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ABSTRACT
We study the problem of detecting and locating change points in high-dimensional Vector Autoregressive
(VAR) models, whose transition matrices exhibit low rank plus sparse structure. We !rst address the problem
of detecting a single change point using an exhaustive search algorithm and establish a !nite sample error
bound for its accuracy. Next, we extend the results to the case of multiple change points that can grow as
a function of the sample size. Their detection is based on a two-step algorithm, wherein the !rst step, an
exhaustive search for a candidate change point is employed for overlapping windows, and subsequently a
backward elimination procedure is used to screen out redundant candidates. The two-step strategy yields
consistent estimates of the number and the locations of the change points. To reduce computation cost,
we also investigate conditions under which a surrogate VAR model with a weakly sparse transition matrix
can accurately estimate the change points and their locations for data generated by the original model. This
work also addresses and resolves a number of novel technical challenges posed by the nature of the VAR
models under consideration. The e"ectiveness of the proposed algorithms and methodology is illustrated
on both synthetic and two real datasets. Supplementary materials for this article are available online.
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1. Introduction

High dimensional time series analysis and their applications
have become increasingly important in diverse domains, includ-
ing macroeconomics (Stock and Watson 2016; Kilian and Lütke-
pohl 2017), !nancial economics (Billio et al. 2012; Lin and
Michailidis 2017), molecular biology (Michailidis and d’Alché
Buc 2013) and neuroscience (Friston et al. 2014; Schröder and
Ombao 2019). Such data are usually both cross-correlated and
auto-correlated. There are two broad modeling paradigms for
capturing these features in the data: (i) dynamic factor and
latent models (Stock and Watson 2002, 2016; Bai and Ng 2008;
Lam, Yao, and Bathia 2011; Li, Qin, and Zhou 2014), and (ii)
vector autoregressive (VAR) models (Lütkepohl 2013; Kilian
and Lütkepohl 2017). The basic premise of models in (i) is that
the common dynamics of a large number of time series are
driven by a relatively small number of latent factors, the latter
evolving over time. VAR models aim to capture the self and cross
auto-correlation structure in the time series, but the number of
parameters to be estimated grows quadratically in the number of
time series under consideration. Various structural assumptions
have been proposed in the literature to accommodate a large
number of time series in the model, with that of sparsity (Basu
and Michailidis 2015) being a very popular one. However, in
many applications the autoregressive dynamics of the time series
exhibit also low dimensional structure, which gave rise to the
introduction of reduced rank autoregressive models (Box and
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Tiao 1977; Velu, Reinsel, and Wichern 1986; Ahn and Reinsel
1988; Wang and Bessler 2004). For example, brain activity data
(see Example 1 in Section 6) exhibit low dimensional structure
(Schröder and Ombao 2019) and so do macroeconomic data
(Stock and Watson 2016, Example 2 in Section 6). Reduced
rank auto-regressive models for stationary high-dimensional
data were studied in Basu, Li, and Michailidis (2019). The key
idea of such reduced rank models is that the lead-lagged rela-
tionships between the time series cannot simply be described
by a few sparse components, as is the case for sparse VAR
models. Instead, all the time series in"uence these relationships
and some of them are particularly pronounced (those in the
sparse component). Applications in economics/!nance, neu-
roimaging, and environmental science are important candidates
for these models.

In many application areas including those mentioned above,
nonstationary time series data are commonly observed. The
simplest, but realistic departure from stationarity, that also
leads to interpretable models for the underlying time series,
is piecewise-stationarity. Under this assumption, the time
series data are modeled as approximately stationary between
neighboring change-points, whereas their distribution changes
at these change points. The literature on change point analysis
for the two classes of modeling paradigms previously mentioned
is rather sparse. Bardsley et al. (2017) developed tests for the
presence of change points in functional factor models motivated
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by modeling the yield curve of interest rates, while Barigozzi,
Cho, and Fryzlewicz (2018) employed the binary segmentation
procedure for detecting and identifying the locations of multiple
change points in factor models. Change point detection for
sparse VAR models has been investigated in Wang et al. (2019),
Sa!khani and Shojaie (2020), and Bai, Sa!khani, and Michailidis
(2020).

The objective of this study is to investigate the problem of
change point detection in a reduced rank VAR model, whose
transition matrices exhibit low-rank and sparse structure. The
problem poses a number of technical challenges that we address
in the sequel.

Formally, a piece-wise stationary VAR model of lag-1 (for
introducing the basic issues related to it) for a p-dimensional
time series {Xt} with m0 change points 1 ≤ τ "

1 < τ "
2 < · · · <

τ "
m0 ≤ T is given by

Xt =
m0+1∑

j=1

(
A"

j Xt−1 + ε
j
t
)

I(τ "
j−1 ≤ t < τ "

j ), t = 1, 2, . . . , T,

where A"
j is a p × p coe#cient matrix for the jth segment,

j = 1, 2, . . . , m0 + 1, I(τ "
j−1 ≤ t < τ "

j ) presents the indicator
function of the jth interval, and ε

j
ts are m0 + 1 independent

zero mean Gaussian noise processes. It is assumed that that
the coe#cient matrix A"

j can be decomposed into a low-rank
component plus a sparse component: namely, A"

j = L"
j + S"

j ,
where L"

j is a low-rank matrix with rank r"
j (r"

j $ p), and S"
j is a

sparse matrix with d"
j (d"

j $ p2) nonzero entries.
The modeling framework di$ers vis-a-vis the one considered

in Bai, Sa!khani, and Michailidis (2020), since in the current
work, both the low rank and the sparse components of the
transition matrices are allowed to exhibit changes at break points.
This "exibility rules out the use of a fused lasso based detection
algorithm that is suitable for the case wherein only the sparse
component is allowed to exhibit changes, which was the setting
in Bai, Sa!khani, and Michailidis (2020). As a result, a novel
rolling window detection algorithm is introduced and its the-
oretical properties studied in the current work.

Next, we outline novel technical challenges, not present in
change point analysis of sparse VAR (Wang et al. 2019; Sa!khani
and Shojaie 2020) and other sparse high dimensional models
(Roy, Atchadé, and Michailidis 2017):

(i) The change in the transition matrix may be due to a change
in the low-rank component, in the sparse component or in
both. To that end, we introduce a novel su!cient identi"a-
bility condition for both detecting a single change point and
decomposing the transition matrix into its low rank plus
sparse components (Assumptions H1 and H2 in the sequel);
then, it is extended to the case of multiple change points
(Assumptions H1’ and H2’).

(ii) For the case of multiple change points, commonly used
procedures, such as binary segmentation (Cho and Fry-
zlewicz 2015) or fused type penalties (Sa!khani and Shojaie
2020) are not directly applicable due to the presence
of the low rank component. Speci!cally, the former
method would lead to e$ectively performing singular value
decompositions on misspeci!ed models involving mixtures

of piece-wise low-rank and sparse models, which may
lead to the imposition of very stringent conditions for
ensuring detectability of the change points (see discussion
on related issues in Bhattacharjee, Banerjee, and Michailidis
(2020). Further, it is unclear how to design fused penalties
that accommodate low-rank matrices. On the other hand,
dynamic programming based algorithms are applicable.
However, their time complexity is O(T2C(T)), where
C(T) indicates the computational cost of estimating the
model parameters over the entire observation sequence.
This is signi!cantly higher complexity than the previously
mentioned methods (which is O(TC(T)), see numerical
comparisons and discussion in Remark 6 and Appendix
F.7, supplementary materials).

To overcome these challenges, we develop a novel procedure
based on rolling windows, wherein a single candidate change
point is identi!ed in each window and then only those exhibit-
ing screened based on certain properties (see Section 3) are
retained. This allows to leverage the theoretical results devel-
oped for the single change point. The proposed procedure based
on rolling windows is naturally parallelizable, thus, speeding up
computations.

Note that the developed rolling window strategy is applicable
to any complex statistical model exhibiting multiple change
points. One needs to establish consistency properties for a single
change point in a time interval and then appropriately select
the length of the rolling window, to ensure that at most a single
change point falls within. Hence, this development is of general
interest for change point analysis.

(iii) Note that the procedure of estimating change points in low-
rank plus sparse VAR models is computationally expensive,
even in the presence of a single change point, since it
requires performing numerous singular value decompo-
sitions. We consider a surrogate model that comes with
signi!cant computational savings and under certain reg-
ularity conditions exhibits similar accuracy to the posited
model. Speci!cally, we posit a lag-1 VAR model, wherein
the transition matrices A"

j are assumed to be weakly sparse
(see, e.g., Negahban et al. 2012), as an alternative modeling
framework. The main reason is that the presence of low
rank structure renders the autoregressive parameters in the
original model dense. The weak sparse assumption ade-
quately accommodates dense structures under certain con-
ditions and hence can prove useful in certain settings (care-
fully discussed in the sequel) for change point detection
problems. Further, the theoretical properties of exhaustive-
search based anomaly detection for weakly sparse VAR
models have not been investigated in the literature, and
hence this development is of independent interest.

(iv) To establish nonasymptotic error bounds on the model
parameters of stationary sparse models, one needs to verify
that the commonly imposed (see, e.g., Loh and Wainwright
2012) restricted strong convexity and deviation bound con-
ditions hold (see Propositions 4.2 and 4.3 in Basu and
Michailidis 2015).

Verifying these assumptions in the presence of change points
in the posited reduced rank VAR model—which technically
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is equivalent to working with a misspeci!ed model (see also
discussion in Roy, Atchadé, and Michailidis 2017)—represents
a nontrivial challenge. This issue is rigorously and successfully
addressed in the sequel, together with the introduction of a
new version of the deviation bound condition that allows work-
ing with misspeci!ed models (technical details presented in
Appendix A, supplementary materials).

(v) Finally, obtaining consistent model parameters for each seg-
ment identi!ed a%er detecting the change points requires
some care, given the nonstationary nature of the posited
model above. This is successfully addressed for the case of
a single and multiple change points in Sections 2 and 3,
respectively, and for the surrogate model in Section 4.

