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A with strict comparison has this hereditary uniform property Γ, then A is Z-stable.
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1 Introduction

Uniform property Γ was recently introduced in [3] in the study of regularity properties for simple nuclear

C∗-algebras, specifically, properties of finite nuclear dimension and Z-stability. More recently, it is shown

in [6] that, for a unital separable nuclear simple C∗-algebra A, A has strict comparison and uniform

property Γ if and only if A is Z-stable, and if and only if A has finite nuclear dimension, which is a

significant recent advance towards the the resolution of Toms-Winter conjecture.

Uniform property Γ is originally only defined for unital C∗-algebras, or those C∗-algebras whose tracial

state space is compact. In [5], a stabilized uniform property Γ was introduced and it is shown that, if A

is a (non-unital) separable simple nuclear C∗-algebra with strict comparison which has stable rank one

and stabilized uniform property Γ, then A is Z-stable.

In this note, we study the uniform property Γ for separable simple C∗-algebras using quasitraces instead

of traces. Simple C∗-algebras with strict comparison and uniform property Γ have a very nice matricial

structure (see Theorem 3.3). We also find that, if A has strict comparison and uniform property Γ, then A

has tracial approximate oscillation zero, and the canonical map Γ : Cu(A)→ LAff+(Q̃T (A)) is surjective

and has stable rank one, without assuming that A is amenable. In particular, Cu(A) ∼= Cu(A ⊗ Z).
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Moreover, in this case, a version of uniform property Γ holds for hereditary C∗-subalgebras. This property

is called hereditary uniform property Γ (see Definition 4.1) which is defined for C∗-algebras whose sets of

normalized 2-quasitraces may not be compact, or even empty (but for C∗-algebras having densely defined

non-zero traces). Therefore uniform property Γ is a strong condition even in the absence of amenability.

However, there are separable simple C∗-algebras which have strict comparison and hereditary uniform

property Γ but not Z-stable (see Remark 4.7).

Regarding Toms-Winter conjecture, we also obtain a similar conclusion as in [6] (for non-unital simple

C∗-algebras). To be more specific, let A be a (non-unital) stably finite separable non-elementary simple

nuclear C∗-algebra with strict comparison. Following [6], we show that A has hereditary uniform property

Γ if and only if A is Z-stable. This result is similar to the statement in [5] for non-unital case but we do

not assume, as a priori, that A has stable rank one, or Cu(A) ∼= Cu(A ⊗ K) (see Remark 4.5). This is

possible because we show that if A has strict comparison and hereditary uniform property Γ, then A has

tracial approximate oscillation zero. We also observe that if A is tracially approximately divisible, then

A has hereditary uniform property Γ. If A is a separable simple non-elementary amenable C∗-algebra

with strict comparison, the converse also holds as, under the assumption that A is amenable, tracial

approximate divisibility is equivalent to Z-stability (which is essentially a restatement of Matui-Sato, see

also [7]).
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2 Preliminary

Definition 2.1. Let A be a C∗-algebra and F ⊂ A a subset of A. Denote by Her(F ) the hereditary

C∗-subalgebra of A generated by F. Denote by A1 the unit ball of A, and by A+ the set of all positive

elements in A. Put A1
+ := A+ ∩ A1. Denote by Ã the minimal unitization of A. Let Ped(A) denote the

Pedersen ideal of A, Ped(A)+ := Ped(A)∩A+ and Ped(A)1+ := Ped(A)∩A1
+. Denote by T (A) the tracial

state space of A.

Definition 2.2. Let A and B be C∗-algebras and ϕ : A→ B be a linear map. The map ϕ is said to be

positive if ϕ(A+) ⊂ B+. The map ϕ is said to be completely positive contractive, abbreviated to c.p.c.,

if ‖ϕ‖ 6 1 and ϕ ⊗ id : A ⊗Mn → B ⊗Mn is positive for all n ∈ N. A c.p.c. map ϕ : A → B is called

order zero, if for any x, y ∈ A+, xy = 0 implies ϕ(x)ϕ(y) = 0 (see Definition 2.3 of [36]). If ab = ba = 0,

we also write a ⊥ b.
In what follows, {ei,j}ni,j=1 (or just {ei,j}, if there is no confusion) stands for a system of matrix units

for Mn and ι ∈ C0((0, 1]) denotes the identity function on (0, 1], i.e., ι(t) = t for all t ∈ (0, 1].

Notation 2.3. Let ε > 0. Define a continuous function fε : [0,+∞)→ [0, 1] by

fε(t) =


0 t ∈ [0, ε/2],

1 t ∈ [ε,∞),

linear t ∈ [ε/2, ε].

Definition 2.4. Let A be a C∗-algebra and a, b ∈ (A ⊗ K)+. We write a . b if there is xn ∈ A ⊗ K
for all n ∈ N such that limn→∞ ‖a − x∗nbxn‖ = 0. We write a ∼ b if a . b and b . a both hold. The

Cuntz relation ∼ is an equivalence relation. Set Cu(A) = (A⊗K)+/ ∼ . Let 〈a〉 denote the equivalence

class of a. We write [a] 6 [b] if a . b.

Definition 2.5. Let A be a σ-unital C∗-algebra. A densely defined 2-quasitrace is a 2-quasitrace

defined on Ped(A) (see Definition II.1.1 of [1]). Denote by Q̃T (A) the set of densely defined quasitraces
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on A ⊗ K. In what follows we will identify A with A ⊗ e1,1, whenever it is convenient. Let τ ∈ Q̃T (A).

Then τ(a) 6=∞ for any a ∈ Ped(A)+ \ {0}.
We endow Q̃T (A) with the topology in which a net {τi} converges to τ if {τi(a)} converges to τ(a) for

all a ∈ Ped(A) (see also (4.1) on page 985 of [11]).

Denote by QT (A) the set of those τ ∈ Q̃T (A) such that ‖τ‖ = 1.

Note that, for each a ∈ (A⊗K)+ and ε > 0, fε(a) ∈ Ped(A⊗K)+. Define

[̂a](τ) := dτ (a) = lim
ε→0

τ(fε(a)) for all τ ∈ Q̃T (A). (2.1)

Definition 2.6. Let A be a simple C∗-algebra Then A is said to have (Blackadar’s) strict comparison,

if, given any a, b ∈ (A⊗K)+, one has that a . b, whenever

dτ (a) < dτ (b) for all τ ∈ Q̃T (A) \ {0}. (2.2)

Definition 2.7. Let A be a C∗-algebra with Q̃T (A) \ {0} 6= ∅. Let S ⊂ Q̃T (A) be a convex subset.

Set (if 0 6∈ S, we ignore the condition f(0) = 0)

Aff+(S) = {f : C(S,R)+ : f affine, f(s) > 0 for s 6= 0, f(0) = 0} ∪ {0}, (2.3)

LAff+(S) = {f : S → [0,∞] : ∃{fn}, fn ↗ f, fn ∈ Aff+(S)}. (2.4)

For a simple C∗-algebra A and each a ∈ (A ⊗ K)+, the function â(τ) = τ(a) (τ ∈ S) is in general

in LAff+(S). If a ∈ Ped(A ⊗ K)+, then â ∈ Aff+(S). For [̂a](τ) = dτ (a) defined above, we have [̂a] ∈
LAff+(Q̃T (A)).

We write Γ : Cu(A)→ LAff+(Q̃T (A)) for the canonical map defined by Γ([a])(τ) = [̂a] = dτ (a) for all

τ ∈ Q̃T (A).

In the case that A is algebraically simple (i.e., A is a simple C∗-algebra and A = Ped(A)), Γ also

induces a canonical map Γ1 : Cu(A)→ LAff+(QT (A)
w

), where QT (A)
w

is the weak*-closure of QT (A).

Since, in this case, R+ · QT (A)
w

= Q̃T (A), the map Γ is surjective if and only if Γ1 is surjective. We

would like to point out that, in this case, 0 6∈ QT (A)
w

and QT (A)
w

is compact (see Proposition 2.9 of

[14]).

The following is known to experts:

Proposition 2.8 (II.4.4 of [1]). Let A be a separable C∗-algebra. If QT (A) 6= ∅ and is compact, then

QT (A) is a Choquet simplex.

