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Abstract. Networks with absolute concentration robustness (ACR) have the property that a translation of a
coordinate hyperplane either contains all steady states (static ACR) or attracts all trajectories (dy-
namic ACR). The implication for the underlying biological system is robustness in the concentration
of one of the species independent of the initial conditions as well as independent of the concentration
of all other species. Identifying network conditions for dynamic ACR is a challenging problem. We
lay the groundwork in this paper by studying small reaction networks, those with two reactions
and two species. We give a complete classification by ACR properties of these minimal reaction
networks. The dynamics are rich even within this simple setting. Insights obtained from this work
will help illuminate the properties of more complex networks with dynamic ACR.

Key words. network motifs, reaction networks, dynamic ACR, mass action systems, absolute concentration
robustness
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1. Introduction. Absolute concentration robustness (ACR) was introduced in [22] as the
mathematical property that every positive steady state of a reaction system coincides in one
of the coordinates. We call this property static ACR. Assuming convergence to one of these
positive steady states, static ACR ensures that at steady state the value of one of the measured
variables will be independent of the initial value. However, such convergence is not guaranteed
even for the simplest systems. The long-term behavior of a system can lead to the system
converging to the boundary, or to another attractor such as a limit cycle or not converging
at all but diverging to infinity. We introduced dynamic ACR in [13] to account for the global
dynamics, and not merely the location of steady states.

A network condition for static ACR is found in [22]: if the network deficiency is one and
two nonterminal complexes differ in a single species, then the concentration of that species will
have static ACR for all mass action reaction rate constants. Since analyzing global dynamics
of a dynamical system is an enormously more complex task than determining the locations
of steady states, obtaining network conditions for dynamic ACR is challenging. We make
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2 BADAL JOSHI AND GHEORGHE CRACIUN

some headway in this direction by studying small reaction networks and organizing our ideas
carefully in this setting. In this paper, we study networks with two reactions and two species
and make fine distinctions between global dynamical properties related to convergence to an
ACR hyperplane. This lays the groundwork for future study of network conditions for larger,
more biochemically realistic networks.

The definition of dynamic ACR introduced in [13] is generalized here in two ways. The first
is by including a basin of attraction for the ACR hyperplane, which may be the entire positive
orthant or a proper subset of it. The second way is by considering a weaker version of attracting
hyperplane: trajectories may not converge to the ACR hyperplane, but may only move in the
direction of that hyperplane. For static ACR, we introduce a stronger form which requires at
least one steady state in each compatibility class that intersects the ACR hyperplane. While
each ACR property (static, strong static, dynamic, weak dynamic) is worthy of study by itself,
there are connections between them which give a more complete picture. Weak dynamic ACR
is a necessary condition for dynamic ACR; similarly, when a positive steady state exists, static
ACR is necessary for dynamic ACR (see Theorem 2.12 and Figure 4). Therefore, networks
with static ACR and weak dynamic ACR serve as candidates for networks with dynamic ACR.
We show that all motifs of static ACR and weak dynamic ACR for networks with
two reactions and two species can be completely characterized — there are exactly
eight network motifs with static ACR and there are exactly 17 network motifs with
weak dynamic ACR and these are depicted in Figure 1 (see Theorems 3.5, 3.6, and
4.1; also see [18] for a network characterization of static ACR).

Each network motif is related to an infinite family of networks; see section 3.4 for an
explanation of how a network maps to a motif. The motifs in Figure 1 (or rather the networks
that map to the motifs) have a rich diversity of dynamical properties. Key results in this
paper, appearing in section 3 onwards, deal with identifying such properties. The results
are summarized in Figures 13 and 14—fully annotated versions of Figure 1. The reader is
encouraged to begin with at least a glance at the summary theorem (Theorem 5.1) and
Figures 13 and 14 to orient themselves towards the objectives of the paper. Specifically,
we tdentify which of the eight network motifs with static ACR and which of the
17 network motifs with weak dynamic ACR are also dynamic ACR.

Infinitely many reaction networks map onto a single network motif—an object that cap-
tures two crucial network properties common to the family of networks: (i) orientation of
the reactant polytope, (ii) orientation of the reaction vectors relative to the coordinate axes
and relative to one another. These two network properties are sufficient for characterizing a
wide range of dynamic ACR properties. To understand these network properties, we embed
a reaction network in Euclidean space by identifying the stoichiometric coefficients of each
species in a complex with a point in Euclidean space. For instance, the reactant and prod-
uct complex of the reaction X +Y — 27 are identified with the points (1,1,0) and (0,0, 2)
in Euclidean space. The reactant polytope of a reaction network is the convex hull of the
reactant complexes in Euclidean space. In the case of a reaction network with only two re-
actions, a reactant polytope is merely a line segment or a single point. Reactions are fixed
“arrows” in Euclidean space. For the case of two species, a reaction may be aligned with
the coordinate axes or may be in the interior of a quadrant. Moreover, when there are two
reactions, multiple relative orientations of the reaction arrows are possible. A network motif
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Figure 1. Network motifs with output robustness. (Left): All possible two-reaction two-species net-
work motifs with static ACR. (Right): All possible two-reaction two-species network motifs for which the
hyperplane {x = z*} is weakly stable (invariant and weakly attracting) (see Definition 2.9). The motifs with
one-dimensional stoichiometric space are on the horizontal band. The motifs on the circumference require at
least two species while the motif in the center can be realized with one or two species.

is depicted by drawing the orientation of the reactant polytope and the relative orientations
of the reactions. A network motif is deeply connected with the dynamics of the
reaction system. For one-dimensional systems such as the one in Figure 2(a), the reaction
vectors must be parallel to one another and, moreover, the trajectories in phase space, when
superimposed on the reaction network embedding, are simply parallel to the reaction vectors.
For two- and higher-dimensional systems, the relationship is more complicated since the vec-
tor field is a linear combination of the reaction vectors with variable coefficients that depend
on the position in phase space. The reactant polytope is extremely significant for ACR. All
of the various forms of ACR properties with at most two species require that the reactant
polytope be parallel to one of the coordinate axes, i.e., the polytope should be a horizontal
or a vertical line segment. When the reactant polytope is horizontal, the ACR hyperplane is
vertical and vice versa. Among static ACR networks in two species, we show that dynamic
ACR requires that the reactions points “inwards,” along the reactant polytope. For the weak
dynamic ACR networks in two species, we show that dynamic ACR requires that on average,
reactions point away from the coordinate axis in the direction perpendicular to the reactant
polytope (“up” when the reactant polytope is horizontal). Of course, the above statements
are merely suggestive; see Theorem 5.1 for precise statements.

Related work. The idea of minimal reaction networks with a certain dynamical property
has a long history. While this work is the first to identify minimal motifs of dynamic ACR,
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2
2B y —— ACR value
’ Non-compatible
16 = Trajectory
m 14
=
E 12
B A+ B g
S %)
A a\\ \

) 02 04 U‘S 0‘5 1 12 14 1.6 18 2
. . . Concentration of A
(a) Reaction network embedded in Euclidean

plane. (b) Trajectories in phase plane.

Figure 2. Archetypal wide basin dynamic ACR network. A dynamic ACR reaction network (A+B —
2B,B — A) with A as a wide basin dynamic ACR variable. The concentration of A is bounded within the
subset of R%, that is not compatible the ACR hyperplane {a = 1} (noncompatible region shown here in cyan).

network motifs for other dynamical properties have been studied extensively. For example,
networks with two species which have limit cycles have been identified in [21], while [20] studies
simple networks with phase transitions giving candidates for multistationarity. In recent years,
several classes of minimal multistationary networks called atoms of multistationarity have
been identified in [14, 12, 15, 9], and those of oscillations in [5]. Network conditions for
static ACR and minimal networks with static ACR have also appeared in recent work [23,
19, 18]. Biochemical implications of static ACR have been studied [17, 11, 10] as well as the
implications from a control theory perspective [8]. Stochastic (continuous-time Markov chain)
models of reaction networks with the ACR property were studied in [4, 3].

This article is organized as follows. Section 2 introduces different forms of static and
dynamic ACR and the relations between them. Section 3 gives a classification of small reaction
networks, those containing at most two reactions and two species; here the focus is on mass-
conserving reaction networks. Section 4 continues the classification, extended to networks
where the trajectories may go to infinity or to the boundary. Section 5 summarizes the main
classification results with the statement of a larger theorem that encapsulates numerous results
from the previous sections.

