
Efficient Reconfigurable Vandermonde Matrix
Inverter for Erasure-Correcting Generalized

Integrated Interleaved Decoding
Yok Jye Tang

Dept. of Electrical & Computer Engineering
The Ohio State University

Columbus, OH 43210 U.S.A.
tang.1121@osu.edu

Xinmiao Zhang
Dept. of Electrical & Computer Engineering

The Ohio State University
Columbus, OH 43210 U.S.A.

zhang.8952@osu.edu

Abstract—Generalized integrated interleaved (GII) codes con-
structed using Reed-Solomon (RS) codes enable local erasure
correction with low complexity and are essential to shorten
the failure recovery latency in hyper-scale distributed storage.
Erasure corrections for storage systems are usually done by
multiplying the inverse of a Vandermonde matrix to the syndrome
vector. Previous Vandermonde matrix inversion architectures
suffer from long latency. Besides, the GII decoding rounds have
increasing erasure-correcting capability. Using a Vandermonde
inverter dedicated for worst-case erasure correction leads to
low hardware efficiency. This paper first proposes a low-latency
Vandermonde matrix inverter architecture. By exploiting the reg-
ularity of our proposed architecture, an efficient re-configurable
inverter supporting matrices of variable sizes is also developed to
increase the efficiency of GII-RS erasure-correcting decoding. For
8 × 8 matrix inversion over GF (28), our proposed architecture
reduces the latency by 77% with similar complexity compared to
the previous design. Our reconfigurable inverter for an example
GII code achieves 64% and 32% reductions on latency and area,
respectively, compared to the best alternative design.

Index Terms—Erasure-correcting decoding, generalized inte-
grated interleaved codes, Reed-Solomon codes, Vandermonde
matrix inversion.

I. INTRODUCTION

Reed-Solomon (RS) codes are traditionally used for failure
recovery in distributed storage. However, an (n, k) RS code
needs to access k symbols to recover from any failure. k grows
as the storage system scales. Accessing a large number of sym-
bols for failure recovery causes long latency and large penalty
on the network bandwidth. To enable the continued scaling
of distributed storage, erasure codes that read much fewer
symbols for recovery are essential. Generalized integrated
interleaved (GII)-RS codes [1], [2] are among the best locally
recoverable erasure codes that achieve this goal. Most of the
time, the number of erasures is small and they can be corrected
by localized decoding over sub-codewords with short latency.

This material is based upon work supported by the National Science
Foundation under Award No. 2011785.

Besides, the sub-codewords are nested to produce codewords
of stronger RS codes that can correct more erasures. The
decoding locality is further improved by optimizing the nesting
scheme [3], [4].

GII-RS decoding consists of multiple rounds of RS de-
coding with increasing correction capability. Although error-
correcting GII-RS decoding was explored in [5]–[8], erasure-
correcting GII-RS decoding has not been investigated pre-
viously. For storage systems, the number of erasures is not
large and their locations are known. Hence erasure-correcting
RS decoding is typically implemented by multiplying the
syndrome vector with the inverse of a Vandermonde matrix
that is decided by the erasure locations. Such decoding in
software has been extensively studied [9]–[14]. However, hard-
ware implementation of Vandermonde matrix inversion that is
needed to achieve high speed has only been investigated in [6].
The erasures can be also computed by the simplified formula
in [15] when there are at most 4 of them. Nevertheless, such
formulas become much more complicated for more erasures.

The Vandermonde matrix inverter in [6] suffers from long
latency, which also increases significantly with the matrix size.
Besides, although the correction capability increases over the
GII decoding rounds, the later rounds are activated with low
probability. If the architecture in [6] configured for the highest
correction capability is used, the area requirement is large and
the majority of the hardware units idle most of the time. Hence,
an efficient Vandermonde matrix inverter supporting different
matrix dimensions is needed for GII decoder.

