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Abstract—The generalized integrated interleaved (GII) codes
can nest BCH sub-codewords to form more powerful BCH
codewords. GII codes enable hyper-speed decoding and achieve
excellent error-correction capability. They are among the best
candidates for the new storage class memories (SCMs). However,
SCMs require high code rate and short codeword length. In this
case, the GII sub-codewords have small correction capability,
and miscorrections on the sub-words lead to severe performance
degradation. In previous work, higher-order nested syndromes
are computed to detect and mitigate miscorrections in GII decod-
ing. These computations cause long decoding latency, even though
they can be implemented by sharing the hardware architecture
for other decoding steps. This paper proposes three methods to
optimize the miscorrection detection by investigating dominant
error patterns leading to miscorrections. The first scheme is to
skip the nested syndrome checking for cases that are less likely
miscorrected. To make up for the performance loss caused by
the first scheme, our second approach exploits 2-bit extended
BCH codes to protect each sub-codeword. In addition, the third
scheme is developed to protect all sub-codewords using extra
parity bits while keeping the code rate loss negligible. Formulas
are also derived to estimate the achievable performance. Applying
the proposed optimizations, the average nested decoding latency
is reduced by 43% for an example GII code with 3-error-
correcting sub-codewords at input bit error rate 10−3, while
the performance loss and complexity overheads are negligible.

Index Terms—BCH codes, Generalized integrated interleaved
codes, Miscorrection, Storage class memories

I. INTRODUCTION

Generalized integrated interleaved (GII) codes [1], [2] nest

Reed-Solomon (RS) or BCH sub-codewords to form more

powerful RS or BCH codewords. The GII decoding is divided

into two stages: sub-word decoding and nested decoding,

which may involve multiple rounds depending on the error

number. In most cases, there are a small number of errors, and

only the decoding of individual short sub-words is carried out.

Hence GII decoding can achieve very high throughput with

low complexity. Additionally, by utilizing the stronger nested

codewords, extra errors are correctable. Therefore, GII codes

have much better error-correcting performance than traditional

RS or BCH codes that achieve similar decoding throughput.

The hyper throughput and excellent correction capability

make GII codes among the best candidates for storage class

memories (SCMs). The sensing latency of new SCMs is much

shorter than that of Flash memories. Error-correcting codes

with relative short length, e.g. several thousand bits, and high
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code rate, e.g. 90%, are required to achieve the speed potential

of SCMs. For such applications, the individual sub-codewords

of GII codes have small correction capability, such as t0 = 3.

In this case, a sub-codeword corrupted with extra errors may

be decoded as another sub-codeword with higher probability.

Such miscorrections degrade the GII decoding performance

significantly. The reason is that if a received sub-word is

miscorrected and not identified, then the more powerful nested

codewords cannot be utilized to correct extra errors. From our

previous study [3], the sub-word miscorrection causes several

orders of magnitude degradation on the decoding frame error

rate (FER) for an example code with t0 = 3.

It was proposed in [4] to mitigate miscorrections by carrying

out decoding on the nested words directly. However, the

number of error patterns correctable by this scheme is very

limited and the performance degradation is severe. In [5], the

first suspicious sub-word whose number of errors is found to

be t0 from sub-word decoding is sent to the nested decoding.

This scheme only locates a small portion of the miscorrections

for GII codes with small t0. Three methods for miscorrection

mitigation were developed in [3] to bring the actual FER

very close to the theoretical FER of GII codes. In detail,

[3] uses 1-bit extended BCH (eBCH) code, degree of error

locator polynomial, and higher-order nested syndromes to

detect miscorrections. However, the computation of the nested

syndromes requires many extra clock cycles and leads to

significant decoding latency overhead.

This paper proposes three optimizations on miscorrection

mitigation to significantly reduce the GII decoding latency

with negligible degradation on the FER. Through analyzing

the dominant error patterns leading to miscorrections, the first

scheme is developed to skip the nested syndrome checking

when miscorrections are unlikely to happen. This helps to

substantially reduce the probability of activating the nested

syndrome checking and hence the nested decoding latency.

