

Effects of *Clostridium beijerinckii* and medium modifications on acetone butanol ethanol (ABE) production from switchgrass

Tinuola Olorunsogbon^a, Yinka Adesanya^b, Hasan K. Atiyeh^b, Christopher Chukwudi Okonkwo^c, Victor Chinomso Ujor^d, and Thaddeus Chukwuemeka Ezeji^a

^aDepartment of Animal Science, The Ohio State University, Wooster, OH, USA

^bBiosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA

^cBiotechnology Program, College of Science, The Roux Institute, Northeastern University, 100 Fore Street, Portland, ME, 04103, USA

^d Department of Food Science, University of Wisconsin-Madison, Maddison, WI, USA

*Corresponding author. Professor, Department of Animal Sciences, 305 Gerlaugh Hall, The Ohio State University Wooster campus, Wooster, OH 44691, USA.

Tel.: +1.330.263.3796; Fax: +1.330.263.3949. Email address: ezeji.1@osu.edu

13

14

15

16

17

18

19

20

21

22 **ABSTRACT**

23 The presence of lignocellulose derived microbial inhibitory compounds (LDMICs) in
24 lignocellulosic biomass (LB) hydrolysates is a barrier to efficient conversion of LB hydrolysates
25 to fuels and chemicals by fermenting microorganisms. Results from this study provide convincing
26 evidence regarding the effectiveness of metabolically engineered *C. beijerinckii* NCIMB 8052 for
27 the fermentation of LB-derived hydrolysates to acetone butanol ethanol (ABE). The engineered
28 microbial strain (*C. beijerinckii*_SDR) was produced by integration of an additional copy of a
29 short-chain dehydrogenase/reductase (SDR) gene (*Cbei_3904*) into the chromosome of *C.*
30 *beijerinckii* NCIMB 8052 wildtype where there was control by a constitutive *thiolase* promoter.
31 The *C. beijerinckii*_SDR and *C. beijerinckii* NCIMB 8052 wildtype were used for comparative
32 fermentation of non-detoxified and detoxified hydrothermolysis pretreated switchgrass
33 hydrolysates (SH) with and without $(\text{NH}_4)_2\text{CO}_3$ supplementation. In the absence of $(\text{NH}_4)_2\text{CO}_3$,
34 fermentation of non-detoxified SH with *C. beijerinckii*_SDR resulted in the production of 3.13-
35 and 2.25-fold greater quantities of butanol (11.21 g/L) and total ABE (20.24 g/L), respectively,
36 than 3.58 g/L butanol and 8.98 g/L ABE produced by *C. beijerinckii*_wildtype. When the medium
37 for fermentation of the non-detoxified SH was supplemented with $(\text{NH}_4)_2\text{CO}_3$, concentrations were
38 similar for butanol (9.5 compared with 9.2 g/L) and ABE (14.2 compared with 13.5 g/L) produced
39 by *C. beijerinckii*_SDR and *C. beijerinckii*_wildtype, respectively. Furthermore, when *C.*
40 *beijerinckii*_SDR and *C. beijerinckii*_wildtype were cultured in detoxified SH medium, *C.*
41 *beijerinckii*_SDR produced 1.11- and 1.18-fold greater quantities of butanol and ABE,
42 respectively, than when there was culturing with *C. beijerinckii*_wildtype. When the combined
43 results of the present study are considered, conclusions are that the microbial strain and medium

44 modifications of the fermentation milieu resulted in greater production of fuels and chemicals from
45 non-detoxified LB hydrolysates.

46 **Keywords:** ABE fermentation; butanol; acetone; ammonium carbonate; switchgrass hydrolysate;
47 LDMIC; short-chain dehydrogenase/reductase; *Clostridium beijerinckii*

48 **Running title:** Butanol production from lignocellulosic biomass

49

50 **CONTRIBUTION TO THE FIELD STATEMENT**

51 The results presented in this manuscript provide convincing evidence regarding the effectiveness
52 of metabolically engineered *C. beijerinckii* NCIMB 8052 for the fermentation of LB-derived
53 hydrolysates, SH, to acetone butanol ethanol (ABE). Given the surging research into next-
54 generation fuels, especially butanol that is produced by solventogenic *Clostridium* species, there
55 is a dire need to develop industrial strain of solventogenic *Clostridium* species capable of
56 metabolizing cheap and readily available substrates such as lignocellulosic biomass (LB). We
57 sought to address this need in this work. We demonstrate for the first time that integration of an
58 additional copy of a short-chain dehydrogenase/reductase (SDR) gene (*Cbei_3904*) into the
59 chromosome of *C. beijerinckii* NCIMB 8052 will result in improved strain with capacity to
60 produce more butanol from crude substrate (LB) than from pure substrate (glucose). Furthermore,
61 our findings provide evidence that a simple fermentation medium modification can result in
62 significant improvement in the fermentation of non-detoxified LB by *C. beijerinckii* NCIMB 8052
63 wildtype. These findings are likely to stimulate broad interest given their value to researchers
64 focusing on improving the economics of biofuel production.

65

66 **1. INTRODUCTION**

67 *Clostridium* species can ferment a wide variety of substrates such as starch, disaccharides,
68 hexoses, pentoses, glycerol, cellulose, and syngas into industrially important chemicals and
69 environmentally compatible fuels (butanol, ethanol, isopropanol, and hexanol; Ezeji et al. 2007a;
70 Philips et al., 2015; Liu et al., 2015; [Sandoval-Espinola et al., 2017](#); Sun et al., 2019).
71 Solventogenic *Clostridium* species exhibit a biphasic fermentation pattern characterized by acid
72 (acetic acid and butyric acid) production in the exponential phase (acidogenesis) and solvent
73 production (acetone, butanol, and ethanol; solventogenesis) in the second (stationary phase).
74 During acidogenesis, there is production of H₂, CO₂, acetate, and butyrate resulting in a decrease
75 in culture pH. During solventogenesis, there is marked change in metabolism resulting in uptake
76 of the acids produced during the acidogenic phase along with sugar substrates, which are
77 metabolized into acetone, butanol, and ethanol (ABE; Jones and Woods, 1986; [Veza, et al.,](#)
78 [2021](#)). A typical batch fermentation for producing ABE using *Clostridium* species results in the
79 molar ratio of 3:6:1 for acetone, butanol, and ethanol, respectively.

80 Butanol or ABE is currently produced at laboratory scale by fermenting food crops such as
81 corn and sugarcane, which raises concerns over human food security. Consequently, exploring
82 non-food substrates—lignocellulosic biomass (LB) such as energy crops, agricultural residues, and
83 farm wastes—for biofuel production is being considered a “panacea” for preventing or reducing
84 prospective competition between food sources and industrial raw materials for biofuels production
85 (Palmqvist and Hahn-Hagerdal, 2000; Ezeji et al., 2007; Isar and Rangaswamy, 2011; Zhang and
86 Ezeji, 2013; Okonkwo et al., 2016; [Sodre, et al., 2021](#)). LB is composed of polymeric sugar forms
87 (cellulose and hemicellulose) and lignin. The compact nature of LB, however, makes it recalcitrant
88 to enzymatic hydrolysis to release fermentable monomeric sugars (glucose, xylose, and arabinose).

89 Hence, there is need for a pretreatment process prior to enzyme-mediated hydrolysis, and this
90 typically involves application of heat and acid/alkaline to facilitate breakdown of the lignin matrix
91 of LB. Nonetheless, in addition to releasing fermentable sugars, the pretreatment process releases
92 acetate from the hemicellulose component of LB alongside generation of a plethora of toxic
93 phenolic and furanic aldehydes generally referred to as lignocellulose-derived microbial inhibitory
94 compounds (LDMICs; Ezeji et al., 2007b; [Veza, et al., 2021](#), [Sodre, et al., 2021](#)). LDMICs such
95 as furanic aldehydes (e.g., furfural and hydroxymethylfurfural-HMF) and phenolics
96 (hydroxybenzaldehyde, ferulic acid, syringic acid etc.) impair the growth and capacity of
97 fermenting microorganisms to utilize sugars thereby resulting in low yield of biofuels (Ezeji et al.,
98 2007b; Ezeji and Blaschek 2008; Baral and Shah, 2014; Ujor et al., 2016). The presence of
99 LDMICs in hydrolysates, therefore, is a major impediment to the use of LB for biofuel production.
100 Various researchers have explored LB hydrolysates (LBH) detoxification processes such as
101 overliming (Qureshi et al., 2010, Zhang et al., 2018), use of activated carbon (Dong et al., 2018,
102 Liu et al., 2015a), and media optimization strategies such as glycerol (Ujor et al., 2014) and
103 allopurinol (Ujor, et al., 2015) supplementations, to mitigate the inhibitory effects of LDMICs on
104 fermenting microorganisms. These strategies, however, have associated costs, therefore, leading
105 to relatively greater biofuel production costs (Liu et al., 2015). Intermittent addition of substrates
106 during fermentation has been explored as means of circumventing LDMICs-mediated toxicity.
107 With this strategy, there was enhanced bioconversion of LBH to butanol, thereby raising the
108 prospect of eliminating the need for detoxification of hydrothermolysis pretreated LBH prior to
109 fermentation (Adesanya et al., 2022).

