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ABSTRACT

We study the problem of detecting and locating change points in high-dimensional Vector Autoregressive
(VAR) models, whose transition matrices exhibit low rank plus sparse structure. We first address the problem
of detecting a single change point using an exhaustive search algorithm and establish a finite sample error
bound for its accuracy. Next, we extend the results to the case of multiple change points that can grow as
a function of the sample size. Their detection is based on a two-step algorithm, wherein the first step, an
exhaustive search for a candidate change point is employed for overlapping windows, and subsequently a
backward elimination procedure is used to screen out redundant candidates. The two-step strategy yields
consistent estimates of the number and the locations of the change points. To reduce computation cost,
we also investigate conditions under which a surrogate VAR model with a weakly sparse transition matrix
can accurately estimate the change points and their locations for data generated by the original model. This
work also addresses and resolves a number of novel technical challenges posed by the nature of the VAR
models under consideration. The effectiveness of the proposed algorithms and methodology is illustrated
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on both synthetic and two real datasets. Supplementary materials for this article are available online.

1. Introduction

High dimensional time series analysis and their applications
have become increasingly important in diverse domains, includ-
ing macroeconomics (Stock and Watson 2016; Kilian and Liitke-
pohl 2017), financial economics (Billio et al. 2012; Lin and
Michailidis 2017), molecular biology (Michailidis and d’Alché
Buc 2013) and neuroscience (Friston et al. 2014; Schréder and
Ombao 2019). Such data are usually both cross-correlated and
auto-correlated. There are two broad modeling paradigms for
capturing these features in the data: (i) dynamic factor and
latent models (Stock and Watson 2002, 2016; Bai and Ng 2008;
Lam, Yao, and Bathia 2011; Li, Qin, and Zhou 2014), and (ii)
vector autoregressive (VAR) models (Liitkepohl 2013; Kilian
and Liitkepohl 2017). The basic premise of models in (i) is that
the common dynamics of a large number of time series are
driven by a relatively small number of latent factors, the latter
evolving over time. VAR models aim to capture the self and cross
auto-correlation structure in the time series, but the number of
parameters to be estimated grows quadratically in the number of
time series under consideration. Various structural assumptions
have been proposed in the literature to accommodate a large
number of time series in the model, with that of sparsity (Basu
and Michailidis 2015) being a very popular one. However, in
many applications the autoregressive dynamics of the time series
exhibit also low dimensional structure, which gave rise to the
introduction of reduced rank autoregressive models (Box and

Tiao 1977; Velu, Reinsel, and Wichern 1986; Ahn and Reinsel
1988; Wang and Bessler 2004). For example, brain activity data
(see Example 1 in Section 6) exhibit low dimensional structure
(Schroder and Ombao 2019) and so do macroeconomic data
(Stock and Watson 2016, Example 2 in Section 6). Reduced
rank auto-regressive models for stationary high-dimensional
data were studied in Basu, Li, and Michailidis (2019). The key
idea of such reduced rank models is that the lead-lagged rela-
tionships between the time series cannot simply be described
by a few sparse components, as is the case for sparse VAR
models. Instead, all the time series influence these relationships
and some of them are particularly pronounced (those in the
sparse component). Applications in economics/finance, neu-
roimaging, and environmental science are important candidates
for these models.

In many application areas including those mentioned above,
nonstationary time series data are commonly observed. The
simplest, but realistic departure from stationarity, that also
leads to interpretable models for the underlying time series,
is piecewise-stationarity. Under this assumption, the time
series data are modeled as approximately stationary between
neighboring change-points, whereas their distribution changes
at these change points. The literature on change point analysis
for the two classes of modeling paradigms previously mentioned
is rather sparse. Bardsley et al. (2017) developed tests for the
presence of change points in functional factor models motivated
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by modeling the yield curve of interest rates, while Barigozzi,
Cho, and Fryzlewicz (2018) employed the binary segmentation
procedure for detecting and identifying the locations of multiple
change points in factor models. Change point detection for
sparse VAR models has been investigated in Wang et al. (2019),
Safikhani and Shojaie (2020), and Bai, Safikhani, and Michailidis
(2020).

The objective of this study is to investigate the problem of
change point detection in a reduced rank VAR model, whose
transition matrices exhibit low-rank and sparse structure. The
problem poses a number of technical challenges that we address
in the sequel.

Formally, a piece-wise stationary VAR model of lag-1 (for
introducing the basic issues related to it) for a p-dimensional
time series {X;} with mg change points1 < 77 < ©J < --- <

T, < T is given by
mo+1 .

Xl‘ = Z (A;thl + E{‘) I(T]il <t< Tj*)) L= 1,2, e T’
=1

where A% is a p x p coefficient matrix for the jth segment,
j=12,...,my+1, I(rj*_1 <t< tj*) presents the indicator

function of the jth interval, and €]s are my + 1 independent
zero mean Gaussian noise processes. It is assumed that that
the coefficient matrix A7 can be decomposed into a low-rank
component plus a sparse component: namely, A]l' = L]’f + S]f,
where Lj* is a low-rank matrix with rank r]-* (r]f < p),and Sj* isa
sparse matrix with dj* (dJ‘-' < p?) nonzero entries.

The modeling framework differs vis-a-vis the one considered
in Bai, Safikhani, and Michailidis (2020), since in the current
work, both the low rank and the sparse components of the
transition matrices are allowed to exhibit changes at break points.
This flexibility rules out the use of a fused lasso based detection
algorithm that is suitable for the case wherein only the sparse
component is allowed to exhibit changes, which was the setting
in Bai, Safikhani, and Michailidis (2020). As a result, a novel
rolling window detection algorithm is introduced and its the-
oretical properties studied in the current work.

Next, we outline novel technical challenges, not present in
change point analysis of sparse VAR (Wang et al. 2019; Safikhani
and Shojaie 2020) and other sparse high dimensional models
(Roy, Atchadé, and Michailidis 2017):

(i) The change in the transition matrix may be due to a change
in the low-rank component, in the sparse component or in
both. To that end, we introduce a novel sufficient identifia-
bility condition for both detecting a single change point and
decomposing the transition matrix into its low rank plus
sparse components (Assumptions H1 and H2 in the sequel);
then, it is extended to the case of multiple change points
(Assumptions H1’ and H2’).

(ii) For the case of multiple change points, commonly used
procedures, such as binary segmentation (Cho and Fry-
zlewicz 2015) or fused type penalties (Safikhani and Shojaie
2020) are not directly applicable due to the presence
of the low rank component. Specifically, the former
method would lead to effectively performing singular value
decompositions on misspecified models involving mixtures

of piece-wise low-rank and sparse models, which may
lead to the imposition of very stringent conditions for
ensuring detectability of the change points (see discussion
on related issues in Bhattacharjee, Banerjee, and Michailidis
(2020). Further, it is unclear how to design fused penalties
that accommodate low-rank matrices. On the other hand,
dynamic programming based algorithms are applicable.
However, their time complexity is O(T2C(T)), where
C(T) indicates the computational cost of estimating the
model parameters over the entire observation sequence.
This is significantly higher complexity than the previously
mentioned methods (which is O(TC(T)), see numerical
comparisons and discussion in Remark 6 and Appendix
E7, supplementary materials).

To overcome these challenges, we develop a novel procedure
based on rolling windows, wherein a single candidate change
point is identified in each window and then only those exhibit-
ing screened based on certain properties (see Section 3) are
retained. This allows to leverage the theoretical results devel-
oped for the single change point. The proposed procedure based
on rolling windows is naturally parallelizable, thus, speeding up
computations.

Note that the developed rolling window strategy is applicable
to any complex statistical model exhibiting multiple change
points. One needs to establish consistency properties for a single
change point in a time interval and then appropriately select
the length of the rolling window, to ensure that at most a single
change point falls within. Hence, this development is of general
interest for change point analysis.

(iii) Note that the procedure of estimating change points in low-
rank plus sparse VAR models is computationally expensive,
even in the presence of a single change point, since it
requires performing numerous singular value decompo-
sitions. We consider a surrogate model that comes with
significant computational savings and under certain reg-
ularity conditions exhibits similar accuracy to the posited
model. Specifically, we posit a lag-1 VAR model, wherein
the transition matrices AY are assumed to be weakly sparse
(see, e.g., Negahban et al. 2012), as an alternative modeling
framework. The main reason is that the presence of low
rank structure renders the autoregressive parameters in the
original model dense. The weak sparse assumption ade-
quately accommodates dense structures under certain con-
ditions and hence can prove useful in certain settings (care-
fully discussed in the sequel) for change point detection
problems. Further, the theoretical properties of exhaustive-
search based anomaly detection for weakly sparse VAR
models have not been investigated in the literature, and
hence this development is of independent interest.

To establish nonasymptotic error bounds on the model
parameters of stationary sparse models, one needs to verify
that the commonly imposed (see, e.g., Loh and Wainwright
2012) restricted strong convexity and deviation bound con-
ditions hold (see Propositions 4.2 and 4.3 in Basu and
Michailidis 2015).

(iv)

Verifying these assumptions in the presence of change points
in the posited reduced rank VAR model—which technically



is equivalent to working with a misspecified model (see also
discussion in Roy, Atchadé, and Michailidis 2017)—represents
a nontrivial challenge. This issue is rigorously and successfully
addressed in the sequel, together with the introduction of a
new version of the deviation bound condition that allows work-
ing with misspecified models (technical details presented in
Appendix A, supplementary materials).