Proof. If A is unital, by II. 4.4 of [1], QT (A) is a Choquet simplex. If A is not unital, by II. 2.5

of [1], every 2-quasitrace extends to a 2-quasitrace on A with τ(1Ã) = ‖τ‖. We then view QT (A) as

a closed convex subset of Choquet simplex QT (Ã). On the other hand, any τ ∈ QT (Ã) has the form

τ = ατ0 + (1− α)τA, where 0 6 α 6 1, τA ∈ QT (A) and τ0 is the unique tracial state which vanishes on

A.

By the Choquet theorem, α and τA are uniquely determined by τ. In particular, QT (A) is a face of

QT (Ã). Now suppose that τ ∈ QT (Ã). Then there exists a unique (probability) boundary measure µ on

∂e(QT (Ã)) such that

f(τ) =

∫
∂e(QT (Ã))

f(s)dµ for all f ∈ Aff(QT (Ã)). (2.5)

If µ({τ0}) = α > 0, then τ = ατ0 + (1− α)τA for some τA ∈ QT (A). If τ ∈ QT (A), then α = 0. In other

words, µ is concentrated on ∂e(QT (A)). We have just shown that every τ ∈ QT (A) is the barycenter of

a unique normalized extremal boundary measure. So QT (A) is a Choquet simplex.

Definition 2.9. Let l∞(A) be the C∗-algebra of bounded sequences of A. Recall that c0(A) := {{an} ∈
l∞(A) : limn→∞ ‖an‖ = 0} is a (closed two-sided) ideal of l∞(A). Let A∞ := l∞(A)/c0(A) and π∞ :

l∞(A) → A∞ be the quotient map. We view A as a subalgebra of l∞(A) via the canonical map ι : a 7→
{a, a, , ...} for all a ∈ A. In what follows, we may identify a with the constant sequence {a, a, ..., } in

l∞(A) whenever it is convenient without further warning.

Put A′ = {x = {xn} ∈ l∞(A) : limn→∞ ‖xna− axn‖ = 0}.



4 Huaxin Lin Sci China Math

Definition 2.10. Let A be a C∗-algebra QT (A) 6= {0}. Let τ ∈ Q̃T (A) \ {0}. Define, for each x ∈ A,

‖x‖
2,τ

= τ(x∗x)1/2. (2.6)

Let S ⊂ Q̃T (A) \ {0} be a compact subset. Define

‖x‖
2,S

= sup{τ(x∗x)1/2 : τ ∈ S}. (2.7)

Put IS,N = {{xn} ∈ l∞(A) : limn→∞ ‖x‖2,S = 0}.
We would quote the following proposition which follows from II. 2.2 and Theorem I.17 of [1].

Proposition 2.11 (Proposition 3.2 of [18]). Let A be a C∗-algebra and τ ∈ QT (A), I = {x ∈ A :

τ(x∗x) = 0}. Then I is a (closed two-sided) ideal and there is a unique 2-quasitrace τ̄ on A/I such that

τ(x) = τ̄(ρ(x)) for all x ∈ A, (2.8)

where ρ : A→ A/I is the quotient map.

Definition 2.12. Let $ ∈ β(N) \ N be a free ultrafilter. Set

c0,$ = {{xn} ∈ l∞(A) : lim
n→ω
‖xn‖ = 0}. (2.9)

Denote by π∞ : l∞(A)→ l∞(A)/c0,$ the quotient map. Let S ⊂ Q̃T (A) be a compact subset. Define

I
S,$

= {{xn} ∈ l∞(A) : lim
n→$

‖xn‖2,S = 0}. (2.10)

It is a (closed two-sided) ideal. In the case that A = Ped(A), we usually consider I
QT (A)w,$

. If A has

continuous scale, we consider I
QT (A),$

.

Denote by Π$ : l∞(A)→ l∞(A)/I
QT (A)w,$

the quotient map. We also write Π : l∞(A)→ l∞(A)/I
QT (A),N

for the quotient map.

For convenience, abusing the notation, we may also write A′ for Π(A′) as well as Π$(A′).

If τn ∈ QT (A), for x = {xn} ∈ l∞(A), define

τ$(x) = lim
n→$

τn(xn). (2.11)

It is a 2-quasitrace on l∞(A).

Fix {τn} ⊂ QT (A). Let J = {{xn} ∈ l∞(A) : τ$({x∗nxn}) = 0}. Then J is a (closed two sided) ideal

of l∞(A) and τ$|J = 0. If x = {xn} ∈ (I
QT (A)w,$

)s.a., then,

lim
n→$

|τn(xn)|2 6 lim
n→$

τn(x∗nxn) 6 lim
n→$

‖x∗nxn‖2
2,QT (A)w

= 0. (2.12)

In other words, τ$(x) = 0 and x ∈ I
QT (A)w,$

.

Since τ$ is a 2-quasitrace on l∞(A), by Proposition 4.2 of [18] (see also Proposition 2.11), τ$ = τ$ ◦πJ ,
where πJ : l∞(A) → l∞(A)/J is the quotient map. In particular, τ$(x + j) = τ$(x) for all x ∈ l∞(A)

and j ∈ J. Since we have shown I
QT (A)w,$

⊂ J, we may also view τ$ as a normalized 2-quasitrace on

l∞(A)/I
T (A)w,$

. Similarly, we may view τ$ as a normalized 2-quasitrace of l∞(A)/c0,$.

If τn = τ for all n ∈ N, we may write τ instead of τ$.

Denote by QT$(A) the set {τ$ : {τn} ⊂ QT (A)}.
The following is a variation of II. 2.5 of [1]. Note that δ below depends on ε but not τ.

Lemma 2.13 (cf. II. 2.5 of [1]). Let A be a separable C∗-algebra with QT (A) 6= ∅. Then, for

any ε > 0, there exists δ > 0 satisfying the following: For any normal elements a, b ∈ A1 such that

‖ab− ba‖
2,QT (A)w

< δ, then, for any τ ∈ QT (A),

|τ(a+ b)− τ(a) + τ(b)| < ε. (2.13)
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Proof. Suppose not, then for some ε0 > 0, there exists a sequence of pairs of normal elements an, bn ∈
A1 and a sequence {τn} ⊂ QT (A) such that ‖anbn − bnan‖

2,QT (A)w
< 1/n but

|τn(anbn)− τn(an) + τn(bn)| > ε0, n ∈ N. (2.14)

Put a = Π$({an}) and b = Π$({bn}). Then a and b are normal and ab = ba. Define τ$({xn}) =

limn→$ τn(xn) for {xn} ∈ l∞(A). Viewing τ$ ∈ QT (l∞(A)/I
T (A)w,$

). Then τ$(a+ b) = τ$(a) + τ$(b).

This contradicts (2.14).

Proposition 2.14 (cf. Proposition 3.1 of [6], Lemma 4.2 (ii) of [28] and Proposition 4.3.6 of [12]). Let

A be a separable C∗-algebra with QT (A) 6= ∅ and K ⊂ ∂e(QT (A)) a compact subset. Then, for any

ε > 0 and any finite subset F ⊂ A, there exist δ > 0 and finite subset G ⊂ A satisfying the following:

Suppose that b ∈ A1 such that

‖cb− bc‖
2,K

< δ for all τ ∈ K and c ∈ G. (2.15)

Then, for all a ∈ F ,

sup{|τ(ab)− τ(a)τ(b)| : τ ∈ K} < ε. (2.16)

Proof. One notes that the proof of Proposition 3.1 of [6] works for QT (A). Then the proposition follows

from that.

Definition 2.15 (Definition 4.1, 4.7 and 5.1 of [14]). Let A be a C∗-algebra with Q̃T (A) \ {0} 6= ∅.
Let S ⊂ Q̃T (A) \ {0} be a compact subset. Define, for each a ∈ Ped(A⊗K)+,

ω(a)|S = inf{sup{dτ (a)− τ(c) : τ ∈ S} : c ∈ a(A⊗K)a, 0 6 c 6 1} (2.17)

(see A1 of [10]). The number ω(a)|S is called the (tracial) oscillation of a on S.

We are only interested in the case that R+ · S = Q̃T (A). Let a ∈ Ped(A⊗K)+. We write ΩT (a) = 0 if

there exists a sequence cn ∈ Her(a)1+ with limn→∞ ω(cn)|S = 0 such that

limn→∞ ‖a − cn‖2,S = 0. Note that ΩT (a) = 0 does not depend on the choice of S (as long as R+ · S =

Q̃T (A), see Definition 4.7 of [14]).