110 To further reduce or eliminate cost associated with detoxification of LBH prior to
111 fermentation, metabolic engineering of solventogenic *Clostridium* species for increased tolerance

112 to LDMICs has been viewed as a possible strategy to markedly improve efficacy and efficiency,
113 and consequently economics of fermenting undetoxified LBH into butanol (Agu et al., 2019).
114 Towards this goal, a LDMIC-tolerant strain of *C. beijerinckii* was engineered to overexpress a
115 short-chain dehydrogenase/reductase (SDR) (Okonkwo et al., 2019). This approach was based on
116 results from a previous genome-wide transcriptional study that showed significant upregulation of
117 the open reading frame *Cbei_3904* in *C. beijerinckii*, which encodes an NAD(P)H-dependent SDR
118 when furfural was supplemented in the growth medium (Zhang and Ezeji, 2013). The SDR
119 encoded by *Cbei_3904* has been shown to be involved in the transformation of furfural and HMF
120 to their respective less inhibitory alcohols (furfuryl alcohol and 2,5-bis-hydroxymethylfuran-HMF
121 alcohol) in *C. beijerinckii* (Zhang et al., 2015). The resulting metabolically engineered strain of *C.*
122 *beijerinckii* (*C. beijerinckii*_SDR) however, has not been evaluated for tolerance to LDMICs in
123 undetoxified LBH. The present study, therefore, was conducted to evaluate the capacity of *C.*
124 *beijerinckii*_SDR to ferment undetoxified switchgrass hydrolysate (SH) to butanol.

125 **2. MATERIALS AND METHODS**

126 **2.1. Production of switchgrass hydrolysates**

127 Dried *Panicum Virgatum L.* (Alamo Switchgrass) was collected from the Gasification
128 Laboratory at Oklahoma State University and processed using a hammer mill equipped with a 2
129 mm sieve. The comminuted switchgrass was pretreated in a 1 L Parr reactor (Parr series 4520, Parr
130 instrument company, Moline IL, USA) at a loading rate of 10% solids at 200 °C for 10 min (Pessani
131 et al., 2011; Liu et al., 2015a). After cooling, the pretreated switchgrass was vacuum filtered with
132 Whatman No 4 filter paper to separate solids from the liquid component containing mainly
133 degraded hemicellulose (xylose) according to a previously described method (Adesanya et al.,
134 2022). The solids were washed four times with deionized water and enzymatically hydrolyzed

135 using Accellerase 1500 (gifted by DuPont, Rochester, NY, USA) in a shaker water bath, at 50 °C
136 and 250 rpm as described previously (Liu et al., 2015a; [Adesanya et al., 2022](#)).

137 **2.2. Detoxification of hydrolyzed switchgrass hydrolysates**

138 A portion of the SH was detoxified using activated carbon to reduce the concentrations of
139 LDMICs produced during the pretreatment. Detoxification was conducted with Calgon rod shaped
140 activated carbon (AP4-60, Calgon Carbon Corporation, Pittsburgh, PA) using the treatment
141 regimen described by Adesanya et al. (2022).

142 **2.3. Bacterial strains and culture conditions**

143 *Clostridium beijerinckii* NCIMB 8052 was purchased from the American Type Culture
144 Collection (Manassas, VA, USA) as *C. beijerinckii* ATCC 51743. In an earlier study, *C.*
145 *beijerinckii*_SDR was constructed by integrating the open reading frame *Cbei_3904* (which
146 encodes an SDR) into the chromosome of *C. beijerinckii* NCIMB 8052 to obtain the LDMIC-
147 tolerant *C. beijerinckii*_SDR (Okonkwo et al., 2019). The chromosomally integrated *SDR* gene
148 was constitutively expressed by placing it under the control of thiolase promoter from *C.*
149 *acetobutylicum* ATC 824. *Clostridium* strains (*C. beijerinckii*_SDR and *C. beijerinckii* NCIMB
150 8052) were stored as spore suspensions in ddH₂O at 4 °C (Han et al., 2013). Spores for each strain
151 (400 µL) were reactivated using heat shock treatments at 75 °C for 3 min prior to inoculation of
152 10 mL anoxic Tryptone-Glucose-Yeast extract (TGY) medium (Ezeji et al., 2013; Liu et al., 2015).
153 The culture medium was incubated at 35 °C overnight (12 – 13 h) during which OD_{600 nm} of 0.9 to
154 1.1 was attained. Approximately 2 mL of overnight culture of each strain (10 %, v/v) was used to
155 inoculate 18 mL of fresh anoxic TGY medium to increase the quantity of the preculture. These
156 new cultures were incubated at 35 °C until OD ~ 0.9 to 1.1 was attained (3 – 4 h), after which they

157 were used to inoculate the fermentation medium. All inoculations, handling, and incubation
158 processes were performed in an anaerobic chamber (Coy Laboratory Products Inc., Grass Lake,
159 MI) with a modified atmosphere of 82% N₂, 15% CO₂, 3% H₂. The TGY medium in loosely capped
160 bottles and test tubes was maintained overnight in the anaerobic chamber to allow for removal of
161 residual oxygen before fermentation was initiated (Ezeji et al., 2013; Liu et al., 2015b; Sun et al.,
162 2020).

163 **2.4. ABE fermentation of non-detoxified switchgrass hydrolysates**

164 Fermentation was conducted in 150-mL Pyrex screw-cap bottles with a 50 mL working
165 volume. To initiate fermentation, non-detoxified SH (44.5 mL) was transferred into pre-sterilized
166 150-mL screw-cap bottles which was then supplemented with 1% (v/v) of each of the P2 buffer,
167 mineral, and vitamin stock solutions (**Table 1**; Ezeji et al., 2003). Sterile yeast extract (1 mL of 50
168 g/L stock) was aseptically added to the non-detoxified SH fermentation medium followed by the
169 addition of 3 mL (6%, v/v) of *C. beijerinckii*_SDR or *C. beijerinckii*_wildtype preculture.

170 For fermentations using the modified medium [with (NH₄)₂CO₃ supplementation], 44.0
171 mL of non-detoxified SH was transferred into another set of 150-mL Pyrex screw-cap bottles.
172 Modified P2 buffer, mineral, and vitamin stock solutions (1%, v/v each) was added (**Table 1**).
173 Yeast extract (1 mL of 50 g/L stock) was added to the medium containing the non-detoxified SH
174 resulting in a 1 g/L final concentration. Also, (NH₄)₂CO₃ (500 μ L of 200 g/L stock) was added
175 resulting in a final concentration of 2 g/L in the fermentation medium.

176 **2.5. Fermentation of detoxified switchgrass hydrolysates to ABE**

177 Fermentation was conducted in 150-mL Pyrex screw-cap bottles containing a 50 mL
178 working volume of fermentation medium. *C. beijerinckii*_SDR and *C. beijerinckii*_wildtype (6%,

179 v/v) were separately inoculated into the detoxified SH fermentation medium as described above
180 for the non-detoxified SH fermentation medium. As with the undetoxified SH medium, another
181 set of fermentation cultures was established with the addition of $(\text{NH}_4)_2\text{CO}_3$ to a final concentration
182 of 2 g/L. P2 medium (60 g/L glucose; 1 g/L yeast extract) was used as positive control. For the
183 positive control, 45.5 mL of P2 medium was transferred into another set of 150-mL Pyrex screw-
184 cap bottles. Subsequently, the P2 buffer, mineral, and vitamin stock solutions (1%, v/v each) were
185 added using the methods described above. The compositions of the P2 buffer, minerals, and stock
186 solutions are presented in **Table 1**. All fermentation experiments were conducted in triplicate.
187 Samples (1 mL) were collected from each bottle at the time of initiation of the fermentation (0 h)
188 and subsequently at 12 h intervals for 72 to 120 h to determine pH, $\text{OD}_{600\text{nm}}$, sugar, butanol,
189 acetone, ethanol, acetic and butyric acid concentrations.

190 **2.6. Analytical methods**

191 Optical density was determined at 600 nm using a DU[®] 800 spectrophotometer (Beckman
192 Coulter Inc., Brea, CA) to estimate the changes in the growth of the *C. beijerinckii* strains during
193 fermentation. Gas chromatography was conducted to quantify the concentrations of acetone,
194 butanol, ethanol, acetic, and butyric acids using a 7890A system (Agilent Technologies 7890,
195 Agilent Technologies Inc., Wilmington, DE), according to a previously described method (Ujor et
196 al., 2021). Sugar concentrations (glucose, xylose, and arabinose) were analyzed using HPLC
197 (Waters, Milford, MA, USA) equipped with evaporative light scattering detector (Waters, Milford,
198 MA, USA) according to a previous method (Ujor et al., 2021). The concentrations of the LDMICs
199 were quantified using HPLC according to the method of Agu et al., 2016. The ABE yield was
200 determined by dividing the total grams of ABE produced by the total grams of glucose or sugars
201 utilized during fermentation, while ABE productivity was calculated by dividing the maximum

202 amount of ABE (g/L) produced by the corresponding fermentation time (h). Glucose utilization
203 rate was calculated by dividing the total concentration of glucose used to produce the maximum
204 ABE by the corresponding fermentation time.

205 **2.7. Statistical analyses**

206 A one-way ANOVA and student t-test analyses were performed using the general linear
207 model (GLM) procedure of SAS OnDemand for Academics 3.1.0 (SAS Institute Inc., Cary, NC).
208 The Least Square Difference (LSD) test procedure was used for evaluation of treatment means.
209 There was determination of values for maximum optical density readings, sugar utilization during
210 the fermentation periods, as well as maximum concentrations, yield, and production of butanol
211 and ABE. Mean differences in these values because of using different *C. beijerinckii* strains and/or
212 different fermentation medium compositions were tested for significance when there was a $P \geq$
213 0.05.