2. Forms of ACR.

Background and terminology. We use standard notation and terminology for reaction net-
works and mass action systems. A quick summary is given here; see, for instance, [15, 26] for
further details. Upper case letters (X,Y, Z, A, B) are used for species participating in reac-
tions and the corresponding lower case letters (z,y, z, a, b) for their concentrations which are
time-varying quantities. An example of a reaction is X +Y — 27, where X +Y is referred to
as the source complex, while 27 is the product complex. The rate of any given reaction is a
nonnegative-valued function of species concentrations. In the case of mass action kinetics, the
rate is proportional to the product of reactant concentrations taken with multiplicity. The
proportionality constant, called the reaction rate constant, is placed adjacent to the reaction
arrow, as follows: X +Y %, 2. The rate of this reaction under mass action kinetics is kxy.
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The reaction vector for this reaction is the difference between the product complex and the
source complex, i.e., 27 — (X +Y), which under a choice of a standard coordinate basis is
written as (—1,—1,2). A reaction network is a nonempty set of reactions, such that every
species participates in at least one reaction, and none of the reaction vectors is the zero vec-
tor. The stoichiometric subspace of a reaction network is the subspace spanned by the set of
reaction vectors of the reaction network.

We use G to denote a reaction network and K to denote a specific choice of mass action
kinetics for G, so that (G, K) is a mass action dynamical system. Throughout this paper, we
depict the Euclidean embedding of a reaction network next to the dynamics in the phase plane.
Figure 2(a) is an example of a Euclidean embedding: the reactions B — A and A+ B — 2B
are shown as red arrows, each arrow originating at the reactant complex and terminating
at the product complex. We also depict the reactant polytope, defined as the convex hull
of the reactant complexes. In the example in Figure 2(a), the set of reactant complexes is
{B, A + B} and so the reactant polytope, shown in green, is a line segment joining the two
complexes.

Throughout this paper, we consider a dynamical system D defined by & = f(x) with
x € R%, for which RY is forward invariant. € RY is a steady state of D if f(x) = 0.

Definition 2.1. The kinetic subspace of D is defined to be the linear span of the image
of f, denoted by span(3(f)). z,y € RE, are compatible if y —x € span(3(f)). The sets
S, 8" CRY, are compatible if there are x € S and x' € S such that x and z' are compatible.

The notation H[i,a;] :== {z € RY, : x; = a}} is reserved for the hyperplane parallel to
a coordinate hyperplane and restricted to the positive orthant. When variables are labelled
without indices, for instance as x, y, z etc., we use the notation H[z, 2*] := {x € RY, : . = 2*}.

Even though the two notation are slightly inconsistent, there is no possibility of confusion.
Static ACR and dynamic ACR in a real dynamical system were defined in [13]. We repeat
these definitions here.

Definition 2.2.
e D is a static ACR system if D has a positive steady state and there is an i € {1,...,n}
and a positive a; € R~ such that any positive steady state x € RZ) is in the hyperplane
{z; = a}}. Any such x; and af is a static ACR variable and its static ACR value,
respectively. Hi,a}] is the static ACR hyperplane.
e D is a dynamic ACR system if there is an i € {1,...,n} with f; # 0 and a positive
a; € Rsg such that for any x(0) € RZ that is compatible with {x € RZy|x; = a}},

a unique solution to & = f(x) exists up to some mazimal To(z(0)) € (0,00], and

x;i(t) LmitN a;. Any such z; and a; is a dynamic ACR variable and its dynamic ACR

value, respectively. H[i,a!] is the dynamic ACR hyperplane.

Now we define strong and weak forms of each type of ACR. All forms, static ACR, strong
static ACR, dynamic ACR, and weak dynamic ACR are marked by the presence of a priv-
ileged hyperplane parallel to a coordinate hyperplane {x € R : 2; = a;} called the ACR
hyperplane. This hyperplane either contains all the steady states (in the static case) or is
the unique attractor for all relevant trajectories (in the dynamic case). Moreover, each form
of ACR has a set 2 associated with it called the basin of ACR.
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6 BADAL JOSHI AND GHEORGHE CRACIUN

2.1. Static forms of ACR. We generalize the definition of static ACR from [13] to allow
for arbitrary basin sets €.

Definition 2.3. The variable x;, where i € {1,...,n}, has static ACR w.r.t. Q C RY, if
there is an a; > 0 such that the following hold:

1. f(x) =0 for some positive x € ),
2. for any x € Q such that f(x) =0, z; = a}.
In this case, the static ACR value of x; is a and H[i,a}] = {x € Ry : x; = a}} is the
static ACR hyperplane.

Remark 2.4. When Q = RZ, we simply say that a variable has “static ACR” instead of
“static ACR w.r.t. R%,”. Note that boundary steady states are conventionally excluded from
consideration, in other words, we do not require that {2 = RZ for static ACR, merely that
Q2 =RY,.

By strong static ACR, we mean the property that every compatibility class that intersects
the static ACR hyperplane contains at least one positive steady state. Most commonly studied
motifs and biochemical systems with static ACR are strong static ACR as well.

Definition 2.5. The variable x;, where i € {1,...,n}, has strong static ACR w.r.t. Q CR%,
if there is an a; > 0 such that the following hold:

1. x; has static ACR w.r.t. Q C RZ, with value a,
2. for any y € Hi,a}] N Q there is a 2 € QNRY, such that y — z € Sy and f(z) = 0.
In this case, the strong static ACR value of x; is a} and H][i,a}] is the strong static ACR
hyperplane.

The concentration of A in the network in Figure 2 has strong static ACR w.r.t. ]R2>0
because every point on the hyperplane Ha,a*] = {(a,b) € R2, : a = a*} (the green vertical
line) is a steady state. So any compatibility class with a(0) 4+ b(0) > a* intersects the hyper-
plane H[a, a*] and therefore has a positive steady state. Every network motif with static ACR
studied in this paper also has strong static ACR, as we will show in Theorem 3.5.

2.2. Dynamic forms of ACR. We generalize the definition of dynamic ACR from [13] in
two ways: (i) we allow for arbitrary basin sets 2, and (ii) we define a weaker form for which
the ACR hyperplane is weakly attracting.

Definition 2.6. The variable x;, where i € {1,...,n}, has dynamic ACR w.r.t. Q C R%,
if there is an a} > 0 such that for any initial value z(0) in Q, a unique solution to & = f(x)
exists up to some mazimal To(x(0)) € (0,00], and limy_7, x;(t) = a. We say that z; has
dynamic ACR wvalue af. Moreover, we say that the ACR hyperplane H]i,al] is an attractor
for Q and that 2 is a basin of attraction of H[i,a}].

Weak dynamic ACR is the notion that the ACR variable converges to a value that is not
further from the ACR value than the initial distance. In other words, all initial conditions are
attracted towards the ACR hyperplane even if they fail to reach there.

Definition 2.7. The variable x;, where i € {1,...,n}, has weak dynamic ACR w.r.t. Q C
R if there is an a; > 0 such that for any initial value z(0) in 2, a unique solution to & = f(x)
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exists up to some mazimal To(x(0)) € (0,00], limy_y7, xi(t) exists and limy7, |zi(t) — af| <
|z;(0) — af|, with strict inequality when x;(0) # a. We say that x; has weak dynamic ACR
value af. Moreover, we say that the ACR hyperplane H]i,a}] is a weak attractor for Q and Q
is a weak basin of attraction of H[i,a}].

Remark 2.8. We do not require the (weak) ACR hyperplane to be invariant, merely that
it is a (weak) attractor. A weak attractor may fail to be an attractor because trajectories
reach the boundary or diverge to infinity before reaching the ACR hyperplane.

Analogous to the definition of stability of a steady state, we define the following.

Definition 2.9.
e The hyperplane H[i,a}] is stable w.r.t. Q if H[i,a}] is an attractor for Q and all
trajectories with initial value in @ move monotonically towards H|i,a].
*

e The hyperplane H[i,a}] is weakly stable w.r.t. Q if H[i,a}] is a weak attractor for

1
and all trajectories with initial value in Q move monotonically towards H]i,a}].