A separable simple C∗-algebra A is said to have T-tracial approximate oscillation zero, if for any

a ∈ Ped(A ⊗ K)+, ΩT (a) = 0. We say that A has tracial approximate oscillation zero if A has T-tracial

approximate oscillation zero and has strict comparison.

If A is a separable simple C∗-algebra and b ∈ Ped(A)+, then by Brown’s stable isomorphism theorem,

Her(b) ⊗ K ∼= A ⊗ K. So we may view a ∈ Ped(Her(b) ⊗ K)+. Note that Her(b) is algebraically simple.

We often assume that A is algebraically simple and choose S to be QT (A)
w
. In that case we will omit S.

3 Uniform property Γ

Let us recall the definition of uniform property Γ. We fix a free ultrafiler $ ∈ β(N) \ N.
Definition 3.1 (Definition 2.1 of [3], Definition 2.1 of [16]). Let A be a separable C∗-algebra with

nonempty and compact QT (A). We say that A has uniform property Γ if, for any n ∈ N, there exist

pairwise orthogonal projections p1, p2, ..., pn ∈ (l∞(A) ∩A′)/I
QT (A),$

(see 2.9) such that, for 1 6 i 6 n,

τ(pia) =
1

n
τ(a) for all a ∈ A and τ ∈ QT$(A). (3.1)

It should be noted that we do not assume all 2-quasitraces are traces. Let p =
∑n
i=1 pi. Then p is a

projection and τ(pa) = τ(a) for all τ ∈ QT$(A) and a ∈ A. Suppose that ck ∈ (l∞(A) ∩ A′)1+ such that

Π$({ck}) = p. Then, for all a ∈ A+,

‖ack − a‖22,QT (A)
6 sup{τ(a− a1/2cka

1/2) : τ ∈ QT (A)} → 0 as k → $. (3.2)
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It follows that Π$(ι(a))p = Π$(ι(a)) for all a ∈ A. Let e ∈ A1
+ be a strictly positive element of A. Then

dτ (eA) = 1 for all τ ∈ QT (A). By the Dini theorem, τ(e1/k) ↗ dτ (e) uniformly on QT (A). By II.2.5 of

[1], we extend each τ ∈ QT (A) to a 2-quasitrace in QT (Ã) which we still write τ (so τ(1Ã) = 1, see II.2.5

of [1]), if A is not unital. Therefore, for any {ak} ∈ l∞(A)1,

lim
k→∞

‖ak(1Ã − e
1/k)‖

2,QT (A)
6 lim
k→∞

‖1Ã − e
1/k‖

2,QT (A)
= 0 (3.3)

(see Lemma 3.5 of [18] and also Definition 2.16 of [14]). It follows that l∞(A)/I
QT (A),$

has a unit

E := Π$({e1/k}). Suppose that E − p 6= 0. Then there would be a nonzero element b = {bn} ∈ l∞(A)1+
such that pΠ$(b) = 0. Then, for all k ∈ N,

Π$(ι(e1/k))Π$(b) = Π$(ι(e1/k))pΠ$(b) = 0. (3.4)

Or,

Π$(E − ι(e1/k))Π$(b) = Π$(b). (3.5)

However, since τ(e1/k) ↗ 1 uniformly on QT (A), for any ε > 0, there exists k ∈ N such that ‖E −
ι(e1/k)‖

QT (A),$
< ε, whence

‖Π$(b)‖ < ε. (3.6)

It follows that p = E = 1
l∞(A)/I

QT (A),$

.

Note that we follow the same sprit in [3], so uniform property Γ, as in Definition 2.1 of [3] (see also

[6]), is only defined for separable C∗-algebras with compact QT (A). It is worth mentioning that if A is

a σ-unital simple C∗-algebra with nonempty compact QT (A) and with strict comparison, then (by the

Dini theorem), A has continuous scale. It follows that A is algebraically simple (see Theorem 3.3 of [20]).

Proposition 3.2 (cf. Corollary 3.2 of [6]). Let A be a separable simple C∗-algebra with nonempty

compact QT (A). If A has uniform property Γ, then, for any n ∈ N, there are mutually orthogonal

projections p1, p2, ..., pn ∈ (l∞(A) ∩A′)/I
QT (A),$

such that, for 1 6 i 6 n,

τ(pi) =
1

n
for all τ ∈ QT$(A). (3.7)

Conversely, suppose that ∂e(T (A)) is σ-compact and that there are mutually orthogonal projections

p1, p2, ..., pn ∈ (l∞(A) ∩A′)/I
QT (A),$

such that, for 1 6 i 6 n, equation (3.7) holds. Then, for any a ∈ A, and 1 6 i 6 n,

τ(pia) =
1

n
τ(a) for all a ∈ A and τ ∈ QT (A). (3.8)

(Note that, in (3.8), τ ∈ QT (A) not in QT$(A).)

Proof. Suppose that A has uniform property Γ. Then, for any n ∈ N, there exist mutually orthogonal

projections p1, p2, ..., pn ∈ (l∞(A) ∩A′)/I
QT (A),$

such that, for 1 6 i 6 n,

τ(pia) =
1

n
τ(a) for all τ ∈ QT$(A). (3.9)

Let {p(m)
i } ∈ (l∞(A)∩A′)1+ be such that Π$({p(m)

i }) = pi, 1 6 i 6 n. Choose a strictly positive element

e ∈ A1
+. Let ε ∈ (0, 1/2). Since QT (A) is compact, by the Dini Theorem, there exists k ∈ N such that

sup{1− τ(e1/k) : τ ∈ QT (A)} < ε. (3.10)

It follows that, for all 1 6 i 6 n,

τ(pi) > τ(e1/kpi) =
1

n
τ(e1/k) >

1

n
− ε

n
for all τ ∈ QT$(A). (3.11)
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Let ε→ 0, we obtain that, for all 1 6 i 6 n,

τ(pi) >
1

n
for all τ ∈ QT$(A). (3.12)

Since
∑n
i=1 pi = 1, it follows that τ(pi) = 1

n for all τ ∈ QT$(A).

For the second part of the proposition, suppose that there are mutually orthogonal projections p1, p2, ..., pn ∈
(l∞(A) ∩ A′)/I

QT (A),$
such that, for 1 6 i 6 n, (3.7) holds. Let a ∈ A. We will show that, for any

τ ∈ QT (A), (3.8) holds. It suffices to show this for the case that a ∈ A1
+.

Suppose otherwise. Then there is a ∈ A1
+ and τ ∈ QT (A) such that

| 1
n
τ(a)− τ(pia)| > σ (3.13)

for some 1 > σ > 0.

Choose ε ∈ (0, σ/16). By the Choquet theorem, there exists a probability Borel measure µτ on QT (A)

concentrated on ∂e(QT (A)) such that, for any f ∈ Aff(QT (A)),

f(τ) =

∫
∂e(QT (A))

fdµτ . (3.14)

Since ∂e(QT (A)) is σ-compact, there exists a compact subset K ⊂ ∂e(QT (A)) such that

µ(∂e(QT (A)) \K) < ε. (3.15)

It follows from Proposition 2.14 (see also Proposition 3.1 of [6]) that there is δ > 0 and finite subset

G ⊂ A such that if b ∈ A1
+ such that ‖[x, b]‖ < δ for all x ∈ G, then

sup{|t(ab)− t(a)t(b)| : τ ∈ K} < ε. (3.16)

Let {p(m)
i } ∈ (l∞(A) ∩ A′)1+ be such that Π$({p(m)

i }) = pi (1 6 i 6 n). For any P ∈ $, there is m ∈ P
such that

| 1
n
τ(a)− τ(p

(m)
i a)| > σ/2, ‖[x, p(m)

i ]‖ < δ for all x ∈ G and (3.17)

sup{|t(p(m)
i )− 1/n| : t ∈ T (A)} < ε. (3.18)

Then, by the choice of δ, we estimate that

| 1
n
τ(a)− τ(ap

(m)
i )| = |

∫
∂e(QT (A))

1

n
â− âp(m)

i dµτ |

6
∫
∂e(QT (A))

| 1
n
â− âp(m)

i |dµτ

<

∫
K

| 1
n
â− âp(m)

i |dµτ + 2ε (by (3.15))

<

∫
K

| 1
n
â− 1

n
â|dµτ + 4ε = 4ε < σ/2. (by (3.16) and (3.18)).

