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Reaction Network Motifs for Static and Dynamic Absolute Concentration1

Robustness⇤2
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Abstract. Networks with absolute concentration robustness (ACR) have the property that a translation of a4
coordinate hyperplane either contains all steady states (static ACR) or attracts all trajectories (dy-5
namic ACR). The implication for the underlying biological system is robustness in the concentration6
of one of the species independent of the initial conditions as well as independent of the concentration7
of all other species. Identifying network conditions for dynamic ACR is a challenging problem. We8
lay the groundwork in this paper by studying small reaction networks, those with two reactions9
and two species. We give a complete classification by ACR properties of these minimal reaction10
networks. The dynamics are rich even within this simple setting. Insights obtained from this work11
will help illuminate the properties of more complex networks with dynamic ACR.12
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1. Introduction. Absolute concentration robustness (ACR) was introduced in [22] as the17

mathematical property that every positive steady state of a reaction system coincides in one18

of the coordinates. We call this property static ACR. Assuming convergence to one of these19

positive steady states, static ACR ensures that at steady state the value of one of the measured20

variables will be independent of the initial value. However, such convergence is not guaranteed21

even for the simplest systems. The long-term behavior of a system can lead to the system22

converging to the boundary, or to another attractor such as a limit cycle or not converging23

at all but diverging to infinity. We introduced dynamic ACR in [13] to account for the global24

dynamics, and not merely the location of steady states.25

A network condition for static ACR is found in [22]: if the network deficiency is one and26

two nonterminal complexes di↵er in a single species, then the concentration of that species will27

have static ACR for all mass action reaction rate constants. Since analyzing global dynamics28

of a dynamical system is an enormously more complex task than determining the locations29

of steady states, obtaining network conditions for dynamic ACR is challenging. We make30
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some headway in this direction by studying small reaction networks and organizing our ideas31

carefully in this setting. In this paper, we study networks with two reactions and two species32

and make fine distinctions between global dynamical properties related to convergence to an33

ACR hyperplane. This lays the groundwork for future study of network conditions for larger,34

more biochemically realistic networks.35

The definition of dynamic ACR introduced in [13] is generalized here in two ways. The first36

is by including a basin of attraction for the ACR hyperplane, which may be the entire positive37

orthant or a proper subset of it. The second way is by considering a weaker version of attracting38

hyperplane: trajectories may not converge to the ACR hyperplane, but may only move in the39

direction of that hyperplane. For static ACR, we introduce a stronger form which requires at40

least one steady state in each compatibility class that intersects the ACR hyperplane. While41

each ACR property (static, strong static, dynamic, weak dynamic) is worthy of study by itself,42

there are connections between them which give a more complete picture. Weak dynamic ACR43

is a necessary condition for dynamic ACR; similarly, when a positive steady state exists, static44

ACR is necessary for dynamic ACR (see Theorem 2.12 and Figure 4). Therefore, networks45

with static ACR and weak dynamic ACR serve as candidates for networks with dynamic ACR.46

We show that all motifs of static ACR and weak dynamic ACR for networks with47

two reactions and two species can be completely characterized – there are exactly48

eight network motifs with static ACR and there are exactly 17 network motifs with49

weak dynamic ACR and these are depicted in Figure 1 (see Theorems 3.5, 3.6, and50

4.1; also see [18] for a network characterization of static ACR).51

Each network motif is related to an infinite family of networks; see section 3.4 for an52

explanation of how a network maps to a motif. The motifs in Figure 1 (or rather the networks53

that map to the motifs) have a rich diversity of dynamical properties. Key results in this54

paper, appearing in section 3 onwards, deal with identifying such properties. The results55

are summarized in Figures 13 and 14—fully annotated versions of Figure 1. The reader is56

encouraged to begin with at least a glance at the summary theorem (Theorem 5.1) and57

Figures 13 and 14 to orient themselves towards the objectives of the paper. Specifically,58

we identify which of the eight network motifs with static ACR and which of the59

17 network motifs with weak dynamic ACR are also dynamic ACR.60

Infinitely many reaction networks map onto a single network motif—an object that cap-61

tures two crucial network properties common to the family of networks: (i) orientation of62

the reactant polytope, (ii) orientation of the reaction vectors relative to the coordinate axes63

and relative to one another. These two network properties are su�cient for characterizing a64

wide range of dynamic ACR properties. To understand these network properties, we embed65

a reaction network in Euclidean space by identifying the stoichiometric coe�cients of each66

species in a complex with a point in Euclidean space. For instance, the reactant and prod-67

uct complex of the reaction X + Y ! 2Z are identified with the points (1, 1, 0) and (0, 0, 2)68

in Euclidean space. The reactant polytope of a reaction network is the convex hull of the69

reactant complexes in Euclidean space. In the case of a reaction network with only two re-70

actions, a reactant polytope is merely a line segment or a single point. Reactions are fixed71

“arrows” in Euclidean space. For the case of two species, a reaction may be aligned with72

the coordinate axes or may be in the interior of a quadrant. Moreover, when there are two73

reactions, multiple relative orientations of the reaction arrows are possible. A network motif74
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Figure 1. Network motifs with output robustness. (Left): All possible two-reaction two-species net-

work motifs with static ACR. (Right): All possible two-reaction two-species network motifs for which the

hyperplane {x = x⇤} is weakly stable (invariant and weakly attracting) (see Definition 2.9 ). The motifs with

one-dimensional stoichiometric space are on the horizontal band. The motifs on the circumference require at

least two species while the motif in the center can be realized with one or two species.

is depicted by drawing the orientation of the reactant polytope and the relative orientations75

of the reactions. A network motif is deeply connected with the dynamics of the76

reaction system. For one-dimensional systems such as the one in Figure 2(a), the reaction77

vectors must be parallel to one another and, moreover, the trajectories in phase space, when78

superimposed on the reaction network embedding, are simply parallel to the reaction vectors.79

For two- and higher-dimensional systems, the relationship is more complicated since the vec-80

tor field is a linear combination of the reaction vectors with variable coe�cients that depend81

on the position in phase space. The reactant polytope is extremely significant for ACR. All82

of the various forms of ACR properties with at most two species require that the reactant83

polytope be parallel to one of the coordinate axes, i.e., the polytope should be a horizontal84

or a vertical line segment. When the reactant polytope is horizontal, the ACR hyperplane is85

vertical and vice versa. Among static ACR networks in two species, we show that dynamic86

ACR requires that the reactions points “inwards,” along the reactant polytope. For the weak87

dynamic ACR networks in two species, we show that dynamic ACR requires that on average,88

reactions point away from the coordinate axis in the direction perpendicular to the reactant89

polytope (“up” when the reactant polytope is horizontal). Of course, the above statements90

are merely suggestive; see Theorem 5.1 for precise statements.91

Related work. The idea of minimal reaction networks with a certain dynamical property92

has a long history. While this work is the first to identify minimal motifs of dynamic ACR,93
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Figure 2. Archetypal wide basin dynamic ACR network. A dynamic ACR reaction network (A+B !
2B,B ! A) with A as a wide basin dynamic ACR variable. The concentration of A is bounded within the

subset of R2
�0 that is not compatible the ACR hyperplane {a = 1} (noncompatible region shown here in cyan).

network motifs for other dynamical properties have been studied extensively. For example,94

networks with two species which have limit cycles have been identified in [21], while [20] studies95

simple networks with phase transitions giving candidates for multistationarity. In recent years,96

several classes of minimal multistationary networks called atoms of multistationarity have97

been identified in [14, 12, 15, 9], and those of oscillations in [5]. Network conditions for98

static ACR and minimal networks with static ACR have also appeared in recent work [23,99