Remark 2.10. Stability (weak or not) of H[i, a}] implies that H[i, a}] is invariant.

Example 2.11 (weakly stable but not stable hyperplane). Consider the mass action system
of the following reaction network (see also Figure 3(a)):

2A+ B op B F A
The mass action system of ODEs is
(2.1) a=b(ky — 2k1a%), b= —b(ky — k1a?).

It is clear from a that for the duration of time that b(t) is positive, a(t) approaches the value
Vk2/(2k1). This implies that a is a weak dynamic ACR variable with a weak ACR value of

. ———
— Trajectory
k1
Qq
B
g f
B g
2A+ B g
g
O f_\
——————— N
o 0.2 04 06 08 1 12 14 16 18 2
. . Concentration of A
(a) Reaction network embedded in
Euclidean plane. (b) Trajectories in phase plane.

Figure 3. The mass action system {2A+ B LN 2B, B LEN A}, for any choice of rate constants, has only
weak dynamic ACR in the concentration of A. All trajectories move towards the ACR hyperplane, but do not
approach the ACR hyperplane in the limit of large time.
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/k2/(2k1). Note however, that a+b = —kja2b is negative everywhere in the positive orthant,
and so we expect b(t) to converge to 0 for most initial values. In fact, this is the case for every
initial value that is not on the weak ACR hyperplane, as a consequence of Theorem 4.2.

2.3. Relations between different forms of ACR. It is clear from the definitions that if
x; has dynamic ACR w.r.t.  with value a}, then x; has weak dynamic ACR w.r.t. Q with
the same value a;. Similarly strong static ACR w.r.t.  implies static ACR w.r.t. 2. The
static forms of ACR are also related to the dynamic forms under some mild assumptions of
existence of steady states.

Theorem 2.12. Suppose that x; is weak dynamic ACR w.r.t. Q with value a;.

1. Suppose there is an x € Q such that f(x) = 0. Then x; is static ACR w.r.t. Q.
2. Suppose for any y € H[i,a;] N there is a positive x € Q such that y — x € S¢ and
f(xz) =0. Then x; is strong static ACR w.r.t. Q.

Proof. For both cases, the static ACR property follows from observing that there cannot
be any positive steady state in '\ H[i,a]] because such a steady state violates the weak
dynamic ACR hypothesis. The additional implication of strong static ACR in the second case
is immediate from the definition. |

These relations are portrayed in Figure 4.

2.4. Some basins of interest for all forms of ACR. We discuss some basins of natural
interest and the relations between them. A basin of ACR applies to any of the forms of ACR
(static, strong static, dynamic, weak dynamic) discussed earlier.

Definition 2.13. Let P € {static, strong static, dynamic, weak dynamic}. We define various
basin types as follows.

o {z = z*} attracts Q
‘ {z =27} stable w.rt. 0 (z dynamic ACR w.r.t. Q)

H

‘ {z = z*} weakly stable w.r.t. Q }:> {z = 2™} weakly attracts {2
(z weak dynamic ACR w.r.t. Q)

‘ x strong static ACR w.r.t. Q ‘

| T static‘ACR w.r.t. ‘

Figure 4. Relations between static ACR and dynamic ACR. The implications in black follow from
the definitions. The implication in cyan requires the additional assumption of existence of a positive steady
state. The implication in magenta requires the additional assumption of existence of a positive steady state
within each compatibility class which has a nonempty intersection with the ACR hyperplane [i,aj].
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(i) Full basin P-ACR occurs when Q = RZ,. Full basin static ACR is simply referred
to as static ACR.

(ii) Subspace P-ACR occurs when = (H[i,a]]+S)NRY, for some subspace S of S
such that S € ez-L. We say full space P-ACR if we have subspace P-ACR with S = Sy.
Full space dynamic ACR is simply referred to as dynamic ACR.

(iii) Neighborhood P-ACR occurs when ) is a neighborhood H|[i, a}]. Suppose there are
some Mj > 0 for all j # i such that the neighborhood of the set {x; = a},x; > M; :
Jj # i} is a basin of P-ACR. Then we say that x; has almost neighborhood P-ACR.
(iv) Cylinder P-ACR occurs when § is a cylinder of H[i,a}]. A cylinder of H][i,a]] is
the set of points {|x; — af| < 6*} for some 6* > 0. We define almost cylinder P-ACR
when a basin of P-ACR is a cylinder of some set {x; = af,x; > M; : j # i} for some
M; > 0 for all j # 1.

(v) Null P-ACR occurs when Q = H[i,a}]. Nonnull P-ACR occurs when Q\H[i, a}] #
.

Neighborhood ACR, cylinder ACR, almost neighborhood ACR and almost cylinder ACR
are local forms of ACR. Full basin and subspace ACR are nonlocal forms of ACR. Null P-
ACR is considered to be neither local nor nonlocal. Conversely, all local and nonlocal forms
of P-ACR are nonnull.

It’s clear that if Q C €V, then P-ACR w.r.t. € implies P-ACR w.r.t. Q. Certain relations
between nonlocal forms (full basin P-ACR = full space P-ACR = subspace P-ACR
= null P-ACR), between local forms (cylinder P-ACR = neighborhood P-ACR =
null P-ACR & almost neighborhood P-ACR), and (cylinder P-ACR = almost cylinder
P-ACR = almost neighborhood P-ACR) follow from the definitions. Certain local forms
are related to subspace P-ACR as the following theorem shows.

Theorem 2.14. Let D be a dynamical system which is subspace P-ACR. Then D is (i)
almost cylinder P-ACR and (ii) neighborhood P-ACR.

Proof. Let § be a subspace of the stoichiometric space Sy such that x; is a subspace
P-ACR variable with value a]. Let v € SN (R” \ ef), ie, v = (v1,...,v,) is some vector
with v1 # 0. Let € € (0,a]) and define the almost cylinder neighborhood of H[i, a;]:

Q. = {z eRY) |21 —al| <e, 2 >5@,...,zn >€|vn|}'
|v1] v
To see z1 is P-ACR w.r.t. Q. for every € € (0,a}), we need only show that €. is contained in
HI[1,af]+span{v} which, in turn, is clearly contained in H[1, af]+S. Indeed, let z € Q.. Then
z € H[1, aj] 4+ span{v} if there is a 8 € R such that z — fv € H[1,a]]. Let B := (21 — a})/v1.
Then

z1—at z1—at
z— fv= <a’{,22— 1U2,...,Zn— 1vn>.
U1 U1
For j € {2,...,n},
21— aj alul vl
Vil = |21 —— <e—— <
vy J | 1 "U1| |U1| 70
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Non-local P-ACR

Full basin P-ACR

Local P-ACR ‘Full space P-ACR ‘

Subspace P-ACR

Cylinder P-ACR

Almost cylinder P-ACR ‘ Neighborhood P—ACR‘

/

Almost neighborhood P-ACR |

Null P-ACR

Figure 5. Relations between basin types. Let P € {static, strong static, dynamic, weak dynamic}. The
basin type implications are based on the observation that if Q C Q', then P-ACR w.r.t. ' implies P-ACR
w.r.t. ..

which shows that all components of z — Sv are positive and the first component is aj. This
proves the almost cylinder property where the almost cylinder is €2, for any ¢ € (0, af).

Let  := Ug»08. It is clear that Q is contained in H[1, a}]+S and that € is a neighborhood
of H[1,a}]. This shows that x; is neighborhood P-ACR. [ ]

The relations between P-ACR with different basin types are depicted in Figure 5.

2.5. Some examples of systems with local dynamic ACR.

1. Almost cylinder ACR/Neighborhood ACR/Weak cylinder ACR. Consider the reaction
network shown in Figure 6(a).

(a.) For the mass action system defined by k1 = 6,ko = 11, k3 = 6,k4 = 1, the positive
steady states form three distinct rays, a = 1, a = 2, and a = 3. Therefore, a is a
cylinder static ACR variable with multiple ACR values {1,2,3}. It is easily checked
(see simulated trajectories in Figure 6(b)), that only a = 2 is locally stable within
each compatibility class. The maximal cylinder which forms the basin of attraction
for {a = 2} has radius 1.

(b.) For the mass action system defined by k1 = 1,ks = 3,k3 = 3,k4 = 1, all positive
steady states lie on {a = 1}. Moreover, the positive steady states are repelling. It
follows that a is a (global) static ACR variable but not a local dynamic ACR variable.