The remainder of the article is organized as follows. In Sec-
tion 2, we formulate the model with a single change point,
provide a detection procedure based on exhaustive search, and
establish theoretical properties for the change point and model
parameter estimates. Section 3 discusses the case of multiple
change points. It introduces a two-step detection algorithm and
establishes consistency of the obtained estimates for the change
points and model parameters, leveraging results from Section 2.
To reduce computations for detecting the change point(s) in
the reduced rank VAR model, we introduce a weakly sparse
surrogate model in Section 4 and establish that under certain
regularity conditions on the structure of the transitions matrices
A"

j of the reduced rank model, the estimated change points from
the surrogate model are consistent ones for data generated by
the former. Section 5 presents a number of numerical experi-
ments to illustrate and assess the performance of the estimates
obtained from the single and multiple change points detection
procedures. Two real datasets (one on EEG and the other on
macroeconomics data) are analyzed using the proposed detec-
tion procedures in Section 6. Some concluding remarks are
drawn in Section 7. Additional technical conditions, proofs of
the main results and additional numerical work are available in
the supplementary materials.

Notation: Throughout this article, we denote with a superscript
“"” the true value of the model parameters. For any p × p
matrix, we use ‖ · ‖2, ‖ · ‖F , and ‖ · ‖∗ to represent the spectral,
Frobenius, and nuclear norm, respectively. For any matrix A, A′

denotes its transpose, and A† denotes the conjugate transpose
of A, while the $0, $1, and $∞ norms of the vectorized form of
A are denoted by: ‖A‖0 = Card(vec(A)), ‖A‖1 = ‖vec(A)‖1,
and ‖A‖∞ = ‖vec(A)‖∞, respectively. We use %max(X) and
%min(X) to represent the maximum and minimum eigenvalue
of the realization matrix X.

2. Single Change Point Model Formulation and
Detection Procedure

We start by introducing a piece-wise stationary structured
VAR(1) model that has a single change point. Suppose there
is a p-dimensional time series {Xt} observed at T + 1 points:
t = 0, 1, . . . , T. Further, there exists a change point, 0 < τ " <

T, so that the available time series can be modeled according
to the following two models in the time intervals [0, τ ") and

[τ " + 1, T), respectively:

Xt = A"
1Xt−1 + ε1

t , t = 1, 2, . . . , τ ",
Xt = A"

2Xt−1 + ε2
t , t = τ " + 1, . . . , T,

(1)

where Xt ∈ Rp is a vector of observed time series at time t, and
A"

1 and A"
2 are the p×p transition matrices for the corresponding

models in the two time intervals, and the p dimensional error
processes ε1

t and ε2
t are independent and identically drawn from

Gaussian distributions with mean zero and covariance matrix
σ 2I for some !xed σ . It is further assumed that the transition
matrices comprise of two time-varying components, a low-rank
and a sparse one:

A"
1 = L"

1 + S"
1 and A"

2 = L"
2 + S"

2. (2)
The rank of the low-rank components and the density (number
of nonzero elements) of the sparse components are denoted by
rank(L"

1) = r"
1, rank(L"

2) = r"
2, d"

1 = ‖S"
1‖0 and d"

2 = ‖S"
2‖0,

respectively, and satisfy r"
1, r"

2 $ p, d"
1, d"

2 $ p2.

2.1. Detection Procedure

Let {X0, X1, . . . , XT} be a sequence of observations generated
from the VAR model posited in (1) with the structure of the
transition matrices given by (2). Then, for any time point τ ∈
{1, . . . , T} the corresponding objective functions for estimating
the model parameters in the intervals [1, τ ) and [τ , T) are given
by:

$(L1, S1; X[1:τ ))
def= 1

τ − 1

τ−1∑

t=1
‖Xt − (L1 + S1)Xt−1‖2

2

+ λ1‖S1‖1 + µ1‖L1‖∗,

$(L2, S2; X[τ :T))
def= 1

T − τ

T−1∑

t=τ

‖Xt − (L2 + S2)Xt−1‖2
2

+ λ2‖S2‖1 + µ2‖L2‖∗,

where X[b:e) denotes the data {Xt} from time points b to e, and
the nonnegative tuning parameters λ1, λ2, µ1, and µ2 control
the regularization of the sparse and the low-rank components
in the corresponding transition matrices.

Next, we introduce the objective function with respect to the
change point: for any time point τ ∈ {1, 2, . . . , T − 1},

$(τ ; L1, L2, S1, S2)
def= 1

T − 1

(
τ−1∑

t=1
‖Xt − (L1 + S1)Xt−1‖2

2

+
T−1∑

t=τ

‖Xt − (L2 + S2)Xt−1‖2
2

)

. (3)

The estimator τ̂ of the change point τ " is given by

τ̂
def= arg minτ∈T $(τ ; L̂1,τ , L̂2,τ , Ŝ1,τ , Ŝ2,τ ), (4)

for the search domain T ⊂ {1, 2, . . . , T}, where, for each τ ∈ T ,
the estimators L̂1,τ , L̂2,τ , Ŝ1,τ , Ŝ2,τ are derived from the optimiza-
tion program (4) with tuning parameters µ1,τ , µ2,τ , λ1,τ , and
λ2,τ , respectively. Algorithm 1 in Appendix B, supplementary
materials describes in detail the key steps in estimating the
change point τ " together with the model parameters.
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2.2. Theoretical Properties

Next, we address the issue of identi!ability of model parameters
due to the posited decomposition of the transition matrices into
low rank and sparse components. The key idea is to restrict
the “spikiness” of the low rank component, so that it can be
distinguished from the sparse component. Agarwal, Negahban,
and Wainwright (2012) introduced the space ( de!ned as

(
def=

{
L"

j ∈ Rp×p : ‖L"
j ‖∞ ≤ αL

p

}
, j = 1, 2,

wherein the universal parameter αL de!nes the radius of non-
identi"ability that controls the degree of separating the sparse
component from the low-rank one. Note that a larger αL allows
the low-rank component to absorb most of the signal, thus,
making it harder to identify the sparse component, and vice
versa.

Thus, the estimators of the decomposition of the transition
matrices Aj are de!ned as follows, for any !xed time point τ :

(̂L1,τ , Ŝ1,τ )
def= arg min L1∈(

L1,S1∈Rp×p
$(L1, S1; X[1:τ )),

(̂L2,τ , Ŝ2,τ )
def= arg min L2∈(

L2,S2∈Rp×p
$(L2, S2; X[τ :T)).

(5)

Next, we introduce an important quantity for future develop-
ments, the information ratio that measures the relative strength
of the maximum signal in the transition matrix A"

j generated
by the low-rank component vis-a-vis its sparse counterpart,
de!ned as

γj
def=

‖L"
j ‖∞

‖S"
j ‖∞

, j = 1, 2.

Remark 1. Based on the de!nition of the information ratio,
some algebra provides guidance on the identi!ability conditions
that need to be imposed on the transition matrices A"

j and their
constituent parts. Speci!cally, for the low rank component we
obtain

‖A"
2 − A"

1‖2 = ‖(L"
2 − L"

1) + (S"
2 − S"

1)‖2

≥ ‖L"
2 − L"

1‖2 − ‖S"
2 − S"

1‖2

≥ ‖L"
2 − L"

1‖2 − p
(
‖S"

2‖∞ + ‖S"
1‖∞

)

≥ ‖L"
2 − L"

1‖2 − αL

( 1
γ2

+ 1
γ1

)

≥ vL − αL(γ1 + γ2)

γ1γ2
.

Analogous derivations for the sparse component yield: ‖A"
2 −

A"
1‖2 ≥ ‖S"

2 − S"
1‖2 − 2αL/p ≥ vS − 2αL/p, where vL ≡ ‖L"

2 −
L"

1‖2 ≥ 0, vS ≡ ‖S"
2 − S"

1‖2 ≥ 0 are norm di$erences for the
low-rank and the sparse components, respectively.

Based on Remark 1, it can be seen that: (1) when γ1 ≤ 1 or
γ2 ≤ 1, we have that (γ1 + γ2)/γ1γ2 ≥ 2 > 2/p (since p - 2 in
a high dimensional setting). The latter fact implies that in order
for changes in the transition matrices A"

j to be identi!able—
and consequently τ "—the di$erence in the $2 norm of the low-
rank components must signi!cantly exceed that of the sparse
components; (2) when both γ1 > 1 and γ2 > 1, then the

quantity (γ1 + γ2)/γ1γ2 is strictly decreasing with respect to
γ1 and γ2. Note that in case 1 < γ1 ≤ p and 1 < γ2 ≤ p,
(γ1 + γ2)/γ1γ2 ≥ 2/p. Combining these two cases leads to the
conclusion that when γ1 ≤ p and γ2 ≤ p, the di$erence in the
$2 norm vL between the low-rank components must be larger
than vS, the norm di$erence between the sparse components
to guarantee that the change between the transition matrices is
detectable.

The following remark discusses an extreme case, wherein the
signal in the low-rank components is dominant, but their $2
norm di$erence is negligible.

Remark 2. Suppose the low-rank components are dominant
(i.e., γ1, γ2 ≥ 1), but their $2 norm di$erence change is small;
that is, ‖L"

2 − L"
1‖2 ≤ ε, with ε > 0 being a small enough

constant). Then, we have

‖A"
2 − A"

1‖2 ≥ ‖S"
2 − S"

1‖∞ − ε ≥ ‖S"
2‖∞ − ‖S"

1‖∞ − ε

≥ 1
γ2

‖L"
2‖∞ − αL

pγ1
− ε

= 1
γ2

(
‖L"

2‖∞ − αL
p

γ2
γ1

)
− ε.

Note that since the low rank components are constrained to be
in the ( space -‖L"

2‖∞ ≤ αL/p- it implies that the transition
matrices are identi!able, only if γ2 < γ1 and ‖S"

2‖∞ > ‖S"
1‖∞.

The roles of L"
2 and L"

1 can be swapped to obtain that only if
γ2 .= γ1 and ‖S"

2‖∞ .= ‖S"
1‖∞, is the change in the full transition

matrices A"
j identi!able, which is intuitive.

The derivations in the two Remarks provide insights into
the necessary assumptions needed to establish the theoretical
results, presented next.

(H1) There exists a positive constant C0 > 0 such that

+T(v2
S + v2

L) ≥ C0
(
d"

max log(p ∨ T) + r"
max(p ∨ log T)

)
,

where +T is the spacing between the change point τ " and
the boundary, and vS, vL are the jump sizes, de!ned as

+T = min{τ " − 1, T − τ "}, vS = ‖S"
2 − S"

1‖2,
vL = ‖L"

2 − L"
1‖2.