214 **3.0. RESULTS**

215 **3.1. Production and detoxification of switchgrass hydrolysate (SH)**

216 The hydrothermolysis pretreatment method was efficacious for deconstructing switchgrass
217 biomass. The composition of the pretreated solids has been reported by Adesanya et al. (2022).
218 Two batches of SH were utilized. The SHs were subjected to enzymatic hydrolysis to produce
219 fermentable monomeric sugars. After hydrolysis, Batch 1 of the SH was detoxified using activated
220 carbon to remove/reduce LDMICs while the SH in Batch 2 was not detoxified. Glucose
221 concentrations of Batches 1 (detoxified) and 2 (non-detoxified) of the SH were 58.7 and 61.2 g/L,
222 respectively (**Table 2**). The concentrations of LDMICs in the medium containing the detoxified
223 and non-detoxified SH are presented in **Table 2**. In the medium based on the detoxified SH, the

224 concentrations of furfural, HMF, vanillic acid, syringic acid, p-coumaric acid,
225 hydroxybenzaldehyde were 2-, 1.06-, 3.7-, 6.9-, 1.8- and 1.6-fold lower, respectively, when
226 compared to the concentrations in the non-detoxified SH medium.

227 **3.2. Fermentation profiles of the *C. beijerinckii* strains during growth in non-detoxified and**
228 **detoxified SH**

229 **3.2.1. The growth profiles of *C. beijerinckii*_wildtype and *C. beijerinckii*_SDR**

230 The increase in growth by *C. beijerinckii*_wildtype and *C. beijerinckii*_SDR was rapid,
231 attaining maximum OD_{600 nm} of 5.7 and 5.9, respectively, in the glucose P2 medium (positive
232 control; **Fig. 1**). Similarly, there was marked increase in growth for both *C. beijerinckii*_wildtype
233 and *C. beijerinckii*_SDR, reaching maximum OD_{600 nm} of 6.3 and 6.1, respectively, in the medium
234 containing the detoxified SH (**Fig. 1**). Similarly, when the detoxified SH medium was
235 supplemented with (NH₄)₂CO₃, there was discernible rapid increase in the growth of *C.*
236 *beijerinckii*_wildtype and *C. beijerinckii*_SDR, attaining maximum OD_{600 nm} of 6.8 and 7.7,
237 respectively (**Fig. 1**). Conversely, when *C. beijerinckii*_wildtype and *C. beijerinckii*_SDR were
238 cultured in non-detoxified SH medium, there was reduced growth for both strains, attaining
239 maximum OD_{600 nm} of 1.9 and 4.4, respectively, (**Fig. 1**). As expected, there was an increase in
240 population size for *C. beijerinckii*_wildtype and *C. beijerinckii* resulting when there was
241 fermentation in non-detoxified SH medium supplemented with (NH₄)₂CO₃ reaching OD_{600 nm} of
242 5.4 and 6.2, respectively (**Fig. 1**).

243 **3.2.2. pH, acetic and butyric acid concentrations in the fermentation cultures of *C.***
244 ***beijerinckii*_wildtype and *C. beijerinckii*_SDR**

245 The pH, acetic acid, and butyric acid concentration values are depicted in **Figures 2, 3 and**
246 **4** for cultures of both strains of *C. beijerinckii* NCIMB 8052 and *C. beijerinckii_SDR* grown in
247 non-detoxified and detoxified SH. As expected, during fermentation of non-detoxified SH without
248 $(\text{NH}_4)_2\text{CO}_3$ supplementation, the pH of the fermentation medium decreased to less than 5.4 (**Fig.**
249 **2A**) at 12 h with a concomitant increase in acetic (**Fig. 3A**) and butyric acid concentrations (**Fig.**
250 **4A**). While the pH increased after 12 h with *C. beijerinckii_SDR*, the pH did not increase
251 significantly in cultures inoculated with *C. beijerinckii_wildtype* (**Fig. 2A**). Meanwhile, when non-
252 detoxified SH medium was supplemented with $(\text{NH}_4)_2\text{CO}_3$, the pH for both *C.*
253 *beijerinckii_wildtype* and *C. beijerinckii_SDR* increased after 12 h of fermentation (**Fig. 2B**) with
254 a concomitant decrease in acetic acid concentration (**Fig. 3A**), a trend that is similar to the pH of
255 the P2 medium control (**Fig. 2E, 3E, and 4E**). Notably, the butyric acid concentration remained
256 relatively small in the fermentation media (**Fig. 4A and B**). To determine the extent to which the
257 resulting pH and acid profiles of *C. beijerinckii_wildtype* during fermentation of non-detoxified
258 SH negatively affected the cells (in addition to the effects of the LDMICs), the SH was detoxified
259 by utilizing activated carbon to reduce the concentrations of LDMICs (**Table 2**). The pH and acid
260 profiles of *C. beijerinckii_wildtype* and *C. beijerinckii_SDR* improved markedly during
261 fermentation of detoxified SH and showed the typical pH profile of ABE fermentation – pH
262 decreases before and increases after 12 h of fermentation (**Fig. 2C**). Furthermore, prior to 12 and
263 after 12 h of fermentation, the observed decrease and increase in culture pH coincided with an
264 increase and decrease in butyric acid concentration, respectively (**Fig. 4C**). The observed
265 fluctuations in culture pH and acid concentration are due to acid production and re-assimilation of
266 acidic constituents by *C. beijerinckii_wildtype*- and *C. beijerinckii_SDR*, typical of what occurs
267 with the exponential growth/acidogenic and solventogenic phases of ABE fermentation, which

268 indicate relatively good physiological state of the culture during growth in detoxified SH or non-
269 detoxified SH with $(\text{NH}_4)_2\text{CO}_3$ supplementation. Similarly, when *C. beijerinckii*_wildtype- and *C.*
270 *beijerinckii*_SDR were grown in detoxified SH medium supplemented with $(\text{NH}_4)_2\text{CO}_3$, the pH of
271 the cultures decreased and later increased as fermentation progressed (**Fig. 2D**). Conversely, at the
272 same fermentation timepoints, the concentration of acids increased which later decreased as
273 fermentation progressed (**Fig. 3D, and 4D**). Notably, the acetic acid content of the fermentation
274 medium at 0 h (**Fig. 3**) was from ammonium acetate, which is contained in the P2 buffer.

275 **3.2.3. Sugar utilization during fermentation in SH**

276 Most of the pentose content of the SH after pretreatment by hydrothermolysis was
277 recovered during the washing process leaving mostly cellulose which was later hydrolyzed to
278 glucose using a commercial cellulase. **Table 3** shows total glucose uptake by the LDMICs-tolerant
279 *C. beijerinckii*_SDR and *C. beijerinckii*_wildtype during the fermentation of non-detoxified SH,
280 non-detoxified SH with $(\text{NH}_4)_2\text{CO}_3$ supplementation, detoxified SH, and detoxified SH with
281 $(\text{NH}_4)_2\text{CO}_3$ supplementation. While the LDMIC-tolerant *C. beijerinckii*_SDR readily utilized the
282 glucose in non-detoxified SH as a carbon source for energy metabolism and ABE production, such
283 that greater than 57 g/L glucose was utilized in 84 h, the *C. beijerinckii*_wildtype was not efficient
284 in utilizing the glucose in non-detoxified SH (**Table 3**). Consequently, approximately 25 g/L
285 glucose was utilized by *C. beijerinckii*_wildtype during the same period. This translates into a 2.3-
286 fold greater glucose utilization by *C. beijerinckii*_SDR when compared to *C.*
287 *beijerinckii*_wildtype. For the SH detoxified with activated carbon, detoxification did not translate
288 to improved sugar utilization by *C. beijerinckii*_SDR. However, there was improved glucose
289 utilization by *C. beijerinckii*_wildtype leading to an increase in consumed glucose from 25 (from
290 non-detoxified) to 46 g/L (detoxified; **Table 3**). Interestingly, during fermentation of non-

291 detoxified SH with $(\text{NH}_4)_2\text{CO}_3$ supplementation, both microbial strains utilized similar quantities
292 of glucose at a similar rate (**Table 3**), even though the growth of *C. beijerinckii*_SDR was greater
293 than that of *C. beijerinckii*_wildtype (**Fig. 1B**). Specifically, *C. beijerinckii*_SDR utilized 42.4 g/L
294 glucose in non-detoxified SH with $(\text{NH}_4)_2\text{CO}_3$ supplementation, resulting in 1.3-fold less glucose
295 utilized in non-detoxified SH without $(\text{NH}_4)_2\text{CO}_3$ supplementation. The rate of glucose utilization
296 by *C. beijerinckii*_SDR in non-detoxified SH medium with $(\text{NH}_4)_2\text{CO}_3$ supplementation was
297 similar (0.59 g/L/h) to that of *C. beijerinckii*_wildtype (**Table 3**). Furthermore, when SH was
298 detoxified with activated carbon and the medium was supplemented with $(\text{NH}_4)_2\text{CO}_3$, the overall
299 glucose utilization by *C. beijerinckii*_SDR and *C. beijerinckii*_wildtype was also similar. *C.*
300 *beijerinckii*_SDR and *C. beijerinckii*_wildtype utilized approximately 48 g/L and 47 g/L glucose,
301 respectively, at the rates of ~0.68 and ~0.66 g/L/h, respectively (**Table 3**).