(c.) For the general case, the system of mass action ODEs is

a = —ab(k1 — koa + kza® — kga®), b= ab(k; — kya + kza® — kga®).

The univariate polynomial k; — ksa + ksa® — kqa® must have at least one positive,
real zero. Moreover, when there are multiple positive zeros, say a* and a**, clearly
there are nonintersecting cylinders that contain the sets {a = a*} and {a = a**}.
This shows that A is a local static ACR species, i.e., for any choice of mass action
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1
Local Static ACR
2 == Local Dynamic ACR
' — Trajectory
8
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=]
2
5
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8
=
[}
S
05 -
4 \‘
T - e
Concentration of A
(a) Reaction network embedded in Euclidean plane. (b) Trajectories in phase plane.

Figure 6. The mass action system of the reaction network (A + B LN 2B,2A+ B LEN 3A,3A+ B LEN

2A+2B,4A+ B LEN 5A). For the rate constants k1 = 6,ke = 11, k3 = 6,ka = 1, a is a local static and dynamic

ACR variable. There are three local static ACR values, a = 1,a =2, and a = 3. Only a = 2 is a local dynamic
ACR value.

1
Local Static ACR
~Local Dynamic ACR
»—Trajectory

Concentration of B

o 05 1

15 2 25
. . . Concentration of A
(a) Reaction network embedded in Euclidean

plane.. (b) Trajectories in phase plane

Figure 7. The mass action system of the reaction network (A + B LEN 2B, B LN A3A+ B LENEYY +

2B,2A+ B k—3> 3A). For the rate constants k1 = 6,k2 = 11,ks = 6,ks = 1, a is a local static and dynamic
ACR wvariable. There are three local static ACR values, a = 1,a = 2, and a = 3, of which a =1 and a = 3 are
local dynamic ACR wvalues.

306 kinetics, a is a local static ACR variable. In some cases, ¢ may be a global static
307 ACR variable. However, A is not a local dynamic ACR species as there is a choice of
308 rate constants for which a is not a local dynamic ACR variable. In other words, the
309 reaction network has capacity for local dynamic ACR and is local static ACR (see
310 Definition 3.1 for meaning of ‘capacity’).

311 2. Multiple ACR wvalues in almost cylinder ACR. Consider the reaction network shown
312 in Figure 6(a).

313 3. Neighborhood ACR but not almost cylinder ACR. Consider the mass action system

314 shown below:
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ACR value
= Trajectory

Concentration of B

L L L
0 1 2 3 4 5 6 7 8

Concentration of A

Figure 8. Neighborhood ACR but not cylinder ACR. Trajectories of the mass action system in (2.2). An
example of a mass action system which, in the concentration of A, (i) has neighborhood ACR as the strongest
local ACR property, (ii) has half ACR as the strongest nonlocal ACR property, but (iii) does not have cylinder
ACR. For any initial value of a(0) =1+ ¢ for some € > 0, there is a b(0) large enough such that the trajectory
moves away from the ACR line.

[
A+ B 524, 2A+ B1|l=A+2B,
(2.2) 2A+2B 2% A+3B, 3A+2B5 44+ B.

The resulting mass action system when taken with inflows is

a=ab(l—a)(1—(a—1)b)+ ga,
b=—ab(1—a)(1—(a—1)b)+ g
Some trajectories are shown in Figure 8 for the case of g, = 0.1 and g, = 0. Any
initial value to the left of the ACR hyperplane converges to the ACR hyperplane, but

for every initial a value to the right of the ACR hyperplane, there is a large enough b
value such that the trajectory does not converge to the ACR value.

2.6. An example of a system with subspace (but not full space) dynamic ACR. The
following example illustrates the need for defining subspace ACR.

1. Subspace ACR and Cylinder ACR. Consider the following mass action system:
A+B* 3B B A,
which defines the ODE system
a=b(ky — kia), b= —b(ky — 2k,a).

As long as b(t) remains positive, a(t) will move towards a* = ka/k;. Since the sto-
ichiometric subspace is all of R?, dynamic ACR requires every positive initial value
to converge to a*. This condition is not satisfied since, as trajectories in the bottom
left corner of Figure 9(b) show, there exist initial conditions which converge to the
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L)\

——ACR value
Not S-compatible
— Trajectory

3

! :
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6
Concentration of A

Concentration of B

(a) Reaction network embed-
ded in Euclidean plane. (b) Trajectories in phase plane.

Figure 9. The mass action system {A + B LN 3B, B LEN A} is subspace dynamic ACR. For any choice
of rate constants, all initial values that are S-compatible, where S = span{(—1,1)} with the ACR hyperplane
converge to the ACR hyperplane.

b = 0 boundary and not to the ACR hyperplane. However, if we define 2 to be
{a = a*} + span{(—1,1)}, then a is dynamic ACR w.r.t. . Thus, a is subspace
(dynamic) ACR.

3. Classification of minimal static and dynamic ACR networks. We consider networks
of small size, ones with at most two reactions and at most two species. For such networks, we
can catalogue many ACR properties. Some of these networks have archetypal ACR dynamics.
The study of minimal, archetypal motifs is valuable because it may reveal the underlying
principles at play in the dynamics of more complex networks.

Definition 3.1. Suppose that (G, K) is a mass action system resulting from the reaction
network G, where K denotes the specific choice of mass action rate constants. Let P € {static,
strong static, dynamic, weak dynamic, wide basin dynamic, narrow basin dynamic, full basin
dynamic}.

o We say that G has capacity for P -ACR if there is a K such that the mass action
system (G, K) is a P -ACR system.

o We say that G is a P-ACR network if (G,K) is a P-ACR system for all choices of
K.

o We say a species X in a network G is a P-ACR species if the concentration of X is
a P-ACR wvariable in (G, K) for all choices of K.

3.1. Static and dynamic ACR for reaction networks with only one reaction or only one
species.

Theorem 3.2 (static and dynamic ACR in one-reaction networks). A network with n >
1 species and only one reaction is neither static nor dynamic ACR for any choice of rate
constants.

Proof. A network with only one reaction has no positive steady state and is therefore
not static ACR. Such a network is also not dynamic ACR since for each i € {1,...,n}, &; is
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either strictly positive in the entire positive orthant, or strictly negative in the entire positive
orthant, or identically zero in the entire positive orthant. Therefore, either z; goes to infinity,
to zero, or &; = 0. In every case x; fails to be a dynamic ACR variable. |

Theorem 3.3 (static ACR in one-species networks). Let G be a network with (one)species
and arbitrary number of reactions. The following are equivalent:

Al. G has the capacity for static ACR.
A2. (G, K) has a unique positive steady state for some K.
The following are equivalent:

B1. G is static ACR.
B2. (G, K) has a unique positive steady state for every choice of K.

Proof. The results follow immediately from basic properties of one-dimensional dynamical
systems. |

Theorem 3.4 (dynamic ACR in one-species networks). Let G be a network with one species
and arbitrary number of reactions. The following are equivalent:

Al. G has the capacity for weak dynamic ACR.

A2. G has the capacity for dynamic ACR.

A3. (G,K) has a unique positive steady state for some K, and this steady state is
globally attracting.

A4. (G, K) is full basin dynamic ACR for some K.

The following are equivalent:

Bl1. G is weak dynamic ACR.
B2. G is dynamic ACR.
B3. For every choice of K, (G, K) has a unique positive steady state, and this steady

state is globally attracting.
B4. (G, K) is full basin dynamic ACR for every K.

Proof. The results follow immediately from basic properties of one-dimensional dynamical
systems. m

Many examples of one-species networks along with their ACR properties are shown in
Table 1.

3.2. Reaction networks with two reactions and two or fewer species: Notation. We
now classify reaction networks with two reactions and two species. We start by defining
notation that will be used in the rest of the section. See Figure 10 for a geometric rendering
of a reaction network, and how it relates to the notation. Let G be a reaction network with
at most two species (X,Y’) and the following two reactions:

(3.1) a X +0Y k—1> a1 X +31Y, as X + bY k—2> as X —i—EQY,

where ai,bi,ai@ € R>p and (Zi,;,gi) # (ai,b;) for ¢ € {1,2}. Although stoichiometric coeffi-
cients are usually integers, we allow real values here since the results remain unchanged under
this generality. The labels k1 and ko are mass action reaction rate constants, and are therefore
positive reals. Let
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Table 1
Subnetworks of 0 = A,2A = 3A show diverse behaviors when cataloged according to capacities for static
and dynamic ACR and according to whether the network is static or dynamic ACR. The diversity illustrates
the range of possibilities even for one-species networks.