(v) Finally, obtaining consistent model parameters for each seg-
ment identified after detecting the change points requires
some care, given the nonstationary nature of the posited
model above. This is successfully addressed for the case of
a single and multiple change points in Sections 2 and 3,
respectively, and for the surrogate model in Section 4.

The remainder of the article is organized as follows. In Sec-
tion 2, we formulate the model with a single change point,
provide a detection procedure based on exhaustive search, and
establish theoretical properties for the change point and model
parameter estimates. Section 3 discusses the case of multiple
change points. It introduces a two-step detection algorithm and
establishes consistency of the obtained estimates for the change
points and model parameters, leveraging results from Section 2.
To reduce computations for detecting the change point(s) in
the reduced rank VAR model, we introduce a weakly sparse
surrogate model in Section 4 and establish that under certain
regularity conditions on the structure of the transitions matrices
Aj* of the reduced rank model, the estimated change points from
the surrogate model are consistent ones for data generated by
the former. Section 5 presents a number of numerical experi-
ments to illustrate and assess the performance of the estimates
obtained from the single and multiple change points detection
procedures. Two real datasets (one on EEG and the other on
macroeconomics data) are analyzed using the proposed detec-
tion procedures in Section 6. Some concluding remarks are
drawn in Section 7. Additional technical conditions, proofs of
the main results and additional numerical work are available in
the supplementary materials.

Notation: Throughout this article, we denote with a superscript
“x” the true value of the model parameters. For any p x p
matrix, we use || - ||, || - [|F, and || - ||« to represent the spectral,
Frobenius, and nuclear norm, respectively. For any matrix A, A’
denotes its transpose, and A" denotes the conjugate transpose
of A, while the £y, £1, and £, norms of the vectorized form of
A are denoted by: ||Allp = Card(vec(A)), |All1 = [vec(A)]1,
and ||Allcoc = [lvec(A)|lco, respectively. We use Amax(X) and
Amin(X) to represent the maximum and minimum eigenvalue
of the realization matrix X.

2. Single Change Point Model Formulation and
Detection Procedure

We start by introducing a piece-wise stationary structured
VAR(1) model that has a single change point. Suppose there
is a p-dimensional time series {X;} observed at T + 1 points:
t =0,1,...,T. Further, there exists a change point, 0 < t* <
T, so that the available time series can be modeled according
to the following two models in the time intervals [0, t*) and
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[t* + 1, T), respectively:
X; = AjX;—1 + €},
Xt = A;Xt_l + 6[2,

t=1,2,...,1t%

1
t:T*+1)--~7T)

where X; € R? is a vector of observed time series at time ¢, and
A7 and A3 are the p X p transition matrices for the corresponding
models in the two time intervals, and the p dimensional error
processes €} and €2 are independent and identically drawn from
Gaussian distributions with mean zero and covariance matrix
oI for some fixed o. It is further assumed that the transition
matrices comprise of two time-varying components, a low-rank
and a sparse one:

1=L]+S and A3=L5+S;. (2)
The rank of the low-rank components and the density (number
of nonzero elements) of the sparse components are denoted by
rank(L}) = r}, rank(L}) = 75, d] = [IS}llo and d5 = [IS;]lo,
respectively, and satisfy 1}, 5 < p, d}, d5 < p*.

2.1. Detection Procedure

Let {Xo,X1,..., X7} be a sequence of observations generated
from the VAR model posited in (1) with the structure of the
transition matrices given by (2). Then, for any time point 7 €
{1,..., T} the corresponding objective functions for estimating
the model parameters in the intervals [1, 7) and [7, T') are given
by:
df 1
x[LliT)y def _ 2
0Ly, S X € — ; IX; — (L1 + S)Xi-1 113

+ A1lISull + Ly [l

T-1
1
0(Ly, Sy; XITD dzef—E X — (Ly 4+ $)X,_ 1|2
(L2, S2 ) T_ttzr”t Lz + S$2) X115

+ A2l1S21l1 + m2ll L2l

where X!7"®) denotes the data {X;} from time points b to e, and
the nonnegative tuning parameters A1, Az, (41, and @y control
the regularization of the sparse and the low-rank components
in the corresponding transition matrices.

Next, we introduce the objective function with respect to the
change point: for any time point t € {1,2,...,T — 1},

7—1

def 1

(L1 $1,8) = g (; IXe = (L1 + SDXe-1 13
T—1

+ Y IX = L+ sz)xt_IH%) NG

t=1

The estimator 7 of the change point t* is given by

~ def . > T S 29
T = argmlnteTZ(T;Ll,f)Lz,‘[) Sl,l’) Sz,f)) (4)

for the search domain 7 C {1,2,..., T}, where, foreacht € T,
the estimatorsfu ,fz,f ,§1,f ,§2,r are derived from the optimiza-
tion program (4) with tuning parameters (41,7, U2z, A1,r, and
A2,r, respectively. Algorithm 1 in Appendix B, supplementary
materials describes in detail the key steps in estimating the
change point * together with the model parameters.
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2.2. Theoretical Properties

Next, we address the issue of identifiability of model parameters
due to the posited decomposition of the transition matrices into
low rank and sparse components. The key idea is to restrict
the “spikiness” of the low rank component, so that it can be
distinguished from the sparse component. Agarwal, Negahban,
and Wainwright (2012) introduced the space €2 defined as

deef{Lj* € R ¢ L} oo < %} i=1,2,

wherein the universal parameter oy, defines the radius of non-
identifiability that controls the degree of separating the sparse
component from the low-rank one. Note that a larger o, allows
the low-rank component to absorb most of the signal, thus,
making it harder to identify the sparse component, and vice
versa.

Thus, the estimators of the decomposition of the transition
matrices A; are defined as follows, for any fixed time point t:

(Ijl,r),gl,r) d=ef argmin LieQ Z(Ll’sl;x[lzt)))

Ly1,$1€RPZP
s def o (5)
Loz S27) = argmin  eq  £(La, S XITD),
Lz,SzeRPXP

Next, we introduce an important quantity for future develop-
ments, the information ratio that measures the relative strength
of the maximum signal in the transition matrix A¥ generated
by the low-rank component vis-a-vis its sparse counterpart,
defined as

et 1L oo

B s I

Remark 1. Based on the definition of the information ratio,
some algebra provides guidance on the identifiability conditions
that need to be imposed on the transition matrices A; and their
constituent parts. Specifically, for the low rank component we
obtain

A3 — ATll2 = I(L5 — L]) + (S5 — SD 2
> |15 — Lilla — IS5 — St 12
> L5 — Lill2 — p (1S5 loo + 1S loo)
1

* * ]'
||L2 - L1||2 — oL <_ + _>
2 N

v

ar(y1 + y2)
v — ———==,
Y1iy2

Analogous derivations for the sparse component yield: || A5 —
At = 1S5 — S{lla — 2a1/p = vs — 2a1./p, where vy, = ||} —
Lill2 = 0,vs = |IS5 — S7ll2 = 0 are norm differences for the
low-rank and the sparse components, respectively.

Based on Remark 1, it can be seen that: (1) when y; < 1 or
y2 < 1,wehavethat (y1 + y2)/y1y2 = 2 > 2/p (sincep > 2in
a high dimensional setting). The latter fact implies that in order
for changes in the transition matrices AT to be identifiable—
and consequently t*—the difference in the £, norm of the low-
rank components must significantly exceed that of the sparse
components; (2) when both y; > 1 and y» > 1, then the

quantity (y1 + y2)/y1y2 is strictly decreasing with respect to
y1 and 2. Note thatincase 1 < y; < pand 1 < y, < p,
(71 + v2)/v1y2 = 2/p. Combining these two cases leads to the
conclusion that when y; < p and y» < p, the difference in the
£, norm vy, between the low-rank components must be larger
than vg, the norm difference between the sparse components
to guarantee that the change between the transition matrices is
detectable.

The following remark discusses an extreme case, wherein the
signal in the low-rank components is dominant, but their ¢,
norm difference is negligible.

Remark 2. Suppose the low-rank components are dominant
(i.e., Y1, 2 = 1), but their £, norm difference change is small;
that is, |[L5 — L]ll2 < €, with € > 0 being a small enough
constant). Then, we have

A5 — Afll2 = IS5 — Silloc — € = IS5lloo — [IS]lloc — €
oL
> —Llle — — —€
1

1 * o V2
— (”Lz”oo - ——) —€.
V2 pn

Note that since the low rank components are constrained to be
in the Q space -||L3|loc < oy /p- it implies that the transition
matrices are identifiable, only if y» < y; and [|S5[lec > 117 lloc-
The roles of L} and L} can be swapped to obtain that only if
v2 # y1and [|S3]lco 7 IIS] lloos is the change in the full transition

matrices A; identifiable, which is intuitive.

The derivations in the two Remarks provide insights into
the necessary assumptions needed to establish the theoretical
results, presented next.

(H1) There exists a positive constant Cy > 0 such that
Ar(vV3 4+ v]) = Co (dla 10g(p vV T) + oy (p v log 7)),

where Ar is the spacing between the change point 7* and
the boundary, and vg, v, are the jump sizes, defined as

AT = min{f* - l) T - T*}> VS = "SE - SY”Z)
vp = |IL5 — Lill.

