Improved Miscorrection Detection for
Generalized Integrated Interleaved BCH Codes

Zhenshan Xie and Xinmiao Zhang
Dept. of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
Email: {xie.855, zhang.8952} @osu.edu

Abstract—The generalized integrated interleaved (GII) codes
can nest BCH sub-codewords to form more powerful BCH
codewords. GII codes enable hyper-speed decoding and achieve
excellent error-correction capability. They are among the best
candidates for the new storage class memories (SCMs). However,
SCMs require high code rate and short codeword length. In this
case, the GII sub-codewords have small correction capability,
and miscorrections on the sub-words lead to severe performance
degradation. In previous work, higher-order nested syndromes
are computed to detect and mitigate miscorrections in GII decod-
ing. These computations cause long decoding latency, even though
they can be implemented by sharing the hardware architecture
for other decoding steps. This paper proposes three methods to
optimize the miscorrection detection by investigating dominant
error patterns leading to miscorrections. The first scheme is to
skip the nested syndrome checking for cases that are less likely
miscorrected. To make up for the performance loss caused by
the first scheme, our second approach exploits 2-bit extended
BCH codes to protect each sub-codeword. In addition, the third
scheme is developed to protect all sub-codewords using extra
parity bits while keeping the code rate loss negligible. Formulas
are also derived to estimate the achievable performance. Applying
the proposed optimizations, the average nested decoding latency
is reduced by 43% for an example GII code with 3-error-
correcting sub-codewords at input bit error rate 1073, while
the performance loss and complexity overheads are negligible.

Index Terms—BCH codes, Generalized integrated interleaved
codes, Miscorrection, Storage class memories

I. INTRODUCTION

Generalized integrated interleaved (GII) codes [1], [2] nest
Reed-Solomon (RS) or BCH sub-codewords to form more
powerful RS or BCH codewords. The GII decoding is divided
into two stages: sub-word decoding and nested decoding,
which may involve multiple rounds depending on the error
number. In most cases, there are a small number of errors, and
only the decoding of individual short sub-words is carried out.
Hence GII decoding can achieve very high throughput with
low complexity. Additionally, by utilizing the stronger nested
codewords, extra errors are correctable. Therefore, GII codes
have much better error-correcting performance than traditional
RS or BCH codes that achieve similar decoding throughput.

The hyper throughput and excellent correction capability
make GII codes among the best candidates for storage class
memories (SCMs). The sensing latency of new SCMs is much
shorter than that of Flash memories. Error-correcting codes
with relative short length, e.g. several thousand bits, and high

This work was supported in part by Kioxia Corporation and by the National
Science Foundation under Award No. 2011785.

code rate, e.g. 90%, are required to achieve the speed potential
of SCMs. For such applications, the individual sub-codewords
of GII codes have small correction capability, such as g = 3.
In this case, a sub-codeword corrupted with extra errors may
be decoded as another sub-codeword with higher probability.
Such miscorrections degrade the GII decoding performance
significantly. The reason is that if a received sub-word is
miscorrected and not identified, then the more powerful nested
codewords cannot be utilized to correct extra errors. From our
previous study [3], the sub-word miscorrection causes several
orders of magnitude degradation on the decoding frame error
rate (FER) for an example code with ¢y = 3.

It was proposed in [4] to mitigate miscorrections by carrying
out decoding on the nested words directly. However, the
number of error patterns correctable by this scheme is very
limited and the performance degradation is severe. In [5], the
first suspicious sub-word whose number of errors is found to
be o from sub-word decoding is sent to the nested decoding.
This scheme only locates a small portion of the miscorrections
for GII codes with small ty. Three methods for miscorrection
mitigation were developed in [3] to bring the actual FER
very close to the theoretical FER of GII codes. In detail,
[3] uses 1-bit extended BCH (eBCH) code, degree of error
locator polynomial, and higher-order nested syndromes to
detect miscorrections. However, the computation of the nested
syndromes requires many extra clock cycles and leads to
significant decoding latency overhead.