19, 18]. Biochemical implications of static ACR have been studied [17, 11, 10] as well as the100

implications from a control theory perspective [8]. Stochastic (continuous-time Markov chain)101

models of reaction networks with the ACR property were studied in [4, 3].102

This article is organized as follows. Section 2 introduces di↵erent forms of static and103

dynamic ACR and the relations between them. Section 3 gives a classification of small reaction104

networks, those containing at most two reactions and two species; here the focus is on mass-105

conserving reaction networks. Section 4 continues the classification, extended to networks106

where the trajectories may go to infinity or to the boundary. Section 5 summarizes the main107

classification results with the statement of a larger theorem that encapsulates numerous results108

from the previous sections.109

2. Forms of ACR.110

Background and terminology. We use standard notation and terminology for reaction net-111

works and mass action systems. A quick summary is given here; see, for instance, [15, 26] for112

further details. Upper case letters (X,Y, Z,A,B) are used for species participating in reac-113

tions and the corresponding lower case letters (x, y, z, a, b) for their concentrations which are114

time-varying quantities. An example of a reaction is X+Y ! 2Z, where X+Y is referred to115

as the source complex, while 2Z is the product complex. The rate of any given reaction is a116

nonnegative-valued function of species concentrations. In the case of mass action kinetics, the117

rate is proportional to the product of reactant concentrations taken with multiplicity. The118

proportionality constant, called the reaction rate constant, is placed adjacent to the reaction119

arrow, as follows: X + Y
k
�! 2Z. The rate of this reaction under mass action kinetics is kxy.120
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The reaction vector for this reaction is the di↵erence between the product complex and the121

source complex, i.e., 2Z � (X + Y ), which under a choice of a standard coordinate basis is122

written as (�1,�1, 2). A reaction network is a nonempty set of reactions, such that every123

species participates in at least one reaction, and none of the reaction vectors is the zero vec-124

tor. The stoichiometric subspace of a reaction network is the subspace spanned by the set of125

reaction vectors of the reaction network.126

We use G to denote a reaction network and K to denote a specific choice of mass action127

kinetics for G, so that (G,K) is a mass action dynamical system. Throughout this paper, we128

depict the Euclidean embedding of a reaction network next to the dynamics in the phase plane.129

Figure 2(a) is an example of a Euclidean embedding: the reactions B ! A and A+B ! 2B130

are shown as red arrows, each arrow originating at the reactant complex and terminating131

at the product complex. We also depict the reactant polytope, defined as the convex hull132

of the reactant complexes. In the example in Figure 2(a), the set of reactant complexes is133

{B,A + B} and so the reactant polytope, shown in green, is a line segment joining the two134

complexes.135

Throughout this paper, we consider a dynamical system D defined by ẋ = f(x) with136

x 2 Rn
�0 for which Rn

�0 is forward invariant. x 2 Rn
�0 is a steady state of D if f(x) = 0.137

Definition 2.1. The kinetic subspace of D is defined to be the linear span of the image138

of f , denoted by span(=(f)). x, y 2 Rn
�0 are compatible if y � x 2 span(=(f)). The sets139

S, S0
✓ Rn

�0 are compatible if there are x 2 S and x0 2 S0 such that x and x0 are compatible.140

The notation H[i, a⇤i ] := {x 2 Rn
>0 : xi = a⇤i } is reserved for the hyperplane parallel to141

a coordinate hyperplane and restricted to the positive orthant. When variables are labelled142

without indices, for instance as x, y, z etc., we use the notation H[x, x⇤] := {x 2 Rn
>0 : x = x⇤}.143

Even though the two notation are slightly inconsistent, there is no possibility of confusion.144

Static ACR and dynamic ACR in a real dynamical system were defined in [13]. We repeat145

these definitions here.146

Definition 2.2.147148

• D is a static ACR system if D has a positive steady state and there is an i 2 {1, . . . , n}149

and a positive a⇤i 2 R>0 such that any positive steady state x 2 Rn
>0 is in the hyperplane150

{xi = a⇤i }. Any such xi and a⇤i is a static ACR variable and its static ACR value,151

respectively. H[i, a⇤i ] is the static ACR hyperplane.152

• D is a dynamic ACR system if there is an i 2 {1, . . . , n} with fi 6⌘ 0 and a positive153

a⇤i 2 R>0 such that for any x(0) 2 Rn
>0 that is compatible with {x 2 Rn

>0|xi = a⇤i },154

a unique solution to ẋ = f(x) exists up to some maximal T0(x(0)) 2 (0,1], and155

xi(t)
t!T0
���! a⇤i . Any such xi and a⇤i is a dynamic ACR variable and its dynamic ACR156

value, respectively. H[i, a⇤i ] is the dynamic ACR hyperplane.157

Now we define strong and weak forms of each type of ACR. All forms, static ACR, strong158

static ACR, dynamic ACR, and weak dynamic ACR are marked by the presence of a priv-159

ileged hyperplane parallel to a coordinate hyperplane {x 2 Rn
>0 : xi = a⇤i } called the ACR160

hyperplane . This hyperplane either contains all the steady states (in the static case) or is161

the unique attractor for all relevant trajectories (in the dynamic case). Moreover, each form162

of ACR has a set ⌦ associated with it called the basin of ACR.163
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2.1. Static forms of ACR. We generalize the definition of static ACR from [13] to allow164

for arbitrary basin sets ⌦.165

Definition 2.3. The variable xi, where i 2 {1, . . . , n}, has static ACR w.r.t. ⌦ ✓ Rn
�0 if166

there is an a⇤i > 0 such that the following hold:167168

1. f(x) = 0 for some positive x 2 ⌦,169

2. for any x 2 ⌦ such that f(x) = 0, xi = a⇤i .170

In this case, the static ACR value of xi is a⇤i and H[i, a⇤i ] := {x 2 Rn
>0 : xi = a⇤i } is the171

static ACR hyperplane.172

Remark 2.4. When ⌦ = Rn
>0, we simply say that a variable has “static ACR” instead of173

“static ACR w.r.t. Rn
>0”. Note that boundary steady states are conventionally excluded from174

consideration, in other words, we do not require that ⌦ = Rn
�0 for static ACR, merely that175

⌦ = Rn
>0.176

By strong static ACR, we mean the property that every compatibility class that intersects177

the static ACR hyperplane contains at least one positive steady state. Most commonly studied178

motifs and biochemical systems with static ACR are strong static ACR as well.179

Definition 2.5. The variable xi, where i 2 {1, . . . , n}, has strong static ACR w.r.t. ⌦ ✓ Rn
�0180

if there is an a⇤i > 0 such that the following hold:181182

1. xi has static ACR w.r.t. ⌦ ✓ Rn
�0 with value a⇤i ,183

2. for any y 2 H[i, a⇤i ] \ ⌦ there is a z 2 ⌦ \ Rn
>0 such that y � z 2 Sf and f(z) = 0.184

In this case, the strong static ACR value of xi is a⇤i and H[i, a⇤i ] is the strong static ACR185

hyperplane.186

The concentration of A in the network in Figure 2 has strong static ACR w.r.t. R2
>0187

because every point on the hyperplane H[a, a⇤] = {(a, b) 2 R2
>0 : a = a⇤} (the green vertical188

line) is a steady state. So any compatibility class with a(0) + b(0) > a⇤ intersects the hyper-189

plane H[a, a⇤] and therefore has a positive steady state. Every network motif with static ACR190

studied in this paper also has strong static ACR, as we will show in Theorem 3.5.191

2.2. Dynamic forms of ACR. We generalize the definition of dynamic ACR from [13] in192

two ways: (i) we allow for arbitrary basin sets ⌦, and (ii) we define a weaker form for which193

the ACR hyperplane is weakly attracting.194

Definition 2.6. The variable xi, where i 2 {1, . . . , n}, has dynamic ACR w.r.t. ⌦ ✓ Rn
�0195

if there is an a⇤i > 0 such that for any initial value x(0) in ⌦, a unique solution to ẋ = f(x)196

exists up to some maximal T0(x(0)) 2 (0,1], and limt!T0
xi(t) = a⇤i . We say that xi has197

dynamic ACR value a⇤i . Moreover, we say that the ACR hyperplane H[i, a⇤i ] is an attractor198

for ⌦ and that ⌦ is a basin of attraction of H[i, a⇤i ].199

Weak dynamic ACR is the notion that the ACR variable converges to a value that is not200

further from the ACR value than the initial distance. In other words, all initial conditions are201

attracted towards the ACR hyperplane even if they fail to reach there.202

Definition 2.7. The variable xi, where i 2 {1, . . . , n}, has weak dynamic ACR w.r.t. ⌦ ✓203