In this paper, by reformulating the Vandermonde matrix
inversion formulas, an inverter architecture is first developed
to reduce the latency. Our proposed inverter architecture also
has the advantage that it consists of identical copies of sub-
structures. By mapping the computations to a substructure in
a time-multiplexed manner, an efficient reconfigurable inverter
architecture supporting variable matrix size is also developed
for GII decoding. For 8 × 8 matrix inversion over GF (28),
our proposed architecture reduces the latency by 77% with
similar complexity compared to that in [6]. Our reconfigurable
architecture supporting both 4×4 and 8×8 inversions achieves978-1-6654-8524-1/22/$31.00 ©2022 IEEE

1 2 3 4 5 6 7 8 9

Input Symbol Failure Rate (ISFR) 10
-4

10
-20

10
-15

10
-10

F
ra

m
e

 D
e

c
o

d
in

g
 F

a
il

u
re

 R
a

te
 (

F
D

F
R

)

4 x (31, 27) RS, t=4

([4, 2], 31) GII-RS, [t0, t1, t2]= [2, 4, 8]

Fig. 1. Frame decoding failure rates (FDFRs) of GII-RS and un-nested RS
codes for erasure correction.

32% area reduction and reduces the latency by around 64%
compared to the best alternative reconfigured inverter design.

This paper is organized as follows. Section II introduces
GII-RS erasure-correcting decoding and prior Vandermonde
matrix inverter architectures. The two proposed inverter archi-
tectures are detailed in Section III. Complexity comparisons
are done in Section IV and conclusions follow in Section V.

II. BACKGROUNDS

A ([m, v], n) GII code [1], [2] can be defined by using
v + 1 RS codes Cv(n, kv) ⊆ · · · ⊆ C1(n, k1) ⊂ C0(n, k0)
over GF (2q) of length n and dimensions kv ≤ · · · ≤ k1 <
k0. A codeword of GII code consists of m sub-codewords
c0, c1, · · · , cm−1 ∈ C0(n, k0). Their nesting produces v code-
words of C1(n, k1), · · · , Cv(n, kv) as follows

C≜

{
c=[c0,· · · ,cm−1] :ci∈C0,c̃j=

m−1∑
i=0

αijci∈Cv−j , 0≤j<v

}
,

where α is a primitive element of GF (2q). GII decoding
consists of two stages. The first is the traditional RS de-
coding over individual sub-codewords that can correct up
to t0 = n − k0 erasures. If any sub-codeword has more
than t0 erasures, the second-stage nested decoding that has
up to v rounds is activated. In the η-th (1 ≤ η ≤ v)
round, higher-order syndromes for v + 1 − η sub-codewords
are calculated by utilizing the nested codewords. Then RS
decoding is carried out to correct tη = n − kη erasures in
each of those sub-codewords. Most of the time, the number of
failures in distributed storage is small and they are corrected
by decoding individual short sub-codewords. Compared to
decoding a RS code whose length is mn, such localized
decoding has much shorter latency. On the other hand, more
erasures are correctable through the nesting. Fig. 1 shows the
frame decoding failure rate (FDFR) of a ([4, 2], 31) GII-RS
code over GF (28) with [t0, t1, t2] = [2, 4, 8] for a range of
input symbol failure rates (ISFRs). It is much lower than that
of four traditional un-nested (31, 27) RS code that has the
same redundancy and similar decoding latency as that of the
sub-codewords.

(a)
0

D

D

D

D

D

D

D

D

D

D

D

D

0

0

(b)

D

D

D

D

D

D

D

D

1

1

1

1

1

1

1

Fig. 2. Inverter architecture for 8×8 Vandermonde matrix [6]: (a) numerator
computation unit; (b) denominator computation unit.