This paper proposes three optimizations on miscorrection
mitigation to significantly reduce the GII decoding latency
with negligible degradation on the FER. Through analyzing
the dominant error patterns leading to miscorrections, the first
scheme is developed to skip the nested syndrome checking
when miscorrections are unlikely to happen. This helps to
substantially reduce the probability of activating the nested
syndrome checking and hence the nested decoding latency.
To cover the miscorrections that are not detected due to the
first modification, our second and third approaches add more
parities, which can be computed with no latency overhead
and negligible complexity. The second approach exploits 2-
bit eBCH codes to protect each individual sub-codeword. To
further improve the performance with only very slight code
rate loss, our third scheme adds multiple global parity bits to
protect all sub-codewords. Moreover, formulas are derived to
estimate the FER after applying the proposed schemes. For an
example GII-BCH code over GF'(2'?) with 3-error-correcting

BCH sub-codewords, the average nested decoding latency is
reduced by 43% using the proposed schemes with negligible
performance loss.

This paper is organized as follows. Section II introduces
GII codes and miscorrections. Section III describes the three
proposed optimization schemes for miscorrection mitigation.
Section IV summarizes the proposed GII decoding procedure
and conclusions follow in Section V.

II. GII-BCH CODES AND MISCORRECTIONS

A GII-BCH [m, v] code is constructed using v + 1 BCH
codes C, € Cy—1 C -+ C (€3 C Cy. They are defined
over GF(27) with error-correction capabilities ¢, > t,_1 >
--- > 11 > tog. A GII codeword consists of m length-n sub-
codewords ¢;(x) and v nested codewords ¢ (x) € C,_; are
formed by linear combinations of ¢;(x). A GII-BCH [m,v]
code is formally defined as [2]:

ca {[co(:v),cl(:c), e emer(@)] : ci(2) € Co,
m—1 . (1)
a(e) = Y a'l(w)eilw) € €y, 01 <0},

i=0

where « is a primitive element of GF(29) and o (z) is the
polynomial form of the standard basis representation of o'

GII-BCH decoding has two stages. The first is the traditional
to-error-correcting BCH decoding on individual received sub-
word y;(z) = ¢;(x) + e;(x), where e;(z) is the error poly-
nomial. 2ty syndromes are first calculated as the evaluation
values S](l) = yi(at1) (0 < j < 2tp). If all syndromes
are zero, the sub-word is regarded as error-free. Otherwise,
a key equation solver (KES), such as the Berlekamp-Massey
(BM) algorithm, computes the error locator polynomial A(x)
using the 2ty syndromes. Then, error locations can be found
from the inverse roots of A(z). Decoding success is declared
if the number of distinct roots of A(z) equals the degree of
A(z), which is denoted by deg(A(z)). Otherwise, the sub-
word decoding fails.

The second-stage nested decoding is activated when there
are failures or miscorrections in sub-word decoding due to
extra errors. 2t syndromes are needed to correct ¢ errors. Extra
higher-order syndromes can be derived from nested words
Gi(z) = Y7, el (x)yi(z). Let the indices of the b < v
sub-words with extra errors be ig, %1, - ,%_1. From (1), the
nested codewords ¢;(x) (0 < [< b) are at least t;-error-
correcting. Hence their higher-order syndromes with indices
2ty < j < 2t, are computed as 5’]@ = gi(a?T1). From the
nesting in (1), for sub-words with extra errors, the higher-order
syndromes with indices 2¢y < j < 2¢; can be computed as

. . . T T

(i) g(in) Gon] "L 4150 s | gD
S0, g, s = A [50, 50 L ,
2

where the matrix entry A, ,, equals a*»*U+1) (0 < u,w < b)
[2]. After that, up to t; errors can be corrected for each of
the b sub-words. If there are b’ sub-words that remain to be

corrected, then the first ¥’ nested words, which are at least t-
error-correcting, are utilized to compute the following 2(t —
t1) higher-order syndromes in a similar way. This process is
repeated for up to v rounds.

Sort the number of errors in the received sub-words as 79 >
TL > -+ > Tm—1. The error pattern is correctable if 7, < ¢,
for 0 <[< wv. Accordingly, the theoretical FER without mis-
corrections can be estimated by the formula in [2]. For SCM
applications using around 256 parity bits to protect 2560 data
bits, GII-BCH [4,3] codes over GF(2!°) with sub-codeword
length n = (2560 + 256)/4 = 704 can be utilized to achieve
a good tradeoff on error-correcting performance and decoding
complexity. For this codeword length and redundancy, the best
FER is achieved when [tg, t1, t2,t3] = [3,5,6,11].