Rn
�0 if there is an a⇤i > 0 such that for any initial value x(0) in ⌦, a unique solution to ẋ = f(x)204
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exists up to some maximal T0(x(0)) 2 (0,1], limt!T0
xi(t) exists and limt!T0

|xi(t) � a⇤i | 205

|xi(0) � a⇤i |, with strict inequality when xi(0) 6= a⇤i . We say that xi has weak dynamic ACR206

value a⇤i . Moreover, we say that the ACR hyperplane H[i, a⇤i ] is a weak attractor for ⌦ and ⌦207

is a weak basin of attraction of H[i, a⇤i ].208

Remark 2.8. We do not require the (weak) ACR hyperplane to be invariant, merely that209

it is a (weak) attractor. A weak attractor may fail to be an attractor because trajectories210

reach the boundary or diverge to infinity before reaching the ACR hyperplane.211

Analogous to the definition of stability of a steady state, we define the following.212

Definition 2.9.213214

• The hyperplane H[i, a⇤i ] is stable w.r.t. ⌦ if H[i, a⇤i ] is an attractor for ⌦ and all215

trajectories with initial value in ⌦ move monotonically towards H[i, a⇤i ].216

• The hyperplane H[i, a⇤i ] is weakly stable w.r.t. ⌦ if H[i, a⇤i ] is a weak attractor for ⌦217

and all trajectories with initial value in ⌦ move monotonically towards H[i, a⇤i ].218

Remark 2.10. Stability (weak or not) of H[i, a⇤i ] implies that H[i, a⇤i ] is invariant.219

Example 2.11 (weakly stable but not stable hyperplane). Consider the mass action system220

of the following reaction network (see also Figure 3(a)):221

2A+B
k1
�! 2B, B

k2
�! A.

The mass action system of ODEs is222

ȧ = b(k2 � 2k1a
2), ḃ = �b(k2 � k1a

2).(2.1)

It is clear from ȧ that for the duration of time that b(t) is positive, a(t) approaches the value223 p
k2/(2k1). This implies that a is a weak dynamic ACR variable with a weak ACR value of224

Figure 3. The mass action system {2A + B
k1�! 2B,B

k2�! A}, for any choice of rate constants, has only

weak dynamic ACR in the concentration of A. All trajectories move towards the ACR hyperplane, but do not

approach the ACR hyperplane in the limit of large time.
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p
k2/(2k1). Note however, that ȧ+ ḃ = �k1a2b is negative everywhere in the positive orthant,225

and so we expect b(t) to converge to 0 for most initial values. In fact, this is the case for every226

initial value that is not on the weak ACR hyperplane, as a consequence of Theorem 4.2.227

2.3. Relations between di↵erent forms of ACR. It is clear from the definitions that if228

xi has dynamic ACR w.r.t. ⌦ with value a⇤i , then xi has weak dynamic ACR w.r.t. ⌦ with229

the same value a⇤i . Similarly strong static ACR w.r.t. ⌦ implies static ACR w.r.t. ⌦. The230

static forms of ACR are also related to the dynamic forms under some mild assumptions of231

existence of steady states.232

Theorem 2.12. Suppose that xi is weak dynamic ACR w.r.t. ⌦ with value a⇤i .233234

1. Suppose there is an x 2 ⌦ such that f(x) = 0. Then xi is static ACR w.r.t. ⌦.235

2. Suppose for any y 2 H[i, a⇤i ] \ ⌦ there is a positive x 2 ⌦ such that y � x 2 Sf and236

f(x) = 0. Then xi is strong static ACR w.r.t. ⌦.237

Proof. For both cases, the static ACR property follows from observing that there cannot238

be any positive steady state in ⌦ \ H[i, a⇤i ] because such a steady state violates the weak239

dynamic ACR hypothesis. The additional implication of strong static ACR in the second case240

is immediate from the definition.241

These relations are portrayed in Figure 4.242

2.4. Some basins of interest for all forms of ACR. We discuss some basins of natural243

interest and the relations between them. A basin of ACR applies to any of the forms of ACR244

(static, strong static, dynamic, weak dynamic) discussed earlier.245

Definition 2.13. Let P 2 {static, strong static, dynamic, weak dynamic}. We define various246

basin types as follows.247

Figure 4. Relations between static ACR and dynamic ACR. The implications in black follow from

the definitions. The implication in cyan requires the additional assumption of existence of a positive steady

state. The implication in magenta requires the additional assumption of existence of a positive steady state

within each compatibility class which has a nonempty intersection with the ACR hyperplane [i, a⇤
i ].
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(i) Full basin P-ACR occurs when ⌦ = Rn
>0. Full basin static ACR is simply referred248

to as static ACR.249

(ii) Subspace P-ACR occurs when ⌦ = (H[i, a⇤i ]+S)\Rn
>0 for some subspace S of Sf250

such that S 6✓ e?i . We say full space P-ACR if we have subspace P-ACR with S = Sf .251

Full space dynamic ACR is simply referred to as dynamic ACR.252

(iii) Neighborhood P-ACR occurs when ⌦ is a neighborhood H[i, a⇤i ]. Suppose there are253

some Mj > 0 for all j 6= i such that the neighborhood of the set {xi = a⇤i , xj > Mj :254

j 6= i} is a basin of P-ACR. Then we say that xi has almost neighborhood P-ACR.255

(iv) Cylinder P-ACR occurs when ⌦ is a cylinder of H[i, a⇤i ]. A cylinder of H[i, a⇤i ] is256

the set of points {|xi � a⇤i | < �⇤} for some �⇤ > 0. We define almost cylinder P-ACR257

when a basin of P-ACR is a cylinder of some set {xi = a⇤i , xj > Mj : j 6= i} for some258

Mj > 0 for all j 6= i.259

(v) Null P-ACR occurs when ⌦ = H[i, a⇤i ]. Nonnull P-ACR occurs when ⌦\H[i, a⇤i ] 6=260

?.261

Neighborhood ACR, cylinder ACR, almost neighborhood ACR and almost cylinder ACR262

are local forms of ACR. Full basin and subspace ACR are nonlocal forms of ACR. Null P-263

ACR is considered to be neither local nor nonlocal. Conversely, all local and nonlocal forms264

of P-ACR are nonnull.265

It’s clear that if ⌦ ✓ ⌦0, then P-ACR w.r.t. ⌦0 implies P-ACR w.r.t. ⌦. Certain relations266

between nonlocal forms (full basin P-ACR =) full space P-ACR =) subspace P-ACR267

=) null P-ACR), between local forms (cylinder P-ACR =) neighborhood P-ACR =)268

null P-ACR & almost neighborhood P-ACR), and (cylinder P-ACR =) almost cylinder269

P-ACR =) almost neighborhood P-ACR) follow from the definitions. Certain local forms270

are related to subspace P-ACR as the following theorem shows.271

Theorem 2.14. Let D be a dynamical system which is subspace P-ACR. Then D is (i)272

almost cylinder P-ACR and (ii) neighborhood P-ACR.273

Proof. Let S be a subspace of the stoichiometric space Sf such that x1 is a subspace274

P-ACR variable with value a⇤1. Let v 2 S \
�
Rn

\ e?1
�
, i.e., v = (v1, . . . , vn) is some vector275

with v1 6= 0. Let " 2 (0, a⇤1) and define the almost cylinder neighborhood of H[i, a⇤i ]:276

⌦" :=

⇢
z 2 Rn

>0 : |z1 � a⇤1| < ", z2 > "
|v2|

|v1|
, . . . , zn > "

|vn|

|v1|

�
.