This contradicts (3.17) and the proof is complete.

If A has strict comparison, then uniform property Γ provides a unital homomorphism ϕ : Mn →
l∞(A)/I

QT (A),$
as follows.

Theorem 3.3. Let A be a non-elementary separable simple C∗-algebra with strict comparison and

nonempty compact QT (A). If A has uniform property Γ, then, for any n ∈ N, there is a unital homomor-

phism ϕ : Mn → l∞(A)/I
QT (A),$

such that ϕ(ei,i) ∈ (l∞(A) ∩A′)/I
QT (A),$

and, for all 1 6 i 6 n,

τ(aϕ(ei,i)) =
1

n
τ(a) for all a ∈ A and τ ∈ QT$(A). (3.19)
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Proof. By II.2.5 of [1], we extend each τ ∈ QT (A) to a 2-quasitrace in QT (Ã) with τ(1Ã) = 1 (if A is

not unital).

Fix an integer n ∈ N with n > 2. Let l ∈ N. Choose an integer m(l) ∈ N such that

| n

m(l)
| < 1

2(n+ l)2
, l = 1, 2, .... (3.20)

Let K = nm(l) + n(n+ 1)/2.

Since A has uniform property Γ, there exist projections p1,l, p2,l, ..., pK,l ∈ (l∞(A) ∩A′)/I
QT (A),$

such

that, for 1 6 i 6 n,

K∑
i=1

pi,l = 1
(l∞(A)∩A′)/I

QT (A),$

, (3.21)

τ(pi,la) =
1

K
τ(a) and τ(pi,l) =

1

K
for all a ∈ A and τ ∈ QT$(A). (3.22)

We write Pi,l = {p(k)
i,l }, where {p(k)

i,l } ∈ (l∞(A) ∩ A′)1+, such that Π$(Pi) = pi,l, 1 6 i 6 K. Moreover,

p
(k)
i,l ⊥ p

(k)
j,l , if i 6= j and 1 6 i, j 6 K. By replacing p

(k)
i,l by f1/4(p

(k)
i,l ) if necessary, we may assume that

{p(k)
i,l } is a permanent projection lifting of pi,l (1 6 i 6 n) (see Proposition 6.2 of [14] and Proposition

2.21 of [23]). Therefore, by (1) and (2) of Proposition 6.2 of [14] (see also Proposition 2.21 of [23]), we

may assume that

lim
k→$

sup{τ(p
(k)
i,l )− τ(f1/4(p

(k)
i,l )p

(k)
i,l ) : τ ∈ QT (A)} = 0 and (3.23)

lim
k→$

sup{dτ (p
(k)
i,l )− τ((p

(k)
i,l )2) : τ ∈ QT (A)} = 0. (3.24)

Since τ((p
(k)
i,l )2) 6 τ((p

(k)
i,l )) for all τ ∈ QT (A), we obtain

lim
k→$

sup{dτ (p
(k)
i,l )− τ((p

(k)
i,l )) : τ ∈ QT (A)} = 0. (3.25)

Since pi,l is a projection, f1/4(pi,l) = pi,l (1 6 i 6 n). Consequently,

lim
k→$

‖p(k)
i,l − f1/4((p

(k)
i,l )‖

2,QT (A)
= 0. (3.26)

Note that (recall that p
(k)
i,l commutes with f1/4((p

(k)
i,l )))

|τ(p
(k)
i,l )− τ(f1/4((p

(k)
i,l )))| 6 τ(1Ã)1/2τ((p

(k)
i,l − f1/4((p

(k)
i,l )))2)1/2 for all τ ∈ QT (A). (3.27)

By (3.26), we have

lim
k→$

sup{|τ(p
(k)
i,l )− τ(f1/4((p

(k)
i,l )))| : τ ∈ QT (A)} = 0. (3.28)

Let q1,l be m(l) + 1 copies of pi,l’s, q2,l be m(l) + 2 copies of pi,l’s, ..., and qn,l be m(l) + n copies of pi’s.

Then

n∑
i=1

qi,l =

K∑
i=1

pi,l and τ(

n∑
i=1

qi,l) =
nm(l) + n(n+ 1)/2

K
= 1 for all τ ∈ QT$(A). (3.29)

Write qi,l = Π({c(k)
i,l }), where c

(k)
i,l is the sum of m(l) + i copies of p

(k)
i,l . Then (see (3.22)),

lim
k→$

sup{|τ(ac
(k)
i,l )− m(l) + i

K
τ(a)| : τ ∈ QT (A)} = 0 and (3.30)

lim
k→$

sup{|τ(c
(k)
i,l )− m(l) + i

K
| : τ ∈ QT (A)} = 0 (3.31)
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for all a ∈ A, Note that, for each fixed n and 1 6 i 6 n,

lim
l→∞

m(l) + i

K
=

1

n
. (3.32)

Let {Fk} be an increasing sequence of finite subsets of A such that ∪∞k=1Fk is dense in A. Then, for each

l ∈ N, by (3.31), (3.25), and (3.28), as well as (3.30) (recall also pi,l ∈ A′), we find an integer k(l) ∈ N
such that k(l) < k(l + 1),

dτ (c
(k(l))
1,l ) < dτ (c

(k(l))
2,l ) < · · · < dτ (c

(k(l))
n,l ) for all τ ∈ QT (A), (3.33)

τ(f1/4(c
(k(l))
i,l )) > 1/n− 1/(2(n+ l))2 for all τ ∈ QT (A), (3.34)

sup{|τ(ac
(k(l))
i,l )− m(l) + i

K
τ(a)| : τ ∈ QT (A)} < 1/l, (3.35)

sup{|τ(p
(k)
i,l )− τ(f1/4((p

(k)
i,l )))| : τ ∈ QT (A)} < 1/l and (3.36)

‖[ck(l)
i,l , b]‖ < 1/l for all b ∈ Fk and 1 6 i 6 n. (3.37)

Since A has strict comparison, by (3.33), we obtain xi,l ∈ A such that

x∗i,lxi,l = f1/4(c
(k(l))
1,l ) and xi,lx

∗
i,l ∈ Her(c

(k(l))
i,l ), i = 2, 3, ..., n. (3.38)

Recall that c
(k)
i,l ⊥ c

(k(l))
j,l , if i 6= j and 1 6 i, j 6 n. Write xi,l = ui,lf1/4(c

(k(l))
1,l )1/2, 1 6 i 6 n.

This provides a homomorphism ϕ(l) : C0((0, 1])⊗Mn → A such that

ϕ(l)(⊗ e1,1) = (x∗2,lx2,l)
1/2 = (f1/4(c

(k(l))
1,l ))1/2, (3.39)

ϕ(l)(⊗ e1,j) = xj,l, ϕ
(l)(ι⊗ ej,1) = x∗j,l, 2 6 j 6 n, (3.40)

ϕ(l)(⊗ ei,j) = ui,lf1/4(c
(k(l))
1,l )u∗j,l, 2 6 i, j 6 n, (3.41)

ϕ(l)(⊗ ei,i) = (xi,lx
∗
i,l)

1/2, (i > 1), and (3.42)

ϕ(l)(⊗ 1n) = f1/4(c
k(l)
1,l )1/2 +

n∑
i=2

(xi,lx
∗
i,l)

1/2, (3.43)

where  is the identify function on [0, 1]. Define ψ(l) : Mn → A by ψ(l)(ei,j) = ϕ(l)(⊗ ei,j) (1 6 i, j 6 n).

Then ψ(l) is an order zero c.p.c. map. We also have (as l→∞)

‖ψ(l)(ei,i)− c(k(l))
i,l ‖

2,QT (A)
→ 0 and (3.44)

‖ψ(l)(1n)−
n∑
i=1

c
(k(l))
i,l ‖

2,QT (A)
→ 0. (3.45)

Define Ψ = {ψ(l)} : Mn → l∞(A) and ϕ = Π$ ◦ Ψ : Mn → l∞(A)/I
QT (A),$

. Then ϕ is an order zero

c.p.c. map. By (3.45), it is unital. Hence ϕ is a unital homomorphism. Combining (3.35) with (3.32), we

obtain that

τ(aϕ(1n)) =
1

n
τ(a) for all a ∈ A and τ ∈ QT$(A). (3.46)

Note that, by (3.37), {c(k(l))
i,l } ∈ A′. Thus, by (3.44), we have that ϕ(ei,i) ∈ (l∞(A) ∩A′)/I

QT (A),$
.