To achieve the theoretical performance in actual GII de-
coding, the miscorrection issue needs to be handled. When a
t-error-correcting BCH codeword is corrupted with more than
t errors, its distance to another codeword may be smaller than
t. In this case, it will be decoded as another codeword and
miscorrection occurs. Miscorrections happen more likely for
smaller ¢. If miscorrected sub-words are not identified and not
sent to further nested decoding, it will cause decoding failure
even if the error pattern is within the correction capability
of the GII code. As a result, GII codes consisting of sub-
codewords with small ¢y, such as the [4,3] code with {9 = 3,
would have orders of magnitude performance degradation if
miscorrections are not detected and mitigated [3].

Miscorrections can be detected by higher-order nested syn-
dromes [3]. If any of them is nonzero, miscorrections are
detected. This is because that the nested codewords are linear
combinations of the sub-codewords and they have higher
correction capabilities. Another two methods were also de-
veloped in [3] to better identify the miscorrected sub-words
with negligible complexity overhead and no extra latency. The
first utilizes 1-bit eBCH codes. If the bit-wise XOR result
of the received sub-word is different from the parity of the
number of roots of A(z), then miscorrections are found. In the
second approach, deg(A(z)) > ¢; in nested decoding round ¢
indicates miscorrections. Here, the first-stage individual sub-
word decoding is considered as nested decoding round 0.
Fig. 1 shows the nested decoding latency for the example
code with [tg,t1,ts,t3] = [3,5,6,11] using the approaches
from [3]. In the worst case, three nested decoding rounds
are activated to handle three sub-words with extra errors. The
nested decoding of each sub-word includes higher-order nested
syndrome computation, syndrome conversion, nested KES,
and Chien search [6]. The number of clock cycles for each step
needed in the hardware implementation targeting high speed
and efficiency is included in the parenthesis in Fig. 1. Unlike
those for the nested decoding itself, the nested syndromes for
miscorrection detection before each nested decoding round
should be computed based on the previous decoding output.
Although they can be calculated by sharing the same hardware,
extra clock cycles are needed and they account for a significant
portion of the overall nested decoding latency.

| 1% nested decoding round (38) |

2" nested decoding round (30) I |

3" nested decoding round (40)

ested syn. | Nested syn. [Convert]
Mis. detect (8) 8) | 2) |'<ES(7)

Chien (7)

[Nested syn. [Convert]
=G B keste)

Chien (7) | [Nestedsyn.(lﬁ)l KES (10) | Chien (14)]

|
|
|
|
|
!

|C°’(“2/)9”' KES (7)

lConvert,
(2)

Chien (7)
KES (7)

;
. ested syn.
Chien (7) Mis. detect (8)

T
|
|
|
|

Convert . ested syn.
l (2) KES (6) ‘ Chien (7) ! Mis. detect (8)

Fig. 1. Worst-case latency of the nested decoding incorporating miscorrection detection of the GII-BCH [4,3] code with [to, t1,t2,t3] = [3, 5,6, 11].

III. OPTIMIZED MISCORRECTION DETECTION

This section proposes three optimization schemes for mis-
correction detection to reduce the nested decoding latency
with negligible performance loss and complexity overhead.
The proposed methods include skipping the nested syndrome
checking when all sub-words have small deg(A(z)) and at
the end of those nested decoding rounds with higher correc-
tion capabilities, exploiting 2-bit eBCH codes for each sub-
codeword, and adopting multiple global parities to protect
all sub-codewords. Formulas are also derived to estimate the
resulted FERs.

A. Skipping Nested Syndrome Checking when Miscorrections
are Less Likely to Happen

In [3], if any of the sub-words fails to be decoded or is
detected to be miscorrected by using either the 1-bit eBCH
code or checking if deg(A(x)) > t;, then up to v — i sub-
words are chosen and sent to nested decoding round i + 1 to
correct extra errors. Otherwise, higher-order nested syndromes
are computed to check for potential miscorrections. The nested
syndromes tell if any of the sub-words are miscorrected. If
every sub-word is less likely to be miscorrected, then the
nested syndrome checking can be skipped to shorten the nested
decoding latency with small degradation on the FER.

