using a protractor introduces more

random errors than measuring leaf angles from a point cloud.

3.3 | Accuracy of node height values

Overall, the node heights calculated using the proposed approach

were highly correlated (r > 0.99) with the manual measurements

made in the field (Figure 12). The slope of the regression equation

was close to 1, suggesting that system‐derived node height values

can be used as a direct estimate of the locations of leaf angles. We

performed statistical analysis of the data collected by different

camera heads (Tables 3 and 4), finding that the highest camera

(PT4 in PS4‐Boone and PT3 in PS3‐Ames) had a significantly lower

correlation coefficient than the other lower camera sets. The main

reason for this difference is that the leaf collars imaged by the

higher camera were located at relatively high positions, making it

difficult to manually measure the node height in an accurate

manner. Additionally, the top leaves of maize plants are less rigid

than the bottom leaves, making them more sensitive to the

movements caused by wind and PhenoBot. In general, all cameras

in the two data sets achieved satisfactory performance, with a high

correlation (r > 0.94) and a low mean absolute error (MAE < 4.2

cm). However, the model has a better performance in PS4‐Boone

than in PS3‐Ames. Compared to PS4‐Boone, the data collection in

PS3‐Ames has faster driving speed and longer camera‐to‐object

distance, therefore produced stronger vibrations of the sensor

mast and larger accumulated errors.

3.4 | Leaf angle distribution in B73 and Mo17

Finally, we used the AngleNet pipeline to explore the variations in

leaf angle between two inbred maize lines: B73 and Mo17. To

analyze the distribution of leaf angles throughout the canopy, we

performed second‐order polynomial fitting between leaf angle and

the corresponding node height for each line (Figure 13). B73

exhibited erect leaves in the upper canopy and horizontal leaf angles

in the lower canopy, which is consistent with a previous report

(Dzievit et al., 2019). More specifically, the leaf angle of B73 had a

negative relationship with node height. This configuration, with

F IGURE 12 Comparison of AngleNet‐derived node height values with ground truth. (a) Comparison of estimated node height with in‐field
manual measurements collected using a measuring tape of PS4‐Boone. (b) Comparison of estimated node height with in‐field manual
measurements collected using a measuring tape of OS3‐Ames. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Comparison of the node height estimation accuracies
of different camera heads for PS4‐Boone.

Camera Linear fitting r MAE (cm)

PT1 y = 0.928x + 2.243 0.992 1.581

PT2 y = 0.974x + 0.306 0.994 1.977

PT3 y = 0.963x + 1.041 0.991 2.269

PT4 y = 0.867x + 23.317 0.956 2.508

TABLE 4 Comparison of the node height estimation accuracies
of different camera heads for PS3‐Ames.

Camera Linear fitting r MAE (cm)

PT1 y = 1.014x − 0.830 0.982 2.956

PT2 y = 0.938x + 6.009 0.971 3.485

PT3 y = 0.948x + 6.641 0.949 4.120
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F IGURE 13 Leaf angle distribution along the entire height of B73 and Mo17 based on data generated by AngleNet. (a) The leaf angle of B73
decreased with increasing height. (b) The leaf angle of Mo17 initially decreased in the lower canopy and then increased in the upper canopy.
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 14 Sample outputs generated by the AngleNet pipeline showing comparisons of leaf angle at different heights between B73 and
Mo17. The red and blue lines represent the directions of the midrib and stem, respectively; their supplementary angle was measured as the leaf
angle. (a) B73 exhibited gradually decreasing angles starting from the bottom and had upright leaves at the top. (b) Mo17 had more horizontal
leaf architecture throughout the canopy, with relatively erect architecture around ears. [Color figure can be viewed at wileyonlinelibrary.com]
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increasingly upright leaves from the bottom to the top, maximizes the

potential for light capture and increases the photosynthetic conver-

sion efficiency (X. Zhang et al., 2017). Mo17 showed horizontal leaf

angles near the top and bottom of the canopy but relatively erect

architecture in the middle part of the canopy, especially around ears.

As shown in the sample images captured by PT4 (Figure 14), the

uppermost leaf angles of Mo17 were obviously larger than those of

B73. Several angles were successfully detected in 2D images but

failed to be measured in 3D space, primarily as a result of one of two

situations: (1) the 2D edge was reprojected onto a wavy‐shaped leaf

blade and was rejected in 3D space because of a low fitting score; or

(2) the angle was located near the boundary of one image and was

absent from the other image of a stereo pair.

4 | DISCUSSION

The use of PhenoBot equipped with multiple tiers of PhenoStereo

cameras provided an efficient and effective solution for high‐

resolution RGB and depth imaging of tall‐growing crops in the field.

The image acquisition process was conducted by manually driving the

robotic vehicle between the crop rows at a walking speed. The time

required for image acquisition is about 3–4 s for 20 plants per plot.

For manual measurements, it takes about 8–10min per plot to

measure the leaf angle and the corresponding node height of four

representative plants. With the automated image processing pipe-

lines, the proposed approach in this study could effectively reduce

the labor cost in leaf angle measurement.

Previous leaf angle‐related research in maize has focused on

single leaf or averaging the phenotypes from multiple leaves

(X. Zhang et al., 2017; Zhao et al., 2018). However, it is important

to phenotype leaves in different parts of the canopy to dissect the

genetic control of leaf angle (Dzievit et al., 2019). Instead of

measuring a single plant or selected leaves, the proposed method

measures the angle of all the nonoccluded leaves and provides the

leaf angle distribution throughout the canopy for the whole

population. Given that we have multiple plants within a plot, the

approach could ensure the availability of leaf angles (the part with

leaf midrib and stem) that are nonoccluded at a certain height level.