Further, at least one of vs, vy is strictly positive.

(H2) (Identifiability conditions) Consider low rank matrices L],
L3, and their corresponding Singular Value Decomposi-
tions: Lt = U?D; VY, where D} = diag(o},...,0],0,
...,0),forj=1,2and Uj*, Vj* are orthonormal. Then,

1. there exists a universal positive constant Mg > 0, such
that for the sparse matrices ij, we have: ||S]1*||OO <
Ms < +OO,j =1,2;

2. there exists a large enough constant ¢ > 0, such that
the diagonal matrices D7 satisfy: maxj—1 ||D]’.*||OO <
¢ < +o00; further the orthonormal matrices Uj* and Vj*
satisfy: maxi—1 {107 oo 1 V7 lloe} = O ((/75),

where rmax = max({rj, r5}. In addition, we assume that

aL:o(p 1g<_P>>




3. the maximal sparsity level d},, = max{d], d5} satis-

. gx 1 T
fies: dff.y < & — Tog(pT)

constant Cpax > 0.

for a large enough positive

(H3) (Restrictions on the search domain 7°) The change point
7* belongs to the search domain by 7 C {1,2,...,T —

1} and denote the search domain T def [a, b]. Assume
that, @ = |(dya + /M) ™| and b = | T — (d}

max
+ /Tha) 7|, and denote | T as the length of the search
domain, then:

7]
d logpv )+ (pviegT)

+OO,

where n > 0 is an arbitrarily small positive constant,
dy o = max{d], d;}, and r}y,, = max{r},r5}.

Remark 3. Assumption H1 specifies the relationship between
the minimum spacing between the change point and the bound-
aries of the observation time period and the jump sizes for the
low rank and sparse components, analogously to the signal-
to-noise assumption in Wang et al. (2019). Assumptions H2-
(1) and H2-(2) define the restricted space for the low rank

def
components LJ’T: Q<

{L : ||LJ?’||C><J < %L}, see analogous defi-
nitions and discussion in Agarwal, Negahban, and Wainwright
(2012), Basu, Li, and Michailidis (2019), and Bai, Safikhani, and
Michailidis (2020) for identifying low rank and sparse matrices.
Assumptions H2-(1-3) are sufficient for satisfying the identifi-
ability condition in Hsu, Kakade, and Zhang (2011), the latter
implying that the decomposition AY = L7 + S7 is unique.
This condition is motivated by the so-called “rank-sparsity”
incoherence concept (Chandrasekaran et al. 2011), with fur-
ther refinements along the lines of results in Hsu, Kakade,
and Zhang (2011). This assumption ensures identifiability of
model parameters by putting certain conditions on the singular
values, and left/right orthonormal singular vectors of the low
rank component. Specifically, the new assumption controls the
maximum number of nonzeros in any row or column of the
sparse component, while ensuring that the low rank part has
singular vectors far from the coordinate bases. Note that the new
conditions do not put any additional constrains on the dimen-
sionality p and further ensure the uniqueness of the low rank
plus sparse decomposition of the segment specific transition
matrices.

Note that Agarwal, Negahban, and Wainwright (2012) allow
af, to be any constant, whereas we require o7, /p to be vanishing
to obtain consistent estimates, due to the presence of misspec-
ification, since the location of the change points is unknown.
Assumption H3 reflects the restrictions on the boundary of the
search domain 7 and connects the estimation rate to the length
of the search domain (see analogous condition in Roy, Atchadé,
and Michailidis 2017).

For any fixed time point 7 in the search domain 7T, let
(A1,7> M1,7) be the tuning parameters on [1, 1), and (a7, 2,7)
the tuning parameters on [7, T), respectively. Then, the tuning
parameters of the regularization terms are selected as follows:
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logp + log(z — 1 +log(r — 1
<):(/ P TIMCD  [priosc )),

logp +log(T — +log(T — 1
(G2,r>m2,0) = Gco\/ &P - 8 )>4C6\/p g( )))
-7 T—1

(6)

for constants co, ¢ > 0.

Theorem 1. Suppose Assumptions H1-H3 hold, and select the
tuning parameters according to (6). Then, as T — 400, there
exists a large enough constant Ky > 0 such that

* *
IP’(I?— ) = Ky s OO Y D Toes ¥V 08 T)> 1
Vs T

The proof of Theorem 1 is provided in Appendix E, supple-
mentary materials. Note that the Theorem provides an upper
bound for the change point estimation error based on the total
sparsity level and the total rank of the model.

Next, we establish estimation consistency for the model
parameters. First, given the estimated change point T, we
remove it together with its R-radius neighborhoods U(7, R),
to ensure that the remaining time points form two stationary
segments. According to Theorem 1, the radius R can be of the
order d  log(p Vv T) + 1. (p V1og T).

Let N; be the length of the jth segments after removing the
R-radius neighborhoods; then, we select another pair of tuning

parameters:
4100
Lo | P) ) i=12 @)
p Nj

[logp
()‘" M]) = <4cl Z\]] +

for constants ¢y, ¢} that can selected using cross-validation. The
procedure for selecting them, as well as o, ¢;, in (6), is provided
in Section 5.

Note that the tuning parameters provided in (7) are different
from the tuning parameters in (6); the log T' terms are elimi-
nated, since on the selected stationary segments the optimal tun-
ing parameters are always feasible. Based on analogous results in
Agarwal, Negahban, and Wainwright (2012) and Basu, Li, and
Michailidis (2019) for models whose parameters admit a low
rank and sparse decomposition, the optimal tuning parameters
in (7) lead to the optimal estimation rate given in the next
Theorem.

Theorem 2. Suppose Assumptions H1-H3 hold, and select the
tuning parameters according to (7). Then, as T — 400, there
exist universal positive constants C;, C, > 0, so that the optimal
solution of (5) satisfies

-~ ~ drlogp + rip d*a?
* (12 * (12 j j o
”Lj_Lj ||F+”S]_S]||F§C1 <T ZP_Z’
j=12.

The proof of Theorem 2 is provided in Appendix E, supple-
mentary materials.

Remark 4. Notice that Theorem 2 provides the joint estimation
rate for the low-rank and the sparse component. It comprises
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of two terms, wherein the first one involves the dimensions of
the model parameters and converges to zero as the sample size
increases, whereas the second term represents the error due to
possible unidentifiability of the model parameters. However, in
conjunction with Assumption H2 that restricts the space for the
low rank component, the second term also converges to zero
as the sample size (and hence the dimensionality of the model)
increases.

3. The Case of Multiple Change Points

Section 2.2 introduced the technical framework and established
the consistency rate for detecting a single change point. Next,
these technical developments are leveraged to address the more
relevant in practice problem of detecting multiple change points
consistently.

We start by formulating the piece-wise VAR model with
multiple change points. Consider the p-dimensional VAR(1)

process {X;} with mg change points 1 = 7§ < 777 < -+ <
*

Tmy < Tmp+1 = 15 then, the model under consideration is
written as
mo+1 .
J
X=Y (A;X[_l—l—et)l(tj*_l <t<t) t=12...T,
j=t

®)
where Ljf and S]f represent the decomposition of the jth tran-
sition matrix into its low-rank and sparse components, and
I(rj”_1 <t < tj*) denotes the indicator function for the jth
stationary segment. Analogously to the single change point case,
we define the sparsity level dj* = ||S]‘.'||o and rank rJf = rank(L]‘.')

for the components in each segment, wherein d < p*and RS

p, (e, dj* = o(p?) and r]-* = o(p)). Finally, €’s are independent
and independently distributed zero mean Gaussian noise pro-
cesses with covariance matrices 021,]' =1,...,mp+ 1.

For detecting the change points and estimating the model
parameters consistently, the following minor modifications to
Assumptions H1-H3 are required:

(HY’) There exists a positive constant Cy > 0 such that

AT min {v S+v } > Co(dy,

1<]<

ax [og(pV T) 41 (pV1og T)),

. .. . def
where At is the minimum spacing defined as Ay =
ming<j<m, |7 |t T~ rj*|, and the minimum norm differ-

ences (jump 51zes) between two consecutive segments are
defined as: vjs = || 71— S7ll2, and V]L = || i~ Ll
(H2’) Consider low rank matrlces L]* and their corresponding
Singular Value Decompositions: Lf = U-*D-* V]-*/, where

D;:diag(a{,...,aﬂj .,0), for]_12 ..,mo+ 1.

Then,

1. there exists a universal positive constant Mg > 0, such
that for the sparse matrices S]l*, we have: ||Sj*||Oo
Mg < 400,j=1,...,mo+ 1;

2. there exists a large enough constant ¢ > 0, such that
the diagonal matrices D]’f satisfy: maxj—1 ||DJ’.*||Oo <

¢ < =00, and the orthonormal matrices U]-* and
vy such that: maxi iz 1 {10} oo 1V} oo} =

oL
O ( Tmax

), where rmax = maxj<j<mg+1 rj*. In

addition, we assume that ay = O (p log(p T))

3. the maximal sparsity level d;,, = maxi<j<m+1 d‘-'

satisfies: d*

max for a large enough

Crmax 10g(p T)>
positive constant Cpax > 0.

(H3’) There exists a vanishing positive sequence {£7} such that,
as T — 400,

AT 2 [logp
— 400, dy..]—— —0,
TET (dfyax + Thax) Y\ Tér
3 da*
r:ﬂZaX [ P 50 Ar( maxlogp+ rmaxp) SC>1,
TST (TST)Z(d + rmax)

for a positive constant C > 0.