From our simulations, it is observed that the probability of
a received sub-word with more than ¢ errors being miscor-
rected decreases significantly with deg(A(z)). For example,
if a 3-error-correcting BCH sub-codeword with n = 704 is
corrupted by 6 errors, the probabilities of miscorrections when
deg(A(z)) = 3,2,1 are 5.4 x 1072,2.5 x 107%,6 x 1077,
respectively. From the above observation, this paper proposes
to skip the nested syndrome checking if the deg(A(x)) from
the decoding of every sub-word does not exceed a threshold,
th. Apparently, th should be less than .

The FER degradation caused by the above skipped nested
syndrome checking at lower input bit error rate (BER) cannot
be simulated in practical time and can be analyzed as follows.
If a sub-word has deg(A(z)) < th at the end of nested
decoding round ¢, it can be corrupted by either up to th
errors or more than ¢; errors. From [3], in most of the
cases that miscorrections ever cause degradation on the FER,
there is only one sub-word miscorrected but not identified,
and all the other sub-words are successfully decoded. Hence,
the dominating error patterns leading to performance loss
when the nested syndromes are not checked in the case of
deg(A(z)) < th have one sub-word miscorrected with more
than t; errors and each of the other sub-words with up to th
errors. As a result, the FER degradation compared to the case

.
10°F

10710

— B~ - theoretical
-7 8" —A— miscorrected
L s — - estimated [3]
15 — B - proposed, estimated (th=1) | |
1077¥ — %= - proposed, estimated (th=2)
g —&— proposed, actual (th=1)
—<— proposed, actual (th=2)

Frame Error Rate (FER)

12 14 16 18 2
%10

. . . .
0.4 0.6 0.8 1
Bit Error Rate (BER)

Fig. 2. FERs of GII-BCH [4,3] decoding with nested syndrome checking
skipped when deg(A(z)) < th.

of checking the nested syndromes regardless of deg(A(z)) as
in [3] after nested decoding round 7 can be estimated as

. to th m-1
(@ _ (V1 (3)
(S (Er) o

w=0

In (3), ¢ = (I)pP(1 — pp)" " is the probability of a n-bit
sub-codeword corrupted with w errors when the input BER
is py. G&f) is the probability of a w-error-corrupted sub-word
miscorrected with deg(A(x)) < th and not detected by the
1-bit eBCH scheme in nested decoding round . Its value can
be derived from simulations over a limited number of random
samples, such as 108. Note that if the miscorrected sub-word
has more than ¢,, errors, then the error pattern is not correctable
by the GII code anyway and skipping the nested syndrome
checking does not lead to further FER degradation. Hence,
the upper bound of the summation in the middle of (3) is ,.
Fl(o), which corresponds to the nested syndrome checking after
the first-stage sub-word decoding, is by far much larger than
Fl(’) with 7 > 0, and can be used to estimate the overall FER
degradation caused by skipping the nested syndrome checking
when deg(A(x)) < th.

The FERs of the example GII code estimated by using Fl(o)
with different th values are plotted in Fig. 2. Simulations over
the binary symmetric channel (BSC) at higher BERs, such as
> 1.3x 1073, have also been carried out and the results overlap
with the estimation in the figure. Compared to the methods
in [3], the proposed scheme only has slight FER degradation
when th = 1. However, increasing th to 2 makes the FER
much higher. Fig. 3 shows the probabilities of activating the
higher-order nested syndrome computation for miscorrection
detection after the first-stage sub-codeword decoding. By
setting a threshold to deg(A(x)) as in the proposed approach,
the nested syndromes are computed much less frequently for

o

—8—[3]
—— proposed (th=1)
—<— proposed (th=2)

Probability of Computing Nested Syndromes

12 14 1618 2
x107

04 0.6 08 1
Bit Error Rate (BER)
Fig. 3. Probabilities of computing higher-order nested syndromes for miscor-

rection detection after the first-stage sub-codeword decoding for the example
GII-BCH [4,3] code.

miscorrection detection and hence the average nested decoding
latency is reduced significantly, especially at lower BER.
Although th = 2 leads to further reduction in the probability
of activating the nested syndrome computation, it should not
be used since it leads to substantial FER degradation as shown
in Fig. 2.