To cover the miscorrections that are not detected due to the

first modification, our second and third approaches add more

parities, which can be computed with no latency overhead

and negligible complexity. The second approach exploits 2-

bit eBCH codes to protect each individual sub-codeword. To

further improve the performance with only very slight code

rate loss, our third scheme adds multiple global parity bits to

protect all sub-codewords. Moreover, formulas are derived to

estimate the FER after applying the proposed schemes. For an

example GII-BCH code over GF (210) with 3-error-correcting



BCH sub-codewords, the average nested decoding latency is

reduced by 43% using the proposed schemes with negligible

performance loss.

This paper is organized as follows. Section II introduces

GII codes and miscorrections. Section III describes the three

proposed optimization schemes for miscorrection mitigation.

Section IV summarizes the proposed GII decoding procedure

and conclusions follow in Section V.

II. GII-BCH CODES AND MISCORRECTIONS

A GII-BCH [m, v] code is constructed using v + 1 BCH

codes Cv ⊆ Cv−1 ⊆ · · · ⊆ C1 ⊂ C0. They are defined

over GF (2q) with error-correction capabilities tv ≥ tv−1 ≥
· · · ≥ t1 > t0. A GII codeword consists of m length-n sub-

codewords ci(x) and v nested codewords c̃l(x) ∈ Cv−l are

formed by linear combinations of ci(x). A GII-BCH [m, v]

code is formally defined as [2]:

C �
{
[c0(x), c1(x), · · · , cm−1(x)] : ci(x) ∈ C0,

c̃l(x) =

m−1∑
i=0

αil(x)ci(x) ∈ Cv−l, 0≤ l<v
}
,

(1)

where α is a primitive element of GF (2q) and αil(x) is the

polynomial form of the standard basis representation of αil.

GII-BCH decoding has two stages. The first is the traditional

t0-error-correcting BCH decoding on individual received sub-

word yi(x) = ci(x) + ei(x), where ei(x) is the error poly-

nomial. 2t0 syndromes are first calculated as the evaluation

values S
(i)
j = yi(α

j+1) (0 ≤ j < 2t0). If all syndromes

are zero, the sub-word is regarded as error-free. Otherwise,

a key equation solver (KES), such as the Berlekamp-Massey

(BM) algorithm, computes the error locator polynomial Λ(x)
using the 2t0 syndromes. Then, error locations can be found

from the inverse roots of Λ(x). Decoding success is declared

if the number of distinct roots of Λ(x) equals the degree of

Λ(x), which is denoted by deg(Λ(x)). Otherwise, the sub-

word decoding fails.

The second-stage nested decoding is activated when there

are failures or miscorrections in sub-word decoding due to

extra errors. 2t syndromes are needed to correct t errors. Extra

higher-order syndromes can be derived from nested words

ỹl(x) =
∑m−1

i=0 αil(x)yi(x). Let the indices of the b ≤ v
sub-words with extra errors be i0, i1, · · · , ib−1. From (1), the

nested codewords c̃l(x) (0 ≤ l < b) are at least t1-error-

correcting. Hence their higher-order syndromes with indices

2t0 ≤ j < 2t1 are computed as S̃
(l)
j = ỹl(α

j+1). From the

nesting in (1), for sub-words with extra errors, the higher-order

syndromes with indices 2t0 ≤ j < 2t1 can be computed as[
S
(i0)
j , S

(i1)
j , · · · , S(ib−1)

j

]T
=A−1

[
S̃
(0)
j , S̃

(1)
j , · · · , S̃(b−1)

j

]T
,

(2)

where the matrix entry Au,w equals αiwu(j+1) (0 ≤ u,w < b)
[2]. After that, up to t1 errors can be corrected for each of

the b sub-words. If there are b′ sub-words that remain to be

corrected, then the first b′ nested words, which are at least t2-

error-correcting, are utilized to compute the following 2(t2 −
t1) higher-order syndromes in a similar way. This process is

repeated for up to v rounds.

Sort the number of errors in the received sub-words as τ0 ≥
τ1 ≥ · · · ≥ τm−1. The error pattern is correctable if τl ≤ tv−l

for 0 ≤ l ≤ v. Accordingly, the theoretical FER without mis-

corrections can be estimated by the formula in [2]. For SCM

applications using around 256 parity bits to protect 2560 data

bits, GII-BCH [4,3] codes over GF (210) with sub-codeword

length n = (2560 + 256)/4 = 704 can be utilized to achieve

a good tradeoff on error-correcting performance and decoding

complexity. For this codeword length and redundancy, the best

FER is achieved when [t0, t1, t2, t3] = [3, 5, 6, 11].