Assumptions H1’ and H2” are direct extensions of Assumptions
H1 and H2 to the multiple change points setting. Assumption
H3’ provides a minimum distance requirement on the consec-
utive change points and connects the estimation rate and the
minimum spacing between change points.

Our detection algorithm will leverage results from the single
change point case, and thus, we introduce additional assump-
tions next. As mentioned in the introduction, the use of fused
type penalties is not applicable to the low-rank component and
hence an entire different detection procedure is required.

3.1. A Two-step Algorithm for Detecting Multiple Change
Points and its Asymptotic Properties

o Step I: It is based on Algorithm 1 provided in Appendix B,
supplementary materials that detects a single change point,
additionally equipped with a rolling window mechanism to
select candidate change points. We start by selecting an inter-
val [b1,e1) C {1,2,...,T}, b1 = 1, of length h and employ
on it the exhaustive search Algorithm 1 to obtain a candidate
change point 7;. Next, we shift the interval to the right by I
time points and obtain a new interval [b,, e;), wherein b, =
b1 + land e; = e; + I The application of Algorithm 1 to
[b2, e2) yields another candidate change point 7;. This pro-
cedure continues until the last interval that can be formed,
namely [b, e77), where e; = T and m denotes the number
of windows of size h that can be formed. The following
Figure 1 depicts this rolling-window mechanism. The blue
lines represent the boundaries of each window, awhile the
green dashed lines represent the candidate change point in
each window. Note that the basic assumption for Algorithm
1 is that there exists a single change point in the given time
series. However, it can easily be seen in Figure 1 that not every
window includes a single change point.

To showcase the last point, we compare the behavior of
Algorithm 1 on an interval with and without a change point
based on data generated from a low-rank plus sparse VAR
process {X;} with p = 20. We select two windows of length
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h = 200, one containing a change point at t = 100 and
another not containing a change point. Plots of the objective
function (3) used in Algorithm 1 for these two windows are
depicted in the left and right panels of Figure 2, respectively.
It can be seen that in the presence of a change point, a clearly
identified minimum close to the true change point exists.
Contrary, in the absence of a change point, the objective
function is mostly flat without a clearly identified minimum.
Next, we introduce an assumption on the size of the window
h used in the detection procedure:

(H4) Let h denote the length of the window in the rolling
window algorithm. Further, the minimum spacing
At and the vanishing sequence {{71} are defined as
in Assumption H3) and let [ denote the length by
which the window is shifted to the right; it is assumed
that:

h h
,1}, limsup — < 1, and liminf — > 2.

h
0 < < max{—
2 T—+4o00 AT T—+o00 TET

Assumption H4 restricts h, so that asymptotically cannot
include more than a single true change point and also is
not too small, so that the deviation bound and restricted
eigenvalue conditions used for establishing theoretical prop-
erties of the estimates of the model parameters hold for each
time segment (see Appendix A, supplementary materials).
Further, this assumption places an upper bound on the shift
I, to ensure that no true break point close to the boundary of
windows would be missed by the proposed algorithm. The
shift size can vary in [1, h/2]; a small [ helps reduce the finite
sample estimation error for locating the break points, while

b

Objective function

~ ; ~ T
7 G b w,  Om

Figure 1. Depiction of the rolling windows strategy. There are three true change points: 7J', 73, and 73 (red dots); the boundaries of the rolling-window are represented
in blue lines; the estimated change points in each window are plotted in green dashed lines, where the subscript indicates the index of the window used to obtain it.

0.197 0.198 0.199

0.196

T T T T T
100 150 200

Time

Figure 2. Plots of the objective functions obtained by an application of Algorithm 1, in the presence (left panel) and absence (right panel) of a true change point.

a large I speeds up the detection procedure, by considering
fewer rolling windows.

Next, we establish theoretical guarantees for Step 1 of
the proposed detection procedure. Denote by S the set of
candidate change points and by S* the set of true change
points. Specifically, S is defined as

def

S = {7, € [bie) : ;= argming ., .

E(T;LI,T)LZ,‘E) SI,T)SZ,T)) i= 1)2)-~-)m

where [b;, e;) is the ith rolling-window. Following Chan, Yau,
and Zhang (2014), we define the Hausdorff distance between
two countable sets on the real line as

def .
dr(A, B) = maxmin |b — a.
beB acA

Next, we extend Theorem 1 to the multiple change points
scenario:

Proposition 1. Suppose Assumptions HI’-H3’ and H4 hold,
and select the tuning parameters for each rolling window
according to (6). Then, as T — 400, there exists a large
enough constant K > 0 such that

P <dH(§, 8*) < Kdmax log(P Vv h) + rmax(p Vv log h)) oL

e 2 2
mlnlSJSmo{Vj,S + vj’L}

Proposition 1 shows that the number of candidate change
points identified in Step 1 of the algorithm is an overestimate
of the true number of change points. Hence, a second screen-
ing step is required to remove the redundant ones.
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o Step 2: Let the candidate change points from Step 1 be
denoted by {sj}, j = 1,2,...,m. Then, model (8) can be
rewritten in the following form:

m+1
X = Z ((L(Si—lasi) + Stsizps))Xe—1 + 6;) I(sio1 <t <),
i=1

t=12,...,T,

where L, ) and S, ) denote for the low-rank and
sparse components of the transition matrix in the interval
[si—1,$)). Wedefine0 =5y <s; <55 < ---
for ease of presentation use L; and S; instead of L, , 5,y and

< s < sj = T and

Sesiy,sp fori=1,2,...,m+ 1. We also define matrices L def
(L}, L, ..., L and S

f
el & 18, 8h ., S, 1. Estimates
for L and S are obtained as the solution to the following
regularized regression problem:

m+1
(IL.8) = argming g1 i1 )

Si— Si_
= |0 i1y

=Si-1

X — (Li + SDXe—1 113 + AillSilly + will Lils ¢

with tuning parameters (A, ) = {(A,,,bLl)}mJrl Next, we
define the objective function with respect to (s1,2, ..., Sm):

def m+1 si—1
sl S Y Y IXe = i+ )Xl

i=1 | t=si-1

‘CT(SI)SZ) ..

FAlSill + willLill f - (9)

Then, for a suitably selected penalty sequence wr, specified
in the upcoming Assumption H5, we consider the following
information criterion defined as

s Sms Ay L) + MoT.

(10)
The second step selects a subset of initial 71 change points
from the first step by solving:

IC(s1, 82, - - - > Sms A U, @OT) def Lr(sy...

(m7,i=1,2,...,m) = arg min0§mgﬁq,(sl,...,sm)

IC(s15. . o5 Sms Ay U, OT).

Algorithm 2 in Appendix B, supplementary materials describes
in detail the key steps for screening the candidate change points
by minimizing the information criterion.

The following two additional assumptions on the minimum
spacing At and the selection of tuning parameters are required
to establish the main theoretical results.

3
(H5) Assume that moTéT(d r*nzax)/a)T — 0 and

max
mowr/AT — Qasn — +oo
(H6) Suppose (s1,...,sn) are a set of change points obtained

from the Step 1, we consider the following scenarios:

(a) if |s; — si—1| < Té&r, select A; = c‘/TéTlogp
and u; = c/Térp, for i = 1,2,...,m; (b) if there

exist two true change points 1']?* and tj*+1 such that

lsi-i — 7l < Térand |si — ¢/ ,| < T&r, select &; =

logp * Tér - P
4 (c o + Mg dmaxS s,-1) and u; = 4 (c o
Té . —
+ oL/ Thaxs— S,T l) c) otherwise, select A; 4c

log p+log(si—si—1)
Si—Si—1
large constant c.

1
and u; = 4c,/ +(s),g—(ssl, f’ U for some

Assumption H5 connects the screening penalty term wr,
defined with the information criterion (10), and the minimum
spacing At allowed between the change points. Assumption H6
provides the specific rate of the tuning parameters used in the
regularized optimization problem formulated in (9). Note that
Assumption H6 is required even in standard lasso regression
problems for independent and identically distributed data and
in the absence of change points (Zhang and Huang 2008). In the
literature on change points analysis with misspecified models,
a more complex selection of the tuning parameters is needed
(Chan, Yau, and Zhang 2014; Roy, Atchadé, and Michailidis
2017). Then, the following Theorem establishes the main result
of estimating consistently the number of change points and their
locations.

Theorem 3. Suppose Assumptions HI’-H3, and H4-H6 hold.
As T — +o00, the minimizer (73,...,7;) of (10) satisfies:
P(m = mgy) — 1. Further, there exists a large enough positive
constant B > 0 so that

* *2
dmax + "max

P| max |7 — 7 *| < BmyTéT
1<j<mqg

ming <j<m {vjz)s + vjz)L}
Remark 5. For a finite number of change points my, the
sequence {£r} can be selected as ( rax 108V T) 4+ 1

)
(pV log T))IJr2 /T for some small p > 0. Assuming that the
maximum rank among all the low-rank components and the
maximum spar51ty level among all the sparse components satlsfy

dr = ( (dfax log(p v T) + 1 (p V log T))

max + rmax
then the order of detecting the relative location -7;*/T- becomes

(dfpax log(p v T) + 1 (p V log T))H_p/T in Theorem 3.
Finally, one can choose the penalty tuning parameter wr
to be of order (dfy 1og(pV T) + rh(p Viog T))' ' in
this setting, and the minimum spacing At to be at least of
order (d},, log(p vV T) + 1}y (p V log T))2+p in accordance to
Assumption H3" Comparing the consistency rates provided
in Theorem 3 with those in Safikhani and Shojaie (2020),
the additional term r}; (p Vv log T) reflects the complexity of
estimating the low-rank components in the model.

