Low-Latency Nested Decoding for Short
Generalized Integrated Interleaved BCH Codes

Zhenshan Xie, Yok Jye Tang, and Xinmiao Zhang

Abstract—Generalized integrated interleaved (GII) codes nest
short BCH sub-codewords to form more powerful BCH code-
words. They can potentially achieve hyper-speed decoding with
excellent error-correction capability. In particular, short GII-
BCH codes are among the best candidates for the new fast
storage class memories (SCMs). Miscorrections severely degrade
the performance of short GII-BCH codes. Although they were
effectively mitigated in previous designs, the involved repeated
Chien search and higher-order syndrome computation cause long
latency. This paper proposes efficient and low-latency nested
decoding schemes for short GII-BCH codes. A strategy is devel-
oped to select sub-words for further nested decoding to mitigate
miscorrections by keeping track of the error locator polynomials,
instead of waiting for the lengthy Chien search. Formulas are
also derived to estimate the effects on the error-correcting
performance. Besides, a low-complexity linear feedback shift
register architecture is developed to accelerate the higher-order
nested syndrome computation. For an example GII-BCH code
targeting at SCMs, the proposed design reduces the worst-case
nested decoding latency by 26% with 8.5% area overhead and
negligible performance loss compared to prior methods.

Index Terms—BCH codes, Error-correcting decoding, Gener-
alized integrated interleaved codes, Storage class memories.

I. INTRODUCTION

Generalized integrated interleaved (GII) codes can nest
BCH sub-codewords to form more powerful BCH codewords
[1], [2]. The GII decoding starts with the decoding of indi-
vidual sub-words, which can achieve very high throughput.
Only when there are extra errors exceeding the correction
capability of individual sub-codewords, the nested decoding
stage utilizing the stronger nested codewords is activated.
Compared with traditional BCH codes that achieve similar
decoding throughput, GII codes have much better error-
correcting performance.

The new storage class memories (SCMs) have much
shorter sensing latency than Flash memories. They may
bring paradigm shifts to many systems, such as computer
memory architecture, high-performance computing, and big
data analytics. The hyper throughput and excellent correction
capability make GII codes among the best candidates to
achieve the speed potential of SCMs. Low-density parity-
check codes and concatenated BCH codes cannot achieve
such high throughput without overwhelming complexity. For
SCMs, relative short codeword length, e.g. several thousand
bits, and high code rate, e.g. 90%, are required. The best GII
codes with these parameters have small correction capability

This material is based upon work supported by the National Science
Foundation under Award No. 2011785. The authors are with the Department of
Electrical and Computer Engineering, The Ohio State University, Columbus,
OH 43210 USA.

in the sub-codewords, such as ty=3. In this case, a corrupted
sub-codeword is more likely to be decoded as another sub-
codeword. This is referred to as miscorrection. It degrades the
frame error rates (FERs) of short GII-BCH codes by orders
of magnitude [3].

The schemes in [4], [5] can only correct very few error
patterns and the performance improvement is limited when %,
is small. Several miscorrection-mitigating schemes were devel-
oped in [3] to close the performance gap. However, they make
the worst-case decoding latency much longer. First, Chien
search is needed to select the sub-words for further nested
decoding. Second, higher-order syndromes are computed to
detect miscorrections. Both computations are repeated over
nested decoding rounds, leading to long latency. Although the
overall GII decoding throughput is mainly decided by the sub-
word decoding, it is essential to reduce the worst-case nested
decoding latency in order to improve the quality of service.

This paper proposes two schemes to substantially reduce the
worst-case nested decoding latency for short GII-BCH codes
with low area overhead and negligible performance loss. First,
a strategy is developed to select sub-words for further nested
decoding based on how the error locator polynomials change
over the previous decoding round instead of waiting for the
Chien search results. By analyzing the error patterns leading
to extra GII decoding failure, formulas are also derived to
estimate the corresponding FER. The proposed strategy only
leads to negligible FER degradation compared to those in
[3]. Secondly, this paper proposes a low-complexity linear
feedback shift register (LFSR) architecture to halve the higher-
order syndrome computation latency. The scheduling of the
computations in the GII decoding is also optimized to take
advantage of the proposed schemes. For an example GII-BCH
code considered for SCMs, our proposed design reduces the
worst-case nested decoding latency by 26% with only 8.5%
area overhead compared to prior designs.