When t is a small number as needed for most storage
systems, t-erasure correction can be more efficiently done by
multiplying the syndrome vector with the inverse of a t × t
Vandermonde matrix, V , that is specified by the t erasure
locations β0, β1, · · · , βt−1. The entries of V −1 for 0 ≤ i < t
and 0 ≤ j < t− 1 can be computed as

V −1
i,j =

∑
0≤i1<···<it−1−j<t;i1,··· ,it−1−j ̸=i βi1 · · ·βit−1−j

Π0≤l<t,l ̸=i(βi − βl)
,

(1)
and V −1

i,t−1 = 1/Π0≤l<t,l ̸=i(βi − βl).
For an example 8 × 8 matrix inversion, the architecture

shown in Fig. 2(a) [6] calculates the numerators of V −1
0,j

according to (1) for j = 6, 5, · · · , 0 in clock cycles 0, 1, · · · , 6,
respectively. Then different β’s are loaded into the registers

Fig. 3. Reformulated numerator computations for the inverse of 8× 8 Vandermonde matrix.

to compute the numerators in the other rows of V −1. In
total, it takes t(t − 1) = 56 clock cycles to compute all the
numerators. The t entries in the same row of V −1 have the
same denominator and the architecture in Fig. 2(b) computes
one denominator in each clock cycle by cyclically shifting the
β’s stored in the registers. The architectures in Fig. 2 can be
also used to invert smaller matrices. To invert a t′ × t′ matrix
with t′ < 8, the last 8 − t′ of each of the two columns of
register in Fig. 2(a) are initialized to zero, and the βt′ through
βt−1 inputs to the multipexers are also set to zero. In Fig.
2(b), the registers for βt′ through βt−1 hold invalid values.
The corresponding inputs sent to the multipliers are replaced
by ‘1’ to take out the effects of these invalid entries. Overall,
the latency for inverting a t×t matrix is t(t−1) and it increases
significantly for larger t. Additionally, for GII decoding, tv is
usually much larger than tv−1 as in the example code whose
FDFR is shown in Fig. 1. Besides, later decoding rounds are
activated with lower probability. If an inverter for tv-erasure
correction is employed, it requires large area and most of its
hardware units would be idling during the earlier decoding
rounds.

III. EFFICIENT RE-CONFIGURABLE VANDERMONDE
MATRIX INVERTER FOR GII-RS ERASURE DECODER

In this section, a Vandermonde matrix inverter architecture
is first developed to substantially reduce the latency with simi-
lar complexity compared to the design in [6] by reformulating
the formula in (1). By exploiting the regularities of our first
design, a re-configurable inverter architecture that supports
variable matrix sizes is also proposed to reduce the area of
GII-RS erasure decoders without sacrificing the latencies of
earlier nested decoding rounds.

Let Ni,j be the numerator in (1). For the example case
of t = 8, the computations of N0,j for 0 ≤ j < t − 1
can be reformulated as shown in Fig. 3. It can be observed
that N0,j consists of j + 1 terms and the sum of the last l
terms multiplied by βj+1−l happens to be the (j + 1 − l)-
th term in the N0,j−1 formula. For example, the last l = 1
term in N0,6 is β7. β7βj+1−l = β7β6+1−1 = β7β6 is the
j + 1 − l = 6-th term in the N0,5 formula. The sum of the
last l = 6 terms in N0,6 is β2 + β3 + · · · + β7. Its product
with βj+1−l = β1 is the first term of N0,5. Similarly, the
sums of the last 1, 4, and 5 terms in N0,5 multiplied by
β5, β2, and β1 equal to the fifth, second, and first terms,

D

D

D

D

D

D

D

D

D

D

D

D

(0)

(1)

(2)

(3)

(4)

(5)

4 x 4

8 x 8

Fig. 4. Proposed numerator computation architecture for 8×8 Vandermonde
matrix inversion.

respectively, in the N0,4 formula as showed by the circles in
Fig. 3. Similar reformulations for Ni,j with i = 1, 2, · · · , 7
can be also derived. Accordingly, intermediate results can be
shared and an efficient architecture that computes the Ni,j in
the same row of V −1 simultaneously is developed as shown
in Fig. 4. Pipelining is applied according to the cutsets shown
by the dashed lines to achieve one multiplier and one adder in
the critical path. Taking into account the t− 3 clock cycles of
pipelining latency, our proposed architecture only takes 2t−3
instead of t(t−1) clock cycles as needed by the design in Fig.
2(a) to compute all Ni,j . The architecture for a larger matrix
can be easily derived by adding more columns of adders and
multipliers to that in Fig. 4.