Remark 6 (Computational cost of the rolling windows strategy).
For the proposed p-dimensional VAR model with T observa-
tions and window size h = O(T?), where § € (0,1], the
computational complexity of the first step is of order O(TC(T)),
and the second screening step is of order O(T'4C(T)), where
C(T) is the computational cost for model parameters estimation
for every search. Hence, the overall complexity is O(TC(T)).



The following corollary provides the error bound for con-
sistent estimation of the low-rank and the sparse components,
which is directly extended from Theorem 2 to the multiple
change points scenario. To obtain the stationary time series for
each segments, we employ the exact same technique of removing
R-radius neighborhoods for every estimated change point. In
accordance to Theogem 3, the radius R should be at least of order

Bmy TéT(d;’;ax + 12 ) for some large constant B > 0. Denote
the length of the jth stationary segment by N;, after removing

the R-radius neighborhoods for each estimated change point.

Corollary 1. Given the estimated change points: 1 = 7 <
T < - < Tim < Tme = T, let Assumptions HI’-H3’ and
H4 hold and remove the R-radius neighborhoods for each 7;
forj = 1,2,...,m + 1. Further, by using the following tuning
parameters: (Aj, ) = (4c1 I‘E\ILJ_P + 461’#, 4c’1\/%>, where
c1, ¢ are positive constants. For T — 400, there exist universal
positive constants C},C, > 0 such that for each selected

segment, the estimated low-rank and the sparse components
satisfy

I 3 , (4 logp +1ip dra}
I~ L3+ 15— ST < ¢ (; Lod

/

N o

o Step 3 (Optional): After the second Step, the results in The-
orem 3 and Corollary 1 ensure accurate estimation of the
number of change points and their locations, as well as of the
underlying model parameters across the stationary segments.
However, a further refinement and hence a tighter bound on
the result provided in Theorem 3 can be obtained through
the following re-estimation procedure (see also discussion on
this point in Wang et al. 2019). Specifically, the conclusions
in Theorem 3 ensure that m = mg almost surely and also
provide good estimates of the boundaries of the stationary
segments. Then, for an estimated change point ’r}, consider a

“refined” interval (s}, ;) def (2Tj-1/3 +7j/3,27;/3 + Tj41/3)
forj = 1,2,...,m, where 1y = 0. Then, we define the
objective function:

def 1
K(‘L’;Sj, ej’Aj,l,Aj,Z) = ) )
€ =5

T—1
Z I1X: — AjnXe1ll3

T=sj

6
+ ) IIXe — AjaXiy ||%> ,
t=1

and a “refined” change point together with the refitted model
parameters corresponds to:

("l:'}, Aj,l 5 Aj)z) = arg minre(sj)ej)ﬁ(r; Sj, e]', Aj,l N Aj,z) (1 1)

According to the proposed refinement, we derive the following
corollary:

Corollary 2. Suppose Assumptions H1’-H3’, and H4-H6 hold.
As T — 400, the minimizer (71,. .., T5) of (11) satisfies:

dfax log(p Vv h) + 1. (p V log h)) oL

P| max [fj—7f| <K ; 53
1<j<mg mlnlSjSmo{Vj,S + vj’L}
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Remark 7. Note that in the bound of Corollary 2, the maximum
density across all sparse components d},,, appears as a linear
term, instead of a quadratic one in Theorem 3. This refinement
is primarily of theoretical interest, since as the numerical work
in Section 5.2 indicates the detection procedure based on Steps 1
and 2 achieves very accurate estimates of the change points and
the model parameters.

Remark 8. Corollary 2 indicates that the high probability finite
sample bound on the estimation error depends on the maximum
sparsity level dy, ., among the sparse components, the maximum
rank rx . among the low rank components, the dimension p,
and the signal strength vg, v, of the sparse and low rank compo-
nents. Note that the issue of obtaining asymptotic distributions
for the estimated change points is a rather complicated task and
has not been addressed in the literature even for much simpler

models, including sparse mean shift models.

4. A Fast Procedure Based on a Surrogate Model

Remark 6 shows that identifying multiple change points in a
low-rank and sparse VAR model is computationally expensive,
due to the presence of the nuclear norm and the need for
selecting the tuning parameters through a 2-dimensional grid
search.

The question addressed next is whether there are settings
wherein the nature of the signal in the norm difference ||Aj* —
A;_H [l2 is such that it can be adequately captured by a less
computationally demanding surrogate model. For example, if
the norm difference is primarily due to a large enough change in
the sparse component, it is reasonable to expect that a surrogate
VAR model with a sparse transition matrix may prove adequate
under certain regularity conditions. However, if the norm dif-
ference is due to a change in the low-rank component, which by
construction is dense, a pure sparse VAR model will not be ade-
quate; however, a weakly sparse model may be sufficient. Indeed,
some numerical evidence suggests that this is the case. Figure 3
presents plots of the objective functions of the original and the
surrogate weakly sparse model under the same experimental
setting for a low-rank plus sparse VAR process {X;} with p = 20,
T = 200, and a single change point at T* = 100 with changes in
both the low-rank and sparse components.

As can be seen, the plot for the surrogate weakly sparse model
shares a similar pattern to that of the true model. However, in
practice, we can not a priori guarantee a change both in the low-
rank and the sparse component, simultaneously. Therefore, an
extra assumption is required to ensure the detectability of the
change points. Before we state it, we first introduce formally the
surrogate piece-wise weakly sparse VAR model.

4.1. Formulation of the Surrogate Weakly Sparse VAR
Model

A p x p real matrix A is weakly sparse, if it satisfies

p P
By(Ry) := {A e RP*P . ZZ la;|? < Rq}, (12)

i=1 j=1
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Figure 3. Left: the curve of the objective function of the full low-rank plus sparse model; Right: the curve of the objective function of the alternative weakly sparse model.

for some q € (0,1); namely, its entries are restricted in an
£4 ball of radius R; (Negahban et al. 2012). Note that when
g — 07, this set converges to an exact sparse model, that is,
A € By(Ryp), if and only if A has at most Ry nonzero elements.
When g € (0, 1), the set B;(R,) enforces a certain rate of decay
on the ordered absolute values of A.

We focus the discussion on detecting a single change point
and establish under what conditions the change point can be
estimated consistently based on the weakly sparse surrogate
model. Subsequently, we extend the result to the case of
multiple change points using the proposed rolling window
strategy.

Since the focus is on the weakly sparse VAR model, the
detection procedure provided in Section 2 requires some modi-
fication, whose details are given in Appendix C, supplementary
materials.

We assume that (A}, A3) € By(Ry), for some g € (0,1) and
R; > 0. We also introduce a modification on the Assumptions
made in Sections 2 and 2.2. Based on Remark 1 and using
the same notation as in the results in Sections 2.2 and 3, the
counterpart of Assumption H1 becomes:

(W1) The weakly sparse assumption on the Aj*’s singles out
spiky entries. Hence, one of the following needs to hold:

1. If y1,2 > p, then we require the minimum spacing
A7 and the jump size vy = [|A} — A7||, satisfy:

INT R (T%Rq(log(p v T))l’%) :
2. Otherwise, the change point is identifiable as long as
A > CY (T%Rq(log(p v T))l‘%) .

Remark 9. Assumption W1 is based on Remark 1. Note that if
the low-rank components dominate the signal, then an adequate
change in them is required to identify the change point; other-
wise, we need different information ratios together with distinct
spiky entries in the sparse components. The latter sufficient
condition indicates that the changes in the spiky entries play
an important role in identifying the change points. For the
second case, if the low-rank components are not dominant in
both segments, then an adequately large change in the sparse
components is sufficient to determine the change point.

4.2. Theoretical Properties

The following proposition provides a lower bound for the radius
Ry, so that the true transition matrices (A}, A3) that admit alow-
rank plus sparse decomposition do belong to the above defined
£, ball. We only discuss the case 0 < y1,¥2 < p. Analogous
results for the other cases can be derived in a similar manner.

Proposition 2. Let q € (0,1) be fixed and R; > 0 be the radius
of B,(R,) defined in (12). Further, the transition matrices for
the data-generating model satisfy the following decomposition:
A} = L7+ 87 and A5 = L5+ S5, where L}, L3, S], and S are the
corresponding low-rank and sparse components. Then, A}, A3
belong to B, (R) if R, satisfies

* oL i q 2 *
R = dmax ? + MS + (p - dmax)|amaxlq’

where omax = max{||L]|l2, |IL5 |2} and d},,, = max{d], d5}.

Before we extend Theorem 1 to the surrogate weakly sparse
model, a modification to the selection of tuning parameters is
required. Recall that (6) identifies the tuning parameters for
the low-rank plus sparse model, while for the surrogate weakly
sparse model, the only parameter is the transition matrix AJZ'
for j = 1,2. Along with the notation defined in (6), the tuning
parameters are given by

>

logp +log(r — 1)
e = 4C6V\/ T—1

(13)

>

! log(T —

where ¢}, c(”)"l > 0 are some positive constants selected by the
similar method as ¢ and ¢, in (6), the selection procedure is
provided in the next section. Since we employ the same exhaus-
tive search algorithm in Algorithm 1, a similar assumption as
H3 on the search domain 7" is required.