302 **3.2.4. ABE production in SH**

303 *C. beijerinckii*_SDR produced more total ABE than *C. beijerinckii*_wild type in all the media (non-
304 detoxified SH, non-detoxified SH with $(\text{NH}_4)_2\text{CO}_3$ supplementation, detoxified SH, and detoxified
305 SH with $(\text{NH}_4)_2\text{CO}_3$ supplementation). Notably, the quantities of acetone produced by *C.*
306 *beijerinckii*_SDR were greater than that produced by *C. beijerinckii*_wildtype. Acetone
307 concentration in the medium peaked at 8.0 g/L during fermentation of non-detoxified SH without
308 $(\text{NH}_4)_2\text{CO}_3$ supplementation by *C. beijerinckii*_SDR, which was 2.5-fold greater than that (3.24
309 g/L) produced by *C. beijerinckii*_wildtype (**Fig. 5A**). When the non-detoxified SH medium was
310 supplemented with $(\text{NH}_4)_2\text{CO}_3$, the concentration of acetone in the medium was similar for both
311 fermentations with *C. beijerinckii*_SDR and *C. beijerinckii*_wildtype (**Fig. 5B**). Likewise, during
312 fermentation of detoxified SH or detoxified SH with $(\text{NH}_4)_2\text{CO}_3$ supplementation, there were
313 greater acetone concentrations in the medium inoculated with *C. beijerinckii*_SDR than in *C.*

314 *beijerinckii* wildtype cultures. With *C. beijerinckii* SDR, acetone concentrations were 4.4 g/L
315 (Fig. 5D) and 4.7 g/L (Fig. 5C) when the SH was detoxified with and without $(\text{NH}_4)_2\text{CO}_3$
316 supplementation, respectively. With *C. beijerinckii* wildtype, acetone concentrations in the
317 detoxified with and without $(\text{NH}_4)_2\text{CO}_3$ supplementation media were 3.4 g/L (Fig. 5D) and 3.8 g/L
318 (Fig. 5C), respectively. There was a marked difference in ethanol production during fermentation
319 in non-detoxified SH without $(\text{NH}_4)_2\text{CO}_3$ supplementation and in P2 medium (Fig. 6A and 6E).
320 During fermentation of non-detoxified SH, without $(\text{NH}_4)_2\text{CO}_3$ supplementation, both strains of *C.*
321 *beijerinckii* exhibited similar ethanol profile until 48 h. At the 60-h time point in cultures of *C.*
322 *beijerinckii* SDR, there was a decrease in ethanol concentration and subsequently, an increase at
323 72 h, while in cultures of *C. beijerinckii* wildtype there was a sustained increase in ethanol
324 concentration up to 96 h of fermentation (Fig. 6A). The highest ethanol concentration observed
325 with *C. beijerinckii* SDR was 1.48 g/L at 72 h, while *C. beijerinckii* wildtype produced 2.5 g/L
326 at 96 h. Notably, fermentation with *C. beijerinckii* SDR in the P2 control medium led to greater
327 quantities of ethanol production than was observed during fermentation with *C.*
328 *beijerinckii* wildtype in the same conditions (Fig. 6E). The ethanol production profiles of *C.*
329 *beijerinckii* wildtype and *C. beijerinckii* SDR during fermentation of non-detoxified SH with
330 $(\text{NH}_4)_2\text{CO}_3$ supplementation and detoxified SH with $(\text{NH}_4)_2\text{CO}_3$ supplementation were similar
331 (Fig. 6B and 6D).

332 Fermentation with *C. beijerinckii* SDR led to 11.2 g/L and 20.2 g/L butanol and ABE respectively
333 (at 84 h of fermentation), when the substrate was non-detoxified SH with no $(\text{NH}_4)_2\text{CO}_3$
334 supplementation, which is 3.1- and 2.2-fold greater than the maximum butanol and ABE
335 concentrations, observed with *C. beijerinckii* wildtype (Fig. 7A and 8A and Table 3). Although
336 the 20.2 g/L ABE produced by *C. beijerinckii* SDR in non-detoxified SH medium is greater than

337 that it produced in P2 medium control (16.1 g/L ABE), the associated ABE productivity of 0.24
338 g/L/h (**Table 3**) was 1.5-fold less than that of the P2 medium control where the ABE productivity
339 was 0.36 g/L/h. The relatively poor ABE productivity performance was because while it took *C.*
340 *beijerinckii*_SDR 84 h to produce maximum ABE of 20.23 g/L in non-detoxified SH medium
341 without (NH₄)₂CO₃ supplementation, it took *C. beijerinckii*_SDR only 48 h to achieve maximum
342 ABE concentration of 16.1 g/L in P2 medium control. When the non-detoxified SH medium was
343 supplemented with (NH₄)₂CO₃, however, *C. beijerinckii*_SDR produced 9.5 g/L butanol and 14.2
344 g/L ABE, which are 1.03- and 1.06- fold greater than the butanol (9.2 g/L) and ABE (13.35 g/L)
345 produced by *C. beijerinckii*_wildtype (**Fig. 7B and 8B** and **Table 3**, respectively). Interestingly,
346 without (NH₄)₂CO₃ supplementation in non-detoxified SH medium, *C. beijerinckii*_SDR produced
347 1.2- and 1.42-fold greater butanol and ABE (**Fig. 7A and 8A** and **Table 3**) respectively, than it
348 produced with (NH₄)₂CO₃ supplementation.

349 To evaluate the effect of SH detoxification by activated carbon on butanol and ABE
350 production, butanol and ABE concentrations were assessed during fermentation in detoxified SH
351 with and without (NH₄)₂CO₃ supplementation. While *C. beijerinckii*_wildtype produced 11.05 and
352 15.09 g/L butanol and ABE, respectively, during fermentation of detoxified SH with no
353 (NH₄)₂CO₃ supplementation, *C. beijerinckii*_SDR produced 12.32 and 17.86 g/L butanol and
354 ABE, respectively, which were 1.11- and 1.18-fold, respectively, greater than the concentrations
355 produced with *C. beijerinckii*_wildtype (**Table 3**). When the detoxified SH medium was
356 supplemented with (NH₄)₂CO₃, *C. beijerinckii*_SDR produced 17.13 and 10.73 g/L ABE and
357 butanol, respectively, which were 1.1- and 1.05-fold greater than the respective concentrations
358 produced with *C. beijerinckii*_wildtype (15.57 g/L ABE and 10.25 g/L butanol). Further, *C.*
359 *beijerinckii*_SDR produced 9.99 and 16.1 g/L butanol and ABE, respectively, while *C.*

360 *beijerinckii* _wildtype produced 9.66 and 14.08 g/L butanol and ABE, respectively, during the
361 fermentation of control P2 medium (**Fig. 7E and 8E**), which appear to validate the greater efficacy
362 of *C. beijerinckii* _SDR as compared with *C. beijerinckii* _wildtype to produce ABE.

363 **4. 0. DISCUSSION**

364 Overcoming the challenges associated with the production of butanol and ABE,
365 particularly overcoming the hurdles posed by LDMICs has dominated research efforts during the
366 past decade ([Sarangi, and Sonil 2018](#); [Sodre, et al., 2021](#)). Consequently, the goal of the present
367 study was to evaluate the capacity of *C. beijerinckii* strain constitutively overexpressing a short-
368 chain dehydrogenase/reductase (SDR; *Cbei_3904*) gene to convert non-detoxified SH to butanol
369 and ABE. Additionally, we assessed whether modification of the fermentation medium by
370 (NH₄)₂CO₃ supplementation results in a greater metabolism of the SH-derived glucose to butanol.
371 The SDR superfamily of proteins consists of NAD(P)H-dependent oxidoreductases involved in a
372 single step reduction of aldehydes such as furans to lesser toxic alcohols ([Zhang et al., 2015](#)).
373 Overexpression of SDR genes in non-*Clostridium* species has led to improved detoxification,
374 hence greater tolerance to furans by these microorganisms ([Almeida et al., 2008](#), [Chung et al.,
375 2015](#), [Kim et al., 2017](#), [Wang et al., 2013](#)). Although the results from various studies indicate that
376 concentrations as high as 2.0 g/L furfural enhances growth and solvent production in *C.*
377 *beijerinckii*-wildtype ([Ezeji et al., 2007b](#)), larger concentrations of furans and other LDMICs,
378 especially phenolic compounds (such as vanillin, p-coumaric acid, syringic acid,
379 hydroxybenzaldehyde etc. even at small concentrations), are inhibitory to microorganisms
380 involved in the production of butanol and ABE. The presence of phenolic LDMICs alongside
381 furans in hydrolysates produced after pretreatment and hydrolysis of LB, therefore, is a barrier to
382 effective bioconversion LB hydrolysates to fuels and chemicals.