For general cases, the complexity of the proposed numerator
computation architecture and that of the design in [6] are
listed in Table. I. To reduce the critical path, pipelining
is applied to separate the multiplier-adder array from the
bottom multiplexers in Fig. 2(a). The extra one clock cycle
of pipelining latency and the complexities of the pipelining
registers are included in Table. I. Since the multiplier-adder
array has feedback loops, the critical path can not be further
reduced by the pipelining. From this table, it can be observed
that the proposed architecture has very similar complexity as

TABLE I
COMPLEXITIES OF VANDERMONDE MATRIX INVERSION NUMERATOR

COMPUTATION ARCHITECTURES

[6] proposed

Mult.
∑t−2

i=1 i
∑t−2

i=1 i

Add.
∑t−2

i=1 i
∑t−2

i=1 i

Reg. 3t− 6
∑t−2

i=2 i

Mux. t− 1 t− 1

Critical path 1 mult. +⌈log2(t−2)⌉ add. 1 mult. + 1 add.

Latency (# clks) t(t− 1) + 1 2t− 3

the design in [6]. Nevertheless, the proposed design has much
shorter latency, especially when t is larger.

As aforementioned, increasingly larger Vandermonde ma-
trices need to be inverted over GII decoding rounds. Besides,
although the correction capability of the last round, tv , is
typically much larger than those of previous rounds, later
decoding rounds are activated with much lower probability.
Efficient GII decoding requires a reconfigurable Vandermonde
matrix inverter that has similar area and latency as an inverter
dedicated for a smaller matrix and can also implement the
inversions of larger matrices with extra clock cycles.

Consider the example ([4, 2], 31) GII-RS code with [t0, t1,
t2] = [2, 4, 8]. The two nested decoding rounds require 4 and
8-erasure corrections. In the case of 4×4 matrix inversion, only
the right tip of the architecture in Fig. 4 is needed. Besides, this
architecture is very regular. It can be decomposed into six parts
as separated by the thicker lines in Fig. 4 and each part shares
similar structure as that for 4×4 inversion. Accordingly, a sin-
gle substructure with 4 multipliers and 4 adders can implement
the numerator computation for 4× 4 matrix inversion and all
the calculations for 8×8 matrix inversion can be implemented
by the substructure in a time-multiplexed manner. Following
the data flow, the calculations can be carried out according to
the order listed in the parentheses in Fig. 4.

Fig. 5(a) shows the proposed reconfigured numerator com-
putation architecture for both 4 and 8-erasure corrections. The
pipelining applied to the architecture in Fig. 4 is preserved
and hence the two gray registers are inserted in Fig. 5(a).
In this case, the computation for each part in Fig. 4 takes
two clock cycles. The other registers and multiplexers in Fig.
5(a) are used to store intermediate results and route them
to proper units for the later computations needed for 8 × 8
matrix inversion according to the data flow in Fig. 4. Take the
computation of part 0 as an example. β7 and β6 are sent to the
inputs of the upper-left adder in Fig. 5(a) in clock cycle 0 and
β5 is connected to the horizontal input of the bottom-left adder
in clock cycle 1. At the end of clock cycle 1, the three outputs
of part 0 are available. The first two outputs are also the inputs
to the top two adders of part 1. Hence, they are delayed by
one register each and fed back to the two adders on the top
of Fig. 5(a). The third output of part 0 is an input for part 2
calculation carried out in clock cycle 2 × 2 + 0 = 4. Hence,

(a)

D

2D

0

D

2D

D2D

2D
2D

D
D

pipelining

retiming

1

1

1

(b)

D

pipelining

Fig. 5. Proposed reconfigurable inverter for both 4 and 8-erasure corrections:
(a) numerator computation unit; (b) denominator computation unit.

this output is delayed by three registers in total before it is
routed to the top left adder and multiplier. By following the
data flow, registers and multiplexers can be added in a similar
way to implement the computations of the other parts. Since
the architecture in Fig. 4 is symmetric, assigning computation
orders to the parts along the vertical direction would lead to
similar numbers of registers and multiplexers as in Fig. 5(a).