1I. GII-BCH DECODING AND MISCORRECTIONS

The definition of a GII-BCH [m,v] code involves v+1 BCH
codes C,CC,_1C- -+ CC1CCo. These BCH codes over GF'(27)
have error correction capabilities t,>t,_1>--->t1>ty. A
GII-BCH [m,v] code can be formally defined as [2]

¢ 2 {leo@), c1(@), s emr (@) s ci(w) € Co,
m—1 y (1)
é(x) = Z a”(z)ei(z) € Cq;—z,0§l<1)},

i=0
where « is a primitive element of GF(27) and o (x) is the
polynomial form of the standard basis representation of a*. In

10°

o

i}

L

L

5}

o

P

g 1010 F

I}

[}

&

T —%— BCH(704, 674) - theoretical
—+— GII-BCH [4,3] - theoretical

107154 —©— GII-BCH [4,3] - miscorr.
| —%— GII-BCH [4,3] - [3], miscorr. mitigated
—=&A— GII-BCH [4,3] - proposed, miscorr. mitigated
—S/— GII-BCH [4,3] - proposed, actual
N N N N

. 7 w—
0.4 0.6 0.8 1 12 14 16 18 2
Bit Error Rate (BER) %1073

Fig. 1. FERs of GII-BCH [4,3] decoding over binary symmetric channel.

(1), ¢;(z) and ¢;(z) are a length-n sub-codeword and a nested
codeword, respectively.

GII-BCH decoding has two stages. The first stage is
the traditional tp-error-correcting BCH decoding for each
received sub-word y;(z). 2ty syndromes are calculated as
S](Z): yi(adTh) (0<j<2ty). If any syndrome is not zero, a
key equation solver (KES), such as the Berlekamp-Massey
algorithm [6], computes the error locator polynomial A(") (x)
for i = 1,2,--. 2ty iteratively. The inverses of the roots of
A(%)(z) indicate the error locations. Let d(") and ¢(") be
the degree and number of roots of A(")(z), respectively. If
d(2t0) £5(2t0) ' decoding failure is declared. Let f be the XOR
result of all the bits in the received sub-word. If d(**0)=g(2t0)
but d?*)>tq or d?*) mod 2+f, the sub-word is apparently
miscorrected. Miscorrections may also happen otherwise [3].

The second stage is the nested decoding for sub-words
with more than ¢,y errors. Denote the indices of such sub-
words by ig, 41, - ,ip—1 (b<v). 2t syndromes are needed to
correct t errors. Higher-order nested syndromes can be com-
puted as S=g(a/+1) =310 allity, (al+1) (0<i<b,
2tg<j<2t1), since all nested codewords are at least ¢;-error-
correcting. From (1), they can be converted to higher-order
syndromes for those b uncorrected sub-words as

(i0) q(i1) Gr-1)]T —1[a0) &) so-1)1T
|:Sj07sj17"'aSj :|—A |:S] ,S] ,“‘,Sj] s

where the matrix entry Ay ., is equal to a’=*U+1) [2]. After
that, A(Qtl)(x) of each uncorrected sub-word is computed to
correct up to ¢ errors. If there are &’ sub-words with more
than ¢, errors (b'<v—1), 2(t2—t1) higher-order syndromes are
derived to correct more errors in a similar way. The nested
decoding is repeated for up to v rounds.

Sort the number of errors in the received sub-words as
TO>T1> s 2Tme1. If 1<t,_; for 0<I<w, the errors are
correctable by the GII code. SCMs require short codes with
high code rate, such as that using around 256 parity bits
to protect 2560 data bits. For these parameters, the GII-
BCH [4,3] code over GF(2'9) with n=(2560+256)/4=704
and [to,t1,ta,t3]=[3,5,6,11] achieves the best trade-off on
error-correcting performance and decoding complexity [3].
Fig. 1 shows simulation results over binary symmetric channel
with various input bit error rates (BERs). This GII code can
achieve orders of magnitude lower FER compared to the (704,
674) BCH sub-codeword that has similar decoding throughput.

Although the performance of GII codes with small ¢, suffers
severely from miscorrections, the mitigation schemes in [3]
can almost fully eliminate the FER gap as shown in Fig. 1.