To see x1 is P-ACR w.r.t. ⌦" for every " 2 (0, a⇤1), we need only show that ⌦" is contained in277

H[1, a⇤1]+span{v} which, in turn, is clearly contained in H[1, a⇤1]+S. Indeed, let z 2 ⌦". Then278

z 2 H[1, a⇤1] + span{v} if there is a � 2 R such that z � �v 2 H[1, a⇤1]. Let � := (z1 � a⇤1)/v1.279

Then280

z � �v =

✓
a⇤1, z2 �

z1 � a⇤1
v1

v2, . . . , zn �
z1 � a⇤1

v1
vn

◆
.

For j 2 {2, . . . , n},281

����
z1 � a⇤1

v1
vj

���� = |z1 � a⇤1|
|vj |

|v1|
< "

|vj |

|v1|
< zj ,
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Figure 5. Relations between basin types. Let P 2 {static, strong static, dynamic, weak dynamic}. The

basin type implications are based on the observation that if ⌦ ✓ ⌦0, then P-ACR w.r.t. ⌦0
implies P-ACR

w.r.t. ⌦..

which shows that all components of z � �v are positive and the first component is a⇤1. This282

proves the almost cylinder property where the almost cylinder is ⌦" for any " 2 (0, a⇤1).283

Let ⌦ := [">0⌦". It is clear that ⌦ is contained inH[1, a⇤1]+S and that ⌦ is a neighborhood284

of H[1, a⇤1]. This shows that x1 is neighborhood P-ACR.285

The relations between P-ACR with di↵erent basin types are depicted in Figure 5.286

2.5. Some examples of systems with local dynamic ACR.287288

1. Almost cylinder ACR/Neighborhood ACR/Weak cylinder ACR. Consider the reaction289

network shown in Figure 6(a).290291

(a.) For the mass action system defined by k1 = 6, k2 = 11, k3 = 6, k4 = 1, the positive292

steady states form three distinct rays, a = 1, a = 2, and a = 3. Therefore, a is a293

cylinder static ACR variable with multiple ACR values {1, 2, 3}. It is easily checked294

(see simulated trajectories in Figure 6(b)), that only a = 2 is locally stable within295

each compatibility class. The maximal cylinder which forms the basin of attraction296

for {a = 2} has radius 1.297

(b.) For the mass action system defined by k1 = 1, k2 = 3, k3 = 3, k4 = 1, all positive298

steady states lie on {a = 1}. Moreover, the positive steady states are repelling. It299

follows that a is a (global) static ACR variable but not a local dynamic ACR variable.300

(c.) For the general case, the system of mass action ODEs is301

ȧ = �ab(k1 � k2a+ k3a
2
� k4a

3), ḃ = ab(k1 � k2a+ k3a
2
� k4a

3).

The univariate polynomial k1 � k2a + k3a2 � k4a3 must have at least one positive,302

real zero. Moreover, when there are multiple positive zeros, say a⇤ and a⇤⇤, clearly303

there are nonintersecting cylinders that contain the sets {a = a⇤} and {a = a⇤⇤}.304

This shows that A is a local static ACR species, i.e., for any choice of mass action305
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Figure 6. The mass action system of the reaction network (A + B
k1�! 2B, 2A + B

k2�! 3A, 3A + B
k3�!

2A+2B, 4A+B
k4�! 5A). For the rate constants k1 = 6, k2 = 11, k3 = 6, k4 = 1, a is a local static and dynamic

ACR variable. There are three local static ACR values, a = 1, a = 2, and a = 3. Only a = 2 is a local dynamic

ACR value.

Figure 7. The mass action system of the reaction network (A + B
k2�! 2B,B

k1�! A, 3A + B
k4�! 2A +

2B, 2A + B
k3�! 3A). For the rate constants k1 = 6, k2 = 11, k3 = 6, k4 = 1, a is a local static and dynamic

ACR variable. There are three local static ACR values, a = 1, a = 2, and a = 3, of which a = 1 and a = 3 are

local dynamic ACR values.

kinetics, a is a local static ACR variable. In some cases, a may be a global static306

ACR variable. However, A is not a local dynamic ACR species as there is a choice of307

rate constants for which a is not a local dynamic ACR variable. In other words, the308

reaction network has capacity for local dynamic ACR and is local static ACR (see309

Definition 3.1 for meaning of ‘capacity’).310

2. Multiple ACR values in almost cylinder ACR. Consider the reaction network shown311

in Figure 6(a).312

3. Neighborhood ACR but not almost cylinder ACR. Consider the mass action system313

shown below:314
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Figure 8. Neighborhood ACR but not cylinder ACR. Trajectories of the mass action system in (2.2). An

example of a mass action system which, in the concentration of A, (i) has neighborhood ACR as the strongest

local ACR property, (ii) has half ACR as the strongest nonlocal ACR property, but (iii) does not have cylinder

ACR. For any initial value of a(0) = 1+ " for some " > 0, there is a b(0) large enough such that the trajectory

moves away from the ACR line.

A+B
1
�! 2A, 2A+B

[
1]1�A+ 2B,

2A+ 2B
2
�! A+ 3B, 3A+ 2B

1
�! 4A+B.(2.2)

The resulting mass action system when taken with inflows is315

ȧ = ab(1� a)(1� (a� 1)b) + ga,

ḃ = �ab(1� a)(1� (a� 1)b) + gb.

Some trajectories are shown in Figure 8 for the case of ga = 0.1 and gb = 0. Any316

initial value to the left of the ACR hyperplane converges to the ACR hyperplane, but317

for every initial a value to the right of the ACR hyperplane, there is a large enough b318

value such that the trajectory does not converge to the ACR value.319

2.6. An example of a system with subspace (but not full space) dynamic ACR. The320

following example illustrates the need for defining subspace ACR.321322

1. Subspace ACR and Cylinder ACR. Consider the following mass action system:323

A+B
k1
�! 3B, B

k2
�! A,

which defines the ODE system324

ȧ = b(k2 � k1a), ḃ = �b(k2 � 2k1a).

As long as b(t) remains positive, a(t) will move towards a⇤ = k2/k1. Since the sto-325

ichiometric subspace is all of R2, dynamic ACR requires every positive initial value326

to converge to a⇤. This condition is not satisfied since, as trajectories in the bottom327

left corner of Figure 9(b) show, there exist initial conditions which converge to the328
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Figure 9. The mass action system {A + B
k1�! 3B,B

k2�! A} is subspace dynamic ACR. For any choice

of rate constants, all initial values that are S-compatible, where S = span{(�1, 1)} with the ACR hyperplane

converge to the ACR hyperplane.

b = 0 boundary and not to the ACR hyperplane. However, if we define ⌦ to be329

{a = a⇤} + span{(�1, 1)}, then a is dynamic ACR w.r.t. ⌦. Thus, a is subspace330

(dynamic) ACR.331

3. Classification of minimal static and dynamic ACR networks. We consider networks332

of small size, ones with at most two reactions and at most two species. For such networks, we333

can catalogue many ACR properties. Some of these networks have archetypal ACR dynamics.334

The study of minimal, archetypal motifs is valuable because it may reveal the underlying335

principles at play in the dynamics of more complex networks.336

Definition 3.1. Suppose that (G,K) is a mass action system resulting from the reaction337

network G, where K denotes the specific choice of mass action rate constants. Let P 2 {static,338

strong static, dynamic, weak dynamic, wide basin dynamic, narrow basin dynamic, full basin339

dynamic}.340341

• We say that G has capacity for P -ACR if there is a K such that the mass action342

system (G,K) is a P -ACR system.343

• We say that G is a P-ACR network if (G,K) is a P-ACR system for all choices of344