Further, at least one of vS, vL is strictly positive.
(H2) (Identi!ability conditions) Consider low rank matrices L"

1,
L"

2, and their corresponding Singular Value Decomposi-
tions: L"

j = U"
j D"

j V"′
j , where D"

j = diag(σ j
1, . . . , σ j

rj , 0,
. . . , 0), for j = 1, 2 and U"

j , V"
j are orthonormal. Then,

1. there exists a universal positive constant MS > 0, such
that for the sparse matrices S"

j , we have: ‖S"
j ‖∞ ≤

MS < +∞, j = 1, 2;
2. there exists a large enough constant c > 0, such that

the diagonal matrices D"
j satisfy: maxj=1,2 ‖D"

j ‖∞ ≤
c < +∞; further the orthonormal matrices U"

j and V"
j

satisfy: maxj=1,2
{
‖U"

j ‖∞, ‖V"
j ‖∞

}
= O

(√
αL

rmaxp

)
,

where rmax = max{r"
1, r"

2}. In addition, we assume that

αL = O
(

p
√

log(pT)
T

)
.
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3. the maximal sparsity level d"
max = max{d"

1, d"
2} satis-

!es: d"
max ≤ 1

Cmax

√
T

log(pT) , for a large enough positive
constant Cmax > 0.

(H3) (Restrictions on the search domain T ) The change point
τ " belongs to the search domain by T ⊂ {1, 2, . . . , T −
1} and denote the search domain T def= [a, b]. Assume
that, a =

⌊
(d"

max + √
r"

max)
1+η

⌋
and b =

⌊
T − (d"

max
+ √

r"
max)

1+η
⌋

, and denote |T | as the length of the search
domain, then:

|T |
d"

max log(p ∨ T) + r"
max(p ∨ log T)

→ +∞,

where η > 0 is an arbitrarily small positive constant,
d"

max = max{d"
1, d"

2}, and r"
max = max{r"

1, r"
2}.

Remark 3. Assumption H1 speci!es the relationship between
the minimum spacing between the change point and the bound-
aries of the observation time period and the jump sizes for the
low rank and sparse components, analogously to the signal-
to-noise assumption in Wang et al. (2019). Assumptions H2-
(1) and H2-(2) de!ne the restricted space for the low rank
components L"

j : (
def=

{
L : ‖L"

j ‖∞ ≤ αL
p

}
; see analogous de!-

nitions and discussion in Agarwal, Negahban, and Wainwright
(2012), Basu, Li, and Michailidis (2019), and Bai, Sa!khani, and
Michailidis (2020) for identifying low rank and sparse matrices.
Assumptions H2-(1-3) are su#cient for satisfying the identi!-
ability condition in Hsu, Kakade, and Zhang (2011), the latter
implying that the decomposition A"

j = L"
j + S"

j is unique.
This condition is motivated by the so-called “rank-sparsity”
incoherence concept (Chandrasekaran et al. 2011), with fur-
ther re!nements along the lines of results in Hsu, Kakade,
and Zhang (2011). This assumption ensures identi!ability of
model parameters by putting certain conditions on the singular
values, and le%/right orthonormal singular vectors of the low
rank component. Speci!cally, the new assumption controls the
maximum number of nonzeros in any row or column of the
sparse component, while ensuring that the low rank part has
singular vectors far from the coordinate bases. Note that the new
conditions do not put any additional constrains on the dimen-
sionality p and further ensure the uniqueness of the low rank
plus sparse decomposition of the segment speci!c transition
matrices.

Note that Agarwal, Negahban, and Wainwright (2012) allow
αL to be any constant, whereas we require αL/p to be vanishing
to obtain consistent estimates, due to the presence of misspec-
i!cation, since the location of the change points is unknown.
Assumption H3 re"ects the restrictions on the boundary of the
search domain T and connects the estimation rate to the length
of the search domain (see analogous condition in Roy, Atchadé,
and Michailidis 2017).

For any !xed time point τ in the search domain T , let
(λ1,τ , µ1,τ ) be the tuning parameters on [1, τ ), and (λ2,τ , µ2,τ )
the tuning parameters on [τ , T), respectively. Then, the tuning
parameters of the regularization terms are selected as follows:

(λ1,τ , µ1,τ ) =



4c0

√
log p + log(τ − 1)

τ − 1
, 4c′0

√
p + log(τ − 1)

τ − 1



,

(λ2,τ , µ2,τ ) =



4c0

√
log p + log(T − τ )

T − τ
, 4c′0

√
p + log(T − τ )

T − τ



,

(6)
for constants c0, c′

0 > 0.

Theorem 1. Suppose Assumptions H1–H3 hold, and select the
tuning parameters according to (6). Then, as T → +∞, there
exists a large enough constant K0 > 0 such that

P
(

|̂τ − τ "| ≤ K0
d"

max log(p ∨ T) + r"
max(p ∨ log T)

v2
S + v2

L

)
→ 1.

The proof of Theorem 1 is provided in Appendix E, supple-
mentary materials. Note that the Theorem provides an upper
bound for the change point estimation error based on the total
sparsity level and the total rank of the model.

Next, we establish estimation consistency for the model
parameters. First, given the estimated change point τ̂ , we
remove it together with its R-radius neighborhoods U (̂τ , R),
to ensure that the remaining time points form two stationary
segments. According to Theorem 1, the radius R can be of the
order d"

max log(p ∨ T) + r"
max(p ∨ log T).

Let Nj be the length of the jth segments a%er removing the
R-radius neighborhoods; then, we select another pair of tuning
parameters:

(λj, µj) =
(

4c1

√
log p

Nj
+ 4c1αL

p , 4c′
1

√
p

Nj

)

, j = 1, 2, (7)

for constants c1, c′
1 that can selected using cross-validation. The

procedure for selecting them, as well as c0, c′
0 in (6), is provided

in Section 5.
Note that the tuning parameters provided in (7) are di$erent

from the tuning parameters in (6); the log T terms are elimi-
nated, since on the selected stationary segments the optimal tun-
ing parameters are always feasible. Based on analogous results in
Agarwal, Negahban, and Wainwright (2012) and Basu, Li, and
Michailidis (2019) for models whose parameters admit a low
rank and sparse decomposition, the optimal tuning parameters
in (7) lead to the optimal estimation rate given in the next
Theorem.

Theorem 2. Suppose Assumptions H1–H3 hold, and select the
tuning parameters according to (7). Then, as T → +∞, there
exist universal positive constants C1, C2 > 0, so that the optimal
solution of (5) satis!es

‖̂Lj − L"
j ‖2

F + ‖̂Sj − S"
j ‖2

F ≤ C1

(
d"

j log p + r"
j p

Nj

)

+ C2
d"

j α
2
L

p2 ,

j = 1, 2.

The proof of Theorem 2 is provided in Appendix E, supple-
mentary materials.

Remark 4. Notice that Theorem 2 provides the joint estimation
rate for the low-rank and the sparse component. It comprises
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of two terms, wherein the !rst one involves the dimensions of
the model parameters and converges to zero as the sample size
increases, whereas the second term represents the error due to
possible unidenti!ability of the model parameters. However, in
conjunction with Assumption H2 that restricts the space for the
low rank component, the second term also converges to zero
as the sample size (and hence the dimensionality of the model)
increases.

3. The Case of Multiple Change Points

Section 2.2 introduced the technical framework and established
the consistency rate for detecting a single change point. Next,
these technical developments are leveraged to address the more
relevant in practice problem of detecting multiple change points
consistently.

We start by formulating the piece-wise VAR model with
multiple change points. Consider the p-dimensional VAR(1)
process {Xt} with m0 change points 1 = τ "

0 < τ "
1 < · · · <

τ "
m0 < τ "

m0+1 = T; then, the model under consideration is
written as

Xt =
m0+1∑

j=1

(
A"

j Xt−1 + ε
j
t
)

I(τ "
j−1 ≤ t < τ "

j ), t = 1, 2, . . . , T,

(8)
where L"

j and S"
j represent the decomposition of the jth tran-

sition matrix into its low-rank and sparse components, and
I(τ "

j−1 ≤ t < τ "
j ) denotes the indicator function for the jth

stationary segment. Analogously to the single change point case,
we de!ne the sparsity level d"

j = ‖S"
j ‖0 and rank r"

j = rank(L"
j )

for the components in each segment, wherein d"
j $ p2 and r"

j $
p, (i.e., d"

j = o(p2) and r"
j = o(p)). Finally, εj

t ’s are independent
and independently distributed zero mean Gaussian noise pro-
cesses with covariance matrices σ 2I, j = 1, . . . , m0 + 1.

For detecting the change points and estimating the model
parameters consistently, the following minor modi!cations to
Assumptions H1–H3 are required:

(H1’) There exists a positive constant C0 > 0 such that

+T min
1≤j≤m0

{v2
j,S+v2

j,L} ≥ C0(d"
max log(p∨T)+r"max(p∨log T)),

where +T is the minimum spacing de!ned as +T
def=

min1≤j≤m0 |τ "
j+1 − τ "

j |, and the minimum norm di$er-
ences (jump sizes) between two consecutive segments are
de!ned as: vj,S

def= ‖S"
j+1 − S"

j ‖2, and vj,L
def= ‖L"

j+1 − L"
j ‖2.

(H2’) Consider low rank matrices L"
j , and their corresponding

Singular Value Decompositions: L"
j = U"

j D"
j V"′

j , where
D"

j = diag(σ j
1, . . . , σ j

rj , 0, . . . , 0), for j = 1, 2, . . . , m0 + 1.
Then,

1. there exists a universal positive constant MS > 0, such
that for the sparse matrices S"

j , we have: ‖S"
j ‖∞ ≤

MS < +∞, j = 1, . . . , m0 + 1;
2. there exists a large enough constant c > 0, such that

the diagonal matrices D"
j satisfy: maxj=1,2 ‖D"

j ‖∞ ≤

c < +∞, and the orthonormal matrices U"
j and

V"
j such that: max1≤j≤m0+1

{
‖U"

j ‖∞, ‖V"
j ‖∞

}
=

O
(√

αL
rmaxp

)
, where rmax = max1≤j≤m0+1 r"

j . In

addition, we assume that αL = O
(

p
√

log(pT)
T

)
.