To reduce the critical path of the numerator computation
architecture to one multiplier and one adder, one register
is inserted after each of the left-most multiplexers through
pipelining and then retiming is applied to the cutsets circling
the multiplexers in Fig. 5(a). For 4 × 4 matrix inversion, it
takes 2+3+1=6 clock cycles to compute all the numerators
considering the pipelining latency. For 8× 8 matrix inversion,
since there are 6 parts in Fig. 4, it takes 6×2 = 12 clock cycles
to compute the numerators for one row in the matrix. However,
in the last clock cycle, the computations for the next row can
start. Hence, 12 + 11× 7 + 1 = 90 clock cycles are required
to compute all numerators for an 8× 8 matrix inversion.

A low-complexity reconfigurable denominator computation
architecture is also proposed as shown in Fig. 5(b). The
adders compute βi − βl, and their product is calculated by
the multipliers according to (1). The horizontal and vertical
inputs of each adder correspond to βi and βl, respectively.
Similarly, pipelining can be applied to the cutsets denoted by

D

D 3D

D D

D

D

D

4D

2D

D

D

4D2D
DD

D

D

D

D

D

D

D

D

(a)

0

D

2D

D

1

1

1

(b)

D

D

D

D

D

Fig. 6. Reconfigurable Vandermonde matrix inverter architecture for both 4 and 8-erasure corrections by applying optimized folding to the design in Fig. 2:
(a) numerator computation unit; (b) denominator computation unit.

TABLE II
COMPLEXITIES OF 8× 8 VANDERMONDE MATRIX INVERSION
NUMERATOR COMPUTATION ARCHITECTURES OVER GF (28)

Mult. Add. Reg. Mux. Total Crit. path Latency

XORs # gates # clks

[6] 21 21 18 7 2714 9 57

Proposed 21 21 20 7 2762 7 13

the dotted lines in Fig. 5(b) such that the critical path consists
of one multiplier and one multiplexer. For 4 × 4 matrices,
one denominator is available at the output of the rightmost
multiplier in each clock cycle. Hence, 4 + 4 = 8 clock cycles
are needed to compute all the denominators considering the
pipelining latency. To invert an 8 × 8 matrix, the register in
the feedback loop holds the partially computed product of
βi − βl, which is multiplied to two additional βi − βl in each
of the following clock cycles. Hence, three clock cycles are
required to compute one denominator for 8×8 matrix inversion
and it takes 3 × 8 + 4 = 28 clock cycles to compute the 8
denominators taking into account the pipelining latency.

IV. HARDWARE COMPLEXITY COMPARISONS

This section analyzes the complexities of our proposed
inverter architectures. They are also compared with prior
designs for example 8×8 matrix inversion and reconfigurable
inversion supporting the example ([4, 2], 31) GII-RS decoding.

For fixed-size matrix inversion, the same denominator ar-
chitecture as in [6] can be used and hence only the numerator
computation architectures are compared in Table II. Codes
over GF (28) are preferred for storage systems since each
element is represented by a byte. Each adder over GF (28)

is implemented as bit-wise XOR and each 8-bit 2-to-1 mul-
tiplexer has similar complexity. An 8-bit register has around
the same area as 24 XOR gates. A GF (28) multiplier can be
implemented using the area of 98 XOR gates and has a critical
path of 6 gates [6]. These assumptions are used to estimate
the complexity in Table II. Besides, one 2-to-1 multiplexer is
needed for each different β input in Fig. 2(a) and Fig. 4 to
compute numerators for different rows. The complexities of
these multiplexers and pipelining registers are also included
in Table II. Considering the pipelining latency, the design in
[6] needs 8(8 − 1) + 1 = 57 clock cycles. Compared to this
design, our architecture reduces the latency in terms of clock
cycle number by 1 − 13/57 = 77% with similar complexity.
Besides, our design has shorter critical path.