Proposition 3.4. Let A be a separable C∗-algebra with nonempty compact QT (A). Suppose that A

has uniform property Γ. Then, for any k ∈ N, Mk(A) also has uniform property Γ.

Proof. Fix k ∈ N. Let n ∈ N. Since A has uniform property Γ, there are mutually orthogonal projections

p1, p2, ..., pn ∈ (l∞(A) ∩A′)/I
QT (A),$

such that
∑n
i=1 pi = 1 and

τ(api) =
1

n
τ(a) for all a ∈ A and τ ∈ QT$(A). (3.47)
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Put qi = pi⊗1Mk
, i = 1, 2, ..., n. Then, qi are projections and

∑n
i=1 qi = 1Mk(C), where C = l∞(A)/I

QT (A),$
,

and, for any b = (ai,j)k×k ∈Mk(A),

qib = bqi and τ(bqi) =
1

n
τ(b) for all τ ∈ QT$(Mk(A)).

Theorem 3.5. Let A be a non-elementary separable simple C∗-algebra with strict comparison and

with nonempty compact QT (A). Suppose that A has uniform property Γ. Then Γ is surjective (see

Definition 2.7).

Proof.

Fix a ∈ A1
+ \ {0} and n ∈ N. There is r ∈ (0, 1/2) such that fr(a) > 0. Set

σ0 = inf{τ(fr(a)) : τ ∈ QT (A)} > 0. (3.48)

Choose m ∈ N such that 1/m < σ0/8(n + 1). Since A has uniform property Γ, there is a projection

p ∈ (l∞(A) ∩A′)/I
QT (A),$

such that

τ(bp) =
1

nm
τ(b) for all τ ∈ QT$(A) and b ∈ A. (3.49)

Fix ε ∈ (0, r/2). Then, for η ∈ {ε, ε/2, ε/4, ε/8},

τ(fη(a)p) =
1

nm
τ(fη(a)) for all τ ∈ QT$(A). (3.50)

Choose δ ∈ (0, 1/(8(n + 1)m)2). Recall that p ∈ (l∞(A) ∩ A′)/I
QT (A),$

. Therefore (by lifting p to a

sequence in l∞(A) ∩ A′), we obtain an element e ∈ A1
+ such that, for any η ∈ {ε, ε/2, ε/4, ε/8} and all

τ ∈ QT (A),

1

nm
τ(fη(a)) +

1

2(n+ 1)m3
> τ(efη(a)e) >

1

nm
τ(fη(a))− 1

2(n+ 1)m2
. (3.51)

Put c := efε/4(a)e. Then, by (3.51),

dτ (c) > τ(efε/4(a)e) >
1

nm
τ(fε/4(a))− 1/2(n+ 1)m2 for all τ ∈ QT (A). (3.52)

Choose b ∈ (A⊗K)1+ such that [b] = (m− 1)[c]. Then, for all τ ∈ QT (A),

(n+ 1)[̂b] = (n+ 1)(m− 1)[̂c] >
(n+ 1)(m− 1)

nm
(τ(fε/4(a)))− 1/2m

> τ(fε/4(a)) +
1

n
τ(fε/4(a))− 1

m
− 1

nm
− 1

2m
(3.53)

> τ(fε/4(a)) +
σ0

n
− 1

m
− 1

nm
− 1

2m
(3.54)

> τ(fε/4(a)) > dτ (fε(a)). (3.55)

Since A has strict comparison,

(n+ 1)[b] > [fε(a)]. (3.56)

By (3.51), we also have, for all τ ∈ QT (A),

n[̂b] = n(m− 1)[̂c] 6
m− 1

m
τ(fε/4(a)) +

1

2m2
(3.57)

6 τ(fε/4(a))− (
σ0

m
− 1

2m2
) 6 τ(fε/4(a)) 6 dτ (a). (3.58)
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It follows that

n[b] 6 [a]. (3.59)

By Proposition 3.4, (3.56) and (3.59) also hold for any a ∈ Mn(A)+. It follows that (3.56) and (3.59)

hold for any a ∈ Ped(A⊗K)+. We will use an argument of L. Robert to finish the proof.

Let x′ � x ∈ Cu(A). Choose a ∈ (A⊗K)1+ such that x = [a]. Then, for some ε ∈ (0, 1/2), x′ 6 [fε(a)].

Now fε/2(a) ∈ Ped(A⊗K)+. By what has been proved, there is b ∈ Ped(A⊗K)+ such that

x′ 6 [fε(a)] 6 [fε(fε/2(a))] 6 (n+ 1)[b] and n[b] 6 [fε/2(a)] 6 [a]. (3.60)

It follows that A satisfies the property (D) (see Definition 5.5 of [13]). Then, by an argument of L. Robert

(see the proof of Proposition 6.2.1 of [26]), Γ is surjective (see Lemma 5.6 of [13]).

Lemma 3.6. Let A be a separable algebraically simple C∗-algebra with QT (A) 6= ∅ which has strict

comparison and for which the canonical map Γ is surjective. Suppose that there are n mutually orthogonal

elements a1, a2, ..., an, an+1 ∈ A1
+ such that, for some

0 < η1 < η̄1 < η2 < η̄2 < · · · < ηn < η̄n < ηn+1 < δ/2 (3.61)

and δ ∈ (0, 1/2),

dτ (fη2(a2)) < dτ (a1) and (3.62)

dτ (fηi+1
(ai+1)) < dτ (fη̄i(ai)) for all τ ∈ QT (A)

w
, 2 6 i 6 n. (3.63)

Then, for any σ ∈ (0, 1/2), there is d ∈ Her(
∑n+1
i=1 ai)

1
+ such that

n+1∑
i=2

fδ(ai) 6 d and ω(d) < σ. (3.64)

Proof. We will prove this by induction on n (for any σ ∈ (0, 1/2)). For n = 1, since A has strict

comparison, there is x ∈ Her(a), where a =
∑n+1
i=1 ai such that

x∗x = fδ1(a2) and xx∗ ∈ Her(a1), (3.65)

where η2 < δ1 < η̄2 < δ/2. Put C1 := Her(x∗x+ xx∗). Define ψ : C0((0, 1])⊗M2 → C1 by ψ(ι⊗ e1,1) =

(xx∗)1/2, ψ(ι⊗ e2,2) = (x∗x)1/2, ψ(ι⊗ e1,2) = x, ψ(ι⊗ e2,1) = x∗. Thus (see Proposition 8.3 of [14], for

example) we may write C1 = M2(Her(x∗x)). Then, for any 0 < ε′′ < ε′ < η1/2, by Lemma 8.9 of [14],

there exists c1 ∈ Her(fε′′(x
∗x))1+ and a unitary U1 ∈ C̃1 such that, with b1 = U∗1 diag(0, c)U1,

(1) fε′(x
∗x) 6 b1;

(2) dτ (fε′(x
∗x)) 6 dτ (b1) 6 dτ (fε′′(x

∗x)) for all τ ∈ QT (A)
w
,

(3) for some δ′1 ∈ (0, 1/2),

dτ (b1)− τ(fδ′1(b1)) < σ/2(n+ 1) for all τ ∈ QT (A)
w
, and (3.66)

(4) U∗1 (gε′′/2(x∗x) +xx∗)U ∈ B1, where B1 := (Her(b1)⊥)∩C1. Note that b1 ∈ C1 ⊂ Her(a1 +a2) and,

by (1) above, fδ(a2) 6 b1.

Let a′′2 be a strictly positive element of B1. Then a′′2 ∈ Her(a)1+ and

dτ (a′′2) > dτ (gε′′/2(x∗x) + xx∗) > dτ (fη̄2(a2)) for all τ ∈ QT (A)
w
. (3.67)

Therefore the lemma holds for n = 1.

We assume that lemma holds for n−1 (for any σ ∈ (0, 1/2)). We will keep the notation just introduced.