(W2) Using similar definitions to Assumption H3, denote the

search domain by 7" def [a",b"], and let | T"| to be the
length of 7. Then, we assume that,

_4
v = \‘Rq <1°g(PTV T)> ZJ ,



q
R (bg(pvn)—z i e
T T3 Ry og(p v )~

We are now in a position to extend the result in Theorem 1 in
the following proposition, whose proof is provided in Appendix
E, supplementary materials.

Proposition 3. Suppose Assumptions W1 and W2 hold and the
transition matrices A} and A} in (1) belong to the set B, (R,)

for some fixed constant g € (0,1) and radius R; > 0, such that
q

Cl\/qu (logp-;log T)%_Z
by employing Algorithm 1 and using the tuning parameters as
in (13), there exists a large enough constant Kj’ > 0 such that,
with respect to the jump size v4 = ||A5 — Ajll2,as T — +o0

< 1 for some constant ¢c; > 0. Then,

TIR, (log(p v 1)) *

2
Va

P(7—1 <K/

The following Proposition extends the above result to the
case of multiple change points based on the rolling window
strategy previously described. The window size h can be selected
by substituting the vanishing sequence {£7} in Assumption H4
by the vanishing sequence {£}'} defined in Assumption W3, for
the weakly sparse model.

Proposition 4. Suppose Assumptions W1 and W2 hold and the
transition matrices AY, j = 1,...,my + 1 belong to the set
By (R,) for some fixed constant g € (0, 1) and the £,4-ball radius

1.4
R; > 0 satisfies that /R, (W)Z ' < 1. Then, by

employing the rolling window strategy, we obtain the candidate
change points set S,y = {71,. .., T;}. Then, as T — 400, there
exists a large enough constant K{” > 0 such that,

hiR, (log(p v )~

- 5 — 1,
mln]SjSmO Vj,A

P dy(S,,S*) <KV

where vj 4 = ||A]’<’Jrl - A]’.'||2.

Recall that the rolling-window mechanism will result in a
number of redundant candidate change points. By using the
surrogate weakly sparse model, we obtain a few redundant
candidate change points as well. Therefore, we need to remove
those redundant change points by using a similar screening step
as introduced in the two-step algorithm in Section 3.1. Similarly,
we also extend Assumptions H3), H5, and H6 to the weakly
sparse scenario—Assumptions W3 and W4 given in Appendix
C, supplementary materials—in order to formally introduce
the theoretical results for the surrogate model. Employing the
selected tuning parameters as detailed in Assumptions W3 and
W4, we can establish consistent estimation of the change points.

Proposition 5. Suppose Assumptions W1-W4 hold and denote
the minimizer of (7) in Appendix C, supplementary materials by
(@/,...,T2). Then, as T — 400, there exists a large enough
positive constant B” > 0 such that

R (log(p v T) /T)q>
— 1

ming <j<m, ij)A

P (lmax |’r}w - tj*| < B"mT¢&})

<j<myq
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Remark 10. Proposition 5 provides the consistency rate of the
final estimated change points obtained by the surrogate weakly
sparse model. In the case of mg being finite, we select the van-
ishing sequence {£1'} to be of order R; (log(p \Y, T))(Herq) /T
for some arbitrarily small constant o > 0. Therefore,
the consistency rate in Proposition 5 becomes B'my Tng

(log(p v T))(Hp). According to Assumption W3, the penalty
term o} can be selected to be of the order T'*9gyR}

(log(p v T))p ~? and the minimum spacing in the weakly sparse
model A1 must be at least T1+q§‘T4’R§ (log(p \Y, T))zP_q.

An analogue of Corollary 1 and a comparison of the error
bounds established in Theorem 3 and Proposition 5 are given in
Appendix C, supplementary materials.

5. Performance Evaluation

We start by investigating the performance of the exhaustive
search algorithm for a single change point detection for the low-
rank plus sparse VAR model and its surrogate counterpart and
the two-step algorithm for detecting multiple change points for
these models.

o Data generation: (1) We generate the time series data {X;}
with a single change point at t* = |T/2] from model (1).
We set the true ranks 7 = |p/15], 75 = |p/15] + 1, and the
information ratio y; = y; for most of the cases considered,
unless otherwise specified. The low-rank components L} and
L} are designed by randomly generating an orthonormal
matrix U and singular values o7,...,0, to obtain L] =

erl:l o), and L = 2;221 ojuju), where u; represents the
Ith column of matrix U. Then, the sparse components share
the same 1-oft diagonal structure with values —||L}|ls0/¥1
and ||L}|lco/¥2, respectively. The error term {¢;} is normally
distributed from N} (0,0.01L,). (2) In the multiple change
points case, we create the time series data {X;} from model
(8) with myg change points, the true ranks r* are randomly
chosen from: |p/10] —1, |p/10], |p/10]+1 unless otherwise
specified, and the information ratios are fixed to y; = 0.25.
The low-rank components are designed in a similar way as
the single change point case, and the jth sparse components
are generated by (—1) IL oo /-

o Tuning parameter selection: To select the tuning parameters
related to optimization problem (3), we can use the the-
oretical values of A; and w; provided in (6) and (7), and
select the constants ¢y and ¢, by using a grid search as
follows:

1. Choose an equally spaced sequence within [0.001, 10] as
the range for constants ¢y and ¢, to construct the grid
G, s

2. Next, extract a time point every k time points (we set
k = 5 in all numerical settings) to construct the testing
set Trest> and use the remaining time points as the training
set Tirain, and denote the corresponding estimated transi-
tion matrix Z(Mt) with respect to the tuning parameters
(A, )
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3. Select the tuning parameters (o 10) satisfying:

(A 1) = argming, ,\cg i)

1 n 2
o D 1Xer1 — Agn Xill3
test te Tt

o  Window size selection: The width of the rolling window plays

an important role in the multiple change points scenario. In
practice, we can manually select a suitable window-size, or
we may use the following strategy. In Assumption H4, we
provided conditions on the window size h and rolling step
size I. Next, we discuss an iterative procedure for determining
these two parameters in practice.
(1) Start with h = ¢T®, and I = h/4, where § is selected from
1 to 0.5 (equally spaced) and 0 < ¢ < 1 is a constant; (2)
For a given 8, apply Algorithm 2 and obtain the final set of
change points {73, . . ., T;s}; (3) Repeat (2) until the number
of the final set of change points does not change. Return the
corresponding window size h.

o Model evaluation: We evaluate the performance of our algo-
rithm by using the mean and standard deviation of the esti-
mated change point locations relative to the number of obser-
vations as well as the boxplots for the estimated change point
for each case. We use estimated rank, sensitivity (SEN), speci-
ficity (SPC), and relative error (RE) for the whole transition
matrices and the low-rank and the sparse components as
additional metrics to evaluate the performance of model.

TP TN

_ _ ||Est. — Truth|| g
" TP+EN’ T FN+4+ TN’

SEN
(I Truth| g

For multiple change points settings, we also measure the
selection rate. Specifically, a detected change point /t; is
counted as a success for the true change point ¢, if and only if
’t} € [t}’ - 1—10 (t}’ - t}*_l), t}’ + 1—10 (t;+1 - t}*)]. Then, the selection
rate is defined by calculating the percentage of simulation
replications with successes.

All numerical experiments are run in R 3.6.0 on the uf HiPerGa-
tor Computing platform with 4 Intel E5 2.30 GHz Cores and 16
GB memory. The code and scripts for simulation examples and
applications are available at https://github.com/peiliangbai92/
LSVAR_cpd.

5.1. Performance for Detecting A Single Change Point

We investigate the following factors: the dimension of the model
p, the sample size T, the differences in the £, norm, v;, and vg
of the two low-rank and sparse components, respectively and
the information ratio y. The following parameters settings are
considered in our investigation. A full summary is provided in
the form of a Table in Appendix E 1, supplementary materials.

(A) In the first setting, we consider the case that the low-rank
component exhibits a very small change while the sparse
one a large change. Further, the “total signal” in the tran-
sition matrix comes mostly from the sparse component and
therefore, yi<Lj=12.

(B) This setting is similar in structure to A: the low-rank com-
ponents exhibit very small change, while the sparse compo-
nents change by a significant amount, but the “total signal”
in the transition matrix comes mostly from the former; that
is, ¥ > l1forj=1,2.

(C) The structure of this setting is as in B, but different values
of y; are considered.

(D) This setting is the reverse of B, wherein the low-rank com-
ponents exhibit a large change, while the sparse ones a very
small ones, and further = Lj=12.

(E) This setting is similar in structure to C, but the information
ratio Vi < L,j=1,2.

(F) The setting is similar to E, but an increasing |y; — y»] is
considered.

The results for these settings over 50 replications are given in
Table 1. The first two columns record the mean and standard
deviation of the estimated change point location, the third and
fourth columns are the estimated ranks for the low-rank com-
ponents, the fifth and sixth columns give the sensitivity and
specificity of the estimated sparse components, and finally the
last column shows the relative norm error of the estimated
transition matrix A to the truth A*, and we also provide the
relative error of the estimated sparse components (low-rank
components)g(or f) to the truth S* (or L*).