K.345

• We say a species X in a network G is a P-ACR species if the concentration of X is346

a P-ACR variable in (G,K) for all choices of K.347

3.1. Static and dynamic ACR for reaction networks with only one reaction or only one348

species.349

Theorem 3.2 (static and dynamic ACR in one-reaction networks). A network with n �350

1 species and only one reaction is neither static nor dynamic ACR for any choice of rate351

constants.352

Proof. A network with only one reaction has no positive steady state and is therefore353

not static ACR. Such a network is also not dynamic ACR since for each i 2 {1, . . . , n}, ẋi is354
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either strictly positive in the entire positive orthant, or strictly negative in the entire positive355

orthant, or identically zero in the entire positive orthant. Therefore, either xi goes to infinity,356

to zero, or ẋi ⌘ 0. In every case xi fails to be a dynamic ACR variable.357

Theorem 3.3 (static ACR in one-species networks). Let G be a network with (one)species358

and arbitrary number of reactions. The following are equivalent:359

A1. G has the capacity for static ACR.360

A2. (G,K) has a unique positive steady state for some K.361

The following are equivalent:362

B1. G is static ACR.363

B2. (G,K) has a unique positive steady state for every choice of K.364

Proof. The results follow immediately from basic properties of one-dimensional dynamical365

systems.366

Theorem 3.4 (dynamic ACR in one-species networks). Let G be a network with one species367

and arbitrary number of reactions. The following are equivalent:368

A1. G has the capacity for weak dynamic ACR.369

A2. G has the capacity for dynamic ACR.370

A3. (G,K) has a unique positive steady state for some K, and this steady state is371

globally attracting.372

A4. (G,K) is full basin dynamic ACR for some K.373

The following are equivalent:374

B1. G is weak dynamic ACR.375

B2. G is dynamic ACR.376

B3. For every choice of K, (G,K) has a unique positive steady state, and this steady377

state is globally attracting.378

B4. (G,K) is full basin dynamic ACR for every K.379

Proof. The results follow immediately from basic properties of one-dimensional dynamical380

systems.381

Many examples of one-species networks along with their ACR properties are shown in382

Table 1.383

3.2. Reaction networks with two reactions and two or fewer species: Notation. We384

now classify reaction networks with two reactions and two species. We start by defining385

notation that will be used in the rest of the section. See Figure 10 for a geometric rendering386

of a reaction network, and how it relates to the notation. Let G be a reaction network with387

at most two species (X,Y ) and the following two reactions:388

a1X + b1Y
k1
�! ea1X +eb1Y, a2X + b2Y

k2
�! ea2X +eb2Y,(3.1)

where ai, bi,eai,ebi 2 R�0 and (eai,ebi) 6= (ai, bi) for i 2 {1, 2}. Although stoichiometric coe�-389

cients are usually integers, we allow real values here since the results remain unchanged under390

this generality. The labels k1 and k2 are mass action reaction rate constants, and are therefore391

positive reals. Let392
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Table 1
Subnetworks of 0 � A, 2A � 3A show diverse behaviors when cataloged according to capacities for static

and dynamic ACR and according to whether the network is static or dynamic ACR. The diversity illustrates

the range of possibilities even for one-species networks.

Arrow Capacity for Is network Capacity for Is network
Network diagram static ACR? static ACR? dynamic ACR? dynamic ACR?

0! A �! No No No No
0 � A �!, � Yes Yes Yes Yes
0! A, 2A! 3A �!,�! No No No No
0! A, 2A 3A �!, � Yes Yes Yes Yes
0 A, 2A! 3A  �,�! Yes Yes No No
0 A, 2A 3A  �, � No No No No
2A � 3A �!, � Yes Yes Yes Yes
0 � A, 2A! 3A �!, �,�! Yes No No No
0 � A, 2A 3A �!, �, � Yes Yes Yes Yes
0! A, 2A � 3A �!,�!, � Yes Yes Yes Yes
0 A, 2A � 3A  �,�!, � Yes No No No
0 � A, 2A � 3A  �,�!, �,�! Yes No Yes No

S = span

⇢
v1 :=

✓
ea1 � a1
eb1 � b1

◆
, v2 :=

✓
ea2 � a2
eb2 � b2

◆�
(3.2)

be the stoichiometric subspace of G. The mass action dynamical system (G,K) explicitly is393

ẋ = k1(ea1 � a1)x
a1yb1 + k2(ea2 � a2)x

a2yb2 ,

ẏ = k1(eb1 � b1)x
a1yb1 + k2(eb2 � b2)x

a2yb2 .
(3.3)

3.3. Static ACR for reaction networks with two reactions and two or fewer species.394

Theorem 3.5 (static ACR in networks with two reactions and two or fewer species). Let G be as395

in (3.1)–(3.3). The following are equivalent:396397

1. G has the capacity for static ACR.398

2. G is static ACR.399

3. G is strong static ACR.400401

4. • the two source complexes are di↵erent: (a1, b1) 6= (a2, b2),402

• the source complexes share a common coordinate: (a2 � a1)(b2 � b1) = 0, and403

• reaction vectors are negative scalar multiples of each other: v1 = �µv2 for some404

µ > 0 (in particular, dim(S) = 1).405

Furthermore, the following hold when G has two species and is static ACR:406407

• Either X or Y , but not both, is a static ACR species.408

• X is an ACR species if a2 6= a1. The variable x has the static ACR value409

(k2/(µk1))
1

a1�a2 .410

• Y is an ACR species if b2 6= b1. The variable y has the static ACR value411

(k2/(µk1))
1

b1�b2 .412

Proof. (3 =) 2 =) 1) holds by definition. We now show that (1 =) 4). Suppose413

that v1 6= �µv2 for any µ > 0, then there are no positive steady states for any choice of mass414

action rate constants and so G does not have the capacity for static ACR.415
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Figure 10. A reaction network with two reactions and at most two species X and Y can be depicted as

a pair of arrows embedded in the Euclidean plane R2
�0. The red arrows depict reactions and the green line

segment joining the two source complexes is the reactant polytope of a network with two reactions. The arrow

from (a1, b1) to (ea1,eb1) portrays the reaction a1X + b1Y ! ea1X + eb1Y . The label k1 is the mass action rate

constant of this reaction. The form of ACR, static or dynamic, as well as basin type can be decided based on

the geometry of the three objects appearing in this figure: the reactant polytope and the reaction arrows.

Figure 11. Motifs that do not have the capacity for static ACR. A reaction network does not have the

capacity for static ACR if the source complexes of the two reactions are the same, or if both coordinates of the

source complexes are di↵erent, or if the reaction vectors do not point in opposite directions. See Theorem 3.5

for precise conditions.

Now assume that v1 = �µv2 for some µ > 0. Then the mass action system is416

ẋ = (ea1 � a1)

✓
k1x

a1yb1 �
1

µ
k2x

a2yb2
◆
, ẏ = (eb1 � b1)

✓
k1x

a1yb1 �
1

µ
k2x

a2yb2
◆
.(3.4)

If (a1, b1) = (a2, b2), then417

ẋ = (ea1 � a1)

✓
k1 �

1

µ
k2

◆
xa1yb1 , ẏ = (eb1 � b1)

✓
k1 �

1

µ
k2

◆
xa1yb1 .