Then a′′2 ⊥ ai, i = 3, 4, ..., n+ 1. Moreover, by (3.67),

dτ (fη̄3(a3)) < dτ (a′′2) for all τ ∈ QT (A)
w
. (3.68)
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Put a′ := a′′2 + a3 + a4 + · · ·+ an+1. Then, by the inductive assumption (choose σ/2(n+ 1) instead of

σ). we obtain b2 ∈ Her(a′)1+ such that

fδ(

n+1∑
i=3

ai) 6 b2 and ω(b2) < σ/2(n+ 1) for all τ ∈ QT (A)
w
. (3.69)

Note that b1 ⊥ b2 and, by Proposition 4.4 of [14], ω(b1 + b2) < σ. Moreover,

n+1∑
i=2

fδ(ai) 6 b1 + b2. (3.70)

This completes the induction and the lemma follows.

Theorem 3.7. Let A be a separable simple C∗-algebra with strict comparison and with nonempty

compact QT (A). Suppose that A also has uniform property Γ. Then

(i) the map Γ is surjective,

(ii) A has tracial approximate oscillation zero,

(iii) A has stable rank one, and

(iv) A has property (TM).

Proof. We have shown that (i) holds (Theorem 3.5). It follows from Theorem 1.1 of [14] that (ii), (iii)

and (iv) are equivalent. We will show that (ii) holds.

We need to show that, for any a ∈ Ped(A⊗K)1+, ΩT (a) = 0.

Let ε > 0. There is m ∈ N such that ‖a − a1/2Ema
1/2‖ < ε/2, where Em =

∑m
i=1 ei,i and {ei,j} is

a system of matrix units for K. Note that a1/2Ema
1/2 ∈ Her(a). Therefore, to show that ΩT (a) = 0, it

suffices to show that ΩT (a1/2Ema
1/2) = 0. Put z = Ema

1/2. Then z∗z = a1/2Ema
1/2 and zz∗ = EmaEm.

Therefore, it suffices to show that ΩT (EmaEm) = 0. Consequently, it suffices to show that ΩT (a) = 0

for any a ∈ Mm(A)1+. Since, by Proposition 3.4, Mm(A) also has uniform property Γ, without loss of

generality, we may assume that a ∈ A1
+.

Therefore it suffices to show that, for any a ∈ A1
+, ΩT (a) = 0. If 0 ∈ R+ \ sp(a), then ΩT (a) = 0.

Hence, we may assume that there is ε0 ∈ (0, 1/2) such that [0, ε0] ⊂ sp(a).

Let ε, σ ∈ (0, ε0/2). By Proposition 5.7 of [14], it suffices to show that there is d ∈ Her(a)1+ such that

‖a− ad‖
2,QT (A)

< ε and ω(d) < σ. (3.71)

Fix any η ∈ (0, (ε/8)3). Choose n ∈ N such 1/n < (η/8)3.

By Theorem 3.3, there is a unital homomorphism ϕ : Mn+1 → l∞(A)/I
QT (A),$

such that ϕ(ei,i) ∈
(l∞(A) ∩ A′)/I

QT (A),$
, 1 6 i 6 n+ 1. There exists an order zero c.p.c. map Φ = {ϕk} : Mn+1 → l∞(A)

such that Π$ ◦ Φ = ϕ and, for all 1 6 i 6 n+ 1,

τ(bϕ(ei,i)) =
1

n+ 1
τ(b) for all b ∈ A and τ ∈ QT$(A). (3.72)

Choose

0 < r1 < r2/2 < r2 < · · · < r3n+2 < r3(n+1)/2 < r3(n+1) < η/2. (3.73)

It follows that (recall that ϕ(ei,i) ∈ (l∞(A)∩A′)/I
QT (A),$

), for all 1 6 j 6 3(n+ 1) and 1 6 i 6 n+ 1,

lim
k→$

( sup
τ∈QT (A)

|τ(frj (a)ϕk(ei,i))−
1

n+ 1
τ(frj (a))|) = 0, (3.74)

lim
k→$

‖frj (a1/2ϕk(ei,i)a
1/2)− frj (a)ϕk(ei,i)‖2,QT (A)

= 0 and (3.75)

lim
k→$

‖frj (a1/2ϕk(ei,i)a
1/2)− frj (ϕk(ei,i)aϕk(ei,i))‖2,QT (A)

= 0. (3.76)
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Since Π$(ι(a1/2))ϕ(ei,i)Π$(ι(a1/2)) = ϕ(ei,i)Π$(ι(a))ϕ(ei,i) for 1 6 i 6 n+ 1, there are, for each k ∈ N,
mutually orthogonal elements ai,k ∈ Her(a)1+ (1 6 i 6 n+ 1) such that

Π$({ai,k}) = Π$(ι(a1/2))ϕ(ei,i)Π$(ι(a1/2)) and (3.77)

Π$(frj ({ai,k})) = Π$(frj (ι(a
1/2)))ϕ(ei,i)Π$(ι(a1/2)). (3.78)

Therefore, for 1 6 j 6 3(n+ 1),

lim
k→$

( sup
τ∈QT (A)

|τ(frj (ai,k))− 1

n+ 1
τ(frj (a))|) = 0. (3.79)

Since A is simple, QT (A) is compact and [0, ε0] ⊂ sp(a), we have, for any g ∈ C0((0, 1])1+ with g|[0,ε0] 6= 0,

that

inf{τ(g(a)) : τ ∈ QT (A)} > 0. (3.80)

Then, by (3.79), there exists P ∈ $ such that, for any k ∈ P,

τ(fr3j+1
(ai+1,k)) < τ(fr3j (ai,k)) <

1

n
for all τ ∈ QT (A), (3.81)

1 6 i 6 n. It follows that

dτ (fr3j+2
(ai+1,k)) < dτ (fr3j (ai,k)) for all τ ∈ QT (A). (3.82)

Keep in mind that (3.73) holds. We also have ai,k ⊥ ai+1,k (1 6 i 6 n). Put a′ :=
∑n+1
i=1 ai,k and

c =
∑n+1
i=2 ai,k. Then, by Lemma 3.6, we obtain d ∈ Her(a′)1+ such that

fη(c) 6 d and ω(d) < σ. (3.83)

Note that ai,k ∈ Her(a). Therefore c ∈ Her(a). We also have that d ∈ Her(a). By (3.77) and the fact that

ϕ is unital, we may assume that

‖a− a′‖
2,QT (A)

< (ε/8)3. (3.84)

Then (see Lemma 3.5 of [18] and also Definition 2.16 of [14])

‖a− c‖2/3
2,QT (A)

6 ‖a− a′‖2/3
2,QT (A)

+ ‖a′ − c‖2/3
2,QT (A)

< (ε/8)2 + (
1

n+ 1
)2/3. (3.85)

It follows that

‖a− ad‖2/3
2,QT (A)

6 ‖a− c‖2/3
2,QT (A)

+ ‖d‖‖a− c‖2/3
2,QT (A)

+ ‖c− cd‖2/3
2,QT (A)

< (ε)2. (3.86)

Thus (3.71) holds and the theorem follows.

We will now consider simple C∗-algebras A for which QT (A) may not be compact.

4 Hereditary uniform property Γ

Definition 4.1 (Definition 2.1 of [6]). Let A be a separable simple C∗-algebra with Q̃T (A) \ {0} 6= ∅.
C∗-algebra A is said to have hereditary uniform property Γ, if for any e ∈ Ped(A ⊗ K)+ \ {0} and any

n ∈ N, there exist pairwise orthogonal projections p1, p2, ..., pn ∈ (l∞(Ae) ∩ (Ae)
′)/I

QT (Ae)
w,$

, where

Ae = e(A⊗K)e, such that, for 1 6 i 6 n,

τ(pia) =
1

n
τ(a) for all a ∈ Ae and τ ∈ QTw$ (Ae), (4.1)

where QTw$ (Ae) = {τ$ : {τn} ⊂ QT (Ae)
w
}.
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Proposition 4.2 (Proposition 2.2 of [34]). Let A be a separable simple C∗-algebra with Q̃T (A)\{0} 6=
∅. Then the following are equivalent:

(i) A has hereditary uniform property Γ.