For the example GII-BCH [4,3] code, the worst-case nested
decoding latency using the best available designs [3], [7]-
[9] is shown in Fig. 2. To simplify the labels, it is assumed
that y,_;(x) is corrected in nested decoding round ¢ and the
first-stage sub-word decoding is considered as nested decoding
round 0. The parallelisms of the computation units are chosen
to improve the hardware utilization efficiency and the clock
cycle numbers are listed in the parentheses. The design in
[8] is adopted to substantially reduce the computation latency
of the original nested syndromes by using short remainder
polynomials calculated in parallel with the sub-word decoding.
If a sub-word, say yx(x), gets corrected in nested decoding
round ¢, then the original higher-order nested syndromes
should be updated as 5;(l):§§l)—alk(j+1)85k) (j>2t;), where
the higher-order syndromes for the corrected sub-word are
calculated as [2]

S](_k) _ Sj(li)lA(()Qti) + SJ(_’i)ZA(IQti) 4+ S(k)

j—1—d(2ty)

A2t 2)

d2t;)”

The nested KES architecture in [7] incorporates 2¢ higher-
order syndromes in 2t clock cycles and it is shared to compute
Sj(.k) in Fig. 2. For the example code, miscorrections can be
reliably detected by checking if [01, 02, 05]=[4, 3, 3] higher-
order nested syndromes based on the current decoding result
are zero after decoding round 0, 1, and 2, respectively [3].
o; and t;41—t; decide the number of higher-order sub-word
syndromes to compute using (2) and accordingly the corre-
sponding latency in Fig. 2. In the last decoding round, since
there is no miscorrection detection, higher-order syndromes
do not need to be computed for the uncorrected sub-word. To
increase the hardware utilization efficiency, the scalable Chien
search architecture in [9] takes more clock cycles to find the
roots of a longer error locator polynomial.

III. Low-LATENCY NESTED DECODING FOR
SHORT GII-BCH CODES

In this section, low-complexity schemes are developed to
reduce the worst-case nested decoding latency for short GII-
BCH codes. The first scheme selects sub-words for further
decoding based on how the error locator polynomial changes
over the previous decoding round instead of waiting for the
Chien search results. Formulas are also derived to analyze the
achievable FER. Secondly, a low-complexity LFSR architec-
ture is developed to speed up the computation of higher-order
syndromes instead of sharing the nested KES architecture.

A. Sub-Word Selection Using Error Locator Polynomials

How the error locator polynomial, A(z), changes over the
previous decoding round tells extra information about whether
the sub-word still has extra errors. This helps to decide if a
sub-word needs further nested decoding without Chien search.

At the end of the KES of nested decoding round 1, a sub-
word falls into one of the following categories:

i). ACH) (2)#AR0) (2) & (A1) >t; or d?) mod 24 f);
ii). A8 (2)=AR0)(z) & () #5240 or d?0) >t or

| 1% nested decoding round i 2" nested decoding round ! 3" nested decoding round Higher-order sub-word

| syndromes computation

IV Blcien B cvench 3 1) e T O |7 e
§al @ 1] | chien 7) S (el [chenm N siemsisngsineler
| (y) (4)" Chien (7) », 3)|'y (Z' | Syndrome updating
i (}2)) : i E Syndrome conversion
) corrected ! » corrected ! Vi corrected ! Jo corrected E] KES

Fig. 2. Worst-case nested decoding latency for GII-BCH [4,3] code with [to, ¢1,t2, t3]=[3, 5, 6,11] using prior designs.

d) mod 2#£f);
iii). A1) (2)#AR0)(2) & excluding type i);
iv). A% (2)=A(%%)(z) & excluding type ii).
For case i), the decoding apparently fails in the first nested
round. In case ii), since A(?%0)(z) from the sub-word decoding
is not the correct error locator polynomial, neither is A1) (x).
Hence, a sub-word of type i) or ii) definitely needs further
nested decoding. Up to v—1 sub-words are correctable by
the second nested decoding round. If this quota has not been
filled by type 1) and ii) sub-words, sub-words of type iii) are
selected before those of type iv) are considered since they have
more than ¢; errors with higher probability as will be proved
in the following paragraphs. If there are multiple sub-words
of the same type, they are picked in the order of decreasing
deg(A(z)) since a sub-word with higher deg(A(z)) is more
likely to be miscorrected [3].