383 There were 2.3-, 2.2- and 3.1-fold greater cell population, total ABE, and butanol
384 concentrations, respectively, by the *C. beijerinckii*_SDR compared to the *C. beijerinckii*_wildtype
385 during the fermentation of non-detoxified SH pretreated with hydrothermolysis procedures and
386 without $(\text{NH}_4)_2\text{CO}_3$ supplementation. The lower cell density in cultures of *C. beijerinckii*_wildtype
387 is an indication that there was marked inhibition of growth by the LDMICs present in the
388 undetoxified SH. This contrasted with the profiles of *C. beijerinckii*_SDR grown in undetoxified
389 SH (**Table 3**). The extent of inhibition observed for *C. beijerinckii*_wildtype during the
390 fermentation of non-detoxified SH is not in agreement with the levels of LDMICs present in the
391 SH (**Table 2**). This is because *C. beijerinckii*_wildtype can effectively tolerate such levels of
392 LDMICs (**Table 2**) during growth and fermentation, **and can detoxify up to 20-, 16-, 4- and 2-mM**
393 **furfural, HMF, 4-hydroxybenzaldehyde, and p-coumaric acid, respectively** (Ezeji et al., 2007;
394 Zhang and Ezeji, 2014). It is possible that the hydrothermolysis pretreatment method used in the
395 pretreatment of switchgrass for this study may have generated additional LDMICs that could not
396 **be detected by the HPLC based analytical procedure described by Agu et al. (2016)**. Nonetheless,
397 the results from the present study provide further evidence that *C. beijerinckii*_SDR can detoxify
398 or tolerate LDMICs at the concentrations present in the SH, as evidenced by the increased cell
399 population during the fermentation period (**Fig. 1A**). This is further evidenced by the effective
400 conversion of SH-derived glucose to butanol and ABE during fermentation of undetoxified SH by
401 *C. beijerinckii*_SDR (**Fig. 7A and 8A**). Although the robustness of *C. beijerinckii*_SDR in terms
402 of fermentation efficacy was highlighted during the fermentation of non-detoxified SH, the
403 fermentation profile of this strain (butanol and ABE production) during fermentation of non-
404 detoxified SH with $(\text{NH}_4)_2\text{CO}_3$ supplementation further underscored its potential.

Comparing the growth patterns of *C. beijerinckii* SDR and *C. beijerinckii* wildtype in non-detoxified SH, with and without $(\text{NH}_4)_2\text{CO}_3$ supplementation alongside the acid production profiles, the inhibitory actions of LDMICs (**Table 2**) appeared to be compounded by the acetic acid content of the SH (**Fig. 3**). The acetic acid concentrations at 0 h in fermentations with *C. beijerinckii* SDR (9.74 g/L) or *C. beijerinckii* wildtype (7.92 g/L) were greater than the acetic acid concentrations (~3-4 g/L) typically present at the initiation time point of ABE fermentation. These relatively lesser acetic acid concentrations at 0 h are desired to maintain a pH range that supports microbial population growth and ABE production. In the present study, the acetic acid produced during pretreatment of switchgrass and that from the buffer component of the P2 medium resulted in a greater acetic acid concentration of the SH fermentation medium at 0 h (**Fig. 3**). Because ABE fermentation with *C. beijerinckii* is bi-phasic, acetic acid produced during the acidogenic/microbial population growth phase exacerbates the considerably greater acetic acid concentration of the fermentation medium. Consequently, there were two types of adaptive challenges during the fermentation period for *C. beijerinckii* SDR and *C. beijerinckii* wildtype in the present study. The greater than typical acid concentration in the fermentation medium appears to be the major inhibitory factor to the growth and survival of *C. beijerinckii* wildtype and *C. beijerinckii* SDR during fermentation. The lower concentrations of protonated acetic and butyric acid and greater buffering capacity provided because of supplementation with $(\text{NH}_4)_2\text{CO}_3$ may have contributed to the enhanced growth observed for *C. beijerinckii* SDR and *C. beijerinckii* wildtype during fermentation of non-detoxified SH (**Fig. 1B**).

While these larger cell populations led to 2.6- and 1.5-fold increase in butanol and ABE production, respectively, for *C. beijerinckii* wildtype, supplementation of the non-detoxified SH medium with $(\text{NH}_4)_2\text{CO}_3$ supplementation had a negative effect on ABE production in cultures

428 inoculated with *C. beijerinckii* SDR. Consequently, there was 1.2- and 1.4-fold less butanol and
429 ABE production (**Table 3**), respectively, during the growth of *C. beijerinckii* SDR in non-
430 detoxified SH with $(\text{NH}_4)_2\text{CO}_3$ supplementation than in non-detoxified SH medium without
431 $(\text{NH}_4)_2\text{CO}_3$ supplementation (**Table 3**). These findings are consistent with the previous findings of
432 Han et al. 2013 where supplementation of fermentation medium with carbonates resulted in greater
433 buffering of the medium and larger cell populations of the microorganisms under investigation.
434 While supplementation of the fermentation medium with CaCO_3 at ≥ 4 g/L resulted in a marked
435 increase in ABE production, there was only a slight increase in total ABE production with
436 $(\text{NH}_4)_2\text{CO}_3$ supplementation (Han et al., 2013). For ABE fermentation using *Clostridium* species,
437 pH is a major indicator of the acidogenic growth phase and effects on ABE production (Gottwald
438 & Gottschalk, 1985). It should be noted that the association between the magnitude of the
439 population growth and ABE production is not always linear (Han et al., 2013). During the
440 solventogenic phase of the fermentation in which is characterized by ABE production,
441 maintenance of the fermentation medium pH in the range of 5.0 to 5.5 is optimal for ABE
442 production while a higher pH typically leads to acid accumulation (Bahadur and Saraj 1960; Bahl
443 et al. 1982; Monot et al., 1984; Wu et al., 2017). The pH range of the medium during the
444 solventogenic phase was 5.2 to 5.6 in cultures of *C. beijerinckii* SDR grown in non-detoxified SH
445 without $(\text{NH}_4)_2\text{CO}_3$ supplementation. These conditions resulted in the maximum ABE production
446 of 20.24 g/L (**Table 3**). Conversely, *C. beijerinckii* SDR maintained pH above 5.5 in the non-
447 detoxified SH medium supplemented with $(\text{NH}_4)_2\text{CO}_3$ during solventogenic phase of the
448 fermentation (**Fig. 2B**). It is possible, therefore, that the buffering effect of $(\text{NH}_4)_2\text{CO}_3$ resulted in
449 a sustained pH greater than 5.5, which led to enhanced growth of *C. beijerinckii* SDR that was in

450 turn sub-optimal for ABE production. Hence, there was a lesser ABE production with *C.*
451 *beijerinckii* _SDR in non-detoxified SH medium with $(\text{NH}_4)_2\text{CO}_3$ supplementation.

452 As expected, both *C. beijerinckii* _SDR and *C. beijerinckii* _wildtype produced higher butanol and
453 ABE concentrations in detoxified SH without $(\text{NH}_4)_2\text{CO}_3$ supplementation than in the P2 medium
454 (**Fig. 8, Table 3**). The improvement was because the LDMICs present in the SH that was pretreated
455 using hydrothermolysis procedures had been markedly reduced by the activated carbon
456 detoxification treatment. Consequently, the growth of *C. beijerinckii* _SDR in the detoxified SH
457 was rapid, leading to high glucose consumption thereby, achieving a maximum ABE of 17.86 g/L
458 in 48 h compared to a maximum ABE of 15.09 g/L in 72 h for the *C. beijerinckii* _wildtype.
459 Furthermore, the ABE productivity of 0.37 g/L/h achieved with *C. beijerinckii* _SDR was greater
460 than the ABE productivity of 0.27 g/L/h observed for *C. beijerinckii* _wildtype (**Table 3**). The ABE
461 yield with both *C. beijerinckii* _wildtype and *C. beijerinckii* _SDR varied between 0.32 and 0.37 g
462 ABE/g glucose during fermentation of SH or P2 medium control. There was no trend or pattern of
463 ABE production that was indicative of factors or conditions that affected the ABE yield. It is
464 possible that some carbons were diverted to the production of compounds such as formic and lactic
465 acid as these compounds are typically produced relatively in marked amounts by solventogenic
466 *Clostridium* species under unfavorable growth conditions.

467 The capacity of *C. beijerinckii* _SDR to increase in population size and ferment non-
468 detoxified SH relative to that of *C. beijerinckii* _wildtype in substrates replete with LDMICs and
469 high levels of acetic acid indicates that overexpression of the SDR (*Cbei_3904*) in *C. beijerinckii*
470 conferred some resiliency to the strain in conditions that were inhibitory to *C.*
471 *beijerinckii* _wildtype. Although the protein product of *Cbei_3904* has been re-annotated as a
472 tri/tetra-hydroxynaphthalene reductase-like enzyme, it is still an oxidoreductase and SDR

473 superfamily domains (https://www.ncbi.nlm.nih.gov/protein/WP_012060066.1;
474 https://www.kegg.jp/dbget-bin/www_bget?cbe:Cbei_1071+cbe:Cbei_2398+cbe:Cbei_3904).
475 The tri/tetra-hydroxynaphthalene reductases are specifically involved in fatty acid biosynthesis,
476 co-factor (biotin) metabolism, and reduction of alternate phenolic compounds and cyclic ketones
477 in bacteria (Schätzle et al., 2012, Okonkwo et al., 2019). This background information leads to the
478 suggestion that the protein product resulting from expression of *Cbei_3904* is possibly involved in
479 modulating lipid composition of the cell membrane of *C. beijerinckii_SDR* and consequently,
480 fortifying the membrane integrity, thus, improving tolerance to LDMICs. Interestingly,
481 modulation of lipid biosynthesis and composition occurs in *Saccharomyces cerevisiae* in response
482 to the presence of organic acids and phenolic compounds during fermentation of LB hydrolysates
483 (Guo et al., 2018). Overexpression of the *OLE1* gene that encodes for the protein responsible for
484 the synthesis of monounsaturated fatty acids in *S. cerevisiae* leads to an increased monounsaturated
485 fatty acid content of the plasma membrane and conferment of enhanced tolerance to the deleterious
486 effects of acetic acid and phenolic compounds (Guo et al., 2018). Considering the tolerance of *C.*
487 *beijerinckii_SDR* to the LDMICs in non-detoxified SH, the capacity to grow and convert glucose
488 contained in SH to ABE, it is likely that a similar mechanism (as in *S. cerevisiae*; Guo et al., 2018)
489 might account for the robust capacity of *C. beijerinckii_SDR* to grow in and ferment non-
490 detoxified SH to ABE.