Reconfigurable Vandermonde matrix inverter architecture
does not exist previously. An alternative possible design can be
developed by applying folding [16] to the architectures in Fig.
2. To compute the numerators for the 4×4 matrix inversion, the
multipliers in the 3, 4, 5, 6-th anti-diagonals counting from the
top left corner of Fig. 2(a) have zero inputs. Hence, increasing
folding orders are assigned to the multipliers in anti-diagonal
pattern starting from the one in the top left corner. In this case,
those multiplications over zeros can be skipped to reduce the
latency of inverting the 4×4 matrix in the folded architecture.
The folding orders also affect the numbers of registers and
multiplexers needed to store and route intermediate results in
the folded architecture. The folded architectures shown in Fig.
6 are derived by using optimized folding orders that reduce
registers and multiplexers. Also pipelining and retiming can
be applied to reduce the critical path to 1 multiplier and 7
adders/multiplexers, which is highlighted by the thicker wire
in Fig. 6(a). Since there are multiple feedback loops in Fig.
6(a), the critical path can not be further reduced.

TABLE III
COMPLEXITIES OF RECONFIGURABLE VANDERMONDE MATRIX INVERTERS FOR BOTH 4 AND 8-ERASURE CORRECTIONS OVER GF (28)

Mult. Add. Reg. Mux. Inv. Total Critical path Latency
XORs # gates # clks

reconfigurable numerator computation 3 3 35 68 0 1702 13 257 (for 8× 8 matrix inversion)
architecture from [6] folded 13 (for 4× 4 matrix inversion)

reconfigurable denominator computation 2 3 9 24 1 803 8 28 (for 8× 8 matrix inversion)
architecture from [6] folded 8 (for 4× 4 matrix inversion)

reconfigurable Vandermonde matrix 5 6 44 92 1 2505 13 257 (for 8× 8 matrix inversion)
inverter architecture from [6] folded 13 (for 4× 4 matrix inversion)

proposed reconfigurable numerator 4 4 16 21 0 976 7 90 (for 8× 8 matrix inversion)
computation architecture 6 (for 4× 4 matrix inversion)

proposed reconfigurable denominator 2 3 7 20 1 723 7 28 (for 8× 8 matrix inversion)
computation architecture 8 (for 4× 4 matrix inversion)

proposed reconfigurable Vandermonde 6 7 23 41 1 1699 7 90 (for 8× 8 matrix inversion)
matrix inverter architecture 8 (for 4× 4 matrix inversion)

Table III shows the complexity of our proposed reconfig-
urable Vandermonde matrix inverter architecture for both 4
and 8-erasure corrections and that of the alternative design
derived by folding. Unlike our proposed design in Fig. 4,
the architecture in Fig. 2 can not be divided into parts with
similar structures. Hence, the architecture derived from folding
requires a larger number of multiplexers to route proper signals
to the multipliers and adders. Despite our optimization on the
folding orders, a large number of registers are still needed to
hold intermediate results. Assume that the area of an GF (28)
inverter, which is around the same as 175 XOR gates [6].
Our proposed reconfigured inverter architecture achieves 1-
1699/2505=32% area reduction and reduces the latency in
terms of clock cycle number for inverting either a 4 × 4 or
8 × 8 matrix by around 64%. Besides, our design has much
shorter critical path.

For larger matrices, our proposed inverter architectures can
achieve even more significant improvements over prior designs
since the latency of our design is linear to t instead of t2.
Besides, our reconfigurable design can be easily extended to
support more than 2 matrix sizes. This is difficult to achieve
by folding the architecture in [6] since it can not be divided
into similar substructures.