3. the maximal sparsity level d"
max = max1≤j≤m0+1 d"

j

satis!es: d"
max ≤ 1

Cmax

√
T

log(pT) , for a large enough
positive constant Cmax > 0.

(H3’) There exists a vanishing positive sequence {ξT} such that,
as T → +∞,

+T
TξT(d"3

max + r"2
max)

→ +∞, d"2
max

√
log p
TξT

→ 0,

r"
3
2

max

√
p

TξT
→ 0, +T(d"

max log p + r"
maxp)

(TξT)2(d"3
max + r"2

max)
→ C ≥ 1,

for a positive constant C > 0.

Assumptions H1’ and H2’ are direct extensions of Assumptions
H1 and H2 to the multiple change points setting. Assumption
H3’ provides a minimum distance requirement on the consec-
utive change points and connects the estimation rate and the
minimum spacing between change points.

Our detection algorithm will leverage results from the single
change point case, and thus, we introduce additional assump-
tions next. As mentioned in the introduction, the use of fused
type penalties is not applicable to the low-rank component and
hence an entire di$erent detection procedure is required.

3.1. A Two-step Algorithm for Detecting Multiple Change
Points and its Asymptotic Properties

• Step 1: It is based on Algorithm 1 provided in Appendix B,
supplementary materials that detects a single change point,
additionally equipped with a rolling window mechanism to
select candidate change points. We start by selecting an inter-
val [b1, e1) ⊂ {1, 2, . . . , T}, b1 = 1, of length h and employ
on it the exhaustive search Algorithm 1 to obtain a candidate
change point τ̃1. Next, we shi% the interval to the right by l
time points and obtain a new interval [b2, e2), wherein b2 =
b1 + l and e2 = e1 + l. The application of Algorithm 1 to
[b2, e2) yields another candidate change point τ̃2. This pro-
cedure continues until the last interval that can be formed,
namely [bm̃, em̃), where em̃ = T and m̃ denotes the number
of windows of size h that can be formed. The following
Figure 1 depicts this rolling-window mechanism. The blue
lines represent the boundaries of each window, awhile the
green dashed lines represent the candidate change point in
each window. Note that the basic assumption for Algorithm
1 is that there exists a single change point in the given time
series. However, it can easily be seen in Figure 1 that not every
window includes a single change point.

To showcase the last point, we compare the behavior of
Algorithm 1 on an interval with and without a change point
based on data generated from a low-rank plus sparse VAR
process {Xt} with p = 20. We select two windows of length
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Figure 1. Depiction of the rolling windows strategy. There are three true change points: τ"
1 , τ"

2 , and τ"
3 (red dots); the boundaries of the rolling-window are represented

in blue lines; the estimated change points in each window are plotted in green dashed lines, where the subscript indicates the index of the window used to obtain it.

Figure 2. Plots of the objective functions obtained by an application of Algorithm 1, in the presence (left panel) and absence (right panel) of a true change point.

h = 200, one containing a change point at t = 100 and
another not containing a change point. Plots of the objective
function (3) used in Algorithm 1 for these two windows are
depicted in the le% and right panels of Figure 2, respectively.
It can be seen that in the presence of a change point, a clearly
identi!ed minimum close to the true change point exists.
Contrary, in the absence of a change point, the objective
function is mostly "at without a clearly identi!ed minimum.
Next, we introduce an assumption on the size of the window
h used in the detection procedure:

(H4) Let h denote the length of the window in the rolling
window algorithm. Further, the minimum spacing
+T and the vanishing sequence {ξT} are de!ned as
in Assumption H3’, and let l denote the length by
which the window is shi%ed to the right; it is assumed
that:

0 < l ≤ max{h
2

, 1}, lim sup
T→+∞

h
+T

< 1, and lim inf
T→+∞

h
TξT

≥ 2.

Assumption H4 restricts h, so that asymptotically cannot
include more than a single true change point and also is
not too small, so that the deviation bound and restricted
eigenvalue conditions used for establishing theoretical prop-
erties of the estimates of the model parameters hold for each
time segment (see Appendix A, supplementary materials).
Further, this assumption places an upper bound on the shi%
l, to ensure that no true break point close to the boundary of
windows would be missed by the proposed algorithm. The
shi% size can vary in [1, h/2]; a small l helps reduce the !nite
sample estimation error for locating the break points, while

a large l speeds up the detection procedure, by considering
fewer rolling windows.

Next, we establish theoretical guarantees for Step 1 of
the proposed detection procedure. Denote by S̃ the set of
candidate change points and by S" the set of true change
points. Speci!cally, S̃ is de!ned as

S̃ def=
{

t̃i ∈ [bi, ei) : t̃i = arg minτ∈[bi,ei)

$(τ ; L̂1,τ , L̂2,τ , Ŝ1,τ , Ŝ2,τ ), i = 1, 2, . . . , m̃
}

,

where [bi, ei) is the ith rolling-window. Following Chan, Yau,
and Zhang (2014), we de!ne the Hausdor$ distance between
two countable sets on the real line as

dH(A, B)
def= max

b∈B
min
a∈A

|b − a|.

Next, we extend Theorem 1 to the multiple change points
scenario:

Proposition 1. Suppose Assumptions H1’–H3’ and H4 hold,
and select the tuning parameters for each rolling window
according to (6). Then, as T → +∞, there exists a large
enough constant K > 0 such that

P
(

dH(S̃ , S") ≤ K d"
max log(p ∨ h) + r"

max(p ∨ log h)

min1≤j≤m0{v2
j,S + v2

j,L}

)

→ 1.

Proposition 1 shows that the number of candidate change
points identi!ed in Step 1 of the algorithm is an overestimate
of the true number of change points. Hence, a second screen-
ing step is required to remove the redundant ones.
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• Step 2: Let the candidate change points from Step 1 be
denoted by {sj}, j = 1, 2, . . . , m̃. Then, model (8) can be
rewritten in the following form:

Xt =
m̃+1∑

i=1

(
(L(si−1,si) + S(si−1,si))Xt−1 + εi

t
)

I(si−1 ≤ t < si),

t = 1, 2, . . . , T,

where L(si−1,si) and S(si−1,si) denote for the low-rank and
sparse components of the transition matrix in the interval
[si−1, si). We de!ne 0 = s0 < s1 < s2 < · · · < sm̃ < sm̃+1 = T and
for ease of presentation use Li and Si instead of L(si−1,si) and
S(si−1,si) for i = 1, 2, . . . , m + 1. We also de!ne matrices L def=
[L′

1, L′
2, . . . , L′

m̃+1]′ and S def= [S′
1, S′

2, . . . , S′
m̃+1]′. Estimates

for L and S are obtained as the solution to the following
regularized regression problem:

(̂L, Ŝ) = arg minLi,Si,1≤i≤m̃+1

m̃+1∑

i=1





1

si − si−1

si−1∑

t=si−1

‖Xt − (Li + Si)Xt−1‖2
2 + λi‖Si‖1 + µi‖Li‖∗




 ,

with tuning parameters (λ, µ) = {(λi, µi)}m̃+1
i=1 . Next, we

de!ne the objective function with respect to (s1, s2, . . . , sm):

LT(s1, s2, . . . , sm; λ, µ)
def=

m̃+1∑

i=1






si−1∑

t=si−1

‖Xt − (̂Li + Ŝi)Xt−1‖2
2

+λi‖̂Si‖1 + µi‖̂Li‖∗

}

. (9)

Then, for a suitably selected penalty sequence ωT , speci!ed
in the upcoming Assumption H5, we consider the following
information criterion de!ned as

IC(s1, s2, . . . , sm; λ, µ, ωT)
def= LT(s1, . . . , sm; λ, µ) + mωT .

(10)
The second step selects a subset of initial m̃ change points
from the !rst step by solving:

(m̂, τ̂i, i = 1, 2, . . . , m̂) = arg min0≤m≤m̃,(s1,...,sm)

IC(s1, . . . , sm; λ, µ, ωT).

Algorithm 2 in Appendix B, supplementary materials describes
in detail the key steps for screening the candidate change points
by minimizing the information criterion.

The following two additional assumptions on the minimum
spacing +T and the selection of tuning parameters are required
to establish the main theoretical results.

(H5) Assume that m0TξT(d"2
max + r"

3
2

max)/ωT → 0 and
m0ωT/+T → 0 as n → +∞.

(H6) Suppose (s1, . . . , sm) are a set of change points obtained
from the Step 1, we consider the following scenarios:
(a) if |si − si−1| ≤ TξT , select λi = c

√
TξT log p

and µi = c
√

TξTp, for i = 1, 2, . . . , m; (b) if there

exist two true change points τ "
j and τ "

j+1 such that
|si−1 − τ "

j | ≤ TξT and |si − τ "
j+1| ≤ TξT , select λi =

4
(

c
√

log p
si−si−1

+ MSd"
max

TξT
si−si−1

)
and µi = 4

(
c
√

p
si−si−1

+ αL
√

r"
max

TξT
si−si−1

)
; (c) otherwise, select λi = 4c

√
log p+log(si−si−1)

si−si−1
and µi = 4c

√
p+log(si−si−1)

si−si−1
, for some

large constant c.

Assumption H5 connects the screening penalty term ωT ,
de!ned with the information criterion (10), and the minimum
spacing +T allowed between the change points. Assumption H6
provides the speci!c rate of the tuning parameters used in the
regularized optimization problem formulated in (9). Note that
Assumption H6 is required even in standard lasso regression
problems for independent and identically distributed data and
in the absence of change points (Zhang and Huang 2008). In the
literature on change points analysis with misspeci!ed models,
a more complex selection of the tuning parameters is needed
(Chan, Yau, and Zhang 2014; Roy, Atchadé, and Michailidis
2017). Then, the following Theorem establishes the main result
of estimating consistently the number of change points and their
locations.

Theorem 3. Suppose Assumptions H1’–H3’, and H4–H6 hold.
As T → +∞, the minimizer (̂τ1, . . . , τ̂m̂) of (10) satis!es:
P(m̂ = m0) → 1. Further, there exists a large enough positive
constant B > 0 so that

P



 max
1≤j≤m0

|̂τj − τ "
j | ≤ Bm0TξT

d"2
max + r"

3
2

max
min1≤j≤m0{v2

j,S + v2
j,L}



 → 1.