The above approach reduces the average nested decoding
latency. To reduce the worst-case nested decoding latency, this
paper proposes to skip the nested syndrome checking after
later nested decoding rounds, since miscorrections are less
likely to happen for the corresponding BCH codes that have
higher correction capabilities. In order to decide the nested
decoding round ¢, after which the nested syndrome checking
is skipped, the corresponding FER degradation needs to be
analyzed. The major cases leading to performance degradation
are still that only one sub-word is miscorrected and all the
other sub-words are decoded correctly [3]. Since the J-th
nested decoding round can correct at most ¢ errors, the major
cases leading to FER increase after this round are that there
is one miscorrected sub-word with more than ts errors and all
the other sub-words have no more than t5 errors. Similar to
(3), the FER degradation caused by these miscorrections can
be estimated as

to ts m—1
F55>:(“‘5)(3 %a;@) (z%) @
1 w=ts+1 w=0

where G;(fs) is the probability of a w-error-corrupted sub-word
miscorrected with deg(A(xz)) < ts and not detected by the
1-bit eBCH scheme in nested decoding round . G;(,d) can
be derived by simulations over a limited number of random
samples.

Combining (3) and (4), the FERs of GII decoding using
the two proposed schemes for skipping the nested syndrome
checking are plotted in Fig. 4 for the example [4,3] code with
[to, t1,ta,t3] = [3,5,6,11]. It can be observed that skipping
the nested syndrome checking after nested decoding round
0 = 2 with to = 6 only brings small FER degradation. On
the other hand, skipping the nested syndrome checking for
earlier decoding rounds with smaller ¢; leads to significant

1055 -

1010k -

— 8- - theoretical

—A— miscorrected

— %= - estimated [3]

— $— - proposed, estimated (th=1, &

— -X— - proposed, estimated (th=1, §
)
)

Frame Error Rate (FER)
\
\
\
\

1)
2)|

107154
7 —&— proposed, actual (th=1, 4=1
—<+— proposed, actual (th=1, §=2

12 14 1618 2
%1073

0.4 0.6 0.8 1
Bit Error Rate (BER)

Fig. 4. FERs of GII-BCH [4,3] decoding with nested syndrome checking
skipped.

performance loss. Simulations over BSC at high BERs have
been carried out, and the results match the estimated FERs.

Although the two proposed schemes of skipping the nested
syndrome checking reduce the nested decoding latency by
a significant portion, they bring noticeable performance loss
as shown in Fig. 4. In order to close the FER gap, two
methods with negligible complexity and no latency overhead
are developed next.

B. Exploiting 2-bit Extended BCH Codes

Miscorrections are detected by using 1-bit eBCH codes in
[3]. The basic idea is to incorporate the factor (x + 1) into the
generator polynomials of the involved BCH codes. Since now
the Hamming weight of every sub-codeword is even, whether
the number of errors in a received sub-word is even or odd
can be determined by XORing all the bits in the sub-word.
On the other hand, the number of distinct roots of A(z) tells
the number of errors found from the decoding process. If the
parities of these two numbers do not match, then miscorrection
is detected. However, this 1-bit eBCH scheme fails to detect
miscorrections when the number of errors in the received sub-
word and the number of distinct roots of A(x) are different
but are both even or odd.

To locate the miscorrections that are undetectable by 1-bit
eBCH codes, this paper proposes to exploit 2-bit eBCH codes
[7]. The generator polynomial of a 2-bit eBCH code is con-
structed by multiplying (z2+1) to the generator polynomial of
a BCH code. Hence, the 2-bit eBCH code is a sub-code of the
1-bit eBCH code and the Hamming weight of a 2-bit eBCH
codeword is still even. Besides, a 2-bit eBCH codeword has the
property that the Hamming weights of all even-index bits and
all odd-index bits are both even. With this extra information,
more miscorrections can be detected. Consider a case that
the miscorrected sub-word has j errors and the corresponding
A(z) has k distinct roots, where j and k are both even. This
is undetectable by the 1-bit eBCH code. Let the number of
errors in the even-index bits of the sub-word be j’. Whether
j' is even or odd can be determined by XORing all the even-
index bits in the 2-bit eBCH sub-word. Assume that &’ of the
roots of A(z) are in even-index locations. When one of j’
and k' is even and the other is odd, miscorrection is detected.
Of course, miscorrections are undetected when j’ and k' are