A sub-word of type iii) must have more than t; errors.
Otherwise, A(%0)(z) is already the correct error locator
polynomial and A*)(z) would be the same as A(?%0)(z).
Therefore, the probability that a type-iii) sub-word has more
than ¢y errors can be computed as

w=tg+1 F¥W w= t1+1 w

where ¢, =(")pi’(1 — pp)" " is the probablllty of an n-bit
sub-codeword corrupted with w errors at input BER p;. K,
is the probability that a w-error-corrupted sub-word belongs
to type iii). Dy and F4 are the probabilities of having a type
iii) sub-word and such a sub-word with more than ¢; errors,
respectively. Up to ¢, errors are considered in (3) since GII
codes cannot correct more than ¢, errors in any sub-word.
Unlike E; or D, K, is relatively large and hence it can be
derived from simulations over a limited number of random
samples, such as 108.

A type iv) sub-word has either up to ¢o errors or more
than ¢; errors. Otherwise, A(x) must have changed in the
first nested decoding round since it is ¢;j-error-correcting.
Further nested decoding is only required when the sub-word
has more than ¢; errors and the corresponding probability
is analyzed as follows. In each iteration of the nested KES
[71, A(z) is only updated when the conditions A 7&0 and
k(") >—1 are satisfied. Here A) is the discrepancy coefﬁ(nent
and k T)_Lg) LX) is the length difference between the
auxiliary polynomial B(")(z) and A(")(z). Hence, if a sub-
word is of type iv), these conditions are not satisfied in
each iteration of the nested KES in the first decoding round.
Additionally, since d(?%)<t, in type iv), it can be derived
from the nested KES algorithm [7] that L (2t°)>t0 1. Also
L4 L2 —9t,—1 from [10]. Thus, L<Bt°)§to. Accord-
ingly k(ztﬂ):LgtO)fot")Zfl holds at the beginning of

the nested KES in decoding round 1 and hence AéQtO) must
be zero if A(x) is not updated. Following the nested KES
algorithm in [7], if £(2*0)>—1, k(")>—1 for each of the later
iterations. Hence, A(()T) must be also zero for each iteration.
For random and independent input errors, the discrepancy
coefficient is a random value over GF'(27) and it can be zero
with probability around 277 [10]. Since the nested KES in
decoding round 1 has t;—t(iterations, given a type iv) sub-
word, the probability that it has more than ¢; errors is

to " 9—a(ti—to)
P2 — @ _ (Zw—t1+1¢) (4)

D5 ZZJ:O bw + (Zw o b)2 q(ti—to)’
where M, is the probability that a w-error-corrupted sub-word
is miscorrected and not detected in the sub-word decoding. It
can be also derived from simulations over a limited number
of random samples.

The denominator of (4) is much larger than that of (3)
since the probability of having a smaller number of errors is
much higher. Also K, is in general larger than M,, and the
numerator of (4) is multiplied with 2~9(1—t0) ~ Ag a result,
P, is much larger than P,. For the example GII-BCH code, it
can be calculated that P;=1.4x1072 and P,=4.5x10"13 at
BER=10"3. Hence, a type iii) sub-word is much more likely
to have more than ¢; errors than a type iv) sub-word. A similar
sub-word selection strategy can be also extended to each of
the other nested decoding rounds.

The additional FER degradation caused by the nested decod-
ing using the proposed scheme is analyzed as follows. Nested
decoding round ¢ can handle at most v+1—: sub-words with
extra errors. Denote the total number of sub-words of type 1)
and ii) at the end of nested decoding round 1 by h. If h>v—1,
the errors are not correctable anyway and the proposed scheme
does not cause additional FER degradation. If h=v—1, all the
sub-words to be sent to nested decoding round 2 indeed have
more than ¢; errors and there is no performance loss either.
When h<wv—1, the remaining v—h—1 sub-words to be sent to
nested decoding round 2 are selected from type iii) and then
type iv) sub-words. If all of them are of type iii), performance
loss occurs when the sub-word not passed to nested decoding
round 2 but selected for round 1 has more than ¢; errors. Such
FER degradation is upper bounded by

A =h§j<)(S outtn) DI B,

w=tg+1
where H,, is the probability that a w-error-corrupted sub-word
belongs to type i) or ii) in nested decoding round 1 and it can
be derived from simulations over a limited number of samples.