Remark 5. For a !nite number of change points m0, the
sequence {ξT} can be selected as

(
d"

max log(p ∨ T) + r"
max

(p ∨ log T)
)1+ ρ

2 /T for some small ρ > 0. Assuming that the
maximum rank among all the low-rank components and the
maximum sparsity level among all the sparse components satisfy

d"2
max + r"

3
2

max = o
( (

d"
max log(p ∨ T) + r"

max(p ∨ log T)
) ρ

2

)
,

then the order of detecting the relative location -τ "
j /T- becomes

(
d"

max log(p ∨ T) + r"
max(p ∨ log T)

)1+ρ
/T in Theorem 3.

Finally, one can choose the penalty tuning parameter ωT
to be of order

(
d"

max log(p ∨ T) + r"
max(p ∨ log T)

)1+2ρ in
this setting, and the minimum spacing +T to be at least of
order

(
d"

max log(p ∨ T) + r"
max(p ∨ log T)

)2+ρ in accordance to
Assumption H3’. Comparing the consistency rates provided
in Theorem 3 with those in Sa!khani and Shojaie (2020),
the additional term r"

max(p ∨ log T) re"ects the complexity of
estimating the low-rank components in the model.

Remark 6 (Computational cost of the rolling windows strategy).
For the proposed p-dimensional VAR model with T observa-
tions and window size h = O(Tδ), where δ ∈ (0, 1], the
computational complexity of the !rst step is of order O(TC(T)),
and the second screening step is of order O(T1−δC(T)), where
C(T) is the computational cost for model parameters estimation
for every search. Hence, the overall complexity is O(TC(T)).
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The following corollary provides the error bound for con-
sistent estimation of the low-rank and the sparse components,
which is directly extended from Theorem 2 to the multiple
change points scenario. To obtain the stationary time series for
each segments, we employ the exact same technique of removing
R-radius neighborhoods for every estimated change point. In
accordance to Theorem 3, the radius R should be at least of order
Bm0TξT(d"2

max + r"
3
2

max) for some large constant B > 0. Denote
the length of the jth stationary segment by Nj, a%er removing
the R-radius neighborhoods for each estimated change point.

Corollary 1. Given the estimated change points: 1 = τ̂0 <

τ̂1 < · · · < τ̂m̂ < τ̂m̂+1 = T, let Assumptions H1’–H3’ and
H4 hold and remove the R-radius neighborhoods for each τ̂j
for j = 1, 2, . . . , m̂ + 1. Further, by using the following tuning
parameters: (λj, µj) =

(
4c1

√
log p
Nj

+ 4c1αL
p , 4c′

1
√ p

Nj

)
, where

c1, c′
1 are positive constants. For T → +∞, there exist universal

positive constants C′
1, C′

2 > 0 such that for each selected
segment, the estimated low-rank and the sparse components
satisfy

‖̂Lj − L"
j ‖2

F + ‖̂Sj − S"
j ‖2

F ≤ C′
1

(
d"

j log p + r"
j p

Nj

)

+ C′
2

d"
j α

2
L

p2 .

• Step 3 (Optional): A%er the second Step, the results in The-
orem 3 and Corollary 1 ensure accurate estimation of the
number of change points and their locations, as well as of the
underlying model parameters across the stationary segments.
However, a further re!nement and hence a tighter bound on
the result provided in Theorem 3 can be obtained through
the following re-estimation procedure (see also discussion on
this point in Wang et al. 2019). Speci!cally, the conclusions
in Theorem 3 ensure that m̂ = m0 almost surely and also
provide good estimates of the boundaries of the stationary
segments. Then, for an estimated change point τ̂j, consider a
“re!ned” interval (sj, ej)

def= (2τ̂j−1/3 + τ̂j/3, 2τ̂j/3 + τ̂j+1/3)

for j = 1, 2, . . . , m̂, where τ0 = 0. Then, we de!ne the
objective function:

$(τ ; sj, ej, Aj,1, Aj,2)
def= 1

ej − sj




τ−1∑

τ=sj

‖Xt − Aj,1Xt−1‖2
2

+
ej∑

t=τ

‖Xt − Aj,2Xt−1‖2
2

)

,

and a “re!ned” change point together with the re!tted model
parameters corresponds to:

(̃τj, Ãj,1, Ãj,2) = arg minτ∈(sj,ej)$(τ ; sj, ej, Aj,1, Aj,2) (11)

According to the proposed re!nement, we derive the following
corollary:

Corollary 2. Suppose Assumptions H1’–H3’, and H4–H6 hold.
As T → +∞, the minimizer (̃τ1, . . . , τ̃m̂) of (11) satis!es:

P
(

max
1≤j≤m0

|̃τj − τ"
j | ≤ K d"

max log(p ∨ h) + r"max(p ∨ log h)

min1≤j≤m0 {v2
j,S + v2

j,L}

)

→ 1.

Remark 7. Note that in the bound of Corollary 2, the maximum
density across all sparse components d"

max appears as a linear
term, instead of a quadratic one in Theorem 3. This re!nement
is primarily of theoretical interest, since as the numerical work
in Section 5.2 indicates the detection procedure based on Steps 1
and 2 achieves very accurate estimates of the change points and
the model parameters.

Remark 8. Corollary 2 indicates that the high probability !nite
sample bound on the estimation error depends on the maximum
sparsity level d"

max among the sparse components, the maximum
rank r"

max among the low rank components, the dimension p,
and the signal strength vS, vL of the sparse and low rank compo-
nents. Note that the issue of obtaining asymptotic distributions
for the estimated change points is a rather complicated task and
has not been addressed in the literature even for much simpler
models, including sparse mean shi% models.

4. A Fast Procedure Based on a Surrogate Model

Remark 6 shows that identifying multiple change points in a
low-rank and sparse VAR model is computationally expensive,
due to the presence of the nuclear norm and the need for
selecting the tuning parameters through a 2-dimensional grid
search.

The question addressed next is whether there are settings
wherein the nature of the signal in the norm di$erence ||A"

j −
A"

j+1||2 is such that it can be adequately captured by a less
computationally demanding surrogate model. For example, if
the norm di$erence is primarily due to a large enough change in
the sparse component, it is reasonable to expect that a surrogate
VAR model with a sparse transition matrix may prove adequate
under certain regularity conditions. However, if the norm dif-
ference is due to a change in the low-rank component, which by
construction is dense, a pure sparse VAR model will not be ade-
quate; however, a weakly sparse model may be su#cient. Indeed,
some numerical evidence suggests that this is the case. Figure 3
presents plots of the objective functions of the original and the
surrogate weakly sparse model under the same experimental
setting for a low-rank plus sparse VAR process {Xt} with p = 20,
T = 200, and a single change point at τ " = 100 with changes in
both the low-rank and sparse components.

As can be seen, the plot for the surrogate weakly sparse model
shares a similar pattern to that of the true model. However, in
practice, we can not a priori guarantee a change both in the low-
rank and the sparse component, simultaneously. Therefore, an
extra assumption is required to ensure the detectability of the
change points. Before we state it, we !rst introduce formally the
surrogate piece-wise weakly sparse VAR model.

4.1. Formulation of the Surrogate Weakly Sparse VAR
Model

A p × p real matrix A is weakly sparse, if it satis!es

Bq(Rq) :=
{

A ∈ Rp×p :
p∑

i=1

p∑

j=1
|aij|q ≤ Rq

}
, (12)
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Figure 3. Left: the curve of the objective function of the full low-rank plus sparse model; Right: the curve of the objective function of the alternative weakly sparse model.

for some q ∈ (0, 1); namely, its entries are restricted in an
$q ball of radius Rq (Negahban et al. 2012). Note that when
q → 0+, this set converges to an exact sparse model, that is,
A ∈ B0(R0), if and only if A has at most R0 nonzero elements.
When q ∈ (0, 1), the set Bq(Rq) enforces a certain rate of decay
on the ordered absolute values of A.

We focus the discussion on detecting a single change point
and establish under what conditions the change point can be
estimated consistently based on the weakly sparse surrogate
model. Subsequently, we extend the result to the case of
multiple change points using the proposed rolling window
strategy.

Since the focus is on the weakly sparse VAR model, the
detection procedure provided in Section 2 requires some modi-
!cation, whose details are given in Appendix C, supplementary
materials.

We assume that (A"
1, A"

2) ∈ Bq(Rq), for some q ∈ (0, 1) and
Rq > 0. We also introduce a modi!cation on the Assumptions
made in Sections 2 and 2.2. Based on Remark 1 and using
the same notation as in the results in Sections 2.2 and 3, the
counterpart of Assumption H1 becomes:

(W1) The weakly sparse assumption on the A"
j ’s singles out

spiky entries. Hence, one of the following needs to hold:

1. If γ1, γ2 ≥ p, then we require the minimum spacing
+T and the jump size vA = ‖A"

2 − A"
1‖2 satisfy:

+Tv2
A ≥ Cw

0

(
T

q
2 Rq(log(p ∨ T))1− q

2
)

;

2. Otherwise, the change point is identi!able as long as

+Tv2
S ≥ Cw

0

(
T

q
2 Rq(log(p ∨ T))1− q

2
)

.

Remark 9. Assumption W1 is based on Remark 1. Note that if
the low-rank components dominate the signal, then an adequate
change in them is required to identify the change point; other-
wise, we need di$erent information ratios together with distinct
spiky entries in the sparse components. The latter su#cient
condition indicates that the changes in the spiky entries play
an important role in identifying the change points. For the
second case, if the low-rank components are not dominant in
both segments, then an adequately large change in the sparse
components is su#cient to determine the change point.

4.2. Theoretical Properties

The following proposition provides a lower bound for the radius
Rq, so that the true transition matrices (A"

1, A"
2) that admit a low-

rank plus sparse decomposition do belong to the above de!ned
$q ball. We only discuss the case 0 < γ1, γ2 ≤ p. Analogous
results for the other cases can be derived in a similar manner.

Proposition 2. Let q ∈ (0, 1) be !xed and Rq > 0 be the radius
of Bq(Rq) de!ned in (12). Further, the transition matrices for
the data-generating model satisfy the following decomposition:
A"

1 = L"
1 + S"

1 and A"
2 = L"

2 + S"
2, where L"

1, L"
2, S"

1, and S"
2 are the

corresponding low-rank and sparse components. Then, A"
1, A"

2
belong to Bq(Rq) if Rq satis!es

Rq ≥ d"
max

((
αL
p

)q
+ Mq

S

)
+ (p2 − d"

max)|σmax|q,

where σmax = max{‖L"
1‖2, ‖L"

2‖2} and d"
max = max{d"

1, d"
2}.