491 The large quantities of acetone produced by *C. beijerinckii_SDR* in comparison to *C.*
492 *beijerinckii_wildtype* during fermentation in all the media evaluated in the present study including
493 in the P2 medium control (**Fig. 5**) is noteworthy. This may be due to greater utilization of
494 NAD(P)H because of insertion of additional copy of SDR gene in *C. beijerinckii*, hence, reduced
495 availability of NAD(P)H for butanol production. Integration of the *Cbei_3904* into the genome of

496 *C. beijerinckii* under the control of a constitutive promoter (thiolase) ensures continued production
497 of the associated enzyme during both the acidogenic and solventogenic phases of growth
498 (Okonkwo et al. 2019). As an NAD(P)H-dependent oxidoreductase, continued expression of
499 *Cbei_3904*, which likely promotes fatty acid biosynthesis, co-factor (biotin) metabolism, and
500 NAD(P)H-consuming reduction of phenolic compounds (Schätzle et al., 2012; Okonkwo et al.,
501 2019), may be in direct competition with butanol production, which is also NAD(P)H-dependent.
502 A limiting quantity of NAD(P)H in the cytoplasm of *C. beijerinckii*, even for a short period, can
503 have ramifications that includes accumulation and decarboxylation of acetoacetic acid to acetone
504 and CO₂ (Han et al., 2011) and increased growth of the population of *C. beijerinckii* (**Fig. 1**) due
505 to the abundance of NAD⁺ for glycolysis (Ujor et al., 2014, Zhang et al., 2012). In the presence of
506 LDMICs (**Fig. 5A and C**) and to sustain cell population, active detoxification of LDMICs by *C.*
507 *beijerinckii* requires repartitioning of NAD(P)H utilization for different processes, with potential
508 beneficial effect on non-NAD(P)H-dependent acetone production, which facilitates the ability of
509 the cell to reabsorb and convert acetic acid to a neutral product (acetone).

510 **5. 0. CONCLUSION**

511 In the present study, the capacity of a genetically engineered strain of *C. beijerinckii* NCIMB 8052
512 (*C. beijerinckii_SDR*) to tolerate the deleterious effects of LDMICs and produce ABE with
513 hydrothermolysis pretreated SH was evaluated. Additionally, the effect of fermentation medium
514 modification by (NH₄)₂CO₃ supplementation on the fermentation profile of *C. beijerinckii_SDR*
515 was investigated. Supplementation of SH with (NH₄)₂CO₃ led to improved growth of *C.*
516 *beijerinckii* strains and ABE production. Use of non-detoxified SH along with metabolically
517 engineered *C. beijerinckii_SDR* to produce ABE is a promising combination as it produced 1.26-
518 fold (20.24 g/L ABE) more ABE than the positive (16.1 g/L ABE). This result underscores the

519 robustness of *C. beijerinckii* SDR for ABE production using undetoxified hydrothermolysis
520 pretreated SH. Moreover, our results make a case for metabolic engineering as a tool for rewiring
521 metabolic networks in fermenting microorganisms towards enhanced production of fuels and
522 chemicals using cheap biomass substrates.

523 **AUTHOR CONTRIBUTIONS**

524 TCE, HKA, and VCU conceived, designed, and supervised the study. TO, YA, and CCO
525 performed the experiments. TO and YA analyzed the data. TO and TCE wrote the first draft of the
526 manuscript. All authors contributed to the writing of the final draft and approved the submitted
527 version.

528

529 **FUNDING**

530 This work was supported by the National Institute of Food and Agriculture, U.S. Department of
531 Agriculture under the award number 2014-38502-22598 through South Central Sun Grant
532 Program USDA-NIFA Project number OKL03163, National Science Foundation Cellular &
533 Biochemical Engineering program (Award Number: 1803022), USDA NIFA Hatch grant
534 (Project No. OHO01333) and Oklahoma Agricultural Experimental Station.

535

536 **ACKNOWLEDGEMENTS**

537 We thank Dr. Wouter Kuit (Wageningen University and Research Centre, Wageningen,
538 Netherlands) for kindly providing us pWUR459 and pWUR460 expression plasmids, and Dr.
539 Nigel P Minton, Director, Nottingham BBSRC/EPSRC Synthetic Biology Research Centre
540 (SBRC), Centre for Biomolecular Sciences, University Park, University of Nottingham,
541 Nottingham, NG7 2RD, United Kingdom, for kindly providing us pMTL-JH16 integration

542 plasmid. We would also like to thank Dr. Gareth T Little, Centre for Biomolecular Sciences,
543 Molecular Microbiology, University of Nottingham, for valuable discussions on use of pMTL-
544 JH16 plasmid, and to Dr. James Kinder of the Department of Animal Sciences, the Ohio State
545 University, for reviewing this manuscript at the early stage and making valuable suggestions.

546

547 **References**

548 1) Adesanya, Y., Atiyeh, H.K., Olorunsogbon, T., Khanal, A., Okonkwo, C.C., Ujor, V.C., Shah,
549 A. and Ezeji, T.C., 2022. Viable strategies for enhancing acetone-butanol-ethanol production
550 from non-detoxified switchgrass hydrolysates. *Bioresource Technology*, 344, p.126167.

551 2) Agu, C.V., Ujor, V. and Ezeji, T.C., 2019. Metabolic engineering of *Clostridium beijerinckii* to
552 improve glycerol metabolism and furfural tolerance. *Biotechnology for biofuels*, 12(1), pp.1-
553 19.

554 3) Agu, C.V., Ujor, V., Gopalan, V. and Ezeji, T.C., 2016. Use of *Cupriavidus basilensis*-aided
555 bioabatement to enhance fermentation of acid-pretreated biomass hydrolysates by *Clostridium*
556 *beijerinckii*. *Journal of Industrial Microbiology and Biotechnology*, 43(9), pp.1215-1226.

557 4) Almeida, J.R., Röder, A., Modig, T., Laadan, B., Lidén, G. and Gorwa-Grauslund, M.F., 2008.
558 NADH-vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications
559 on product distribution in *Saccharomyces cerevisiae*. *Applied Microbiology and Biotechnology*,
560 78(6), pp.939-945.

561 5) Bahadur, K. and Saroj, K.K., 1960. A study of the influence of hydrogen ion concentration of
562 the culture media on the formation of acetone and butanol by *Clostridium pasteurianum*,
563 *clostridium butylicus* and *clostridium acetobutylicum* using sucrose as substrate in a synthetic
564 media. *Japanese Journal of Microbiology*, 4(4), pp.341-349.

565 6) Bahl, H., Andersch, W., Braun, K. and Gottschalk, G., 1982. Effect of pH and butyrate
566 concentration on the production of acetone and butanol by *Clostridium acetobutylicum* grown
567 in continuous culture. *European journal of applied microbiology and biotechnology*, 14(1),
568 pp.17-20.

569 7) Baral, N.R. and Shah, A., 2014. Microbial inhibitors: formation and effects on acetone-butanol-
570 ethanol fermentation of lignocellulosic biomass. *Applied microbiology and biotechnology*,
571 98(22), pp.9151-9172.

572 8) Baral, N.R. and Shah, A., 2016. Techno-economic analysis of cellulosic butanol production
573 from corn stover through acetone–butanol–ethanol fermentation. *Energy & Fuels*, 30(7),
574 pp.5779-5790.

575 9) Chung, D., Verbeke, T.J., Cross, K.L., Westpheling, J. and Elkins, J.G., 2015. Expression of a
576 heat-stable NADPH-dependent alcohol dehydrogenase in *Caldicellulosiruptor bescii* results in
577 furan aldehyde detoxification. *Biotechnology for biofuels*, 8(1), pp.1-11.

578 10) Dong, J.J., Han, R.Z., Xu, G.C., Gong, L., Xing, W.R. and Ni, Y., 2018. Detoxification of
579 furfural residues hydrolysate for butanol fermentation by *Clostridium saccharobutylicum* DSM
580 13864. *Bioresource technology*, 259, pp.40-45.

581 11) Ezeji, T.C., Qureshi, N. and Blaschek, H.P., 2013. Microbial production of a biofuel (acetone–
582 butanol–ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal.
583 *Bioprocess and biosystems engineering*, 36(1), pp.109-116.

584 12) Ezeji, T. and Blaschek, H.P., 2008. Fermentation of dried distillers' grains and solubles
585 (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia.
586 *Bioresource technology*, 99(12), pp.5232-5242.

587 13) Ezeji, T.C., Qureshi, N. and Blaschek, H.P., 2007. Bioproduction of butanol from biomass:
588 from genes to bioreactors. *Current opinion in biotechnology*, 18(3), pp.220-227.

589 14) Ezeji, T., Qureshi, N. and Blaschek, H.P., 2007. Butanol production from agricultural residues:
590 impact of degradation products on *Clostridium beijerinckii* growth and butanol fermentation.
591 *Biotechnology and bioengineering*, 97(6), pp.1460-1469.