If k1 = k2/µ, then every positive point is a steady state and so the system is not static ACR.418

If k1 6= k2/µ, then at least one of ẋ or ẏ is either positive on all of R2
>0 or negative on all of419
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R2
>0. But then there is no positive steady state. So G does not have the capacity for static420

ACR.421

From (3.4), steady states must satisfy422

xa1�a2yb1�b2 =
k2
µk1

=: k.(3.5)

Now suppose that 0 62 {a2 � a1, b2 � b1}. From (3.5), we see that423

(x� , y�) =
⇣
(k�)1/(a1�a2),��1/(b1�b2)

⌘

is a steady state for every � 2 R>0. In particular, two distinct choices of � result in distinct x424

and y components in the two steady states. This implies that neither variable is static ACR425

for any k. So G does not have the capacity for static ACR.426

Finally, we show that (4 =) 3). Assume, without loss of generality, that a2 � a1 6= 0427

and b2 � b1 = 0. From (3.5), we have that x = k⇤ := k
1

a1�a2 at steady state, which shows that428

the system is static ACR and x is the static ACR variable. Since this is true for every choice429

of mass action rate constants, G is static ACR and X is a static ACR species. Every point on430

the hyperplane H[x, k⇤] is a steady state which shows that X is strong static ACR.431

It is clear that the roles of species X and Y are reversed if we assume that a2 = a1 and432

b2 6= b1, which proves the claims about the species Y .433

Conditions for static ACR in reaction networks with 2 reactions and 2 or fewer species434

have also been studied in [18].435

3.4. Network motifs and their embeddings. Similar to static ACR, we will show that436

dynamic ACR is a network property. If a network has the capacity for dynamic ACR, then it437

is dynamic ACR. Moreover, whether a network has the capacity for dynamic ACR depends438

only on its topology and not on the specific embedding in the Euclidean plane. We refer to439

such a class of networks as a motif. A network motif in two dimensions is determined by (i)440

slope of the reactant polytope, (ii) the quadrant or axis each reaction points along, and (iii)441

the relative slopes of the two reactions. We demonstrate the relation between a network motif442

and its multiple embeddings via an example in Figure 12.443

3.5. Dynamic ACR in static ACR networks with two reactions & two or fewer species.444

445
Theorem 3.6 (dynamic ACR in static ACR networks with two reactions & two or fewer species).446

Let G be as in (3.1)–(3.3), and suppose that dim(S) = 1. The following statements are447

equivalent:448

A1. G has the capacity for weak dynamic ACR.449

A2. G is weak dynamic ACR.450

A3. G is full basin weak dynamic ACR.451

A4. G has the capacity for dynamic ACR.452

A5. G is (full space) dynamic ACR.453

A6. G is static ACR and (ea1 � a1)(a2 � a1) + (eb1 � b1)(b2 � b1) > 0.454

Now, suppose that G has two species and is dynamic ACR. Then either X or Y , but not455

both, is a dynamic ACR species. Furthermore, the following statements are equivalent :456
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Figure 12. A network motif (on top) and two of its embeddings (bottom row).

B1. X is a dynamic ACR species.457

B2. X is a static ACR species.458

B3. a2 6= a1.459460

• When X is a dynamic ACR species, the dynamic ACR value of the variable x = the461

static ACR value of x = ( k2

µk1
)

1
a1�a2 .462

Analogous statements to B1–B3 and the statement about ACR value hold when X is re-463

placed with Y , and ai is replaced with bi for i 2 {1, 2}.464

Proof. (A3 =) A2 =) A1) and (A5 =) A4 =) A1) hold by definition.465

We now show that (A1 =) A6 =) A5, A3). Suppose that G has the capacity for weak466

dynamic ACR. From properties of one-dimensional dynamical systems, it is clear that G has467

the capacity for static ACR. From Theorem 3.5, G is static ACR and one of the two (but not468

both) is a static ACR species. Assume that X (and not Y ) is the static ACR species. Then469

b2 = b1, a2 6= a1, and x are static ACR with value x⇤ := (k2/(µk1))
1

a1�a2 . Next, we have that470

ẋ = (ea1 � a1)y
b1xa1

✓
k1 �

1

µ
k2x

a2�a1

◆
.

Clearly, the steady state x⇤ is stable if and only if (ea1�a1)(a2�a1) > 0. If we assume instead471

that Y (and not X) is the static ACR species, we get the stability condition (eb1�b1)(b2�b1) >472

0. The desired inequality in A6 is obtained by combining the two stability conditions, since it473

is always the case that one term in A6 is positive and the other term is zero which shows that474

(A1 =) A6). Since a unique (within a compatibility class) steady state that is stable must475

be globally stable for a one-dimensional system (i.e., attracts all compatible positive points),476

we also have that (A6 =) A5). Moreover, the initial values that are not compatible with the477

hyperplane of steady states {x = x⇤} also result in trajectories that move towards {x = x⇤}478

but converge at a boundary steady state. This gives full basin weak dynamic ACR, so we479

have also proved that (A6 =) A3).480
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The last part also shows that when G is dynamic ACR, then (B3 =) B1 =) B2) and481

(B2 =) B3) are from Theorem 3.5. The statement about the dynamic ACR value of x also482

follows from the last part. Clearly, the assumption that a2 = a1 and b2 6= b1 will switch the483

roles of X and Y and give analogous statement for species Y .484

Theorem 3.7 (wide basin dynamic ACR in two reaction, two or fewer species networks with485

dim(S) = 1). Let G be as in (3.1)–(3.3). Suppose that dim(S) = 1 and G is dynamic ACR.486487

1. The dynamic ACR species is wide basin if and only if (ea1 � a1)(eb1 � b1)  0.488

2. The dynamic ACR species is full basin if and only if (ea1 � a1)(eb1 � b1) = 0.489

Proof. Since G is dynamic ACR and dim(S) = 1, by Theorem 3.6, G is static ACR. By490

Theorem 3.5, v1 = �µv2 for some µ > 0, so that the mass action system can be written as in491

(3.4). This implies that (eb1 � b1)ẋ � (ea1 � a1)ẏ = 0, and so two points (x⇤, y⇤) and (x0, y0)492

are compatible if and only if493

(eb1 � b1)x
⇤
� (ea1 � a1)y

⇤ = (eb1 � b1)x0 � (ea1 � a1)y0

() (eb1 � b1)(x0 � x⇤) = (ea1 � a1)(y0 � y⇤).(3.6)

Since at least one of ea1 � a1 or eb1 � b1 must be nonzero, the above implies that sgn((x0 �494

x⇤)(y0�y⇤)) = sgn((eb1� b1)(ea1�a1)), where sgn is the sign function that has range {+,�, 0}495

and is defined via496

sgn(z) =

8
><

>:

+ if z > 0,

� if z < 0,

0 if z = 0.

We will assume, without loss of generality, that X is the dynamic ACR species, so that for a497

particular choice of K, x is the dynamic ACR variable with ACR value k⇤ that depends on498

K.499

Suppose that sgn((eb1 � b1)(ea1 � a1)) = +. Then ↵ := (ea1 � a1)/(eb1 � b1) > 0. From (3.6),500

(x0, y0) is compatible with (x⇤, y⇤) if and only if x0 � x⇤ = ↵(y0 � y⇤) with ↵ > 0. Any initial501

value (x0, y0) with x0 > k⇤ + ↵y0 is incompatible with {x = k⇤}. To see this, note that502

x0 � k⇤ > ↵y0 > ↵(y0 � y⇤).

Clearly, x0 is not bounded above on the incompatible set {x0 > k⇤ + ↵y0}, so in this case x503

is a narrow basin dynamic ACR variable for any choice of K. In other words, X is a narrow504

basin dynamic ACR species.505

Now suppose that sgn((eb1 � b1)(ea1 � a1)) = 0. Since x is the dynamic ACR variable,506

b2 = b1. By condition in the previous part, ea1 6= a1 and so eb1 = b1. In particular, ẏ = 0 and507

every positive initial value is compatible with the set {x = k⇤}. So x is a full basin dynamic508

ACR variable for every K. In other words, X is a full basin dynamic ACR species.509

Finally, suppose that sgn((eb1 � b1)(ea1 � a1)) = �. In this case, x0 � x⇤ = ��(y0 � y⇤)510

with � = �(ea1�a1)/(eb1� b1) > 0. Any initial value (x0, y0) with x0+�y0 > k⇤ is compatible511

with {x = k⇤}. To see this, let512
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y⇤ := (x0 + �y0 � k⇤)/� > 0.