) TABLE I
VALUES OF Gq(j) IN (3) WHEN ¢ GLOBAL PARITIES ARE UTILIZED FOR THE
DECODING OF GII-BCH [4,3] CODE WITH th = 1

¢ ¢ | &P Y

0 [3.6x10~7 [2.4x10~7 | 1.6x10~7

2 | 1.4x10~7 | 1.7x10~7 | 7.0x10~%

4 <108 <1078 <1078

6 <1079 <10~8 <108
TABLE 1I

VALUES OF G’LE‘;) IN (4) WHEN ¢ GLOBAL PARITIES ARE UTILIZED FOR

THE DECODING OF GII-BCH [4,3] CODE WITH § = 2

T o7 T o [6 [ay [op
0 5x1077 6.1x107° [1.3x107% [1.4x10~% | 7.0x10~7
2 | <5x1079 | 3.2x107° | 2.0x10~7 | 4.3x10~° | 4.0x10~"
4 | <5x1079 | 9.2x10°° <107 1.3x10~? <1077
6 | <5x1079 | 1.2x107° <107 2.2x10~6 <107

both even or odd. Similar analysis applies to the case when
j and k are both odd. Accordingly, using 2-bit eBCH codes
can further detect half of the miscorrection cases that are not
found by the 1-bit eBCH scheme. _

Applying the 2-bit e BCH scheme, the values of G,(j) in (3)
and Gi,fs) in (4) will be reduced by a half. Accordingly, the
performance loss brought by skipping the nested syndrome
computation as proposed in the previous subsection is also
reduced by a half. The code rate loss resulted from utilizing
the 2-bit e BCH scheme is negligible, because only two extra
bits are needed for each individual sub-codeword.

C. Adopting Global Parities

The FER gap resulted from skipping the nested syndrome
checking can be further closed by utilizing more parity bits.
However, keep adding more parities to each sub-codeword
will lead to noticeable code rate loss. On the other hand,
in most of the cases, only one sub-word is miscorrected. To
more efficiently utilize the parities and keep the code rate loss
negligible, this paper proposes to adopt global parities that are
XOR results of all sub-codewords for miscorrection detection.
The global parities can effectively detect a single miscorrected
sub-word when the other sub-words are corrected.

Assume that ¢ extra global parities, po,p1,--- ,D¢—1, are
used. In our scheme, each individual sub-codeword is divided
into ¢ segments, and the i-th global parity bit is the XOR result
of the i-th segment of every sub-codeword. Assume that ¢ | n.
In other words,

m—1n/¢—1
Di = Z Z Cii(n)C)+k> (5)

j=0 k=0
where c; , is the a-th bit of the j-th BCH sub-codeword, and
the addition is the XOR. If ¢ { n, then the n bits of each sub-

word should be divided into ¢ groups as evenly as possible.

The global parities are used to detect miscorrections as
follows. Assume that there is no error on p; at the receiver.
Similar XOR computations as in (5) are carried out on the
received sub-words to get p;. If p; XOR p; =‘0’, it means that
the number of errors on the i-th segment of the sub-codewords

1051/;r

~Z
10710 1 F

- - theoretical
—A— miscorrected
— “%— - estimated [3]
— $— - proposed, estimated (th=1, §=2, 2b-eBCH, (=4)
— x— - proposed, estimated (th=1, 6=2, 2b-eBCH, (=6)
—O— proposed, actual (th=1, §=2, 2b-eBCH, (=4)
—<— proposed, actual (th=1, §=2, 2b-eBCH, (=6)

n n n n Tee———

Frame Error Rate (FER)
\
\

1015 %
r-

1020 L
0.4 0.6 0.8 1 12 14 16 18 2

Bit Error Rate (BER) %103

Fig. 5. FERs of GII-BCH [4,3] decoding with the three proposed miscorrec-
tion detection schemes combined.

is even. Otherwise, the number of errors is odd. Also, count the
number of errors in the i-th segment found from the decoding
for all sub-words. If the parity of this number does not match
the conclusion drawn from p; XOR p;, then miscorrections are
detected. The probability that a global parity bit is erroneous
is equal to the input BER. For lower BER, the global parities
can help to effectively detect more miscorrections.