(ii) For any e ∈ Per(A⊗K)+ \ {0}, any finite subset F ⊂ Ae = e(A⊗K)e, any ε > 0, and any n ∈ N,
there exist pairwise orthogonal elements e1, e2, ..., en ∈ (Ae)

1
+ such that, for 1 6 i 6 n, and a ∈ Ae, we

have

‖[x, ei]‖
2,QT (Ae)

w < ε, sup
QT (Ae)

w

|τ(aei)−
1

n
τ(a)| < ε and (4.2)

‖ei − e2
i ‖2,QT (Ae)

w < ε. (4.3)

(iii) For any e ∈ Per(A⊗K)+, any finite subset F ⊂ Ae = e(A⊗K)e, any ε > 0, and any n ∈ N, there

exist pairwise orthogonal elements e1, e2, ..., en ∈ (Ae)+
1 such that, for 1 6 i 6 n, and a ∈ Ae, we have

‖[x, ei]‖ < ε, sup
QT (Ae)

w

|τ(aei)−
1

n
τ(a)| < ε and (4.4)

‖ei − e2
i ‖2,QT (Ae)

w < ε. (4.5)

Proof. The proof is just a repetition of that of Proposition 2.1 of [34].

Theorem 4.3. Let A be a separable non-elementary simple C∗-algebra with strict comparison and

nonempty compact QT (A). Suppose that A has uniform property Γ. Then A has hereditary uniform

property Γ.

Proof. Let eA ∈ A+ be a strictly positive element of A and let e ∈ Ped(A⊗K)1+ \ {0}. We view A as

a hereditary C∗-subalgebra of A ⊗ K. Put A1 = e(A⊗K)e. There is ε ∈ (0, 1/2) such that fε(eA) 6= 0.

Note that fε(eA) ∈ Ped(A⊗K). Since e ∈ Ped(A⊗K), there is K ∈ N such that [e] 6 K[fε(eA)] 6 K[eA].

By Theorem 3.7, A has stable rank one. So does A ⊗ K. It follows from Proposition 2.1.2 of [26] that

there is x ∈ A⊗K such that

x∗x = e and xx∗ ∈MK(A). (4.6)

Thus there is an isomorphism ψ from A1 to a hereditary C∗-subalgebra of MK(A) with ψ(e) ∼ e (see

1.4 of [8]). Therefore, without loss of generality, we may assume that e ∈ MK(A)1+. Since MK(A) also

has uniform property Γ (see Proposition 3.4), to simplify notation, we may further assume that e ∈ A1
+.

Fix n ∈ N. Let p1, p2, ..., pn ∈ (l∞(A)∩A′)/I
QT (A),$

be mutually orthogonal projections such that, for

all a ∈ A,

τ(pia) =
1

n
τ(a) for all τ ∈ QT$(A), 1 6 i 6 n. (4.7)

Let p
(k)
i ∈ A1

+ be such that p
(k)
i ⊥ p

(k)
j if i 6= j (1 6 i, j 6 n), {p(k)

i }k∈N ⊂ A′ and Π$({p(k)
i }) = pi,

1 6 i 6 n.

Since, by Theorem 3.7, A has tracial approximate oscillation zero, there is a sequence {ak} in A1 with

0 6 ak 6 1 such that, for any b ∈ A1,

lim
k→∞

‖b− bak‖2,QT (A)
= 0 and lim

k→∞
ω(ak) = 0. (4.8)

It follows from Proposition 6.2 of [14] that there exists {j(k)} ⊂ N such that Π({a1/j(k)
k }) = q is a

projection (recall that Π : l∞(A)→ l∞(A)/I
QT (A)w,N

is the quotient map). Put ck = a
1/j(k)
k , k ∈ N. Note

that, for any b ∈ A1
+,

Π(ι(b)) = Π(ι(b1/2){ak}ι(b1/2)) 6 Π(ι(b1/2){ck}ι(b1/2)) 6 Π(ι(b)). (4.9)

It follows that, for any b ∈ A1,

lim
k→∞

‖b− bck‖2,QT (A)
= 0 = lim

k→∞
‖b− b1/2ckb1/2‖2,QT (A)

. (4.10)



Huaxin Lin Sci China Math 15

In particular, {ck} ∈ (A1)′. Let {Fk} be an increasing sequence of finite subsets of A1 such that its union

is dense in A1. Without loss of generality, we may assume that, for all k ∈ N, that

‖bck − b‖2,QT (A)
< 1/k and ‖ckb− b‖2,QT (A)

< 1/k for all b ∈ Fk. (4.11)

Put Gk = Fk ∪ {c1, c2, ..., ck}. For each k ∈ N, there exists Pk ∈ $ such that, for all m ∈ Pk,

‖p(m)
i − (p

(m)
i )2‖

2,QT (A)
< 1/k and, (4.12)

sup{|τ(p
(m)
i b)− 1

n
τ(b)| : τ ∈ QT (A)} < 1/k and ‖[p(m)

i , b]‖ < 1/k (4.13)

for all b ∈ Gk and 1 6 i 6 n. (4.14)

We may assume that Pk ⊂ Pk+1 for all k ∈ N. For each k ∈ N, choose m(k) ∈ Pk such that m(k) <

m(k + 1) for all k ∈ N. Define d
(k)
i = p

(m(k))
i , k ∈ N and 1 6 i 6 n. Then di = Π({d(k)

i }) is a projection,

didj = 0 if i 6= j (1 6 i, j 6 n). Moreover,

‖d(k)
i − (d

(k)
i )2‖

2,QT (A)
< 1/k, (4.15)

sup{|τ(d
(k)
i b)− 1

n
τ(b)| : τ ∈ QT (A)} < 1/k, (4.16)

‖[d(k)
i , b]‖ < 1/k, b ∈ Fk and 1 6 i 6 n and (4.17)

‖[d(k)
i , ck]‖ < 1/k, 1 6 i 6 n. (4.18)

It follows (by (4.18)) that

diq = qdi, 1 6 i 6 n. (4.19)

Put qi = diq, i ∈ N. Then (also by (4.15)), {qi : 1 6 i 6 n} are mutually orthogonal projections in

l∞(A)/I
QT (A),N . For any b ∈ A1, by (4.11), qΠ(ι(b)) = Π(ι(b))q = Π(ι(b)) in l∞(A)/I

QT (A),N . Then, for

any τ ∈ QT$(A),

|τ(diqb)− τ(dib)| = 0. (4.20)

It follows that (1 6 i 6 n)

lim
k→$

sup{|τ((d
(k)
i ck)b)− τ(d

(k)
i b)| : τ ∈ QT (A)} = 0. (4.21)

Then, by (4.16),

lim
k→$

sup{|τ((d
(k)
i ck)b)− 1

n
τ(b)| : τ ∈ QT (A)} = 0. (4.22)

This also implies that, for 1 6 i 6 n,

τ(qib) =
1

n
τ(b) for all τ ∈ QT$(A1) and b ∈ A1. (4.23)

Put

J = {{bk} ∈ l∞(A1) : lim
k→∞

‖bk‖
2,QT (A1)w

= 0}.

Note that Q̃T (A1) = R+ · QT (A1)
w
. Since QT (A) is a basis for Q̃T (A), we then have that (see also

Proposition 2.18 of [14])

l∞(A1) ∩ I
QT (A),N = J. (4.24)

By (4.10), (4.17) and (4.19),

qiΠ(ι(b)) = Π(ι(b))qi, 1 6 i 6 n. (4.25)
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It remains to show that qi ∈ (l∞(A1) ∩ (A1)′)/J.

By Central Surjectivity of Sato (since we do not assume A is even exact, we apply Proposition 3.10

of [13], see also Proposition 3.8 of [13] and Proposition 2.18 of [14]), we may assume that qi ∈ (l∞(A) ∩
A′)/I

QT (A),N
. The new lifting may be written as Π({e(k)

i }) = qi, where e
(k)
i ⊥ e

(k)
j for i 6= j (1 6 i 6 n)

and {e(k)
i } ∈ (A′)1+ and e

(k)
i = d

(k)
i ck + hk for some {hk} ∈ I

QT (A),N . Put f
(k)
i = cke

(k)
i ck, 1 6 i 6 n,

k ∈ N. Then f
(k)
i ∈ (A1)′, since {ck} ∈ (A1)′. We still have Π({f (k)

i }) = qi, 1 6 i 6 n. In other words,

qi ∈ (l∞(A1) ∩ (A1)′)/J, 1 6 i 6 n. This completes the proof.