Then (x0, y0) is compatible with (k⇤, y⇤). So x is a wide basin dynamic ACR variable for513

every K. In other words, X is a wide basin dynamic ACR species. The only remaining thing514

to show is that X is not full basin. Let (x0, y0) := (k⇤/4, k⇤/(4�)) 2 R2
>0. Then,515

x0 + �y0 = k⇤/2 < k⇤ < k⇤ + �y⇤,

and so (x0, y0) is not compatible with {x = k⇤}.516

This completes the proof since we have covered the entire range of sgn((eb1 � b1)517

(ea1 � a1)).518

The results of Theorems 3.5–3.7 can be translated into a pictorial representation using the519

idea of motifs (see Figure 13). There are eight distinct motifs, each has two reactions depicted520

with red arrows. The reactants are connected by a green line segment, the reactant polytope521

of the reaction network. See [16] where this representation for networks with two reactions522

was used to identify the multistationarity property. An upward pointing arrow indicates a523

reaction of the type mY ! nY for some n > m. An arrow pointing towards the northwest524

indicates a reaction of the type a1X+ b1Y ! a2X+ b2Y with a2 < a1 and b2 > b1, and so on.525

4. Dynamic ACR in networks with an invariant hyperplane. We now consider networks526

with two reactions and two or fewer species and allow the stoichiometric space to have either527

dimension 1 or 2. With dimension 2 or higher, there is a possibility of oscillatory solutions.528

However, it is easy to see that at least three reactions are required for such solutions (see also529

[21]). It is worth mentioning in passing that for general reaction networks, oscillations are530

compatible with both static and dynamic ACR. An example of a mass action system with three531

reactions that has oscillations and static ACR in both species is the classic Lotka–Volterra532

system (A ! 2A,A + B ! 2B,B ! 0); see [13] for a discussion on this. The same paper533

[13] also features an example with oscillations and dynamic ACR, but it requires six reactions534

and a three-dimensional stoichiometric subspace. When a network with two reactions and two535

species has static ACR, every point on the hyperplane H[x, x⇤] is a steady state. A natural536

generalization of this property is to consider the family of networks for which the hyperplane537

H[x, x⇤] is invariant. For dim(S) = 2 networks, static ACR is ruled out by results from the538

previous section but dynamic ACR is still possible.539

Theorem 4.1. Let (G,K) be as in (3.1)–(3.3).540541

1. There is a unique x⇤ > 0 such that H[x, x⇤] is invariant if and only if b2 = b1, a2 6= a1,542

and (ea1 � a1)(ea2 � a2) < 0.543

2. There is a unique x⇤ > 0 such that H[x, x⇤] is globally weakly attracting if and only if544

H[x, x⇤] is globally weakly stable if and only if b2 = b1, a2 6= a1, (ea1�a1)(ea2�a2) < 0,545

and (a2 � a1)(ea1 � a1) > 0.546

Proof. The condition that 0 = ẋ|x=x⇤ is equivalent to547

0 = k1(ea1 � a1) + k2(ea2 � a2)(x
⇤)a2�a1yb2�b1 .(4.1)

For any x = x⇤, the equation is an identity if ea1 = a1 and ea2 = a2. So assume that this is548

not the case. It is clear that there is a unique positive x⇤ for which (4.1) holds if and only if549

a2 6= a1, b2 = b1, and (ea1 � a1)(ea2 � a2) < 0.550
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Figure 13. Network motifs with two reactions and one�dimensional stoichiometric subspace that show

static ACR. The three network types in the magenta ellipse are dynamic ACR, the two network types in the

smaller cyan ellipse are wide basin dynamic ACR, while the one network type in the smallest teal ellipse is full

basin dynamic ACR. In each of the networks, the static ACR species is X, which is on the axis parallel to the

reaction polytope.

For the second part, it su�ces to assume that a2 6= a1, b2 = b1, and (ea1�a1)(ea2�a2) < 0551

because otherwise H[x, x⇤] is not invariant and so is not globally weakly attracting. Further,552

we may assume that a2 > a1, possibly after relabeling of reactions. With these assumptions,553

the original dynamical system D in (3.3) has the same trajectories as the following dynamical554

system D
0:555

ẋ = k1(ea1 � a1) + k2(ea2 � a2)x
a2�a1 ,

ẏ = k1(eb1 � b1) + k2(eb2 � b2)x
a2�a1 .

(4.2)

Note that the x equation is autonomous and does not have a y-dependence. So a solution to556

the x equation exists for all time t 2 [0,1). If ea1 < a1 and ea2 > a2, then the x-component557

of the trajectories moves away from x⇤ monotonically and so x⇤ is not weakly attracting. If558

ea1 > a1 and ea2 < a2, then the x-component of the trajectories moves towards x⇤. This proves559

the second part.560
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Theorem 4.2. Let (G,K) be as in (3.1)–(3.3). Suppose that H[x, x⇤] is globally weakly561

attracting for some x⇤ > 0. Denote by �i the slope of the reaction vector vi, i 2 {1, 2}:562563

1. x(t) 6! H[x, x⇤] for any (x(0), y(0)) 62 H[x, x⇤] if (a2 � a1)(�2 � �1) < 0.564

2. x(t) ! H[x, x⇤] for every (x(0), y(0)) 2 H[x, x⇤] + span{v2} if (a2 � a1)(�2 � �1) � 0.565

3. x(t) ! H[x, x⇤] for every initial value in some cylindrical neighborhood of H[x, x⇤] if566

(a2 � a1)(�2 � �1) > 0.567

4. H[x, x⇤] is globally attracting if and only if eb1 � b1 and eb2 � b2.568

Proof. From the proof of Theorem 4.1, the dynamical system D is equivalent to D
0 in569

(4.2) with a2 > a1, ea1 > a1, and ea2 < a2. Note that for D0, x ! x⇤ and ẋ ! 0 asymptotically.570

In particular, |ẏ| is bounded for every initial value. This means that the solution to the571

dynamical system D
0 exists for all nonnegative times for every initial value in R2

�0.572

Now, the ẏ equation may be written as573

ẏ = k1(ea1 � a1)(�2 � �1) + �2ẋ.(4.3)

If �2 = �1, then every trajectory converges to some steady state, and this positive steady574

state is on H[x, x⇤] when the initial value is compatible with H[x, x⇤]. If �2 6= �1, then575

after some finite time ẏ is bounded away from 0 and sgn(ẏ) = sgn(�2 � �1). In particular,576

for �2 < �1, y(t) reaches 0 in finite time. Therefore, the trajectory fails to converge to577

H[x, x⇤] for any positive initial value not on H[x, x⇤]. On the other hand, if �2 > �1, then578

ẏ > �2ẋ everywhere in R2
>0. When ẏ = �2ẋ, we have convergence to H[x, x⇤] for every579

(x(0), y(0)) 2 H[x, x⇤] + span{v2}. So it follows that when ẏ > �2ẋ, after a finite time, the580

trajectory enters a cylinder C" with " such that ẏ > k1(ea1�a1)(�2��1)/2 within C". Moreover,581

every trajectory with an initial value in C" must converge to the hyperplane H[x, x⇤]. This582

completes the proof of points 1–3.583

If eb1 � b1 and eb2 � b2, then it is immediate from (4.2) that ẏ � 0 everywhere in R2
�0 and584

so H[x, x⇤] is globally attracting. To show the converse, suppose first that eb1 < b1. There is a585

� > 0 such that for {(x(0), y(0)) 2 R2
>0 : x(0)

2 + y(0)2 < �2}, ẏ is negative and bounded away586

from zero. So such a trajectory reaches the y = 0 boundary and fails to converge to H[x, x⇤].587

A similar argument works for eb2 < b2, where we can choose an initial x(0) su�ciently large588

and an initial y(0) su�ciently small. Thus in either case H[x, x⇤] is not globally attracting.589