592 15) Ezeji, T.C., Qureshi, N. and Blaschek, H.P., 2003. Production of acetone, butanol, and ethanol
593 by *Clostridium beijerinckii* BA101 and in situ recovery by gas stripping. *World Journal of
594 Microbiology and Biotechnology*, 19(6), pp.595-603.

595 16) Gottwald, M. and Gottschalk, G., 1985. The internal pH of *Clostridium acetobutylicum* and its
596 effect on the shift from acid to solvent formation. *Archives of microbiology*, 143(1), pp.42-46.

597 17) Guo, Z.P., Khoomrung, S., Nielsen, J. and Olsson, L., 2018. Changes in lipid metabolism
598 convey acid tolerance in *Saccharomyces cerevisiae*. *Biotechnology for biofuels*, 11(1), pp.1-15.

599 18) Han, B., Ujor, V., Lai, L.B., Gopalan, V. and Ezeji, T.C., 2013. Use of proteomic analysis to
600 elucidate the role of calcium in acetone-butanol-ethanol fermentation by *Clostridium
601 beijerinckii* NCIMB 8052. *Applied and environmental microbiology*, 79(1), pp.282-293.

602 19) Han, B., Gopalan, V. and Ezeji, T.C., 2011. Acetone production in solventogenic *Clostridium*
603 species: new insights from non-enzymatic decarboxylation of acetoacetate. *Applied
604 microbiology and biotechnology*, 91(3), pp.565-576.

605 20) Isar, J. and Rangaswamy, V., 2012. Improved n-butanol production by solvent tolerant
606 *Clostridium beijerinckii*. *Biomass and bioenergy*, 37, pp.9-15.

607 21) Jin, C., Yao, M., Liu, H., Chia-fon, F.L. and Ji, J., 2011. Progress in the production and
608 application of n-butanol as a biofuel. *Renewable and sustainable energy reviews*, 15(8),
609 pp.4080-4106.

610 22) Jones, D.T. and Woods, D., 1986. Acetone-butanol fermentation revisited. *Microbiological*
611 *reviews*, 50(4), pp.484-524.

612 23) Kegg Pathway, *Clostridium beijerinckii* NCIMB 8052: *Cbei_1071* [https://www.kegg.jp/dbget-](https://www.kegg.jp/dbget-bin/www_bget?cbe:Cbei_1071+cbe:Cbei_2398+cbe:Cbei_3904)
613 bin/www_bget?cbe:Cbei_1071+cbe:Cbei_2398+cbe:Cbei_3904 (accessed April 21, 2022)

614 24) Kim, S.K., Groom, J., Chung, D., Elkins, J. and Westpheling, J., 2017. Expression of a heat-
615 stable NADPH-dependent alcohol dehydrogenase from *Thermoanaerobacter pseudethanolicus*
616 39E in *Clostridium thermocellum* 1313 results in increased hydroxymethylfurfural resistance.
617 *Biotechnology for biofuels*, 10(1), pp.1-9.

618 25) Liu, K., Atiyeh, H.K., Pardo-Planas, O., Ezeji, T.C., Ujor, V., Overton, J.C., Berning, K.,
619 Wilkins, M.R. and Tanner, R.S., 2015. Butanol production from hydrothermolysis-pretreated
620 switchgrass: quantification of inhibitors and detoxification of hydrolysate. *Bioresource*
621 *technology*, 189, pp.292-301.

622 26) Monot, F., Engasser, J.M. and Petitdemange, H., 1984. Influence of pH and undissociated
623 butyric acid on the production of acetone and butanol in batch cultures of *Clostridium*
624 *acetobutylicum*. *Applied Microbiology and Biotechnology*, 19(6), pp.422-426.

625 27) Moon, H.G., Jang, Y.S., Cho, C., Lee, J., Binkley, R. and Lee, S.Y., 2016. One hundred years
626 of clostridial butanol fermentation. *FEMS microbiology letters*, 363(3).

627 28) Okonkwo, C.C., Azam, M.M., Ezeji, T.C. and Qureshi, N., 2016. Enhancing ethanol
628 production from cellulosic sugars using *Scheffersomyces (Pichia) stipitis*. *Bioprocess and*
629 *biosystems engineering*, 39(7), pp.1023-1032.

630 29) Okonkwo, C.C., Ujor, V. and Ezeji, T.C., 2019. Chromosomal integration of aldo-keto-
631 reductase and short-chain dehydrogenase/reductase genes in *Clostridium beijerinckii* NCIMB

632 8052 enhanced tolerance to lignocellulose-derived microbial inhibitory compounds. *Scientific*
633 *reports*, 9(1), pp.1-18.

634 30) Palmqvist, E. and Hahn-Hägerdal, B., 2000. Fermentation of lignocellulosic hydrolysates. II:
635 inhibitors and mechanisms of inhibition. *Bioresource technology*, 74(1), pp.25-33.

636 31) Panahi, H.K.S., Dehhaghi, M., Kinder, J.E., Ezeji, T.C, 2019. A review on green liquid fuels
637 for the transportation sector: a prospect of microbial solutions to climate change. *Biofuel*
638 *Research Journal*, 6, pp.995–1024.

639 32) Pessani, N.K., Atiyeh, H.K., Wilkins, M.R., Bellmer, D.D. and Banat, I.M., 2011.
640 Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant
641 *Kluyveromyces marxianus* IMB3: the effect of enzyme loading, temperature, and higher solid
642 loadings. *Bioresource Technology*, 102(22), pp.10618-10624.

643 33) Phillips, J.R., Atiyeh, H.K., Tanner, R.S., Torres, J.R., Saxena, J., Wilkins, M.R. and Huhnke,
644 R.L., 2015. Butanol and hexanol production in *Clostridium carboxidivorans* syngas
645 fermentation: medium development and culture techniques. *Bioresource Technology*, 190,
646 pp.114-121.

647 34) Qureshi, N., Saha, B.C., Dien, B., Hector, R.E. and Cotta, M.A., 2010. Production of butanol
648 (a biofuel) from agricultural residues: Part I—Use of barley straw hydrolysate. *Biomass and*
649 *bioenergy*, 34(4), pp.559-565.

650 35) Schätzle, M.A., Flemming, S., Husain, S.M., Richter, M., Günther, S. and Müller, M., 2012.
651 Tetrahydroxynaphthalene reductase: Catalytic properties of an enzyme involved in reductive
652 asymmetric naphthol dearomatization. *Angewandte Chemie International Edition*, 51(11),
653 pp.2643-2646.

654 36) National Center for Biotechnology Information: SDR family oxidoreductase [*Clostridium*
655 *beijerinckii*], https://www.ncbi.nlm.nih.gov/protein/WP_012060066.1 (accessed April 21,
656 2022)

657 37) Sandoval-Espinola, W. J., M. S. Chinn, M. R. Thon, and J. M. Bruno-Bárcena. "Evidence of
658 mixotrophic carbon-capture by n-butanol-producer *Clostridium beijerinckii*." *Scientific reports*
659 7, no. 1 (2017): 1-13.

660 38) Sodre, Victoria, Nathália Vilela, Robson Tramontina, and Fabio Marcio Squina.
661 "Microorganisms as bioabatement agents in biomass to bioproducts applications." *Biomass and*
662 *Bioenergy* 151 (2021): 106161.

663 39) Sarangi, Prakash K., and Sonil Nanda. "Recent developments and challenges of acetone-
664 butanol-ethanol fermentation." *Recent advancements in biofuels and bioenergy utilization*
665 (2018): 111-123.

666 40) Sun, X., Atiyeh, H.K., Adesanya, Y., Okonkwo, C., Zhang, H., Huhnke, R.L. and Ezeji, T.,
667 2020. Feasibility of using biochar as buffer and mineral nutrients replacement for acetone-
668 butanol-ethanol production from non-detoxified switchgrass hydrolysate. *Bioresource*
669 *Technology*, 298, p.122569.

670 41) Sun, X., Atiyeh, H.K., Huhnke, R.L. and Tanner, R.S., 2019. Syngas fermentation process
671 development for production of biofuels and chemicals: A review. *Bioresource Technology*
672 *Reports*, 7, p.100279.

673 42) Suo, Y., Fu, H., Ren, M., Liao, Z., Ma, Y. and Wang, J., 2018. Enhanced butyric acid
674 production in *Clostridium tyrobutyricum* by overexpression of rate-limiting enzymes in the
675 Embden-Meyerhof-Parnas pathway. *Journal of biotechnology*, 272, pp.14-21.

676 43) Ujor, V., Agu, C.V., Gopalan, V. and Ezeji, T.C., 2015. Allopurinol-mediated lignocellulose-
677 derived microbial inhibitor tolerance by *Clostridium beijerinckii* during acetone–butanol–
678 ethanol (ABE) fermentation. *Applied microbiology and biotechnology*, 99(8), pp.3729-3740.

679 44) Ujor, V.C., Lai, L.B., Okonkwo, C.C., Gopalan, V. and Ezeji, T.C., 2021. Ribozyme-Mediated
680 Downregulation Uncovers DNA Integrity Scanning Protein A (DisA) as a Solventogenesis
681 Determinant in *Clostridium beijerinckii*. *Frontiers in bioengineering and biotechnology*, 9,
682 p.432.

683 45) Ujor, V., Agu, C.V., Gopalan, V. and Ezeji, T.C., 2014. Glycerol supplementation of the
684 growth medium enhances in situ detoxification of furfural by *Clostridium beijerinckii* during
685 butanol fermentation. *Applied microbiology and biotechnology*, 98(14), pp.6511-6521.