Since the global parities are the XOR results of every
sub-word, for a given number of global parities, there are a
large number of possible error patterns among the m sub-
words. Hence, it is difficult to develop a concise formula
for the FER improvement resulted from using global parities.
However, Gq(j) and G;(,é) in (3) and (4), respectively, do not
change with the input BER and the other components of the
formulas can be calculated algebraically. Therefore, the FERs
at lower BERSs can still be estimated once Gq(j) and G;(fs) are
derived from simulations over a limited number of random
samples. The values of GT(P and GL(,S) for the example code
with different numbers of global parities are shown in Table
I and II, respectively. Since F9 is much larger than the
other Fl(i) with ¢ > 0, only Gio) with w > to + 1 need to
be considered. Besides, when th = 1 and eBCH codes are
used, only the miscorrections with odd number of errors are
not detected. Additionally, since the minimum distance of the
to = 3 BCH code is 2ty + 1 = 7, a 5-error-corrupted sub-
word will not be miscorrected with deg(A(z)) = 1. Therefore,
only G(70), Géo), and Ggq) need to be taken into account as
shown in Table I. Also § = 2 is adopted for the example
code. Hence Table II starts from G;(jzl The estimated FERs
of the proposed optimization schemes for latency reduction
are plotted in Fig. 5. It can be observed that the FER of our
new schemes becomes almost the same as that of the approach
in [3] when 6 global parities are used. Simulation results at
higher BER also confirm our analysis.

IV. MODIFIED GII DECODING AND LATENCY ANALYSES

The GII-BCH decoding with the proposed optimized mis-
correction detection schemes for latency reduction is summa-
rized in Algorithm 1. The set I includes the sub-words that
remain to be corrected. I* consists of the sub-words that are
declared decoding success, and I¢ = {0,1,--- ,m — 1}\I. If

Algorithm 1: GII-BCH Dec. with Prop. Miscorrection Detection

Input: received sub-words y;(x) (0<i<m); t; (0<i<v)
Initialization: 1<={0,1,--- ,m—1}; I°<0; I'<0
fi<=XOR of all even bits of y;(z)
gi<=XOR of all odd bits of y;(z)
for [=0,1,--- ;v do
if (I=0): compute 2ty syndromes for each y;(z)el
if (all are zero): declare decoding success; stop. end
else: derive 2¢;—2t;_1 higher-order syn. for each y;(z)€l
end
for each i€l do
carry out KES on y;(x)
d;<=number of even inverse roots of A;(z)
gi<=number of odd inverse roots of A;(x)
if (deg(A;(x))<t)) & (d; mod 2=f;) & (¢; mod 2=g;)
& (d,-+gi=deg(As(z))):
I'<T1'ui; I<1\i

end
end
if (|I|>v—I): declare decoding failure; stop. end
h<true
if (|1]=0):
use global parities to detect miscorrections
if (miscorrections not found from global parities):
if (all deg(A;(z))<th): h<false
elseif (1<d): compute higher-order nested syndromes
if (all nested syndromes are zero)

h<false
end
else: h<false
end
end

end
if (h=false):
I°«<=TI°UI"; use Ai(x) to correct each y;(x)€l®
declare decoding success; stop.
end
while |7|<v—I do
find smallest i€1* with max deg(A(x)); I<=IUi; I'<I"\i
end
Ic<=I°UI% TP<=0
end

|| exceeds the number of sub-words that can be corrected by
the GII code, overall decoding is terminated with failure. If
the decoding of every sub-word has been declared successful,
whose decision is contributed by the parities of the 2-bit
eBCH scheme, miscorrection detection is carried out. A flag,
h, is used to indicate if further decoding is needed. It is
initially set to true and is changed to false if miscorrections
are not found by using global parities and i) all sub-words
have deg(A(z)) < th, ii) no miscorrection is found from
nested syndrome checking, or iii) it is already after nested
decoding round §. When h becomes false, the GII decoding
is successfully completed.