Arrow Capacity for Is network  Capacity for Is network
Network diagram static ACR? static ACR? dynamic ACR? dynamic ACR?
0—- A — No No No No
0=A —, Yes Yes Yes Yes
0— A 2A >34 —,— No No No No
0—>A 24+ 34 — +— Yes Yes Yes Yes
0+ A 2A —3A +—, — Yes Yes No No
0+ A, 2A«+ 3A «—,«— No No No No
2A = 3A — Yes Yes Yes Yes
0=2A,24A >34 —,«—,—> Yes No No No
0= A, 2A+ 34 — «—,«— Yes Yes Yes Yes
0—>A2A234A —, —, Yes Yes Yes Yes
0+ A2AZ23A +—, — Yes No No No
0=2A,2A23A «—,—,«—,—> Yes No Yes No

61 — ail 62 — ag
2 = = | ~ = | ~
(3.2) S span{vl <b1—b1>’v2 <b2_b2>}

be the stoichiometric subspace of G. The mass action dynamical system (G, K) explicitly is
i = ky(ay — a1)z®y" + ko (@ — ag)z®y>,

(33) . T a1, by 7 as, ba
Yy = kl(bl — bl)LL‘ Y+ k‘Q(bQ — bg).%' Y2,

3.3. Static ACR for reaction networks with two reactions and two or fewer species.
Theorem 3.5 (static ACR in networks with two reactions and two or fewer species). Let G be as
in (3.1)=(3.3). The following are equivalent:

1. G has the capacity for static ACR.
2. G is static ACR.
3. G is strong static ACR.
4. e the two source complexes are different: (a1,b1) # (a2, b2),
o the source complexes share a common coordinate: (az — ay)(b2 —b1) =0, and
e reaction vectors are negative scalar multiples of each other: vy = —uve for some
>0 (in particular, dim(S) = 1).
Furthermore, the following hold when G has two species and is static ACR:
e Lither X or Y, but not both, is a static ACR species.
e X is an AQR species if as # ai. The wvariable x has the static ACR wvalue

(k2/(pky)) ===z
o Y is an AQ’R species if by # by.  The wvariable y has the static ACR value

(ka/(puk))rr=re.
Proof. (3 => 2 = 1) holds by definition. We now show that (1 = 4). Suppose

that v1 # —pwvse for any p > 0, then there are no positive steady states for any choice of mass
action rate constants and so G does not have the capacity for static ACR.
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N (@1,b1)

al ZL/1

X

Figure 10. A reaction network with two reactions and at most two species X and Y can be depicted as
a pair of arrows embedded in the Euclidean plane ]R2>0 The red arrows depict reactions and the green line
segment joining the two source complezes is the reactant polytope of a network with two reactions. The arrow
from (a1,b1) to (al,bl) portrays the reaction a1 X + Y — a1 X + b1Y. The label ki is the mass action rate
constant of this reaction. The form of ACR, static or dynamic, as well as basin type can be decided based on
the geometry of the three objects appearing in this figure: the reactant polytope and the reaction arrows.

S~

Figure 11. Motifs that do mot have the capacity for static ACR. A reaction network does mot have the
capacity for static ACR if the source complexes of the two reactions are the same, or if both coordinates of the
source complexes are different, or if the reaction vectors do not point in opposite directions. See Theorem 3.5
for precise conditions.

Now assume that v; = —pwy for some p > 0. Then the mass action system is
. ~ ai, b 1 as, b . T ai, b 1 az, b
(34) i=(a1—a1) | krix™y™ — ;kgm 22 ), y= (b —b) | kiz™y™ — ;/{72.%' 2”2 ).
If (a1,b1) = (az,b2), then
T = (a1 — al) <k1 — k2> bl Y= (51 — bl) <k1 — k2> bl

If k1 = ko/p, then every positive point is a steady state and so the system is not static ACR.
If k1 # ko/p, then at least one of & or g is either positive on all of ]R2>0 or negative on all of
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]R2>0. But then there is no positive steady state. So G does not have the capacity for static
ACR.
From (3.4), steady states must satisfy

a2

3.5 T
(3.5) y i

=: k.
Now suppose that 0 € {a2 — a1,b2 — b1 }. From (3.5), we see that

(zs,y8) = <(kﬁ)1/(a1—az)’ﬂ—l/(bl—bQ))

is a steady state for every 5 € Rsq. In particular, two distinct choices of 5 result in distinct x
and y components in the two steady states. This implies that neither variable is static ACR
for any k. So G does not have the capacity for static ACR.

Finally, we show that (4 = 3). Assume, Without1 loss of generality, that ag —a; # 0
and be — b; = 0. From (3.5), we have that z = k* := k+1—+2 at steady state, which shows that
the system is static ACR and =z is the static ACR variable. Since this is true for every choice
of mass action rate constants, G is static ACR and X is a static ACR species. Every point on
the hyperplane H[x, k*] is a steady state which shows that X is strong static ACR.

It is clear that the roles of species X and Y are reversed if we assume that as = a1 and
bs # b1, which proves the claims about the species Y. |

Conditions for static ACR in reaction networks with 2 reactions and 2 or fewer species
have also been studied in [18].

3.4. Network motifs and their embeddings. Similar to static ACR, we will show that
dynamic ACR is a network property. If a network has the capacity for dynamic ACR, then it
is dynamic ACR. Moreover, whether a network has the capacity for dynamic ACR depends
only on its topology and not on the specific embedding in the Euclidean plane. We refer to
such a class of networks as a motif. A network motif in two dimensions is determined by (i)
slope of the reactant polytope, (ii) the quadrant or axis each reaction points along, and (iii)
the relative slopes of the two reactions. We demonstrate the relation between a network motif
and its multiple embeddings via an example in Figure 12.

3.5. Dynamic ACR in static ACR networks with two reactions & two or fewer species.

Theorem 3.6 (dynamic ACR in static ACR networks with two reactions & two or fewer species).
Let G be as in (3.1)—(3.3), and suppose that dim(S) = 1. The following statements are
equivalent:

Al. G has the capacity for weak dynamic ACR.
A2. G is weak dynamic ACR.
A3. G is full basin weak dynamic ACR.
A4. G has the capacity for dynamic ACR.
A5. G is (full space) dynamic ACR. N
A6. G is static ACR and (a1 — a1)(az — a1) + (b1 — b1)(b2 — b1) > 0.
Now, suppose that G has two species and is dynamic ACR. Then either X or Y, but not
both, is a dynamic ACR species. Furthermore, the following statements are equivalent:
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(a) Motif.
2B A+2B A+ 2B
} A+ B
0 A 0 34
(b) Embedding 1. (¢) Embedding 2.

Figure 12. A network motif (on top) and two of its embeddings (bottom row).

Bl. X is a dynamic ACR species.
B2. X is a static ACR species.
B3. a9 7& aj.
e When X is a dynamic ACR spelcies, the dynamic ACR value of the variable x = the
static ACR wvalue of x = (%)m
Analogous statements to B1-B3 and the statement about ACR value hold when X is re-
placed with Y, and a; is replaced with b; for i € {1,2}.

Proof. (A3 = A2 = Al) and (A5 = A4 = Al) hold by definition.