For settings A and D, where the dominant components
change significantly, the algorithm identifies the change point
extremely accurately, as evidenced by the mean estimate over
50 replicates and the very small standard deviation recorded.
Further, the ranks of L; are accurately estimated under setting
A, and the specificity and sensitivity of S; is close to 1. Under
setting D, there is deterioration in the estimation of the rank of
Ly, as well as in the sensitivity of both S; and S;. In settings
B and E, where there is a small change in the dominant
component, the estimates of the change point deteriorate and
also exhibit larger variability (especially in setting B). Under
setting B, estimation of the rank of L, is also off, as is the
sensitivity for the sparse components. Note that all estimated
model parameters under setting E are very accurate, with a
small deterioration in the specificity of the §j’s. In settings C
and F, we examine how the behavior of the information ratio
influences the accuracy of the change point detection. As the
difference between y; and y; increases, the estimation accuracy
improves of the change point improves markedly. The same
happens for the model parameters under setting F. Note that the
results for settings C and F are in accordance with Remark 1
that discusses how the detectability of the full transition
matrix is controlled by the information ratio. We provide the
performance of single change point detection based on the
surrogate model in Table 4 in Appendix E1, supplementary
materials.

Figure 4 depicts boxplots based on 50 replicates of the
distance between the location of the true change point and
its estimate, that is, |T — t*|. The yellow bars correspond to
the full low-rank plus sparse model, while the orange ones to
the surrogate model. In accordance to previous findings, under
settings A and C, the results are comparable, as well as certain
cases for setting E. On the other hand, under settings B, D, and
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Table 1. Performance of the L+S model under different simulation settings.

Mean SD G G SEN SPC Total RE/ Sparse RE / Low-rank RE
Al 0.498 0.002 1.020 2,900 (1.000, 1.000) (0.909, 0.976) (0.186,0.237)/(0.172, 0.220)/(0.582, 0.648)
A2 0.499 0.002 1.020 2.820 (1.000, 1.000) (0.910, 0.974) (0.186,0.241)/(0.172,0.217)/(0.582,0.759)
A3 0.499 0.002 1.020 2.960 (1.000, 1.000) (0.909,0.979) (0.186, 0.249)/(0.172,0.225)/(0.582,0.749)
B.1 0.530 0.090 1.000 1.340 (0.166,0.108) (0.947,0.980) (0.590, 0.579)/(1.140, 1.006)/(0.482,0.413)
B.2 0.532 0.089 1.000 1.340 (0.166, 0.109) (0.947,0.979) (0.590, 0.580)/(1.139,1.006)/(0.482,0.414)
B3 0.534 0.089 1.000 1.330 (0.165,0.109) (0.947,0.980) (0.591, 0.580)/(1.140,1.006)/(0.482,0.413)
C1 0.522 0.056 1.000 1.350 (0.237,0.103) (0.944,0.978) (0.592,0.569)/(1.070, 1.015)/(0.459, 0.384)
C2 0.497 0.005 1.000 1.300 (0.400, 0.120) (0.948, 0.979) (0.645, 0.575)/(0.953, 1.006)/(0.482, 0.397)
Cc3 0.502 0.031 1.000 1.320 (0.629,0.109) (0.947,0.978) (0.646, 0.570)/(0.858, 1.007)/(0.499, 0.389)
C4 0.497 0.005 1.000 1.300 (1.000, 0.132) (0.927,0.977) (0.357,0.559)/(0.381, 1.002)/(0.499, 0.381)
D.1 0.494 0.011 1.000 1.500 (0.301,0.207) (0.948, 0.978) (0.654, 0.581)/(1.036,0.969)/(0.543,0.455)
D.2 0.494 0.008 1.000 1.920 (0.305,0.325) (0.948,0.975) (0.654, 0.639)/(1.037,0.934)/(0.544,0.478)
D3 0.495 0.007 1.000 2.080 (0.307,0.485) (0.948, 0.972) (0.653, 0.558)/(1.031,0.878)/(0.544,0.444)
E.1 0.477 0.048 1.200 3.060 (1.000, 1.000) (0.727,0.739) (0.171,0.193)/(0.160,0.176)/(0.563,0.674)
E.2 0.478 0.026 1.000 3.040 (1.000, 1.000) (0.836,0.932) (0.185,0.216)/(0.168,0.191)/(0.673,0.633)
E3 0.496 0.015 1.000 3.000 (1.000, 1.000) (0.917,0.729) (0.204, 0.254)/(0.180,0.250)/(0.674,0.776)
F1 0.495 0.053 1.000 2.880 (1.000, 1.000) (0.924,0.958) (0.405, 0.330)/(0.429,0.330)/(0.603,0.482)
F.2 0.487 0.039 1.000 3.520 (1.000, 0.996) (0.925, 0.964) (0.411,0.415)/(0.437,0.486)/(0.602,0.429)
F3 0.495 0.023 1.000 2.640 (1.000, 0.895) (0.924, 0.970) (0.405, 0.539)/(0.429,0.688)/(0.602,0.484)
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Figure 4. Boxplots for [T — t*| under settings A-F with the full model and the surrogate weakly sparse model.

E the full model clearly outperforms the surrogate one, even three cases: (1) T = 1200 with 7} = [T/6], ) = [T/3],
though in settings F2 and F3 the differences become smaller 3 = [T/2], 7y = [2T/3],and & = [5T/6]; 2) T =
as the corresponding differences in the information ratios 1800 with = = |T/10], =7 = [3T/10], 73 = [T/2],
increase. 7y = [7T/10), and 7y = [9T/10J; (3) T = 2400 with

7 = |T/10), ©7 = |T/4], ©§ = |2T/5), t7 = [3T/5],
and 2 = [4T/5].

5.2. Performance for Detecting Multiple Change Points (M) In the second case, we consider p large enough to satisfy

We consider the same settings for each change point, as in case p* > T with two change points: 7} = |T/3] and 7§ =

Ain Section 5.1 with modified T and p, respectively. The specific [2T/3].

scenarios under consideration are as follows: (N) In the last scenario, the change in sparsity patterns
is considered. We consider a different sparsity pattern

(L) Inthe first case, we consider settings with different number rather than the 1-off diagonal structure in the sparse

of change points. Specifically, we investigate the following components.
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Table 2. Results for multiple change point selection by full L+S model.

Points Truth Mean SD Selection rate Points Truth Mean SD Selection rate
L1 1 0.1667 0.1667 0.0004 1.00 M.1 1 0.3333 0.3331 0.0005 1.00
2 0.3333 0.3333 0.0003 1.00 2 0.6667 0.6665 0.0004 1.00
3 0.5000 0.4999 0.0003 1.00 M.2 1 0.3333 0.3329 0.0003 1.00
4 0.6667 0.6665 0.0004 1.00 2 0.6667 0.6667 0.0006 1.00
5 0.8333 0.8335 0.0004 1.00 N.1 1 0.3333 0.331 0.0125 0.94
L2 1 0.1000 0.0999 0.0002 1.00 2 0.6667 0.6656 0.0056 0.98
2 0.2500 0.2500 0.0000 1.00 N.2 1 0.1667 0.1683 0.0115 0.92
3 0.4000 0.3999 0.0002 1.00 2 0.8333 0.8267 0.0181 0.94
4 0.6000 0.6000 0.0000 1.00 N.3 1 0.3333 0.3302 0.0121 0.98
5 0.8000 0.7999 0.0001 1.00 2 0.6667 0.6655 0.0119 0.98
L3 1 0.1000 0.1000 0.0000 1.00
2 0.3000 0.3000 0.0000 1.00
3 0.5000 0.5000 0.0000 1.00
4 0.7000 0.6999 0.0002 1.00
5 0.9000 0.8998 0.0002 1.00
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Figure 5. Left: Estimated sparse brain connectivity structure; Right: Estimated low rank brain connectivity structure.

The detailed model parameters are listed in the Table 5 in the
Appendix E.2, supplementary materials.

Table 2 presents the mean and standard deviation of the esti-
mated locations of the change points, relative to the sample size
T, together with the selection rate, as defined at the beginning
of the current section. For all cases under settings L and M, the
two-step algorithm obtains very accurate results, also exhibiting
little variability. The complex random sparse pattern considered
in setting N leads to a small deterioration in the selection rate.
The locations of the estimated change points together with
boxplots of |Tj— tj* | for scenario N over 50 replicates are depicted
in the Appendix E.2, supplementary materials.

5.3. A Simulation Scenario Based on a EEG Dataset

For this scenario, the sparsity structure is extracted from the
EEG dataset analyzed in Section 6.1. Specifically, the setting
under consideration is as follows: T = 300, p = 21, with
two change points located at |T/3] and [2T/3], respectively.
The structure of the transition matrices is obtained by using
the results presented in the application section (see Figure 6
in the Section G.2. in the supplementary materials). We keep
the nonzero elements (see Figure 5) and set their magnitudes
at random to 0.4, —0.6, and 0.4, respectively. The low rank
components are generated by using the spectral decomposition
with ranks equal to 1, 3, and 1. The estimated sparse and low
rank structures are illustrated in Figure 5:

The results are summarized in Table 3. It can be seen that
based on a low rank and sparse structure motivated by real
data, the proposed algorithm exhibits a very satisfactory perfor-
mance.