To achieve the theoretical performance in actual GII de-

coding, the miscorrection issue needs to be handled. When a

t-error-correcting BCH codeword is corrupted with more than

t errors, its distance to another codeword may be smaller than

t. In this case, it will be decoded as another codeword and

miscorrection occurs. Miscorrections happen more likely for

smaller t. If miscorrected sub-words are not identified and not

sent to further nested decoding, it will cause decoding failure

even if the error pattern is within the correction capability

of the GII code. As a result, GII codes consisting of sub-

codewords with small t0, such as the [4,3] code with t0 = 3,

would have orders of magnitude performance degradation if

miscorrections are not detected and mitigated [3].

Miscorrections can be detected by higher-order nested syn-

dromes [3]. If any of them is nonzero, miscorrections are

detected. This is because that the nested codewords are linear

combinations of the sub-codewords and they have higher

correction capabilities. Another two methods were also de-

veloped in [3] to better identify the miscorrected sub-words

with negligible complexity overhead and no extra latency. The

first utilizes 1-bit eBCH codes. If the bit-wise XOR result

of the received sub-word is different from the parity of the

number of roots of Λ(x), then miscorrections are found. In the

second approach, deg(Λ(x)) > ti in nested decoding round i
indicates miscorrections. Here, the first-stage individual sub-

word decoding is considered as nested decoding round 0.

Fig. 1 shows the nested decoding latency for the example

code with [t0, t1, t2, t3] = [3, 5, 6, 11] using the approaches

from [3]. In the worst case, three nested decoding rounds

are activated to handle three sub-words with extra errors. The

nested decoding of each sub-word includes higher-order nested

syndrome computation, syndrome conversion, nested KES,

and Chien search [6]. The number of clock cycles for each step

needed in the hardware implementation targeting high speed

and efficiency is included in the parenthesis in Fig. 1. Unlike

those for the nested decoding itself, the nested syndromes for

miscorrection detection before each nested decoding round

should be computed based on the previous decoding output.

Although they can be calculated by sharing the same hardware,

extra clock cycles are needed and they account for a significant

portion of the overall nested decoding latency.



Fig. 1. Worst-case latency of the nested decoding incorporating miscorrection detection of the GII-BCH [4,3] code with [t0, t1, t2, t3] = [3, 5, 6, 11].

III. OPTIMIZED MISCORRECTION DETECTION

This section proposes three optimization schemes for mis-

correction detection to reduce the nested decoding latency

with negligible performance loss and complexity overhead.

The proposed methods include skipping the nested syndrome

checking when all sub-words have small deg(Λ(x)) and at

the end of those nested decoding rounds with higher correc-

tion capabilities, exploiting 2-bit eBCH codes for each sub-

codeword, and adopting multiple global parities to protect

all sub-codewords. Formulas are also derived to estimate the

resulted FERs.

A. Skipping Nested Syndrome Checking when Miscorrections
are Less Likely to Happen

In [3], if any of the sub-words fails to be decoded or is

detected to be miscorrected by using either the 1-bit eBCH

code or checking if deg(Λ(x)) > ti, then up to v − i sub-

words are chosen and sent to nested decoding round i+ 1 to

correct extra errors. Otherwise, higher-order nested syndromes

are computed to check for potential miscorrections. The nested

syndromes tell if any of the sub-words are miscorrected. If

every sub-word is less likely to be miscorrected, then the

nested syndrome checking can be skipped to shorten the nested

decoding latency with small degradation on the FER.

From our simulations, it is observed that the probability of

a received sub-word with more than t errors being miscor-

rected decreases significantly with deg(Λ(x)). For example,

if a 3-error-correcting BCH sub-codeword with n = 704 is

corrupted by 6 errors, the probabilities of miscorrections when

deg(Λ(x)) = 3, 2, 1 are 5.4 × 10−2, 2.5 × 10−4, 6 × 10−7,

respectively. From the above observation, this paper proposes

to skip the nested syndrome checking if the deg(Λ(x)) from

the decoding of every sub-word does not exceed a threshold,

th. Apparently, th should be less than t0.

The FER degradation caused by the above skipped nested

syndrome checking at lower input bit error rate (BER) cannot

be simulated in practical time and can be analyzed as follows.