Before we extend Theorem 1 to the surrogate weakly sparse
model, a modi!cation to the selection of tuning parameters is
required. Recall that (6) identi!es the tuning parameters for
the low-rank plus sparse model, while for the surrogate weakly
sparse model, the only parameter is the transition matrix A"

j
for j = 1, 2. Along with the notation de!ned in (6), the tuning
parameters are given by

λw
1,τ = 4cw

0

√
log p + log(τ − 1)

τ − 1
,

λw
2,τ = 4cw′

0

√
log p + log(T − τ )

T − τ
,

(13)

where cw
0 , cw′

0 > 0 are some positive constants selected by the
similar method as c0 and c′

0 in (6), the selection procedure is
provided in the next section. Since we employ the same exhaus-
tive search algorithm in Algorithm 1, a similar assumption as
H3 on the search domain T w is required.

(W2) Using similar de!nitions to Assumption H3, denote the
search domain by T w def= [aw, bw], and let |T w| to be the
length of T w. Then, we assume that,

aw =

Rq

( log(p ∨ T)

T

)− q
2
 ,
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bw =

T − Rq

( log(p ∨ T)

T

)− q
2
 , |T w|

T
q
2 Rq(log(p ∨ T))1− q

2
→ +∞.

We are now in a position to extend the result in Theorem 1 in
the following proposition, whose proof is provided in Appendix
E, supplementary materials.

Proposition 3. Suppose Assumptions W1 and W2 hold and the
transition matrices A"

1 and A"
2 in (1) belong to the set Bq(Rq)

for some !xed constant q ∈ (0, 1) and radius Rq > 0, such that

c1
√

Rq
(

log p+log T
T

) 1
2 − q

4 ≤ 1 for some constant c1 > 0. Then,
by employing Algorithm 1 and using the tuning parameters as
in (13), there exists a large enough constant Kw

0 > 0 such that,
with respect to the jump size vA = ‖A"

2 − A"
1‖2, as T → +∞

P



|̂τ − τ "| ≤ Kw
0

T
q
2 Rq

(
log(p ∨ T)

)1− q
2

v2
A



 → 1.

The following Proposition extends the above result to the
case of multiple change points based on the rolling window
strategy previously described. The window size h can be selected
by substituting the vanishing sequence {ξT} in Assumption H4
by the vanishing sequence {ξw

T } de!ned in Assumption W3, for
the weakly sparse model.

Proposition 4. Suppose Assumptions W1 and W2 hold and the
transition matrices A"

j , j = 1, . . . , m0 + 1 belong to the set
Bq(Rq) for some !xed constant q ∈ (0, 1) and the $q-ball radius

Rq > 0 satis!es that
√

Rq
(

log p+log h
h

) 1
2 − q

4 ≤ 1. Then, by
employing the rolling window strategy, we obtain the candidate
change points set S̃w = {̃τ1, . . . , τ̃m̃}. Then, as T → +∞, there
exists a large enough constant Kw

1 > 0 such that,

P



dH(S̃w, S") ≤ Kw
1

h
q
2 Rq

(
log(p ∨ h)

)1− q
2

min1≤j≤m0 v2
j,A



 → 1,

where vj,A = ‖A"
j+1 − A"

j ‖2.

Recall that the rolling-window mechanism will result in a
number of redundant candidate change points. By using the
surrogate weakly sparse model, we obtain a few redundant
candidate change points as well. Therefore, we need to remove
those redundant change points by using a similar screening step
as introduced in the two-step algorithm in Section 3.1. Similarly,
we also extend Assumptions H3’, H5, and H6 to the weakly
sparse scenario—Assumptions W3 and W4 given in Appendix
C, supplementary materials—in order to formally introduce
the theoretical results for the surrogate model. Employing the
selected tuning parameters as detailed in Assumptions W3 and
W4, we can establish consistent estimation of the change points.

Proposition 5. Suppose Assumptions W1–W4 hold and denote
the minimizer of (7) in Appendix C, supplementary materials by
(̂τw

1 , . . . , τ̂w
m̂w). Then, as T → +∞, there exists a large enough

positive constant Bw > 0 such that

P
(

max
1≤j≤m0

|̂τw
j − τ "

j | ≤ Bwm0Tξw
T

R2
q
(
log(p ∨ T)/T

)−q

min1≤j≤m0 v2
j,A

)

→ 1.

Remark 10. Proposition 5 provides the consistency rate of the
!nal estimated change points obtained by the surrogate weakly
sparse model. In the case of m0 being !nite, we select the van-
ishing sequence {ξw

T } to be of order R2
q
(
log(p ∨ T)

)(1+ρ+q)
/T

for some arbitrarily small constant ρ > 0. Therefore,
the consistency rate in Proposition 5 becomes B′m0TqR4

q(
log(p ∨ T)

)(1+ρ). According to Assumption W3, the penalty
term ωw

T can be selected to be of the order T1+qξw
T R2

q(
log(p ∨ T)

)ρ−q and the minimum spacing in the weakly sparse
model +T must be at least T1+qξw

T R2
q
(
log(p ∨ T)

)2ρ−q.

An analogue of Corollary 1 and a comparison of the error
bounds established in Theorem 3 and Proposition 5 are given in
Appendix C, supplementary materials.

5. Performance Evaluation

We start by investigating the performance of the exhaustive
search algorithm for a single change point detection for the low-
rank plus sparse VAR model and its surrogate counterpart and
the two-step algorithm for detecting multiple change points for
these models.

• Data generation: (1) We generate the time series data {Xt}
with a single change point at τ " = 1T/22 from model (1).
We set the true ranks r"

1 = 1p/152, r"
2 = 1p/152 + 1, and the

information ratio γ1 = γ2 for most of the cases considered,
unless otherwise speci!ed. The low-rank components L"

1 and
L"

2 are designed by randomly generating an orthonormal
matrix U and singular values σ1, . . . , σp to obtain L"

1 =
∑r"

1
l=1 σlulu′

l, and L"
2 = ∑r"

2
l=1 σlulu′

l, where ul represents the
lth column of matrix U. Then, the sparse components share
the same 1-o$ diagonal structure with values −‖L"

1‖∞/γ1
and ‖L"

2‖∞/γ2, respectively. The error term {εt} is normally
distributed from Np(0, 0.01Ip). (2) In the multiple change
points case, we create the time series data {Xt} from model
(8) with m0 change points, the true ranks r"

j are randomly
chosen from: 1p/102−1, 1p/102, 1p/102+1 unless otherwise
speci!ed, and the information ratios are !xed to γj = 0.25.
The low-rank components are designed in a similar way as
the single change point case, and the jth sparse components
are generated by (−1)j‖L"

j ‖∞/γj.
• Tuning parameter selection: To select the tuning parameters

related to optimization problem (3), we can use the the-
oretical values of λj and µj provided in (6) and (7), and
select the constants c0 and c′

0 by using a grid search as
follows:

1. Choose an equally spaced sequence within [0.001, 10] as
the range for constants c0 and c′

0 to construct the grid
G(λ, µ);

2. Next, extract a time point every k time points (we set
k = 5 in all numerical settings) to construct the testing
set Ttest, and use the remaining time points as the training
set Ttrain, and denote the corresponding estimated transi-
tion matrix Â(λ,µ) with respect to the tuning parameters
(λ, µ);
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3. Select the tuning parameters (̂λ, µ̂) satisfying:

(̂λ, µ̂) = arg min(λ,µ)∈G(λ,µ)



1

|Ttest|
∑

t∈Ttest

‖Xt+1 − Â(λ,µ)Xt‖2
2




 .

• Window size selection: The width of the rolling window plays
an important role in the multiple change points scenario. In
practice, we can manually select a suitable window-size, or
we may use the following strategy. In Assumption H4, we
provided conditions on the window size h and rolling step
size l. Next, we discuss an iterative procedure for determining
these two parameters in practice.
(1) Start with h = cTδ , and l = h/4, where δ is selected from
1 to 0.5 (equally spaced) and 0 < c < 1 is a constant; (2)
For a given δ, apply Algorithm 2 and obtain the !nal set of
change points {̂τ1, . . . , τ̂m}; (3) Repeat (2) until the number
of the !nal set of change points does not change. Return the
corresponding window size ĥ.

• Model evaluation: We evaluate the performance of our algo-
rithm by using the mean and standard deviation of the esti-
mated change point locations relative to the number of obser-
vations as well as the boxplots for the estimated change point
for each case. We use estimated rank, sensitivity (SEN), speci-
!city (SPC), and relative error (RE) for the whole transition
matrices and the low-rank and the sparse components as
additional metrics to evaluate the performance of model.

SEN = TP
TP+FN

, SPC = TN
FN + TN

, RE = ‖Est. − Truth‖F
‖Truth‖F

.

For multiple change points settings, we also measure the
selection rate. Speci!cally, a detected change point t̂j is
counted as a success for the true change point t"j , if and only if
t̂j ∈ [t"j − 1

10 (t"j −t"j−1), t"j + 1
10 (t"j+1 −t"j )]. Then, the selection

rate is de!ned by calculating the percentage of simulation
replications with successes.

All numerical experiments are run in R 3.6.0 on the uf HiPerGa-
tor Computing platform with 4 Intel E5 2.30 GHz Cores and 16
GB memory. The code and scripts for simulation examples and
applications are available at https://github.com/peiliangbai92/
LSVAR_cpd.

5.1. Performance for Detecting A Single Change Point

We investigate the following factors: the dimension of the model
p, the sample size T, the di$erences in the $2 norm, vL and vS
of the two low-rank and sparse components, respectively and
the information ratio γ . The following parameters settings are
considered in our investigation. A full summary is provided in
the form of a Table in Appendix F.1, supplementary materials.

(A) In the !rst setting, we consider the case that the low-rank
component exhibits a very small change while the sparse
one a large change. Further, the “total signal” in the tran-
sition matrix comes mostly from the sparse component and
therefore, γj < 1, j = 1, 2.