V. CONCLUSIONS

For the first time, this paper addresses Vandermonde matrix
inverter for efficient erasure-correcting GII-RS decoding. By
reformulating the Vandermonde matrix inversion, intermediate
results can be shared. Accordingly, an architecture consisting
of similar substructures is developed to compute the nu-
merators with much shorter latency and similar complexity.
Additionally, by exploiting the regularity, a reconfigurable ar-
chitecture is proposed to implement the inversions of matrices
of different sizes efficiently with much smaller area and shorter
latency compared to the best alternative possible design.

REFERENCES

[1] X. Tang and R. Koetter, “A novel method for combining algebraic
decoding and iterative processing,” Proc. of IEEE Int. Symp. Info. Theory,
pp. 474-478, Seattle, WA, USA, 2006.

[2] Y. Wu, “Generalized integrated interleaved codes,” IEEE Trans. on Info.
Theory, vol. 63, no. 2, pp. 1102-1119, Feb. 2017.

[3] X. Zhang, “Generalized three-layer integrated interleaved codes,” IEEE
Commu. Letters, vol. 22, no. 3, pp. 442-445, Mar. 2018.

[4] X. Zhang and Z. Xie, “Relaxing the constraints on locally recoverable
erasure codes by finite field element variation,” IEEE Commun. Letters,
vol. 23, no. 10, pp. 1680-1683, Oct. 2019.

[5] W. Li, J. Lin and Z. Wang, “A 124-Gb/s decoder for generalized integrated
interleaved codes,” IEEE Trans. on Circuits and Syst.-I, vol. 66, no. 8,
pp. 3174-3187, Aug. 2019.

[6] X. Zhang and Z. Xie, “Efficient architectures for generalized integrated
interleaved decoder,” IEEE Trans. on Circuits and Syst.-I, vol. 66, no. 10,
pp. 4018-4031, Oct. 2019.

[7] Z. Xie and X. Zhang, “Scaled nested key equation solver for generalized
integrated interleaved decoder,” IEEE Trans. on Circuits and Syst.-II, vol.
67, no. 11, pp. 2457-2461, Nov. 2020.

[8] Z. Xie and X. Zhang, “Fast nested key equation solvers for generalized
integrated interleaved decoder,” IEEE Trans. on Circuits and Syst-I, vol.
68, no. 1, pp. 483-495, Jan. 2021.

[9] J. S. Plank and K. Greenan, “Jerasure: A library in C facilitating erasure
coding for storage applications version 2.0 technical report UT-EECS-
14-721,” University of Tennessee, 2014.

[10] P. Trifonov, “Low-complexity implementation of RAID based on Reed-
Solomon codes,” ACM Trans. Storage, vol. 11, no. 1, Feb. 2015.

[11] S. Lin, T. Y. Al-Naffouri and Y. S. Han, “FFT algorithm for binary
extension finite fields and its application to Reed–Solomon codes,” IEEE
Trans. on Info. Theory, vol. 62, no. 10, pp. 5343-5358, Oct. 2016.

[12] S. J. Lin, “An encoding algorithm of triply extended Reed-Solomon
codes with asymptotically optimal complexities,” IEEE Trans. on Com-
mun., vol. 66, no. 8, pp. 3235-3244, Aug. 2018.

[13] L. Yu et. al., “Fast encoding algorithms for Reed-Solomon codes with
between four and seven parity symbols,” IEEE Trans. on Comp., vol. 69,
no. 5, pp. 699-705, May 2020.

[14] Y. J. Tang and X. Zhang, “Fast en/decoding of Reed-Solomon codes
for failure recovery,” IEEE Trans. on Comp., vol. 71, no. 3, pp. 724-735,
Mar. 2022.

[15] X. Zhang, S. Sprouse and I. Ilani, “A flexible and low-complexity local
erasure recovery scheme,” IEEE Commun. Letters, vol. 20, no. 11, pp.
2129-2132, Nov. 2016.

[16] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementations, Wiley, 1999.