686 46) Ujor, V., Okonkwo, C. and Ezeji, T.C., 2016. Unorthodox methods for enhancing solvent
687 production in solventogenic *Clostridium* species. *Applied microbiology and biotechnology*,
688 100(3), pp.1089-1099.

689 47) Veza, Ibham, Mohd Farid Muhamad Said, and Zulkarnain Abdul Latiff. "Recent advances in
690 butanol production by acetone-butanol-ethanol (ABE) fermentation." *Biomass and Bioenergy*
691 144 (2021): 105919.

692 48) Wang, X., Yomano, L.P., Lee, J.Y., York, S.W., Zheng, H., Mullinnix, M.T., Shanmugam,
693 K.T. and Ingram, L.O., 2013. Engineering furfural tolerance in *Escherichia coli* improves the
694 fermentation of lignocellulosic sugars into renewable chemicals. *Proceedings of the National
695 Academy of Sciences*, 110(10), pp.4021-4026.

696 49) Wu, H., Wang, C., Chen, P., He, A.Y., Xing, F.X., Kong, X.P. and Jiang, M., 2017. Effects of
697 pH and ferrous iron on the coproduction of butanol and hydrogen by *Clostridium beijerinckii*
698 IB4. *International Journal of Hydrogen Energy*, 42(10), pp.6547-6555.

699 50) Zhang, Y. and Ezeji, T.C., 2013. Transcriptional analysis of *Clostridium beijerinckii* NCIMB
700 8052 to elucidate role of furfural stress during acetone butanol ethanol
701 fermentation. *Biotechnology for biofuels*, 6(1), pp.1-17.

702 51) Zhang, Y., Han, B. and Ezeji, T.C., 2012. Biotransformation of furfural and 5-hydroxymethyl
703 furfural (HMF) by *Clostridium acetobutylicum* ATCC 824 during butanol fermentation. *New*
704 *biotechnology*, 29(3), pp.345-351.

705 52) Zhang, Y., Ujor, V., Wick, M. and Ezeji, T.C., 2015. Identification, purification and
706 characterization of furfural transforming enzymes from *Clostridium beijerinckii* NCIMB 8052.
707 *Anaerobe*, 33, pp.124-131.

708 53) Zhang, Y., Xia, C., Lu, M. and Tu, M., 2018. Effect of overliming and activated carbon
709 detoxification on inhibitors removal and butanol fermentation of poplar prehydrolysates.
710 *Biotechnology for biofuels*, 11(1), pp.1-14.

711

712

713

714

715

716

717

718

719

720 **Tables and Figures**721 **Table 1:** Compositions of fermentation and preculture media and stock solutions used in the
722 fermentation of SH by *Clostridium beijerinckii*

Medium Component	Formula	Amount g/L
Switchgrass Hydrolysates		
Non-detoxified SH glucose		61.2
Detoxified SH hydrolysate glucose		58.7
Yeast extract		1
Glucose P2 medium		
Glucose	C ₆ H ₁₂ O ₆	60
Yeast Extract	-	1
TGY medium		
Tryptone	-	30
Glucose	C ₆ H ₁₂ O ₆	20
Yeast Extract	-	10
L-Cysteine	C ₃ H ₇ NO ₂ S	1
P2 buffer stock solution		
Potassium phosphate monobasic	KH ₂ PO ₄	50
Potassium phosphate dibasic	K ₂ HPO ₄	50
Ammonium acetate	NH ₄ CH ₃ CO ₂	220
Adjusted P2 buffer stock solution		
Potassium phosphate monobasic	KH ₂ PO ₄	50
Potassium phosphate dibasic	K ₂ HPO ₄	50
Ammonium acetate	NH ₄ CH ₃ CO ₂	50
Vitamins		
p-(4)-Aminobenzoic acid	C ₇ H ₇ NO ₂	0.1
Thiamine	C ₁₂ H ₁₇ N ₄ OS ⁺	0.1
Biotin	C ₁₀ H ₁₆ N ₂ O ₃ S	0.01
Minerals stock solution		
Magnesium sulfate heptahydrate	MgSO ₄ · 7H ₂ O	20

Manganese sulfate heptahydrate	MnSO ₄ ·7H ₂ O	1
Ferrous sulfate heptahydrate	FeSO ₄ ·7H ₂ O	1
Sodium chloride	NaCl	1
Supplement		
Yeast extract stock		50
Ammonium carbonate stock	(NH ₄) ₂ CO ₃	200

723

724 **Table 2:** Concentrations of glucose and LDMICs in detoxified and non-detoxified SH. Standard
 725 deviation for glucose reading represents duplicates (n = 2)

Compound	Non-detoxified SH (g/L)	Detoxified SH (g/L)
Sugar		
Glucose	61.2 ± 0.29	58.7 ± 0.74
LDMICs	mg/L	mg/L
HMF	9.52	8.95
Furfural	6.03	2.93
Vanillic Acid	2.20	0.59
Syringic Acid	6.15	0.89
Coumaric Acid	1.06	0.59
Hydroxybenzaldehyde	2.92	1.88

726

727

728

729

730

731 **Table 3:** Summary of data from the fermentation of SH by *C. beijerinckii* SDR and *C.*
 732 *beijerinckii* wildtype. Standard deviation for readings represents triplicates (n = 3)*

Medium	<i>C.</i>	
	<i>beijerinckii</i> SDR	<i>beijerinckii</i> wildtype
SH without modification	Glucose consumed (g/L)	57.71 ± 0.90 ^a
	Maximum butanol (g/L)	11.21 ± 0.60 ^b
	Glucose utilization rate (g/L/h)	0.60 ± 0.01 ^d
	Maximum ABE (g/L)	20.24 ± 0.8 ^a
	ABE yield (g/g)	0.35 ± 0.00 ^b
	ABE productivity (g/L/h)	0.24 ± 0.00 ^e
SH with medium modification	Glucose consumed (g/L)	42.44 ± 1.20 ^c
	Maximum butanol (g/L)	9.50 ± 0.59 ^e
	Glucose utilization rate (g/L/h)	0.59 ± 0.01 ^d
	Maximum ABE (g/L)	14.2 ± 0.6 ^e
	ABE yield (g/g)	0.34 ± 0.00 ^b
	ABE productivity (g/L/h)	0.30 ± 0.00 ^d
Detoxified	Glucose consumed (g/L)	57.86 ± 0.60 ^a
	Maximum butanol (g/L)	12.32 ± 0.17 ^a
	Glucose utilization rate (g/L/h)	0.80 ± 0.01 ^a
	Maximum ABE (g/L)	17.86 ± 0.25 ^b
	ABE yield (g/g)	0.32 ± 0.00 ^c
	ABE productivity (g/L/h)	0.37 ± 0.00 ^a
SH with medium modification	Glucose consumed (g/L)	48.35 ± 0.80 ^b
	Maximum butanol (g/L)	10.72 ± 0.07 ^c
	Glucose utilization rate (g/L/h)	0.68 ± 0.00 ^b
	Maximum ABE (g/L)	17.13 ± 0.34 ^c
	ABE yield (g/g)	0.37 ± 0.00 ^a
	ABE productivity (g/L/h)	0.36 ± 0.00 ^b
Detoxified	Glucose consumed (g/L)	47.2 ± 1.20 ^b
	Maximum butanol (g/L)	10.25 ± 0.28 ^d
	Glucose utilization rate (g/L/h)	0.66 ± 0.00 ^{bc}
	Maximum ABE (g/L)	15.57 ± 0.60 ^d
	ABE yield (g/g)	0.36 ± 0.00 ^a
	ABE productivity (g/L/h)	0.32 ± 0.00 ^c

733 *Statistical analysis was carried out to assess significant difference between *C. beijerinckii*_SDR and *C.*
734 *beijerinckii*_wildtype and, the different medium compositions for each parameter. Same letter
735 superscripts represent no significant differences between *C. beijerinckii*_SDR and *C.*
736 *beijerinckii*_wildtype, and across the different medium compositions.

737

738 **Figure Legends**

739 **Figure 1:** Estimated population profiles for *C. beijerinckii*_SDR and *C. beijerinckii*_wildtype
740 during fermentation of SH and P2 medium control.

741 **Figure 2:** pH profiles of the culture medium during fermentation of SH and P2 medium control
742 by *C. beijerinckii*_SDR or *C. beijerinckii*_wildtype

743 **Figure 3:** Acetic acid concentration profiles in the fermentation media using *C. beijerinckii*_SDR
744 or *C. beijerinckii*_wildtype

745 **Figure 4:** Butyric acid concentration profiles in the fermentation media using *C. beijerinckii*_SDR
746 or *C. beijerinckii*_wildtype

747 **Figure 5:** Acetone concentration profiles in cultures of *C. beijerinckii*_SDR or *C.*
748 *beijerinckii*_wildtype grown in SH and P2 medium control

749 **Figure 6:** Ethanol concentration profiles in cultures of *C. beijerinckii*_SDR or *C.*
750 *beijerinckii*_wildtype grown in SH and P2 medium control

751 **Figure 7:** Butanol concentration profiles in cultures of *C. beijerinckii*_SDR or *C.*
752 *beijerinckii*_wildtype grown in SH and P2 medium control

753 **Figure 8.** ABE concentrations in cultures of *C. beijerinckii*_SDR and *C. beijerinckii*_wildtype
754 grown in SH and P2 medium control