For the example GII-BCH [4,3] code with [tg, t1,to,t3] =
[3,5,6,11], from simulations, the probabilities of activating
the nested decoding round 1, 2, and 3 are pn; = 2.3 X 1072,
pne = 3.6 X 104, and png = 4.4 x 1075, respectively,
at BER=1072. Let the probabilities of activating the nested
syndrome computation for miscorrection detection after de-
coding round 7 be pm,;. The average nested decoding latency

of the design in [3] is Lorig = 8pmg + pni (38 + 8pmy) +
pn2(30 4+ 8pms) + 40pn3 according to Fig. 1. From simula-
tions, pmg = 0.92, and pm; and pmsy are much smaller. It
can be computed that L,;; = 8.3. In the proposed schemes,
adopting th = 1 and 6 = 2 with 2-bit eBCH codes and 6
global parities leads to negligible performance loss. In this
setting, pmy is reduced to 0.47 at BER=10"2 from Fig. 3 and
pmo becomes zero. Accordingly, the average nested decoding
latency of the proposed scheme is L,,.,, = 4.7, which is 43%
shorter. The average latency reduction is more significant at
lower BER due to the smaller pmg. The proposed schemes
also reduce the worst-case latency from 132 in Fig. 1 to 124
since the nested syndrome checking after the second nested
decoding round is eliminated. For GII-BCH codes with larger
t;, such as a [4,2] code with [tg, t1,t2] = [4, 6, 11], eliminating
the nested syndrome checking from earlier decoding rounds
results in more significant worst-case latency improvement.

The proposed schemes have negligible overheads in hard-
ware complexity and redundancy. To use 2-bit eBCH codes,
only one more tap is needed in the linear feedback shift
registers for the encoder. The XOR computations for the extra
parities require negligible silicon area compared to that of
the overall GII decoder. Besides, the additional parities only
bring (4+6)/704/4=0.35% code rate loss for the example code
compared to the approaches in [3].

V. CONCLUSIONS

This paper proposed three miscorrection mitigation opti-
mizations to reduce the nested decoding latency with neg-
ligible complexity overhead. Nested syndrome checking is
skipped when miscorrections are unlikely to happen. To make
up for the resulted small FER degradation, 2-bit eBCH codes
and global parities are utilized to detect more miscorrec-
tions. Overall, the proposed schemes can achieve almost
the same error-correcting performance as prior designs with
significantly shorter latency. Formulas and methodologies for
estimating the FER at lower input BER are also provided.
Future research will investigate the optimization of the other
GII decoding steps.

REFERENCES

[1] X. Tang and R. Koetter, “A novel method for combining algebraic
decoding and iterative processing,” in Proc. IEEE Int. Symp. Inf. Theory,
Seattle, WA, USA, Jul. 2006, pp. 474-478.

[2] Y. Wu, “Generalized integrated interleaved codes,” IEEE Trans. Inf.
Theory, vol. 63, no. 2, pp. 1102-1119, Feb. 2017.

[3] Z. Xie and X. Zhang, “Miscorrection mitigation for generalized inte-
grated interleaved BCH codes,” IEEE Commun. Letters, vol. 25, no. 7,
pp. 2118-2122, Apr. 2021.

[4] X. Tang and R. Koetter, “On the performance of integrated interleaving
coding schemes,” in Proc. IEEE Int. Symp. Inf. Theory, Chicago, IL,
USA, 2004, pp. 329-329.

[5] W. Li, J. Lin, and Z. Wang, “A 124-Gb/s decoder for generalized
integrated interleaved codes,” IEEE Trans. Circuits and Syst. I: Regular
Papers, vol. 66, no. 8, pp. 3174-3187, Aug. 2019.

[6] X. Zhang and Z. Xie, “Efficient architectures for generalized integrated
interleaved decoder,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 66,
no. 10, pp. 4018-4031, Oct. 2019.

[7] C. Higer and H. D. Pfister, “Approaching miscorrection-free perfor-
mance of product codes with anchor decoding,” IEEE Trans. Commun.,
vol. 66, no. 7, pp. 2797-2808, Jul. 2018.