If a sub-word has deg(Λ(x)) ≤ th at the end of nested

decoding round i, it can be corrupted by either up to th
errors or more than ti errors. From [3], in most of the

cases that miscorrections ever cause degradation on the FER,

there is only one sub-word miscorrected but not identified,

and all the other sub-words are successfully decoded. Hence,

the dominating error patterns leading to performance loss

when the nested syndromes are not checked in the case of

deg(Λ(x)) ≤ th have one sub-word miscorrected with more

than ti errors and each of the other sub-words with up to th
errors. As a result, the FER degradation compared to the case

Fig. 2. FERs of GII-BCH [4,3] decoding with nested syndrome checking
skipped when deg(Λ(x)) ≤ th.

of checking the nested syndromes regardless of deg(Λ(x)) as

in [3] after nested decoding round i can be estimated as

F
(i)
1 =

(
v − i

1

)(
tv∑

w=ti+1

φwG
(i)
w

)(
th∑

w=0

φw

)m−1

. (3)

In (3), φw =
(
n
w

)
pwb (1 − pb)

n−w is the probability of a n-bit

sub-codeword corrupted with w errors when the input BER

is pb. G
(i)
w is the probability of a w-error-corrupted sub-word

miscorrected with deg(Λ(x)) ≤ th and not detected by the

1-bit eBCH scheme in nested decoding round i. Its value can

be derived from simulations over a limited number of random

samples, such as 108. Note that if the miscorrected sub-word

has more than tv errors, then the error pattern is not correctable

by the GII code anyway and skipping the nested syndrome

checking does not lead to further FER degradation. Hence,

the upper bound of the summation in the middle of (3) is tv .

F
(0)
1 , which corresponds to the nested syndrome checking after

the first-stage sub-word decoding, is by far much larger than

F
(i)
1 with i > 0, and can be used to estimate the overall FER

degradation caused by skipping the nested syndrome checking

when deg(Λ(x)) ≤ th.

The FERs of the example GII code estimated by using F
(0)
1

with different th values are plotted in Fig. 2. Simulations over

the binary symmetric channel (BSC) at higher BERs, such as

≥ 1.3×10−3, have also been carried out and the results overlap

with the estimation in the figure. Compared to the methods

in [3], the proposed scheme only has slight FER degradation

when th = 1. However, increasing th to 2 makes the FER

much higher. Fig. 3 shows the probabilities of activating the

higher-order nested syndrome computation for miscorrection

detection after the first-stage sub-codeword decoding. By

setting a threshold to deg(Λ(x)) as in the proposed approach,

the nested syndromes are computed much less frequently for



Fig. 3. Probabilities of computing higher-order nested syndromes for miscor-
rection detection after the first-stage sub-codeword decoding for the example
GII-BCH [4,3] code.

miscorrection detection and hence the average nested decoding

latency is reduced significantly, especially at lower BER.

Although th = 2 leads to further reduction in the probability

of activating the nested syndrome computation, it should not

be used since it leads to substantial FER degradation as shown

in Fig. 2.

The above approach reduces the average nested decoding

latency. To reduce the worst-case nested decoding latency, this

paper proposes to skip the nested syndrome checking after

later nested decoding rounds, since miscorrections are less

likely to happen for the corresponding BCH codes that have

higher correction capabilities. In order to decide the nested

decoding round δ, after which the nested syndrome checking

is skipped, the corresponding FER degradation needs to be

analyzed. The major cases leading to performance degradation

are still that only one sub-word is miscorrected and all the

other sub-words are decoded correctly [3]. Since the δ-th

nested decoding round can correct at most tδ errors, the major

cases leading to FER increase after this round are that there

is one miscorrected sub-word with more than tδ errors and all

the other sub-words have no more than tδ errors. Similar to

(3), the FER degradation caused by these miscorrections can

be estimated as

F
(δ)
2 =

(
v − δ

1

)(
tv∑

w=tδ+1

φwG
′(δ)
w

)(
tδ∑

w=0

φw

)m−1

, (4)

where G
′(δ)
w is the probability of a w-error-corrupted sub-word

miscorrected with deg(Λ(x)) ≤ tδ and not detected by the

1-bit eBCH scheme in nested decoding round δ. G
′(δ)
w can

be derived by simulations over a limited number of random

samples.