Proposition 4.4. Let A be a separable simple C∗-algebra with nonempty QT (A) which is compact.

Suppose that A has hereditary uniform property Γ. Then A has uniform property Γ.

Proof. Choose any strictly positive element e ∈ Ped(A)+ \ {0}. Then Ae = A. Then (3.1) is the same

as (4.1).

Remark 4.5. Theorem 4.3 states that, if a separable simple C∗-algebra A with strict comparison

has uniform property Γ, then (4.1) holds for each e ∈ Ped(A ⊗ K)1+. This fact may be regarded as the

statement that, in this case, the uniform property Γ carries to hereditary C∗-subalgebras as well as A⊗K,
if we restrict ourselves to hereditary C∗-subalgebras of A⊗K which are algebraically simple, or rather, to

those hereditary C∗-subalgebras of A⊗K such that whose quasitraces are bounded. Recall that uniform

property Γ is originally only defined on C∗-algebras with compact T (A) (see Definition 2.1 of [3]). It

seems to us that Definition 4.1 is an appropriate generalization of the uniform property Γ to separable

simple C∗-algebras which do not have continuous scale. A more general version of uniform property Γ

(where pi is not required to be projection) which is called stabilized uniform property Γ was introduced

in [5]. However, we prefer to keep the condition that each pi is a projection intact. The proof of Theorem

4.3 uses the notion of tracial approximate oscillation zero. Theorem 4.9 below shows that if A has strict

comparison and hereditary uniform property Γ, then this is also automatic. In particular, A has stable

rank one.

Let A be a separable simple C∗-algebra with T (A) = QT (A) 6= ∅ which has strict comparison. Suppose

that A has stabilized uniform property Γ in the sense of Definition 2.5 of [5]. Suppose that K0(A)+ 6= {0}.
Then there is a projection e ∈ A ⊗ K \ {0}. Put A1 = e(A ⊗ K)e. Then A1 is unital. Since A1 also has

stabilized uniform property Γ, A1 has uniform property Γ (see Proposition 2.6 of [5]). By Theorem 4.3,

A has hereditary uniform property Γ. More generally, if there is e ∈ Ped(A⊗ K)+ \ {0} such that dτ (e)

is continuous. Set A1 = e(A⊗ K)e. Then T (A1) is compact. Thus the same argument also implies that

A1 has hereditary uniform property Γ. This is the case if Cu(A) ∼= Cu(A⊗Z). So under the assumption

that Cu(A) ∼= Cu(A⊗Z), the stabilized uniform property Γ is the same as hereditary uniform property

Γ.

Theorem 4.6. Let A be a finite separable non-elementary simple C∗-algebra which are tracially

approximately divisible (see Definition 5.2 of [15], for example). Then A has hereditary uniform property

Γ.

Proof. It follows from Corollary 6.5 of [13] and the proof of Theorem 5.2 of [13] that W (A) is almost

unperforated and by Corollary 5.1 of [27] (see also Proposition 4.9 of [15]) that A has a non-zero 2-

quasitrace. By Theorem 5.7 of [13], the map Γ is surjective. Choose e ∈ Ped(A ⊗ K)1+ \ {0} such that

dτ (e) is continuous on QT (A)
w

and dτ (e) < r for all τ ∈ QT (A)
w

and r ∈ (0, 1/2). By Theorem 6.7 of

[13], A has stable rank one. So we may assume that e ∈ Ped(A)+.

Put A1 = Her(e). Then A1 has continuous scale (see, for example, Theorem 5.3 of [9]). By Theorem

5.5 of [15], A1 is tracially approximate divisible. Now QT (A1) is compact and A1 has strict comparison

(see Theorem 5.2 of [13]).

Now fix n ∈ N. By Theorem 4.11 of [13], there is a unital homomorphism ψ : Mn → (l∞(A1) ∩
(A1)′)/I

QT (A1),$
(note that I

QT (A1),N ⊂ I
QT (A1),$

). Let pi = ψ(ei,i), 1 6 i 6 n. Then pi ∈ (l∞(A1) ∩
(A1)′)/I

QT (A1),$
, 1 6 i 6 n, and, for any a ∈ A,

τ(pia) = τ(ϕ(ei,i)a) =
1

n
τ(a) for all τ ∈ QT$(A1), 1 6 i 6 n. (4.26)
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In other words, A1 has uniform property Γ. By Theorem 4.3, A1 has hereditary uniform property Γ. By

Brown’s stable isomorphism theorem [2], A has hereditary uniform property Γ.

Remark 4.7. It is known that separable simple C∗-algebras with tracial rank zero are tracially ap-

proximately divisible (see Lemma 6.10 of [21]). In fact, any separable simple C∗-algebra A with tracial

rank at most one are tracially approximately divisible (see the proof of Theorem 5.4 of [22]). Therefore,

by Theorem 4.6, these C∗-algebras have hereditary uniform property Γ (and has strict comparison) but

they may not be Z-stable ([25], see also Example 6.10 of [13]).

Theorem 4.8. Let A be a separable simple C∗-algebra with strict comparison and Q̃T (A) \ {0} 6= ∅.
Suppose that A has hereditary uniform property Γ. Then the map Γ : Cu(A) → LAff+(Q̃T (A)) is

surjective.

Proof. The proof is almost exactly the same as that of Theorem 3.5. But QT (A) will be replaced by

QT (A)
w
. The formula (3.48) holds with QT (A) being replaced by QT (A)

w
. The formula in (3.49) holds

with QT$(A) being replaced by QTw$ (A). Inequalities (3.51) also holds with QT (A) being replaced by

QT (A)
w
. Moreover, we also have (3.52) holds with QT (A) being replaced by QT (A)

w
. We then have

n[b] 6 [a] and [fε(a)] 6 (n+ 1)[b] (4.27)

as in the proof of Theorem 3.5. Note that this holds for any a ∈ Ped(A ⊗ K)1+ since we assume that A

has hereditary uniform property Γ and we may begin with an element a ∈ Ped(A⊗K)1+. Then the same

argument of L. Robert at in the proof of Theorem 3.5 implies that the map Γ is surjective.

Theorem 4.9. Let A be a separable simple C∗-algebra with strict comparison and Q̃T (A) \ {0} 6= ∅.
Suppose that A has hereditary uniform property Γ. Then A has tracial approximate oscillation zero and

stable rank one.

Proof. It follows from Theorem 4.8 that the map Γ is surjective. Choose e ∈ Ped(A)1+ \ {0} such that

dτ (e) is continuous on Q̃T (A). Then Her(e) has continuous scale (see Theorem 5.3 of [9], for example).

Since A has hereditary uniform property Γ, Her(e) has uniform property Γ. It follows from Theorem 3.7

that Her(e) has tracial approximate oscillation zero and stable rank one. By Brown’s stable isomorphism

theorem, A has tracial approximate oscillation zero and stable rank one.

Towards the Toms-Winter conjecture, as in [6] and [5], we have the following.

Theorem 4.10. Let A be a stably finite separable non-elementary amenable simple C∗-algebra. Then

the following are equivalent:

(1) A has strict comparison and hereditary uniform property Γ,

(2) A ∼= A⊗Z, and

(3) A has finite nuclear dimension.

Proof. The equivalence of (2) and (3) has been proved (see [4], [3], [35], [30] and [24]).

To see (2) ⇒ (1), let A be Z-stable. It is proved in [27] that A has strict comparison. By Theorem

5.9 of [15], A is tracially approximately divisible (see also Theorem 5.2 of [13]). Then, by Theorem 4.6,

A has hereditary uniform property Γ.

For (1) ⇒ (2), we note that, by Theorem 3.7, the map Γ is surjective. Choose e ∈ Ped(A)+ \ {0} such

that A1 = Her(e) has continuous scale. Thus, by Proposition 4.4, A1 has uniform property Γ. It follows

from Theorem 4.6 of [6] that A1 is uniformly McDuff. By Theorem 5.3 of [9], T (A1) is compact and A1

has strict comparison. Then, by a version of Matui-Sato’s result, for example, Proposition 4.4 of [7], A1

is Z-stable and hence A is Z-stable.
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