Table 3. Results of simulation scenario based on an EEG dataset.

Points Truth Mean SD Selection rate
General sparsity pattern 1 0.3333 03328 0.002 1.00
2 0.6667 0.6663  0.007 1.00

5.4. Impact of the Signal-to-noise Ratio on the Detection
Rate

The signal-to-noise ratio (SNR) is defined as (see also Wang, Yu,
and Rinaldo 2020; Rinaldo et al. 2021):

A
SNR = =LY,
T

wherein v def min; v the minimum jump size, and A7 is the
minimum spacing, that is, A7 = minj<j<u, It — rj11|. We
set T = 300 and p = 20 with two change points located at
[T/3] = 100 and [2T/3] = 200, respectively. Further, we set
the minimum jump size to v = 0.8, 1.0, and 1.6, and the resulting
SNR takes the values 0.27, 0.33, and 0.53. The results are given
Table 4.

Table 4. Extra simulation performance for different signal-to-noise ratios.

SNR points truth mean sd selection rate
0.27 1 0.3333 0.3412 0.017 0.90

2 0.6667 0.6702 0.012 0.94
0.33 1 0.3333 0.3330 0.002 1.00

2 0.6667 0.6687 0.004 1.00
0.57 1 0.3333 0.3332 0.002 1.00

2 0.6667 0.6665 0.001 1.00
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Figure 6. Left: heat map of Hamming distances between the estimated low-rank components; Right: heat map of Hamming distances between the estimated sparse

components.

As expected, for small SNR the detection accuracy deterio-
rates, both in terms of the selection rate of change points, as well
as their locations. However, for SNR around or greater than 1,
it becomes very satisfactory. Additional results are provided in
Section E3 in the supplementary materials.

Remark 11 (Additional numerical results and comparisons).
Additional numerical results including (i) for the surrogate
model, (ii) for additional scenarios for multiple change points,
(iii) for run times between the low rank plus sparse and the
surrogate models, (iv) with a factor model exhibiting change
points, (v) between a factor and the low rank plus sparse
models under a misspecified data generating mechanism, (vi)
comparison between the proposed two-step algorithm and the
TSP algorithm in Bai, Safikhani, and Michailidis (2020), and (vi)
between the two-step rolling window strategy and a dynamic
programming algorithm are presented in Appendices F.1-E7,
respectively.

6. Applications
6.1. Change Point Detection in EEG Signals

There has been work in the literature on analyzing EEG data
using low-rank models for task related signals, since the latter
exhibit low-rank structure (Liu et al. 2018; Jao, Chavarriaga, and
Millan 2018). Next, we employ the full low-rank plus sparse
model to detect change points in data from Trujillo, Stanfield,
and Vela (2017). This dataset recorded 72 channels of con-
tinuous EEG signals by using active electrodes. The sampling
frequency is 256Hz and the total number of time points per
EEG electrode is 122,880 over 480 sec. The stimulus procedure
is that after a resting state (eliminated from the dataset) lasting
8 mins, the subject alternates between a 1-min period with eyes
open followed by a 1-min period with eyes closed, repeated four
times. Hence, we expect that the employed model captures the
low-rank structure associated with the task athand (open/closed
eyes), while the sparse component can capture idiosyncratic
behavior across repetitions of the task.

To illustrate the proposed methodology, two subjects are
selected; differences in the EEG signals over time are visible for
the first subject, but not for the second one. The data are de-
trended, by calculating the moving average of each EEG signal
and removing it. Specifically, the period average, which is an
unbiased estimator of trend, is given by i = é Zle Xig; we
select d = 256 in accordance to the frequency of the data, and
we obtain the de-trended time series by removing the period
average. In this work, we use 21 selected EEG channels and
T = 67952 time points in the middle of the whole time series.
According to the experiments described in Trujillo, Stanfield,
and Vela (2017), there are five open/closed eyes segments in
the selected time period with four change points approximately
at locations: 77 = 11,650, t7 = 27,750, 17 = 44,000, and
7y = 60,000. The data are plotted in Figure 2 in Appendix G.2,
supplementary materials. Selection of the tuning parameters is
based on the guidelines given in Appendix G.1, supplementary
materials. Note that to separate adequately the sparse compo-
nent from the low-rank one, we set «; based on its theoretical
values provided in Assumption H2.

The change points estimated by the two-step algorithm are
T = 9633, 7, = 28,529, 73 = 43,361 and 74 = 60,209. The
estimated change points are close to those identified based on
the designed experiment. In order to quantify the differences
among the estimated components across segments, we use the
Hamming distance for both sparse and low-rank ones. The
results are shown in Figure 6 in the form of a heat map that
confirms the high degree of similarity between all “eyes closed”
segments (1, 3, 5) and all “eyes open” segments (2, 4), thus,
further confirming the accuracy of the methodology. We also
provide the estimated low-rank and the sparse patterns for five
segments in Figure 3, and the correlation networks for the
sparse components in Figure 4 in Appendix G.2, supplementary
materials.

6.2. An Application to Macroeconomics Data

We consider the macroeconomics data obtained from the FRED
database McCracken and Ng (2016). This dataset comprises
of 19 key macroeconomic variables, corresponding to the
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Figure 7. Left panel: Estimated sparsity level for each selected interval; Right panel: Estimated rank for each selected interval.

Table 5. Estimated change points and candidate related events.

Date (mm/dd/yyyy) Candidate related events

02/01/1975 Aftermath of 1973 oil crisis

04/01/1977 Rapid build-up of inflation expectations

12/01/1980 Rapid increase of interest rates by the Volcker Fed

01/01/1994 Multiple events—see Appendix G.3, supplementary
materials

09/01/2008 Recession following collapse of Lehman Brothers

05/01/2010 Recovery from the Great Financial crisis of 2008

Table 6. Estimated change points by the detection strategy based on a factor
model.

Date (mm/dd/yyyy) Candidate related events

12/01/1979 Rapid increase of interest rates by the Volcker Fed
01/01/1985 Multiple events

11/01/1993 Multiple events

04/01/2008 Prequel to the great financial crisis

“Medium” model analyzed in Banbura, Giannone, and Reichlin
(2010) and covering the 1959-2019 period (723 observations).
The original time series data are non-stationary and we de-trend
them by taking first differences.

To select the tuning parameters (A, i), we employ a two-
dimensional grid search procedure. In our analysis, we set o,
based on its theoretical value in Assumption H2 to ensure iden-
tifiability of the sparse component from the low-rank one. The
estimated change points are listed in Table 5, while the sparsity
levels and ranks for each segment are plotted in Figure 7. The
selected change points are presented in Figure 5 in Appendix
G.3, supplementary materials. A detailed discussion (due to
space constraints) of related events is also provided in Appendix
G.3, supplementary materials.

We also compare the results using the detection strategy
based on the static factor model in Barigozzi, Cho, and Fry-
zlewicz (2018). According to Fama and French (1996), we set the
maximum number of factors to three and the estimated change
points are listed in Table 6.

The factor model misses important events, including the
economic recovery following the Financial Crisis of 2008 and
the recession following the first oil crisis of 1973. Further, it
identifies a change point in early April of 2008, even though
most of the macroeconomic (as opposed to financial market)
indices started deteriorating in the summer of 2008 and tumbled

in the third quarter, following the collapse of Lehman Brothers
in mid-September.

7. Concluding Remarks

The article addressed the problem of multiple change point
detection in reduced rank VAR models. The key innovation
is the development of a two-step strategy that obtains consis-
tent estimates of the change points and the model parame-
ters. Other strategies for detecting multiple change points in
high-dimensional models, such as fused penalties or binary
segmentation type of procedures, either require very stringent
conditions or are not directly applicable. Further, dynamic pro-
gramming entails a quadratic computational cost in the num-
ber of time points compared to a linear cost for the proposed
strategy. To enhance computational efficiency, we introduced a
surrogate weakly sparse model and identified sufficient condi-
tions under which the aforementioned two-step strategy detects
change points in low-rank and sparse VAR models as accurately
as using the correctly specified model, but at significant compu-
tational gains.

In the algorithmic and technical results presented, similar to
the case of a sparse VAR model with change points (Wang et al.
2019), we assume a simple structure on the error terms, that is,

in segment j, €, ~ N(0,52I), where o is a fixed constant inde-
pendent of j. Such a simple structure on the covariance matrices
of error terms ensures the identifiability of change points, since
a change in the transition matrices would imply that the second
order structure (the auto-correlation function) of the stochastic
process before and after the change points have changed, thus,
the definition of change points becomes meaningful. It is of
interest to investigate in future work a general covariance matrix
¥, or even segment specific ones X7, including conditions that
lead to changes in the segment specific auto-correlation function
of the process.

Further, the proposed strategy is directly applicable to other
forms of structured sparsity in the transition matrix of the VAR
model, including low-rank plus structured sparse, or structured
sparse plus sparse, as discussed for stationary models in Basu,
Li, and Michailidis (2019).

Finally, the presentation focused on a VAR model with a
single lag, but both the modeling framework and the developed
two-step detection strategy can be extended to VAR(d) pro-
cesses with d > 1 in a similar manner, as presented in Basu,
Li, and Michailidis (2019).



Supplementary Materials

The supplementary materials contain all proofs of the theoretical results,
together with auxiliary lemmas, additional details on the detection algo-
rithms, and additional numerical experiments.
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