Combining (3) and (4), the FERs of GII decoding using

the two proposed schemes for skipping the nested syndrome

checking are plotted in Fig. 4 for the example [4,3] code with

[t0, t1, t2, t3] = [3, 5, 6, 11]. It can be observed that skipping

the nested syndrome checking after nested decoding round

δ = 2 with t2 = 6 only brings small FER degradation. On

the other hand, skipping the nested syndrome checking for

earlier decoding rounds with smaller tδ leads to significant

Fig. 4. FERs of GII-BCH [4,3] decoding with nested syndrome checking
skipped.

performance loss. Simulations over BSC at high BERs have

been carried out, and the results match the estimated FERs.
Although the two proposed schemes of skipping the nested

syndrome checking reduce the nested decoding latency by

a significant portion, they bring noticeable performance loss

as shown in Fig. 4. In order to close the FER gap, two

methods with negligible complexity and no latency overhead

are developed next.

B. Exploiting 2-bit Extended BCH Codes
Miscorrections are detected by using 1-bit eBCH codes in

[3]. The basic idea is to incorporate the factor (x+1) into the

generator polynomials of the involved BCH codes. Since now

the Hamming weight of every sub-codeword is even, whether

the number of errors in a received sub-word is even or odd

can be determined by XORing all the bits in the sub-word.

On the other hand, the number of distinct roots of Λ(x) tells

the number of errors found from the decoding process. If the

parities of these two numbers do not match, then miscorrection

is detected. However, this 1-bit eBCH scheme fails to detect

miscorrections when the number of errors in the received sub-

word and the number of distinct roots of Λ(x) are different

but are both even or odd.
To locate the miscorrections that are undetectable by 1-bit

eBCH codes, this paper proposes to exploit 2-bit eBCH codes

[7]. The generator polynomial of a 2-bit eBCH code is con-

structed by multiplying (x2+1) to the generator polynomial of

a BCH code. Hence, the 2-bit eBCH code is a sub-code of the

1-bit eBCH code and the Hamming weight of a 2-bit eBCH

codeword is still even. Besides, a 2-bit eBCH codeword has the

property that the Hamming weights of all even-index bits and

all odd-index bits are both even. With this extra information,

more miscorrections can be detected. Consider a case that

the miscorrected sub-word has j errors and the corresponding

Λ(x) has k distinct roots, where j and k are both even. This

is undetectable by the 1-bit eBCH code. Let the number of

errors in the even-index bits of the sub-word be j′. Whether

j′ is even or odd can be determined by XORing all the even-

index bits in the 2-bit eBCH sub-word. Assume that k′ of the

roots of Λ(x) are in even-index locations. When one of j′

and k′ is even and the other is odd, miscorrection is detected.

Of course, miscorrections are undetected when j′ and k′ are



TABLE I
VALUES OF G

(i)
w IN (3) WHEN ζ GLOBAL PARITIES ARE UTILIZED FOR THE

DECODING OF GII-BCH [4,3] CODE WITH th = 1

ζ G
(0)
7 G

(0)
9 G

(0)
11

0 3.6×10−7 2.4×10−7 1.6×10−7

2 1.4×10−7 1.7×10−7 7.0×10−8

4 <10−8 <10−8 <10−8

6 <10−9 <10−8 <10−8

TABLE II
VALUES OF G

′(δ)
w IN (4) WHEN ζ GLOBAL PARITIES ARE UTILIZED FOR

THE DECODING OF GII-BCH [4,3] CODE WITH δ = 2

ζ G
′(2)
7 G

′(2)
8 G

′(2)
9 G

′(2)
10 G

′(2)
11

0 5×10−9 6.1×10−5 1.3×10−6 1.4×10−4 7.0×10−7

2 <5×10−9 3.2×10−5 2.0×10−7 4.3×10−5 4.0×10−7

4 <5×10−9 9.2×10−6 <10−7 1.3×10−5 < 10−7

6 <5×10−9 1.2×10−6 <10−7 2.2×10−6 <10−7

both even or odd. Similar analysis applies to the case when

j and k are both odd. Accordingly, using 2-bit eBCH codes

can further detect half of the miscorrection cases that are not

found by the 1-bit eBCH scheme.

Applying the 2-bit eBCH scheme, the values of G
(i)
w in (3)

and G
′(δ)
w in (4) will be reduced by a half. Accordingly, the

performance loss brought by skipping the nested syndrome

computation as proposed in the previous subsection is also

reduced by a half. The code rate loss resulted from utilizing

the 2-bit eBCH scheme is negligible, because only two extra

bits are needed for each individual sub-codeword.