We now show that (A1 = A6 — A5, A3). Suppose that G has the capacity for weak
dynamic ACR. From properties of one-dimensional dynamical systems, it is clear that G has
the capacity for static ACR. From Theorem 3.5, G is static ACR and one of the two (but not
both) is a static ACR species. Assume that X (and not Y') is the static ACR species. Then

by = by, ag # a1, and z are static ACR with value x* := (ko/(pk1))*1—22. Next, we have that
. ~ b1 .a 1 az—a
= (a; —ay)yta™ <k1 — —koz® 1> .
1

Clearly, the steady state z* is stable if and only if (a; —a1)(a2 —a1) > 0. If we assume instead
that Y (and not X) is the static ACR species, we get the stability condition (51 —b1)(ba—b1) >
0. The desired inequality in A6 is obtained by combining the two stability conditions, since it
is always the case that one term in A6 is positive and the other term is zero which shows that
(A1 = A6). Since a unique (within a compatibility class) steady state that is stable must
be globally stable for a one-dimensional system (i.e., attracts all compatible positive points),
we also have that (A6 = A5). Moreover, the initial values that are not compatible with the
hyperplane of steady states {x = x*} also result in trajectories that move towards {z = z*}
but converge at a boundary steady state. This gives full basin weak dynamic ACR, so we

have also proved that (46 =— A3).
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The last part also shows that when G is dynamic ACR, then (B3 — Bl — B2) and
(B2 = B3) are from Theorem 3.5. The statement about the dynamic ACR value of x also
follows from the last part. Clearly, the assumption that as = a1 and be # by will switch the
roles of X and Y and give analogous statement for species Y. |

Theorem 3.7 (wide basin dynamic ACR in two reaction, two or fewer species networks with
dim(S) =1). Let G be as in (3.1)—(3.3). Suppose that dim(S) =1 and G is dynamic ACR.

1. The dynamic ACR species is wide basin if and only if (a3 — a1)(by —by) <O0.

2. The dynamic ACR species is full basin if and only if (a1 —ay1)(by —b1) = 0.

Proof. Since G is dynamic ACR and dim(S) = 1, by Theorem 3.6, G is static ACR. By
Theorem 3.5, v1 = —uwe for some p > 0, so that the mass action system can be written as in
(3.4). This implies that (b — b1)i — (@1 — a1)y = 0, and so two points (z*,4*) and (2o, yo)
are compatible if and only if

(b1 = b1)z" — (a1 — a1)y™ = (b1 — b1)zo — (a1 — a1)yo

(36) <~ (bl — bl)(l’o — x*) = (61 — al)(yo — y*).

Since at least one of a; — a1 or 31 — by must be nonzero, the above implies that sgn((xg —

z*)(yo —y*)) = sgn((by —b1)(a1 —a1)), where sgn is the sign function that has range {4, —, 0}
and is defined via

+ if 2 >0,
sgn(z) =< — if 2 <0,
0 if z=0.

We will assume, without loss of generality, that X is the dynamic ACR species, so that for a
particular choice of K, x is the dynamic ACR variable with ACR value k* that depends on
K.

Suppose that sgn((by — by ) (a1 —a1)) = +. Then a := (a; —ay)/(by — b)) > 0. From (3.6),
(0, yo) is compatible with (z*,y*) if and only if 29 — 2* = a(yp — y*) with o > 0. Any initial
value (x,yo) with z¢ > k* 4+ ayo is incompatible with {z = k*}. To see this, note that

xo— k" > ayo > alyo — y).

Clearly, x( is not bounded above on the incompatible set {xg > k* + ayo}, so in this case x
is a narrow basin dynamic ACR variable for any choice of K. In other words, X is a narrow
basin dynamic ACR species.

Now suppose that sgn((b; — b1)(a1 — a1)) = 0. Since x is the dynamic ACR variable,
bs = b1. By condition in the previous part, a; # a1 and so by = by. In particular, y = 0 and
every positive initial value is compatible with the set {x = k*}. So x is a full basin dynamic
ACR variable for every K. In other words, X is a full basin dynamic ACR species.

Finally, suppose that sgn((b; — b1)(a1 — a1)) = —. In this case, xg — 2" = —B(yo — ¥*)
with 8 = —(a; —a1)/(by — b1) > 0. Any initial value (z¢, yo) with 2o+ Byo > k* is compatible
with {x = k*}. To see this, let
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y" = (zo+ Byo — k7)/B > 0.
Then (xg,y0) is compatible with (k*,3*). So z is a wide basin dynamic ACR variable for

every K. In other words, X is a wide basin dynamic ACR species. The only remaining thing
to show is that X is not full basin. Let (zo,yo) := (k*/4,k*/(48)) € R%,. Then,

xo + Byo = k*/2 < K* < k" + By”,

and so (g, y0) is not compatible with {x = k*}. _
This completes the proof since we have covered the entire range of sgn((by — b1)
(a1 — a1)). u

The results of Theorems 3.5-3.7 can be translated into a pictorial representation using the
idea of motifs (see Figure 13). There are eight distinct motifs, each has two reactions depicted
with red arrows. The reactants are connected by a green line segment, the reactant polytope
of the reaction network. See [16] where this representation for networks with two reactions
was used to identify the multistationarity property. An upward pointing arrow indicates a
reaction of the type mY — nY for some n > m. An arrow pointing towards the northwest
indicates a reaction of the type a1 X +b1Y — a9 X + boY with ao < a1 and by > b1, and so on.

4. Dynamic ACR in networks with an invariant hyperplane. We now consider networks
with two reactions and two or fewer species and allow the stoichiometric space to have either
dimension 1 or 2. With dimension 2 or higher, there is a possibility of oscillatory solutions.
However, it is easy to see that at least three reactions are required for such solutions (see also
[21]). It is worth mentioning in passing that for general reaction networks, oscillations are
compatible with both static and dynamic ACR. An example of a mass action system with three
reactions that has oscillations and static ACR in both species is the classic Lotka—Volterra
system (A — 24, A+ B — 2B, B — 0); see [13] for a discussion on this. The same paper
[13] also features an example with oscillations and dynamic ACR, but it requires six reactions
and a three-dimensional stoichiometric subspace. When a network with two reactions and two
species has static ACR, every point on the hyperplane H[z, z*] is a steady state. A natural
generalization of this property is to consider the family of networks for which the hyperplane
H[z, z*] is invariant. For dim(S) = 2 networks, static ACR is ruled out by results from the
previous section but dynamic ACR is still possible.

Theorem 4.1. Let (G, K) be as in (3.1)—(3.3).
1. There is a unique x* > 0 such that H]z,z*] is invariant if and only if by = b1, as # a1,
and (51 — al)('dg — ag) < 0.
2. There is a unique x* > 0 such that H|x,z*| is globally weakly attracting if and only if
Hxz, z*] is globally weakly stable if and only if by = by, ag # a1, (a1 —a1)(az —az) < 0,
and (a2 —ay)(ay —ay) > 0.

Proof. The condition that 0 = &|,—,- is equivalent to
(4.1) 0= k1(a1 — ar) + ka(az — ag)(x*)%2 @yl =br,

For any z = x*, the equation is an identity if a1 = a1 and a2 = ao. So assume that this is
not the case. It is clear that there is a unique positive z* for which (4.1) holds if and only if
a9 75 ai, by = bl, and (61 — al)('dg — ag) < 0.
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Static
ACR

Motifs

Wide basin
dynamic

ACR

Figure 13. Network motifs with two reactions and one—dimensional stoichiometric subspace that show
static ACR. The three network types in the magenta ellipse are dynamic ACR, the two network types in the
smaller cyan ellipse are wide basin dynamic ACR, while the one network type in the smallest teal ellipse is full
basin dynamic ACR. In each of the networks, the static ACR species is X, which is on the axis parallel to the
reaction polytope.

For the second part, it suffices to assume that as # aq, by = b1, and (a3 —aq)(as —ag) <0
because otherwise H[z, z*] is not invariant and so is not globally weakly attracting. Further,
we may assume that as > aq, possibly after relabeling of reactions. With these assumptions,
the original dynamical system D in (3.3) has the same trajectories as the following dynamical
system D’

(4 2) T = kl(al — (11) + k‘z(ag — ag)l'az_al,

. y= kl(gl —b1) + kQ(EQ — bg)x®2 T,
Note that the x equation is autonomous and does not have a y-dependence. So a solution to
the x equation exists for all time ¢ € [0,00). If @1 < a; and az > ag, then the z-component
of the trajectories moves away from z* monotonically and so x* is not weakly attracting. If
a1 > ay and ay < ag, then the x-component of the trajectories moves towards x*. This proves
the second part. [ ]
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Theorem 4.2. Let (G,K) be as in (3.1)=(3.3). Suppose that Hlx,x*| is globally weakly
attracting for some x* > 0. Denote by o; the slope of the reaction vector v;, i € {1,2}:

1. a(t)  Hlr,a] for any (2(0),(0)) & Hlz, "] if (@ — a)(o2 — 1) < 0.