(B) This setting is similar in structure to A: the low-rank com-
ponents exhibit very small change, while the sparse compo-
nents change by a signi!cant amount, but the “total signal”
in the transition matrix comes mostly from the former; that
is, γj ≥ 1 for j = 1, 2.

(C) The structure of this setting is as in B, but di$erent values
of γj are considered.

(D) This setting is the reverse of B, wherein the low-rank com-
ponents exhibit a large change, while the sparse ones a very
small ones, and further γj ≥ 1, j = 1, 2.

(E) This setting is similar in structure to C, but the information
ratio γj < 1, j = 1, 2.

(F) The setting is similar to E, but an increasing |γ1 − γ2| is
considered.

The results for these settings over 50 replications are given in
Table 1. The !rst two columns record the mean and standard
deviation of the estimated change point location, the third and
fourth columns are the estimated ranks for the low-rank com-
ponents, the !%h and sixth columns give the sensitivity and
speci!city of the estimated sparse components, and !nally the
last column shows the relative norm error of the estimated
transition matrix Â to the truth A", and we also provide the
relative error of the estimated sparse components (low-rank
components) Ŝ (or L̂) to the truth S" (or L").

For settings A and D, where the dominant components
change signi!cantly, the algorithm identi!es the change point
extremely accurately, as evidenced by the mean estimate over
50 replicates and the very small standard deviation recorded.
Further, the ranks of Lj are accurately estimated under setting
A, and the speci!city and sensitivity of Sj is close to 1. Under
setting D, there is deterioration in the estimation of the rank of
L2, as well as in the sensitivity of both S1 and S2. In settings
B and E, where there is a small change in the dominant
component, the estimates of the change point deteriorate and
also exhibit larger variability (especially in setting B). Under
setting B, estimation of the rank of L2 is also o$, as is the
sensitivity for the sparse components. Note that all estimated
model parameters under setting E are very accurate, with a
small deterioration in the speci!city of the Sj’s. In settings C
and F, we examine how the behavior of the information ratio
in"uences the accuracy of the change point detection. As the
di$erence between γ1 and γ2 increases, the estimation accuracy
improves of the change point improves markedly. The same
happens for the model parameters under setting F. Note that the
results for settings C and F are in accordance with Remark 1
that discusses how the detectability of the full transition
matrix is controlled by the information ratio. We provide the
performance of single change point detection based on the
surrogate model in Table 4 in Appendix F.1, supplementary
materials.

Figure 4 depicts boxplots based on 50 replicates of the
distance between the location of the true change point and
its estimate, that is, |̂τ − τ "|. The yellow bars correspond to
the full low-rank plus sparse model, while the orange ones to
the surrogate model. In accordance to previous !ndings, under
settings A and C, the results are comparable, as well as certain
cases for setting E. On the other hand, under settings B, D, and

https://github.com/peiliangbai92/LSVAR_cpd
https://github.com/peiliangbai92/LSVAR_cpd
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Table 1. Performance of the L+S model under di!erent simulation settings.

Mean SD r̂1 r̂2 SEN SPC Total RE/ Sparse RE / Low-rank RE

A.1 0.498 0.002 1.020 2.900 (1.000, 1.000) (0.909, 0.976) (0.186, 0.237)/(0.172, 0.220)/(0.582, 0.648)
A.2 0.499 0.002 1.020 2.820 (1.000, 1.000) (0.910, 0.974) (0.186, 0.241)/(0.172, 0.217)/(0.582,0.759)
A.3 0.499 0.002 1.020 2.960 (1.000, 1.000) (0.909, 0.979) (0.186, 0.249)/(0.172,0.225)/(0.582,0.749)
B.1 0.530 0.090 1.000 1.340 (0.166, 0.108) (0.947, 0.980) (0.590, 0.579)/(1.140, 1.006)/(0.482,0.413)
B.2 0.532 0.089 1.000 1.340 (0.166, 0.109) (0.947, 0.979) (0.590, 0.580)/(1.139,1.006)/(0.482,0.414)
B.3 0.534 0.089 1.000 1.330 (0.165, 0.109) (0.947, 0.980) (0.591, 0.580)/(1.140,1.006)/(0.482,0.413)
C.1 0.522 0.056 1.000 1.350 (0.237, 0.103) (0.944, 0.978) (0.592, 0.569)/(1.070, 1.015)/(0.459, 0.384)
C.2 0.497 0.005 1.000 1.300 (0.400, 0.120) (0.948, 0.979) (0.645, 0.575)/(0.953, 1.006)/(0.482, 0.397)
C.3 0.502 0.031 1.000 1.320 (0.629, 0.109) (0.947, 0.978) (0.646, 0.570)/(0.858, 1.007)/(0.499, 0.389)
C.4 0.497 0.005 1.000 1.300 (1.000, 0.132) (0.927, 0.977) (0.357, 0.559)/(0.381, 1.002)/(0.499, 0.381)
D.1 0.494 0.011 1.000 1.500 (0.301, 0.207) (0.948, 0.978) (0.654, 0.581)/(1.036,0.969)/(0.543,0.455)
D.2 0.494 0.008 1.000 1.920 (0.305, 0.325) (0.948, 0.975) (0.654, 0.639)/(1.037,0.934)/(0.544,0.478)
D.3 0.495 0.007 1.000 2.080 (0.307, 0.485) (0.948, 0.972) (0.653, 0.558)/(1.031,0.878)/(0.544,0.444)
E.1 0.477 0.048 1.200 3.060 (1.000, 1.000) (0.727, 0.739) (0.171, 0.193)/(0.160,0.176)/(0.563,0.674)
E.2 0.478 0.026 1.000 3.040 (1.000, 1.000) (0.836, 0.932) (0.185, 0.216)/(0.168,0.191)/(0.673,0.633)
E.3 0.496 0.015 1.000 3.000 (1.000, 1.000) (0.917, 0.729) (0.204, 0.254)/(0.180,0.250)/(0.674,0.776)
F.1 0.495 0.053 1.000 2.880 (1.000, 1.000) (0.924, 0.958) (0.405, 0.330)/(0.429,0.330)/(0.603,0.482)
F.2 0.487 0.039 1.000 3.520 (1.000, 0.996) (0.925, 0.964) (0.411, 0.415)/(0.437,0.486)/(0.602,0.429)
F.3 0.495 0.023 1.000 2.640 (1.000, 0.895) (0.924, 0.970) (0.405, 0.539)/(0.429,0.688)/(0.602,0.484)

Figure 4. Boxplots for |̂τ − τ"| under settings A–F with the full model and the surrogate weakly sparse model.

F, the full model clearly outperforms the surrogate one, even
though in settings F2 and F3 the di$erences become smaller
as the corresponding di$erences in the information ratios
increase.

5.2. Performance for Detecting Multiple Change Points

We consider the same settings for each change point, as in case
A in Section 5.1 with modi!ed T and p, respectively. The speci!c
scenarios under consideration are as follows:

(L) In the !rst case, we consider settings with di$erent number
of change points. Speci!cally, we investigate the following

three cases: (1) T = 1200 with τ "
1 = 1T/62, τ "

2 = 1T/32,
τ "

3 = 1T/22, τ "
4 = 12T/32, and τ "

5 = 15T/62; (2) T =
1800 with τ "

1 = 1T/102, τ "
2 = 13T/102, τ "

3 = 1T/22,
τ "

4 = 17T/102, and τ "
9 = 19T/102; (3) T = 2400 with

τ "
1 = 1T/102, τ "

2 = 1T/42, τ "
3 = 12T/52, τ "

4 = 13T/52,
and τ "

5 = 14T/52.
(M) In the second case, we consider p large enough to satisfy

p2 > T with two change points: τ "
1 = 1T/32 and τ "

2 =
12T/32.

(N) In the last scenario, the change in sparsity patterns
is considered. We consider a di$erent sparsity pattern
rather than the 1-o$ diagonal structure in the sparse
components.
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Table 2. Results for multiple change point selection by full L+S model.

Points Truth Mean SD Selection rate Points Truth Mean SD Selection rate

L.1 1 0.1667 0.1667 0.0004 1.00 M.1 1 0.3333 0.3331 0.0005 1.00
2 0.3333 0.3333 0.0003 1.00 2 0.6667 0.6665 0.0004 1.00
3 0.5000 0.4999 0.0003 1.00 M.2 1 0.3333 0.3329 0.0003 1.00
4 0.6667 0.6665 0.0004 1.00 2 0.6667 0.6667 0.0006 1.00
5 0.8333 0.8335 0.0004 1.00 N.1 1 0.3333 0.3311 0.0125 0.94

L.2 1 0.1000 0.0999 0.0002 1.00 2 0.6667 0.6656 0.0056 0.98
2 0.2500 0.2500 0.0000 1.00 N.2 1 0.1667 0.1683 0.0115 0.92
3 0.4000 0.3999 0.0002 1.00 2 0.8333 0.8267 0.0181 0.94
4 0.6000 0.6000 0.0000 1.00 N.3 1 0.3333 0.3302 0.0121 0.98
5 0.8000 0.7999 0.0001 1.00 2 0.6667 0.6655 0.0119 0.98

L.3 1 0.1000 0.1000 0.0000 1.00
2 0.3000 0.3000 0.0000 1.00
3 0.5000 0.5000 0.0000 1.00
4 0.7000 0.6999 0.0002 1.00
5 0.9000 0.8998 0.0002 1.00

Figure 5. Left: Estimated sparse brain connectivity structure; Right: Estimated low rank brain connectivity structure.

The detailed model parameters are listed in the Table 5 in the
Appendix F.2, supplementary materials.

Table 2 presents the mean and standard deviation of the esti-
mated locations of the change points, relative to the sample size
T, together with the selection rate, as de!ned at the beginning
of the current section. For all cases under settings L and M, the
two-step algorithm obtains very accurate results, also exhibiting
little variability. The complex random sparse pattern considered
in setting N leads to a small deterioration in the selection rate.
The locations of the estimated change points together with
boxplots of |̂τj−τ "

j | for scenario N over 50 replicates are depicted
in the Appendix F.2, supplementary materials.