C. Adopting Global Parities

The FER gap resulted from skipping the nested syndrome

checking can be further closed by utilizing more parity bits.

However, keep adding more parities to each sub-codeword

will lead to noticeable code rate loss. On the other hand,

in most of the cases, only one sub-word is miscorrected. To

more efficiently utilize the parities and keep the code rate loss

negligible, this paper proposes to adopt global parities that are

XOR results of all sub-codewords for miscorrection detection.

The global parities can effectively detect a single miscorrected

sub-word when the other sub-words are corrected.

Assume that ζ extra global parities, p0, p1, · · · , pζ−1, are

used. In our scheme, each individual sub-codeword is divided

into ζ segments, and the i-th global parity bit is the XOR result

of the i-th segment of every sub-codeword. Assume that ζ | n.

In other words,

pi =

m−1∑
j=0

n/ζ−1∑
k=0

cj,i(n/ζ)+k, (5)

where cj,a is the a-th bit of the j-th BCH sub-codeword, and

the addition is the XOR. If ζ � n, then the n bits of each sub-

word should be divided into ζ groups as evenly as possible.

The global parities are used to detect miscorrections as

follows. Assume that there is no error on pi at the receiver.

Similar XOR computations as in (5) are carried out on the

received sub-words to get p̂i. If pi XOR p̂i =‘0’, it means that

the number of errors on the i-th segment of the sub-codewords

Fig. 5. FERs of GII-BCH [4,3] decoding with the three proposed miscorrec-
tion detection schemes combined.

is even. Otherwise, the number of errors is odd. Also, count the

number of errors in the i-th segment found from the decoding

for all sub-words. If the parity of this number does not match

the conclusion drawn from pi XOR p̂i, then miscorrections are

detected. The probability that a global parity bit is erroneous

is equal to the input BER. For lower BER, the global parities

can help to effectively detect more miscorrections.

Since the global parities are the XOR results of every

sub-word, for a given number of global parities, there are a

large number of possible error patterns among the m sub-

words. Hence, it is difficult to develop a concise formula

for the FER improvement resulted from using global parities.

However, G
(i)
w and G

′(δ)
w in (3) and (4), respectively, do not

change with the input BER and the other components of the

formulas can be calculated algebraically. Therefore, the FERs

at lower BERs can still be estimated once G
(i)
w and G

′(δ)
w are

derived from simulations over a limited number of random

samples. The values of G
(i)
w and G

′(δ)
w for the example code

with different numbers of global parities are shown in Table

I and II, respectively. Since F
(0)
1 is much larger than the

other F
(i)
1 with i > 0, only G

(0)
w with w ≥ t0 + 1 need to

be considered. Besides, when th = 1 and eBCH codes are

used, only the miscorrections with odd number of errors are

not detected. Additionally, since the minimum distance of the

t0 = 3 BCH code is 2t0 + 1 = 7, a 5-error-corrupted sub-

word will not be miscorrected with deg(Λ(x)) = 1. Therefore,

only G
(0)
7 , G

(0)
9 , and G

(0)
11 need to be taken into account as

shown in Table I. Also δ = 2 is adopted for the example

code. Hence Table II starts from G
′(2)
t2+1. The estimated FERs

of the proposed optimization schemes for latency reduction

are plotted in Fig. 5. It can be observed that the FER of our

new schemes becomes almost the same as that of the approach

in [3] when 6 global parities are used. Simulation results at

higher BER also confirm our analysis.

IV. MODIFIED GII DECODING AND LATENCY ANALYSES

The GII-BCH decoding with the proposed optimized mis-

correction detection schemes for latency reduction is summa-

rized in Algorithm 1. The set I includes the sub-words that

remain to be corrected. It consists of the sub-words that are

declared decoding success, and Ic = {0, 1, · · · ,m− 1}\I . If



Algorithm 1: GII-BCH Dec. with Prop. Miscorrection Detection

Input: received sub-words yi(x) (0≤i<m); ti (0≤i≤v)
Initialization: I⇐{0, 1, · · · ,m−1}; Ic⇐∅; It⇐∅
fi⇐XOR of all even bits of yi(x)
gi⇐XOR of all odd bits of yi(x)
for l=0, 1, · · · , v do

if (l=0): compute 2t0 syndromes for each yi(x)∈I
if (all are zero): declare decoding success; stop. end

else: derive 2tl−2tl−1 higher-order syn. for each yi(x)∈I
end
for each i∈I do

carry out KES on yi(x)
di⇐number of even inverse roots of Λi(x)
qi⇐number of odd inverse roots of Λi(x)
if (deg(Λi(x))≤tl) & (di mod 2=fi) & (qi mod 2=gi)