2. x(t) — Hz,z*] for every ((0),y(0)) € H|[z,z*| + span{va} if (a2 —a1)(o2 —o1) > 0.

3. z(t) = H[z,z*] for every initial value in some cylindrical neighborhood of H|x,x*| if
(ag—al)(ag—al) > 0. _ _

4. Hlz, z*] is globally attracting if and only if by > by and by > ba.

Proof. From the proof of Theorem 4.1, the dynamical system D is equivalent to D’ in
(4.2) with ag > a1, a1 > a1, and a2 < az. Note that for D', 2 — 2* and © — 0 asymptotically.
In particular, |y| is bounded for every initial value. This means that the solution to the
dynamical system D’ exists for all nonnegative times for every initial value in ]R2>0.

Now, the y equation may be written as -

(43) Y= 1{21(51 — al)(O'Q — 0'1) + o9.

If o9 = o1, then every trajectory converges to some steady state, and this positive steady
state is on H[z,z*] when the initial value is compatible with H[z,z*]. If oy # o1, then
after some finite time y is bounded away from 0 and sgn(y) = sgn(o2 — o01). In particular,
for o9 < o1, y(t) reaches 0 in finite time. Therefore, the trajectory fails to converge to
Hlz,z*] for any positive initial value not on H[z,z*]. On the other hand, if o2 > oy, then
Yy > o9& everywhere in ]R2>0. When ¢ = o094, we have convergence to H[z,z*] for every
(2(0),y(0)) € H]zx,z*] + span{va}. So it follows that when y > o9&, after a finite time, the
trajectory enters a cylinder C, with € such that ¢ > k(a1 —a1)(02—01)/2 within C.. Moreover,
every trajectory with an initial value in C. must converge to the hyperplane H[z,z*]. This
completes the proof of points 1-3.

If by > by and bg > bo, then it is immediate from (4.2) that ¢ > 0 everywhere in R2>0 and
so H[z,z*] is globally attracting. To show the converse, suppose first that 51 < by. There is a
§ > 0 such that for {(z(0),y(0)) € RZ, : 2(0)? + y(0)? < %},  is negative and bounded away
from zero. So such a trajectory reaches the y = 0 boundary and fails to converge to H[z, z*].
A similar argument works for be < be, where we can choose an initial z(0) sufficiently large
and an initial y(0) sufficiently small. Thus in either case H |z, z*] is not globally attracting. M

Theorem 4.3. Let G be as in (3.1)—~(3.3). Suppose that X is subspace dynamic ACR but
not full basin dynamic ACR. Then the following hold:

1. X is a wide basin dynamic ACR species if and only if (b; — b;)(a; —aj) > 0 for
i#je{l,2}.

2. X is a narrow basin dynamic ACR species if and only if (51 —bi)(a; —aj) <0 for
i#je{l,2}.

Proof. Since X is subspace dynamic ACR, (ag —a1)(02 —01) > 0 by the previous theorem.
We may assume that as > ay, 03 > al,jil > ay, and as < as. The condition in the first
statement is equivalent to by < by and by > bg, i.e., 09 < 0. This means that the set of
points incompatible with #[x, z*] is to the left of the hyperplane and therefore the condition
is equivalent to wide basin dynamic ACR. A similar argument in the second case shows
equivalence with g9 > 0 and therefore with narrow basin dynamic ACR. |



603
604
605

606
607

624
625

626
627
628

629

630

REACTION NETWORK MOTIFS FOR STATIC AND DYNAMIC ACR 23

5. Summary of ACR properties for networks with two reactions and at most two
species. The following theorem is a summary of the main results on the different ACR prop-
erties in networks with two reactions and at most two species.

Theorem 5.1. Let G be a reaction network with two species {X,Y} and the following two
reactions:

(5.1) ar X +b0Y ﬁ) a1 X +E1K asX + bY k—2> as X +52Y,

where ai,bi,’di,gi € R>p and (Ei,gi) # (a;,b;) for i € {1,2}. The labels k1 and ko are mass
action reaction rate constants, when considering a mass action system (G, K).

1. A necessary and sufficient condition for the existence of a unique invariant hyperplane
H parallel to a coordinate axis is that the reactant polytope be a line segment parallel to
the other coordinate axis. In particular, (a1,b1) # (a2,b2) and (az — a1)(ba — b)) = 0.
Suppose that G has a unique invariant hyperplane H parallel to a coordinate axis. Then
the following hold:

2. G has the capacity for P-ACR if and only if G is P-ACR, where P € {static, strong
static, dynamic, weak dynamic}, i.e., the P-ACR properties are independent of choice
of rate constants.

3. We use the convention 0-(1/0) = 0 in the following expressions.

(a) G is static ACR if and only if G is strong static ACR if and only if dim(S) =1 and
reaction vectors are negative scalar multiples of each other: a1 —ay = —p (ag — ag)
for some p > 0.

(b) H is weakly attracting if and only if both reactions point inwards:

(Ei—ai)(aj—ai)—i—(bi—bi)(bj—bi) > 0, Z#]E {1,2}.

(¢) G is nonnull dynamic ACR if and only if G is subspace dynamic ACR if and

only if
b —bi ai — a;
> {(aj—an (_) + (b b <5_b>} >0,

i#je{1,2}

Suppose that neither & nor y is identically zero, or equivalently (a1,a2) # (a1, az)
and (bl,bz) 75 (bl,bQ).
(d) G is cylinder dynamic ACR if and only if

5 forma (2] 0o (222 |0

i#je{1,2}

(e) G is full basin dynamic ACR if and only if

(a; — a;) (f_b> + (b; — by) <§_“> >0, i#je{l,2}

a; — Q4 b; — b;
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4. For all the above networks with P-ACR, we have the following:
e FEither X or Y, but not both, is an P-ACR species. - )
o X is an P-ACR species if az # ai. The variable x has the P-ACR value (—M) a1-az

klial—al) .
o Y isan P-ACR species if by # bi. The variable y has the P-ACR value (—%) b1t
A pictorial representation of these results is shown in Figure 14.
Full basin
Full basin  pacRr Full basin
DACR i\ 5 DACR
Full basin é 5 z LE Full basin
DACR : 2 DACR
Cylinder DACR ) Cylinder DACR
Wide basin Network motifs Narrow basin
subspace DAC with weakly stable suybspace DACR
é hyperplane {x = z*}
Neighborhood & Neighborhood &
Almost Cylinder Almost Cylinder
Wide basin Fuﬁ b‘s‘sin Narrow basin
full space DACR DACR ‘ull space DACR

Null DACi: 3:11111 DACR

Null DACR < ? W S 7 Null DACR

Null DACR Null DACR
Null DACR

Figure 14. wd Motifs of weak dynamic ACR. There are 17 motifs of weak dynamic ACR with two
reactions and two or fewer species. A necessary and sufficient condition for weak dynamic ACR (as well as
weak full basin dynamic ACR) is that the reactant polytope be parallel to the axis of the ACR variable (green line
segment) and both reactions point inwards. Of these motifs, 16 are placed on the circumference of a circle with
coordinates 0 = nw/8,n € {0,1,...15}, while one motif is placed at the center of the circle. The two arrows
make the same angle with the reactant polytope for the motifs at § = nw/2,n € {0,1,2,3} (the four cardinal
directions—north, south, east, and west). For 6 € nw/8,n € {0,1,2,3,4} (northeast quadrant of the picture),
the left arrow is fized in the northeast quadrant while the right arrow rotates southwards moving southwards
along the picture. Similarly, in the northwest quadran, the right arrow is fized in the northwest quadrant; in
the southwest quadrant the left arrow is fized in the southeast quadrant; and in the southeast quadrant the
right arrow is fized in the southwest quadrant. The figure of motifs is invariant under reflection and under
rotation around the central vertical axis. The figure is also invariant under a combination of reflection around
a central horizontal axis and rotation of each motif around the azis of that motif. The central horizontal band
—uwith the motifs at 6 = 0,7 on the circumference and the motif at the center of the circle—have dim(S) =1
while the rest have dim(S) = 2. The motif at the center of the circle can have an embedding with either one
or two species (the second species remaining dynamically unchanged), an embedding of every motif on the
circumference requires two species. Each motif is labeled with its strongest local ACR property (in magenta) as
well as its strongest nonlocal ACR property (in cyan). Null ACR is labeled in (in olive). Moving northwards
along the circumference of the circle, the motifs have stronger local and nonlocal ACR properties.
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6. Discussion and future work. In this paper, we have established that for small networks,
the Euclidean embedding (or geometric structure) of a reaction network can yield deep insights
into the dynamics of the mass action ODE system. In particular, when there are only two
reactions and at most two species, the reactant polytope (the line segment joining the two
reactant complexes) is required to be horizontal or vertical for any type of ACR property.
Some of the networks with two reactions that appear in this paper do show up in applications.
For instance, the archetypal wide basin ACR network in 2(a) can be thought of as a simple
model of infectious disease dynamics (SIS model). The reaction A + B — 2B represents
an infective individual B infecting a susceptible individual A, while the reaction B — A
represents recovery from infection. One may also interpret this model as a protein with two
alternate conformations A and B with the spontaneous transition B — A, while the transition
A — B is catalyzed (or promoted) by B. However, most biochemically realistic networks are
significantly more complex with several reactions and species. Even though ACR can be found
in higher-dimensional systems, we do not expect that there will be such simple characterization
of their ACR properties. However, our work suggests that it may be fruitful to study the link
between the geometry of reactant polytopes and dynamics of ACR systems further. Moreover,
we do expect that small motifs that are embedded within large and complicated networks may
affect the overall dynamics. Our future goal is to understand such effects.