5.3. A Simulation Scenario Based on a EEG Dataset

For this scenario, the sparsity structure is extracted from the
EEG dataset analyzed in Section 6.1. Speci!cally, the setting
under consideration is as follows: T = 300, p = 21, with
two change points located at 1T/32 and 12T/32, respectively.
The structure of the transition matrices is obtained by using
the results presented in the application section (see Figure 6
in the Section G.2. in the supplementary materials). We keep
the nonzero elements (see Figure 5) and set their magnitudes
at random to 0.4, −0.6, and 0.4, respectively. The low rank
components are generated by using the spectral decomposition
with ranks equal to 1, 3, and 1. The estimated sparse and low
rank structures are illustrated in Figure 5:

The results are summarized in Table 3. It can be seen that
based on a low rank and sparse structure motivated by real
data, the proposed algorithm exhibits a very satisfactory perfor-
mance.

Table 3. Results of simulation scenario based on an EEG dataset.

Points Truth Mean SD Selection rate

General sparsity pattern 1 0.3333 0.3328 0.002 1.00
2 0.6667 0.6663 0.007 1.00

5.4. Impact of the Signal-to-noise Ratio on the Detection
Rate

The signal-to-noise ratio (SNR) is de!ned as (see also Wang, Yu,
and Rinaldo 2020; Rinaldo et al. 2021):

SNR = +Tv
T ,

wherein v def= minj vj the minimum jump size, and +T is the
minimum spacing, that is, +T = min1≤j≤m0 |τ "

j − τ "
j+1|. We

set T = 300 and p = 20 with two change points located at
1T/32 = 100 and 12T/32 = 200, respectively. Further, we set
the minimum jump size to v = 0.8, 1.0, and 1.6, and the resulting
SNR takes the values 0.27, 0.33, and 0.53. The results are given
Table 4.

Table 4. Extra simulation performance for di!erent signal-to-noise ratios.

SNR points truth mean sd selection rate

0.27 1 0.3333 0.3412 0.017 0.90
2 0.6667 0.6702 0.012 0.94

0.33 1 0.3333 0.3330 0.002 1.00
2 0.6667 0.6687 0.004 1.00

0.57 1 0.3333 0.3332 0.002 1.00
2 0.6667 0.6665 0.001 1.00
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Figure 6. Left: heat map of Hamming distances between the estimated low-rank components; Right: heat map of Hamming distances between the estimated sparse
components.

As expected, for small SNR the detection accuracy deterio-
rates, both in terms of the selection rate of change points, as well
as their locations. However, for SNR around or greater than 1,
it becomes very satisfactory. Additional results are provided in
Section F.3 in the supplementary materials.

Remark 11 (Additional numerical results and comparisons).
Additional numerical results including (i) for the surrogate
model, (ii) for additional scenarios for multiple change points,
(iii) for run times between the low rank plus sparse and the
surrogate models, (iv) with a factor model exhibiting change
points, (v) between a factor and the low rank plus sparse
models under a misspeci!ed data generating mechanism, (vi)
comparison between the proposed two-step algorithm and the
TSP algorithm in Bai, Sa!khani, and Michailidis (2020), and (vi)
between the two-step rolling window strategy and a dynamic
programming algorithm are presented in Appendices F.1–F.7,
respectively.

6. Applications

6.1. Change Point Detection in EEG Signals

There has been work in the literature on analyzing EEG data
using low-rank models for task related signals, since the latter
exhibit low-rank structure (Liu et al. 2018; Jao, Chavarriaga, and
Millán 2018). Next, we employ the full low-rank plus sparse
model to detect change points in data from Trujillo, Stan!eld,
and Vela (2017). This dataset recorded 72 channels of con-
tinuous EEG signals by using active electrodes. The sampling
frequency is 256Hz and the total number of time points per
EEG electrode is 122,880 over 480 sec. The stimulus procedure
is that a%er a resting state (eliminated from the dataset) lasting
8 mins, the subject alternates between a 1-min period with eyes
open followed by a 1-min period with eyes closed, repeated four
times. Hence, we expect that the employed model captures the
low-rank structure associated with the task at hand (open/closed
eyes), while the sparse component can capture idiosyncratic
behavior across repetitions of the task.

To illustrate the proposed methodology, two subjects are
selected; di$erences in the EEG signals over time are visible for
the !rst subject, but not for the second one. The data are de-
trended, by calculating the moving average of each EEG signal
and removing it. Speci!cally, the period average, which is an
unbiased estimator of trend, is given by m̂l = 1

d
∑d

t=1 Xl+t ; we
select d = 256 in accordance to the frequency of the data, and
we obtain the de-trended time series by removing the period
average. In this work, we use 21 selected EEG channels and
T = 67952 time points in the middle of the whole time series.
According to the experiments described in Trujillo, Stan!eld,
and Vela (2017), there are !ve open/closed eyes segments in
the selected time period with four change points approximately
at locations: τ "

1
∼= 11,650, τ "

2
∼= 27,750, τ "

3
∼= 44,000, and

τ "
4

∼= 60,000. The data are plotted in Figure 2 in Appendix G.2,
supplementary materials. Selection of the tuning parameters is
based on the guidelines given in Appendix G.1, supplementary
materials. Note that to separate adequately the sparse compo-
nent from the low-rank one, we set αL based on its theoretical
values provided in Assumption H2.

The change points estimated by the two-step algorithm are
τ̂1 = 9633, τ̂2 = 28,529, τ̂3 = 43,361 and τ̂4 = 60,209. The
estimated change points are close to those identi!ed based on
the designed experiment. In order to quantify the di$erences
among the estimated components across segments, we use the
Hamming distance for both sparse and low-rank ones. The
results are shown in Figure 6 in the form of a heat map that
con!rms the high degree of similarity between all “eyes closed”
segments (1, 3, 5) and all “eyes open” segments (2, 4), thus,
further con!rming the accuracy of the methodology. We also
provide the estimated low-rank and the sparse patterns for !ve
segments in Figure 3, and the correlation networks for the
sparse components in Figure 4 in Appendix G.2, supplementary
materials.

6.2. An Application to Macroeconomics Data

We consider the macroeconomics data obtained from the FRED
database McCracken and Ng (2016). This dataset comprises
of 19 key macroeconomic variables, corresponding to the
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Figure 7. Left panel: Estimated sparsity level for each selected interval; Right panel: Estimated rank for each selected interval.

Table 5. Estimated change points and candidate related events.

Date (mm/dd/yyyy) Candidate related events

02/01/1975 Aftermath of 1973 oil crisis
04/01/1977 Rapid build-up of in"ation expectations
12/01/1980 Rapid increase of interest rates by the Volcker Fed
01/01/1994 Multiple events—see Appendix G.3, supplementary

materials
09/01/2008 Recession following collapse of Lehman Brothers
05/01/2010 Recovery from the Great Financial crisis of 2008

Table 6. Estimated change points by the detection strategy based on a factor
model.

Date (mm/dd/yyyy) Candidate related events

12/01/1979 Rapid increase of interest rates by the Volcker Fed
01/01/1985 Multiple events
11/01/1993 Multiple events
04/01/2008 Prequel to the great #nancial crisis

“Medium” model analyzed in Bańbura, Giannone, and Reichlin
(2010) and covering the 1959–2019 period (723 observations).
The original time series data are non-stationary and we de-trend
them by taking !rst di$erences.

To select the tuning parameters (λ, µ), we employ a two-
dimensional grid search procedure. In our analysis, we set αL
based on its theoretical value in Assumption H2 to ensure iden-
ti!ability of the sparse component from the low-rank one. The
estimated change points are listed in Table 5, while the sparsity
levels and ranks for each segment are plotted in Figure 7. The
selected change points are presented in Figure 5 in Appendix
G.3, supplementary materials. A detailed discussion (due to
space constraints) of related events is also provided in Appendix
G.3, supplementary materials.

We also compare the results using the detection strategy
based on the static factor model in Barigozzi, Cho, and Fry-
zlewicz (2018). According to Fama and French (1996), we set the
maximum number of factors to three and the estimated change
points are listed in Table 6.

The factor model misses important events, including the
economic recovery following the Financial Crisis of 2008 and
the recession following the !rst oil crisis of 1973. Further, it
identi!es a change point in early April of 2008, even though
most of the macroeconomic (as opposed to !nancial market)
indices started deteriorating in the summer of 2008 and tumbled

in the third quarter, following the collapse of Lehman Brothers
in mid-September.

7. Concluding Remarks

The article addressed the problem of multiple change point
detection in reduced rank VAR models. The key innovation
is the development of a two-step strategy that obtains consis-
tent estimates of the change points and the model parame-
ters. Other strategies for detecting multiple change points in
high-dimensional models, such as fused penalties or binary
segmentation type of procedures, either require very stringent
conditions or are not directly applicable. Further, dynamic pro-
gramming entails a quadratic computational cost in the num-
ber of time points compared to a linear cost for the proposed
strategy. To enhance computational e#ciency, we introduced a
surrogate weakly sparse model and identi!ed su#cient condi-
tions under which the aforementioned two-step strategy detects
change points in low-rank and sparse VAR models as accurately
as using the correctly speci!ed model, but at signi!cant compu-
tational gains.

In the algorithmic and technical results presented, similar to
the case of a sparse VAR model with change points (Wang et al.
2019), we assume a simple structure on the error terms, that is,
in segment j, εj

t ∼ N (0, σ 2I), where σ is a !xed constant inde-
pendent of j. Such a simple structure on the covariance matrices
of error terms ensures the identi!ability of change points, since
a change in the transition matrices would imply that the second
order structure (the auto-correlation function) of the stochastic
process before and a%er the change points have changed, thus,
the de!nition of change points becomes meaningful. It is of
interest to investigate in future work a general covariance matrix
1E, or even segment speci!c ones 1

j
E, including conditions that

lead to changes in the segment speci!c auto-correlation function
of the process.

Further, the proposed strategy is directly applicable to other
forms of structured sparsity in the transition matrix of the VAR
model, including low-rank plus structured sparse, or structured
sparse plus sparse, as discussed for stationary models in Basu,
Li, and Michailidis (2019).

Finally, the presentation focused on a VAR model with a
single lag, but both the modeling framework and the developed
two-step detection strategy can be extended to VAR(d) pro-
cesses with d > 1 in a similar manner, as presented in Basu,
Li, and Michailidis (2019).
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Supplementary Materials

The supplementary materials contain all proofs of the theoretical results,
together with auxiliary lemmas, additional details on the detection algo-
rithms, and additional numerical experiments.
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