& (di+qi=deg(Λi(x))):
It⇐It∪i; I⇐I\i

end
end
if (|I|>v−l): declare decoding failure; stop. end
h⇐true
if (|I|=0):

use global parities to detect miscorrections
if (miscorrections not found from global parities):

if (all deg(Λi(x))≤th): h⇐false
elseif (l<δ): compute higher-order nested syndromes

if (all nested syndromes are zero)
h⇐false

end
else: h⇐false
end

end
end
if (h=false):

Ic⇐Ic∪It; use Λi(x) to correct each yi(x)∈Ic
declare decoding success; stop.

end
while |I|<v−l do

find smallest i∈It with max deg(Λ(x)); I⇐I∪i; It⇐It\i
end
Ic⇐Ic∪It; It⇐∅

end

|I| exceeds the number of sub-words that can be corrected by

the GII code, overall decoding is terminated with failure. If

the decoding of every sub-word has been declared successful,

whose decision is contributed by the parities of the 2-bit

eBCH scheme, miscorrection detection is carried out. A flag,

h, is used to indicate if further decoding is needed. It is

initially set to true and is changed to false if miscorrections

are not found by using global parities and i) all sub-words

have deg(Λ(x)) ≤ th, ii) no miscorrection is found from

nested syndrome checking, or iii) it is already after nested

decoding round δ. When h becomes false, the GII decoding

is successfully completed.

For the example GII-BCH [4,3] code with [t0, t1, t2, t3] =
[3, 5, 6, 11], from simulations, the probabilities of activating

the nested decoding round 1, 2, and 3 are pn1 = 2.3× 10−2,

pn2 = 3.6 × 10−4, and pn3 = 4.4 × 10−5, respectively,

at BER=10−3. Let the probabilities of activating the nested

syndrome computation for miscorrection detection after de-

coding round i be pmi. The average nested decoding latency

of the design in [3] is Lorig = 8pm0 + pn1(38 + 8pm1) +
pn2(30 + 8pm2) + 40pn3 according to Fig. 1. From simula-

tions, pm0 = 0.92, and pm1 and pm2 are much smaller. It

can be computed that Lorig = 8.3. In the proposed schemes,

adopting th = 1 and δ = 2 with 2-bit eBCH codes and 6

global parities leads to negligible performance loss. In this

setting, pm0 is reduced to 0.47 at BER=10−3 from Fig. 3 and

pm2 becomes zero. Accordingly, the average nested decoding

latency of the proposed scheme is Lprop = 4.7, which is 43%

shorter. The average latency reduction is more significant at

lower BER due to the smaller pm0. The proposed schemes

also reduce the worst-case latency from 132 in Fig. 1 to 124

since the nested syndrome checking after the second nested

decoding round is eliminated. For GII-BCH codes with larger

ti, such as a [4,2] code with [t0, t1, t2] = [4, 6, 11], eliminating

the nested syndrome checking from earlier decoding rounds

results in more significant worst-case latency improvement.

The proposed schemes have negligible overheads in hard-

ware complexity and redundancy. To use 2-bit eBCH codes,

only one more tap is needed in the linear feedback shift

registers for the encoder. The XOR computations for the extra

parities require negligible silicon area compared to that of

the overall GII decoder. Besides, the additional parities only

bring (4+6)/704/4=0.35% code rate loss for the example code

compared to the approaches in [3].

V. CONCLUSIONS

This paper proposed three miscorrection mitigation opti-

mizations to reduce the nested decoding latency with neg-

ligible complexity overhead. Nested syndrome checking is

skipped when miscorrections are unlikely to happen. To make

up for the resulted small FER degradation, 2-bit eBCH codes

and global parities are utilized to detect more miscorrec-

tions. Overall, the proposed schemes can achieve almost

the same error-correcting performance as prior designs with

significantly shorter latency. Formulas and methodologies for

estimating the FER at lower input BER are also provided.

Future research will investigate the optimization of the other

GII decoding steps.
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