Theorem 4.3. Let G be as in (3.1)–(3.3). Suppose that X is subspace dynamic ACR but590

not full basin dynamic ACR. Then the following hold:591592

1. X is a wide basin dynamic ACR species if and only if (ebi � bi)(ai � aj) > 0 for593

i 6= j 2 {1, 2}.594

2. X is a narrow basin dynamic ACR species if and only if (ebi � bi)(ai � aj) < 0 for595

i 6= j 2 {1, 2}.596

Proof. Since X is subspace dynamic ACR, (a2�a1)(�2��1) � 0 by the previous theorem.597

We may assume that a2 > a1, �2 � �1, ea1 > a1, and ea2 < a2. The condition in the first598

statement is equivalent to eb1 < b1 and eb2 > b2, i.e., �2 < 0. This means that the set of599

points incompatible with H[x, x⇤] is to the left of the hyperplane and therefore the condition600

is equivalent to wide basin dynamic ACR. A similar argument in the second case shows601

equivalence with �2 > 0 and therefore with narrow basin dynamic ACR.602
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5. Summary of ACR properties for networks with two reactions and at most two603

species. The following theorem is a summary of the main results on the di↵erent ACR prop-604

erties in networks with two reactions and at most two species.605

Theorem 5.1. Let G be a reaction network with two species {X,Y } and the following two606

reactions:607

a1X + b1Y
k1
�! ea1X +eb1Y, a2X + b2Y

k2
�! ea2X +eb2Y,(5.1)

where ai, bi,eai,ebi 2 R�0 and (eai,ebi) 6= (ai, bi) for i 2 {1, 2}. The labels k1 and k2 are mass608

action reaction rate constants, when considering a mass action system (G,K).609610

1. A necessary and su�cient condition for the existence of a unique invariant hyperplane611

H parallel to a coordinate axis is that the reactant polytope be a line segment parallel to612

the other coordinate axis. In particular, (a1, b1) 6= (a2, b2) and (a2 � a1)(b2 � b1) = 0.613

Suppose that G has a unique invariant hyperplane H parallel to a coordinate axis. Then614

the following hold:615

2. G has the capacity for P-ACR if and only if G is P-ACR, where P 2 {static, strong616

static, dynamic, weak dynamic}, i.e., the P-ACR properties are independent of choice617

of rate constants.618

3. We use the convention 0 · (1/0) = 0 in the following expressions.619

(a) G is static ACR if and only if G is strong static ACR if and only if dim(S) = 1 and620

reaction vectors are negative scalar multiples of each other: ea1 � a1 = �µ (ea2 � a2)621

for some µ > 0.622

(b) H is weakly attracting if and only if both reactions point inwards:623

(eai � ai)(aj � ai) + (ebi � bi)(bj � bi) > 0, i 6= j 2 {1, 2}.

(c) G is nonnull dynamic ACR if and only if G is subspace dynamic ACR if and624

only if625

X

i 6=j2{1,2}

(
(aj � ai)

 
ebi � bi
eai � ai

!
+ (bj � bi)

✓
eai � ai
ebi � bi

◆)
� 0.

Suppose that neither ẋ nor ẏ is identically zero, or equivalently (ea1,ea2) 6= (a1, a2)626

and (eb1,eb2) 6= (b1, b2).627

(d) G is cylinder dynamic ACR if and only if628

X

i 6=j2{1,2}

(
(aj � ai)

 
ebi � bi
eai � ai

!
+ (bj � bi)

✓
eai � ai
ebi � bi

◆)
> 0.

(e) G is full basin dynamic ACR if and only if629

(aj � ai)

 
ebi � bi
eai � ai

!
+ (bj � bi)

✓
eai � ai
ebi � bi

◆
� 0, i 6= j 2 {1, 2}.

630
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4. For all the above networks with P-ACR, we have the following:631632

• Either X or Y , but not both, is an P-ACR species.633

• X is an P-ACR species if a2 6= a1. The variable x has the P-ACR value (�k2(ea2�a2)
k1(ea1�a1)

)
1

a1�a2 .634

• Y is an P-ACR species if b2 6= b1. The variable y has the P-ACR value (�k2(eb2�b2)

k1(eb1�b1)
)

1
b1�b2 .635

A pictorial representation of these results is shown in Figure 14.

Figure 14. wdMotifs of weak dynamic ACR. There are 17 motifs of weak dynamic ACR with two

reactions and two or fewer species. A necessary and su�cient condition for weak dynamic ACR (as well as

weak full basin dynamic ACR) is that the reactant polytope be parallel to the axis of the ACR variable (green line

segment) and both reactions point inwards. Of these motifs, 16 are placed on the circumference of a circle with

coordinates ✓ = n⇡/8, n 2 {0, 1, . . . 15}, while one motif is placed at the center of the circle. The two arrows

make the same angle with the reactant polytope for the motifs at ✓ = n⇡/2, n 2 {0, 1, 2, 3} (the four cardinal

directions—north, south, east, and west). For ✓ 2 n⇡/8, n 2 {0, 1, 2, 3, 4} (northeast quadrant of the picture),

the left arrow is fixed in the northeast quadrant while the right arrow rotates southwards moving southwards

along the picture. Similarly, in the northwest quadran, the right arrow is fixed in the northwest quadrant; in

the southwest quadrant the left arrow is fixed in the southeast quadrant; and in the southeast quadrant the

right arrow is fixed in the southwest quadrant. The figure of motifs is invariant under reflection and under

rotation around the central vertical axis. The figure is also invariant under a combination of reflection around

a central horizontal axis and rotation of each motif around the axis of that motif. The central horizontal band

—with the motifs at ✓ = 0,⇡ on the circumference and the motif at the center of the circle—have dim(S) = 1
while the rest have dim(S) = 2. The motif at the center of the circle can have an embedding with either one
or two species (the second species remaining dynamically unchanged), an embedding of every motif on the

circumference requires two species. Each motif is labeled with its strongest local ACR property (in magenta) as

well as its strongest nonlocal ACR property (in cyan). Null ACR is labeled in (in olive). Moving northwards

along the circumference of the circle, the motifs have stronger local and nonlocal ACR properties.
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6. Discussion and future work. In this paper, we have established that for small networks,636

the Euclidean embedding (or geometric structure) of a reaction network can yield deep insights637

into the dynamics of the mass action ODE system. In particular, when there are only two638

reactions and at most two species, the reactant polytope (the line segment joining the two639

reactant complexes) is required to be horizontal or vertical for any type of ACR property.640

Some of the networks with two reactions that appear in this paper do show up in applications.641

For instance, the archetypal wide basin ACR network in 2(a) can be thought of as a simple642

model of infectious disease dynamics (SIS model). The reaction A + B ! 2B represents643

an infective individual B infecting a susceptible individual A, while the reaction B ! A644

represents recovery from infection. One may also interpret this model as a protein with two645

alternate conformations A and B with the spontaneous transition B ! A, while the transition646

A ! B is catalyzed (or promoted) by B. However, most biochemically realistic networks are647

significantly more complex with several reactions and species. Even though ACR can be found648

in higher-dimensional systems, we do not expect that there will be such simple characterization649

of their ACR properties. However, our work suggests that it may be fruitful to study the link650

between the geometry of reactant polytopes and dynamics of ACR systems further. Moreover,651

we do expect that small motifs that are embedded within large and complicated networks may652

a↵ect the overall dynamics. Our future goal is to understand such e↵ects.653

The small motifs studied in this paper also serve as test cases for various dynamical654

behaviors. For instance, a surprising possibility revealed from the study of small motifs was655

that of weak dynamic ACR, where every trajectory monotonically approaches a hyperplane656

while simultaneously failing to converge (see Figure 3(b)).657

In future work, we study dynamic ACR in more complex, biochemically realistic systems658

such as bacterial two-component signaling systems, a class that encompasses several thou-659

sands of systems [1, 6, 2, 7, 24, 25]. Moreover, we study consequences of dynamic ACR. We660

plan to show that dynamic ACR, i.e., the property of robustness against variations in initial661

conditions, surprisingly leads to other much more robust dynamical properties with stronger662

implications for biochemical systems with dynamic ACR.663
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