Therefore, the proposed method can better reveal the canopy‐wide

leaf angle architecture compared to measuring selective plants.

One of the major limitations of the system is that expanded

leaves occasionally blocked the view of the middle cameras due to

narrow spacing and dense canopies. A possible solution to this

problem is to increase the number of stereo cameras vertically. In this

way, a leaf angle may be invisible to one camera but visible to another

camera at a different height. Another alternative involves placing two

camera sets with varying horizontal viewing angles at the same

height, which could potentially mitigate the obstruction of camera

views and the occlusions resulting from different plant orientations

and leaf poses. Most sophisticated approaches used to extract leaf

angles from 2D and 3D images involve segmenting and skeletonizing

maize plants to analyze plant architecture (Cabrera‐Bosquet

et al., 2016; Das Choudhury et al., 2018; Wu et al., 2019, 2020;

Zermas et al., 2020). For example, Bao, Tang, Srinivasan, et al. (2019)

implemented a skeletonization‐based algorithm to segment individual

leaves and measure leaf traits based on leaf skeleton segments, an

MAE of 2.8° and a coefficient of determination (R2) of 0.83 were

achieved for leaf angle. Though high accuracies were obtained, the

study was carried out for maize plants with increased row‐spacing

and inter‐plant spacing to reduce occlusions caused by dense

canopies. The previous methods reply on visible leaf tips for leaf

segmentation (Gaillard et al., 2020; Souza et al., 2021) and need to

adjust a set of parameters to achieve satisfactory performance

(Bao, Tang, Srinivasan, et al., 2019; Wu et al., 2019; C. Zhu

et al., 2020), which are not feasible for large‐scale field‐based

F IGURE 15 Limitations of AngleNet. (a) The midrib direction lines were located on a rolling leaf, where the resulting point cloud in 3D was
not suitable for line fitting. (b) An alternative way to refine leaf angle topology in a 2D image. Left: the initial detection results produced by
AngleNet. The red line is not exactly parallel to the direction of the midrib. Right: the direction of the midrib was refined based on a local edge
(yellow dashed line). [Color figure can be viewed at wileyonlinelibrary.com]
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applications due to the space resolution of the raw data and

occlusion of nearby plants. The AngleNet pipeline proposed in this

study focuses on the regions near leaf collars, which bypasses the

complex procedures of individual plant and leaf segmentation. The

leaf angle is located based on its associated height. Inspired by human

pose estimation, this is the first study to implement the topology of

keypoints for leaf angle measurement. The AngleNet pipeline showed

the ability to quantify leaf angle in 3D space regardless of leaf

orientation relative to the camera, along with robustness to complex

and varying outdoor conditions. By combining the PhenoBot platform

with the AngleNet pipeline, the distribution of leaf angles across the

canopy could be investigated nondestructively under natural condi-

tions at multiple time points. Furthermore, this framework could

easily be modified to measure the angles of other objects, such as

sorghum plants and even trees in forestry studies. Beyond angle

measurements, the concept of keypoint detection could be extended

to length measurements, such as plant height and stem length.

Compared to traditional skeletonization methods, the major

disadvantage of AngleNet is that it cannot deal with wavy‐shaped

leaves (Figure 15a). Since we focused on a small local area, the

presence of a partially rolling leaf blade would result in a highly

curved patch during the process of reprojecting a 2D line to a 3D

point cloud, making it difficult and unreliable to fit the direction line in

the resulting point cloud. This limitation could be overcome by

performing keypoint detection on both left and right images and

reconstructing the 3D line based on a pair of 2D line segments.

Additionally, we observed that the 2D line was not exactly parallel to

the direction of the midrib/stem (Figure 15b, left), which resulted in

an inversible error for angle measurements in 3D space. Therefore,

the keypoint locations and line directions should be refined before

reprojecting to 3D coordinates. For example, locally straight contours

(Lee et al., 2013) could be detected and used as a reference to adjust

the line directions (Figure 15b, right).

5 | CONCLUSION

In this study, we employed an automated system to characterize leaf

angle in agronomically grown maize plants in the field. A novel leaf

angle detection and measurement pipeline, named AngleNet, was

developed to obtain actual quantitative data for leaf angle through-

out the entire height of the plant canopy. This pipeline utilizes an

anchor‐free CNN‐based model to detect leaf angle and stereo‐

matching algorithms to quantify leaf angle in the reconstructed 3D

point cloud. AngleNet models a leaf collar as a center point and

detects a leaf angle as a triplet of three keypoints. The proposed

method with the novel representation of leaf angle bypasses the

complex procedures of individual plant and leaf segmentation. Based

on the detection and reconstruction results, the AngleNet‐derived

leaf angle and the associated node height were highly correlated with

ground truth. In addition, the framework was successfully imple-

mented to explore the variation of leaf angle in shoot architecture of

two maize inbred lines, B73 and Mo17. The results of quantitative

analysis were consistent with the actual leaf angle distributions along

plant height in these lines. Specifically, B73 has more erect

architecture in the upper top canopy than Mo17. Stereo vision with

the proper customization represents a practical tool to rapidly acquire

high‐quality RGB images and measure plant morphology under field

conditions. The proposed system represents a feasible way to

automatically quantify leaf angle in maize plants in a nondestructive

manner. In addition, this system provides a new strategy for breeders

to optimize plant architecture toward a smart canopy in cereal crops

through large‐scale field experiments. In future work, we will further

improve the detection efficiency by performing stereo matching on

keypoints and develop advanced deep learning algorithms to

potentially achieve leaf angle estimation for partially occluded leaves.
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