The small motifs studied in this paper also serve as test cases for various dynamical
behaviors. For instance, a surprising possibility revealed from the study of small motifs was
that of weak dynamic ACR, where every trajectory monotonically approaches a hyperplane
while simultaneously failing to converge (see Figure 3(b)).

In future work, we study dynamic ACR in more complex, biochemically realistic systems
such as bacterial two-component signaling systems, a class that encompasses several thou-
sands of systems [1, 6, 2, 7, 24, 25]. Moreover, we study consequences of dynamic ACR. We
plan to show that dynamic ACR, i.e., the property of robustness against variations in initial
conditions, surprisingly leads to other much more robust dynamical properties with stronger
implications for biochemical systems with dynamic ACR.

Acknowledgments. We thank the referees for careful reading and helpful comments.

REFERENCES

[1] U. ALoN, An Introduction to Systems Biology: Design Principles of Biological Circuits, CRC Press, 2019.

[2] U. ALoN, M. G. SURETTE, N. BARKAI, AND S. LEIBLER, Robustness in bacterial chemotazis, Nature,
397 (1999), pp. 168-171.

[3] D. F. ANDERSON, D. CAPPELLETTI, AND T. G. KURTZ, Finite time distributions of stochastically modeled
chemical systems with absolute concentration robustness, SIAM J. Appl. Dyn. Syst., 16 (2017), pp.
1309-1339, https://doi.org/10.1137/16M1070773.

D. F. ANDERSON, G. A. ENCISO, AND M. D. JOHNSTON, Stochastic analysis of biochemical reaction
networks with absolute concentration robustness, J. R. Soc. Interface, 11 (2014), 20130943.
[5] M. BANAJIL, Inheritance of oscillation in chemical reaction networks, Appl. Math. Comput., 325 (2018),
pp. 191-209.
. BARKAI AND S. LEIBLER, Robustness in simple biochemical networks, Nature, 387 (1997), pp. 913-917.
. BATCHELOR AND M. GOULIAN, Robustness and the cycle of phosphorylation and dephosphorylation in
a two-component regulatory system, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 691-696.

[8] D. CAPPELLETTI, A. GUPTA, AND M. KHAMMASH, A hidden integral structure endows absolute concen-
tration robust systems with resilience to dynamical concentration disturbances, J. R. Soc. Interface,
17 (2020), 20200437.

=
o 2


https://doi.org/10.1137/16M1070773

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

26

BADAL JOSHI AND GHEORGHE CRACIUN

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
21]
[22]
[23]
[24]
[25]

[26]

G. CrACIUN, B. JosHi, C. PANTEA, AND I. TAN, Multistationarity in Cyclic Sequestration- Transmutation
Networks, preprint, https://arxiv.org/abs/2110.13975, 2021.

J. P. DEXTER, T. DASGUPTA, AND J. GUNAWARDENA, Invariants reveal multiple forms of robustness in
bifunctional enzyme systems, Integr. Biol., 7 (2015), pp. 883-894.

J. P. DEXTER AND J. GUNAWARDENA, Dimerization and bifunctionality confer robustness to the isocitrate
dehydrogenase regulatory system in Escherichia coli, J. Biol. Chem., 288 (2013), pp. 5770-5778.

B. JosH1, Complete characterization by multistationarity of fully open networks with one non-flow reac-
tion, Appl. Math. Comput., 219 (2013), pp. 6931-6945.

B. JosHi AND G. CRACIUN, Foundations of Static and Dynamic Absolute Concentration Robustness,
preprint, https://arxiv.org/abs/2104.14070, 2021.

B. JosH1 AND A. SHIU, Atoms of multistationarity in chemical reaction networks, J. Math. Chem., 51
(2013), pp. 153-178.

B. JosHI AND A. SHIU, A survey of methods for deciding whether a reaction network is multistationary,
Math. Model. Nat. Phenom., 10 (2015), pp. 47-67.

JosHI, B. AND A. SH1u, Which small reaction networks are multistationary?, STAM J. Appl. Dyn. Syst.,
16 (2017), pp. 802-833, https://doi.org/10.1137/16M1069705.

R. L. KARP, M. P. MILLAN, T. DASGUPTA, A. DICKENSTEIN, AND J. GUNAWARDENA, Complez-linear
invariants of biochemical networks, J. Theoret. Biol., 311 (2012), pp. 130-138.

N. MESHKAT, SHIU, A., AND A. TORRES, Absolute concentration robustness in networks with low-
dimensional stoichiometric subspace, Vietnam J. Math., 50 (2022), pp. 623—-651.

PAscUAL-ESCUDERO, B. AND E. FELIU, Local and Global Robustness in Systems of Polynomial Equations,
preprint, https://arxiv.org/abs/2005.08796, 2020.

F. ScHLOGL, Chemical reaction models for non-equilibrium phase transitions, Z. Phys., 253 (1972), pp.
147-161.

J. SCHNAKENBERG, Simple chemical reaction systems with limit cycle behaviour, J. Theoret. Biol., 81
(1979), pp. 389-400.

G. SHINAR AND M. FEINBERG, Structural sources of robustness in biochemical reaction networks, Science,
327 (2010), pp. 1389-1391.

G. SHINAR AND M. FEINBERG, Design principles for robust biochemical reaction networks: What works,
what cannot work, and what might almost work, Math. Biosci., 231 (2011), pp. 39-48.

G. SHINAR, R. MiLo, M. R. MARTINEz, AND U. ALON, Input-output robustness in simple bacterial
signaling systems, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 19931-19935.

G. SHINAR, J. D. RABINOWITZ, AND U. ALON, Robustness in glyozylate bypass requlation, PLoS Comput.
Biol., 5 (2009), €1000297.

P. Y. Yu AND G. CRACIUN, Mathematical analysis of chemical reaction systems, Isr. J. Chem., 58 (2018),
pp. 733-741.


https://arxiv.org/abs/2110.13975
https://arxiv.org/abs/2104.14070
https://doi.org/10.1137/16M1069705
https://arxiv.org/abs/2005.08796

	Introduction
	Forms of ACR
	
	

	Static forms of ACR
	Dynamic forms of ACR
	Relations between different forms of ACR
	Some basins of interest for all forms of ACR
	Some examples of systems with local dynamic ACR
	An example of a system with subspace (but not full space) dynamic ACR

	Classification of minimal static and dynamic ACR networks
	Static and dynamic ACR for reaction networks with only one reaction or only one species
	Reaction networks with two reactions and two or fewer species: Notation
	Static ACR for reaction networks with two reactions and two or fewer species
	Network motifs and their embeddings
	Dynamic ACR in static ACR networks with two reactions "0026` two or fewer species

	Dynamic ACR in networks with an invariant hyperplane
	Summary of ACR properties for networks with two reactions and at most two species
	Discussion and future work
	References