If some of the remaining v—h sub-words are of type iv),
performance degradation also happens when the type iv) sub-
word not passed to nested decoding round 2 but selected for
round 1 has more than ¢; errors. Similarly, the upper bound

1* nested decoding round 2" nested decoding round 3" nested decoding round
o @)% G, (215] Ghe o den] Chien (14) %
FSR1| ILFSRO| : FSR1| LFSRI[LFSRI : LFSRO|
R E R 2 Chien (7) »
@ (2)): - ()yl HIE2D] - (2)):](2))5 ()y‘l (7) » (2)); |:| Higher-order sub-word Syndrome updating
(;SR S@)s Chien (7) » L(I;S)I}? L(l;S)RlL(;S)R syndromes computation & for nested KES
};Zsm ILFSR1 ; — ? Original higher-order nested Syndrome conversion
2))s 2)) A syndromes computation V!
N Synd dating f
0 0 spremsupdingler [Twes
Vs corrected Y, corrected Yi corrected Yo corrected

Fig. 3. Worst-case nested decoding latency utilizing the proposed schemes for the GII-BCH [4,3] code with [to, t1, t2, t3]=[3, 5, 6, 11].

of the extra FER for this case is

v—2v—h—1 v ty hifoy—h —h—n—1
B=Y 3 i (Z ¢>wHw) . DD,
h=0 n=0 w=to+1

where 7 represents the number of sub-words of type iii). The
performance loss of applying the proposed strategy in later
nested decoding rounds can be derived in a similar way.

In the first-stage sub-word decoding, since there is no A(z)
from previous decoding rounds, the selection of the sub-words
for nested decoding is still carried out using the Chien search
results as in [3]. Adding up the FERs from all decoding rounds,
the overall FER of GII decoding can be estimated. For the
example GII-BCH code, the estimated FER incorporating the
proposed strategy is shown in Fig. 1. The estimations match
well with the simulation results at higher BERs. Compared to
selecting the sub-words based on Chien search results in every
decoding round as in [3], the performance degradation caused
by the proposed scheme is negligible.

Fig. 3 shows the worst-case nested decoding latency after
applying the proposed scheme. Although Chien search is
still needed to find the roots of those correct error locator
polynomials, their results are not needed in order to decide
which sub-words to be sent to the next nested decoding round
in our proposed scheme. As a result, the next nested decoding
round can start right after the miscorrection detection is done
and significant latency reduction is achieved.

B. Efficient LFSR for Higher-Order Syndrome Computation

Testing if higher-order nested syndromes of the decoding
results are zero is required in order to detect miscorrections
for short GII-BCH codes. Besides, higher-order syndromes
of the corrected sub-words are needed for the nested KES.
Hence higher-order syndromes need to be repeatedly computed
according to (2) over the decoding rounds. As shown in Fig.
2, prior designs reuse the nested KES architecture for the
computations in (2). When the Chien search result is no longer
needed for sub-word selection as proposed in Section IILLA,
the higher-order syndrome computation becomes the latency
bottleneck. To reduce the latency, (2) can be computed by
using an LFSR as shown in Fig. 4(a). For short GII codes,
since the highest degree of A(x) involved in (2) is at most
ty,—1, which is small, such an LFSR does not suffer from long
critical path and requires small area.

For the KES in nested decoding round ¢, 2(¢;—t;_1) higher-
order syndromes are needed for each uncorrected sub-word.
For BCH codes, an odd syndrome Sy;yi equals S’?. The
squaring can be simply implemented by cyclical bit shift in
normal basis representation [11]. Hence, only even syndromes
need to be computed from (2). The miscorrection detection
can be also done by using all even syndromes. However, the

Sit
%
N

N

(a)
Fig. 4. LFSR architectures: (a) traditional; (b) proposed.

traditional LFSR requires two clock cycles to compute each
even syndrome and is not efficient.

Next, an efficient LFSR architecture is developed to reduce
the even syndrome computation latency by half. To skip the
computation of the odd syndromes, each syndrome in Fig. 4(a)
needs to be moved to the second register on the right in the
next clock cycle. This can be achieved by splitting the even and
odd syndromes into the upper and lower rows, respectively,
as shown in Fig. 4(b). The sum of the products between the
syndromes and A(x) coefficients is S;12. This even syndrome
is fed back to the leftmost register in the upper row for the next
clock cycle. Besides, S;3 is needed as the input to the register
in the lower row. This odd syndrome is derived by squaring a
previous syndrome, which is selected by a multiplexer.

For the example code with [tg, 1,2, t3]=[3,5,6,11], the
latency of the worst-case nested decoding process incorporat-
ing the proposed LFSR higher-order syndrome computation is
shown in Fig. 3. Although the required higher-order syndromes
remain the same in the proposed scheme, they are calcu-
lated using separate LFSRs in parallel with the KES instead
of after the KES. Accordingly, significant latency reduction
is achieved with small area overhead. As mentioned pre-
viously, [o1,09,03]=[4,3,3] higher-order nested syndromes
are needed before decoding round 1, 2, and 3, respectively,
to detect miscorrections. v+1—i nested words are utilized
in decoding round 4 and hence [o;/(v+1—i)] higher-order
syndromes need to be computed for each of them before
decoding round :. Since each nested syndrome is a linear
combination of all sub-word syndromes of the same order,
[0;/(v+1—3)] higher-order syndromes need to be calculated
using (2) for each sub-word. If this number is at least ¢;,—¢;_1,
then no additional higher-order sub-word syndrome needs to
be computed for the KES.

The most efficient KES architecture for sub-word decoding
is fully pipelined [12] and it finishes the KES for one sub-
word in each clock cycle. Since the proposed LFSR com-
putes [o1/v]|=2 higher-order syndromes in 2 clock cycles,
only 2 LFSRs are required from all the m=4 sub-words as
shown in Fig. 3. By the end of nested decoding round 1,

TABLE I
COMPLEXITIES OF NESTED DECODERS FOR GII-BCH [4,3] CODE WITH
[to, t1,t2,t3]=[3, 5,6, 11]

worst-case total area | total power
latency (# clks) | (um?) (uW)
prior best design 88 120722 214106
proposed design 65 131076 230752

[02/(v—1)]=2 higher-order syndromes of each sub-word are
needed for miscorrection detection. Since y3(x) got corrected
in the sub-word decoding, its A(x) does not change and
its higher-order syndrome computation can start early at the
beginning of this decoding round. The higher-order syndromes
for the other three sub-words are computed right after the
corresponding KES is completed. For nested decoding round
2, [o3/(v—2)]=3 higher-order syndromes from every sub-
word are required for miscorrection detection. However, SS)
and SS’) have already been calculated in the previous round
and the error locator polynomials for yo(x) and ys(z) remain
the same. Hence, only 2 more higher-order syndromes need
to be computed for yo(z) and y3(z) each in round 2. In the
last nested decodin(g round, although t3—t5=>5 higher-order
even syndromes, 5112) through Ség, are needed for the KES,
syndromes of order up to 2(tes—1+[c3/(v—2)])=16 have
already been computed previously for miscorrection detection.
Therefore, only 2 more higher-order syndromes need to be
computed in this round for each corrected sub-word.

IV. LATENCY AND COMPLEXITY COMPARISONS

Using the GII-BCH [4,3] code as an example, this section
compares the nested decoder using the proposed schemes with
the best previous possible designs [3], [7]-[9].

As shown in Fig. 2, the previous design needs 88 clock
cycles for the worst-case decoding process. This latency is
reduced to 65 clock cycles as shown in Fig. 3. Hence our new
design achieves (88-65)/88=26% reduction in the worst-case
nested decoding latency. Also, the only different computation
unit in the proposed design is the LFSR. Its critical path is
not longer than that of the KES architecture for short GII
codes. Therefore, the proposed design does not degrade the
achievable clock frequency. Our design does not reduce the
average GII decoding latency much, since only the sub-word
decoding is activated most of the time. However, the average
latency is much shorter and is not a concern.

Two LFSRs are utilized to compute all the involved higher-
order syndromes in Fig. 3. The A(z) of the sub-word corrected
in decoding round O is of degree ¢y at most and it does not
change. LFSRO is used to compute the higher-order syndromes
for this sub-word and hence it has ¢y+1 taps. LFSR1 is em-
ployed to compute the higher-order syndromes for all the other
sub-words. deg(A(x)) grows over the nested decoding rounds
and can reach t,_; before the last round. Hence, LFSR1 has
t,—1+1 taps. Overall, the two LFSRs need to+1+¢,_1+1=11
multipliers, 9 adders, 2(to+1+t,_1+1)=22 registers, a 4-to-1
multiplexer, and a 7-to-1 multiplexer. These are the only area
overheads of the proposed design.

The proposed and prior designs are synthesized using
TSMC 65nm process under T'=1ns timing constraint and
the results are listed in Table I. The LFSRs are very small

compared to other decoder components. Hence, the proposed
design has only (131076-120722)/120722=8.5% area overhead
under the same timing constraint.

The latency reduction achievable by the proposed schemes
changes with code parameters and parallelisms of computa-
tion units. However, the Chien search is the most hardware-
consuming unit. Using a higher parallelism increases the
area substantially and may also cause routing congestion. By
eliminating the Chien search from the sub-word selection de-
cision and carrying out higher-order syndrome computation in
parallel with KES using small-area LFSR, significant latency
reduction can be also achieved under other settings. For a GII-
BCH [4,2] code with [to, t1,t2]=[4, 6, 11], it can be calculated
that the worst-case nested decoding latency is reduced from
62 to 49 clock cycles. The saving is more significant for codes
with more nested decoding rounds, since many clock cycles
are eliminated by the proposed schemes in each round.

V. CONCLUSIONS

This paper proposes two new schemes to reduce the nested
decoding latency of short GII-BCH codes. In our schemes,
sub-words with extra errors are identified based on how the
error locator polynomial changes over the previous decoding
round instead of Chien search results. Analysis shows that
the resulted error-correcting performance loss is negligible.
Additionally, a low-complexity LFSR is developed to compute
the even syndromes with half of the latency. Utilizing the
proposed schemes, the nested decoding latency is substantially
reduced with very small area increase. Future work will
investigate more efficient implementations of GII decoders.

REFERENCES

[1] X. Tang and R. Koetter, “A novel method for combining algebraic
decoding and iterative processing,” IEEE Int. Symp. Inf. Theory, Seattle,
WA, USA, Jul. 2006, pp. 474-478.

[2] Y. Wu, “Generalized integrated interleaved codes,” IEEE Trans. Inf.
Theory, vol. 63, no. 2, pp. 1102-1119, Feb. 2017.

[3] Z.Xie and X. Zhang, “Miscorrection mitigation for generalized integrated
interleaved BCH codes,” IEEE Commun. Lett., vol. 25, no. 7, pp. 2118-
2122, Jul. 2021.

[4] X. Tang and R. Koetter, “On the performance of integrated interleaving
coding schemes,” IEEE Int. Symp. Inf. Theory, Chicago, IL, USA, Jul.
2004, pp. 329-329.

[5] W. Li, J. Lin, and Z. Wang, “A 124-Gb/s decoder for generalized
integrated interleaved codes,” IEEE Trans. Circuits Syst. I: Reg. Papers,
vol. 66, no. 8, pp. 3174-3187, Aug. 2019.

[6] D. V. Sarwate and N. R. Shanbhag, “High-speed architecture for Reed-
Solomon decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 9, no. 5, pp. 641-655, Oct. 2001.

[7]1 Z. Xie and X. Zhang, “Efficient nested key equation solver for short
generalized integrated interleaved BCH codes,” IEEE Int. Symp. Circuits
Syst., in press.

[8] Y. J. Tang and X. Zhang, “Low-complexity resource-shareable parallel
generalized integrated interleaved encoder,” IEEE Trans. Circuits Syst. I:
Reg. Papers, vol. 69, no. 2, pp. 694-706, Feb. 2022.

[9] X. Zhang and Z. Xie, “Efficient architectures for generalized integrated
interleaved decoder,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 66,
no. 10, pp. 4018-4031, Oct. 2019.

[10] Y. Wu, “New scalable decoder architectures for Reed-Solomon codes,”
IEEE Trans. Commun., vol. 63, no. 8, pp. 2741-2761, Aug. 2015.

[11] X. Zhang and Z. Wang, “A low-complexity three-error-correcting BCH
decoder for optical transport network,” IEEE Trans. Circuits Syst. 11: Exp.
Briefs, vol. 59, no. 10, pp. 663-667, Oct. 2012.

[12] Z. Xie and X. Zhang, “Efficient sub-codeword key equation solver for
generalized integrated interleaved BCH decoder,” IEEE Trans. Circuits
Syst. II: Exp. Briefs, vol. 69, no. 1, pp. 85-89, Jan. 2022.

