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(An)isotropy measurement with gravitational wave observations
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We constrain the distribution of merging compact binaries across the celestial sphere using the GWTC-3
catalog from the LIGO-Virgo-KAGRA Collaborations’ (LVK) third observing run. With 63 confident
detections from O3, we constrain the relative variability (standard deviation) of the rate density across the
sky to be <16% at 90% confidence assuming the logarithm of the rate density is described by a Gaussian
random field with correlation length > 10°. This tightens to <3.5% when the correlation length is > 20°.
While the new data provides the tightest constraints on anisotropies available to date, we do not find
overwhelming evidence in favor of isotropy, either. A simple counting experiment favors an isotropic

distribution by a factor of B9 = 3.7, which is nonetheless an improvement of more than a factor of two

ani

compared to analogous analyses based on only the LVK’s first and second observing runs.

DOI: 10.1103/PhysRevD.107.043016

I. INTRODUCTION

The observation of gravitational waves (GWs) from the
coalescence of compact binaries provides a new way to
study how these systems form, evolve, and are distributed
throughout the Universe (see Ref. [1] and references
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therein). In particular, the spatial distribution of GW
sources can test the cosmological principle—is the universe
statistically homogeneous and isotropic? Deviations
from perfect homogeneity have already been proposed
as a way to infer cosmological parameters through cross-
correlations of clustering within GW and electromagnetic
observations (see, e.g., [2,3]). However, these studies
assume a priori that GW events follow anisotropies
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measured from electromagnetic surveys. That is, they do
not directly measure anisotropies from the GW data. Our
goal in this paper is to constrain anisotropies in the
population of merging binaries using only GW data.

Although large deviations from isotropy are not expected,
it behooves us nevertheless to check this, similar to the
motivation within Ref. [4]. Directly constraining anisotropies
with GW catalogs may be of interest in several astrophysical
situations. For example, resolving clustering scales from GW
data alone may be used to test the assumption that GW
sources are always associated with galaxies. Along these
lines, GW sources could be used to directly trace clustering
scales; see, e.g., Refs. [5,6] for discussion of this in the context
of third-generation detectors. Similarly, the identification
of individual host galaxies for specific events and/or the
statistical association between the full GW catalog and
different types of galaxies may suggest, perhaps through
the mass-dependent galaxy-clustering scale, which types of
galaxies most often host compact binary coalescences [7,8].
This could be combined with knowledge of the star formation
history to in turn constrain the delay time distribution between
binary formation and coalescence [9]. See, e.g., Ref. [10] fora
similar application to short gamma-ray bursts (GRBs).

It is also worth remembering that the LIGO-Virgo-
KAGRA (LVK) Collaborations [11,12] search for unmod-
eled “burst” events in addition to compact binaries [13].
Given that the source of such events will not be known
a priori, their spatial distribution will likely provide crucial
clues as to their origins. Indeed, determining whether burst
events correlate with local structure will inform the distance
to the sources and therefore their intrinsic energy scales,
analogous to GRBs [14] and other high-energy astrophysi-
cal phenomena.

The detection of anisotropies within the distribution of
merging binaries could be the signature of more exotic
physics, such as wormholes that may effectively tunnel to
larger volumes and therefore a higher number of merging
binaries [15] or lensed events, which appear as repeated
signals from the same part of the sky [16,17]. In particular,
strong lensing may distort the shape of the waveform,
particularly the relative phasing between different harmon-
ics [18]. These effects may be difficult to distinguish from
more general alternative theories of gravity [19], and the
identification of anisotropies may be a cleaner signature of
lensing than the waveform’s phasing alone. Indeed, many
searches for lensed events begin with overlaps on the sky.

Several authors have already studied the distribution of
merging binaries with the LIGO-Virgo Collaborations’
[11,12] first catalog of 11 detections (GWTC-1 [20]).
Specifically, Ref. [21] modeled anisotropies with 12 pixels
of equal area and a set of Euler angles that rotated the
pixelization across the sky. Using an approximation of the
catalog’s sensitivity that assumed constant and equal power
spectral densities for both LIGO detectors throughout the
run, neglecting the presence of Virgo, but accounting for the

diurnal cycle and correlations in when the LIGO interfer-
ometers recorded science-quality data [22], they found weak
evidence in favor of isotropy. Similarly, Ref. [23] used the
same 11 events but a different estimate of survey sensitivity
to constrain anisotropies with a model constructed from a
low-order spherical-harmonic expansion. They considered
several models with different numbers of harmonics up to
[ax = 5, finding equivalently weak evidence in favor of
isotropy regardless of /. Finally, Ref. [24] attempted to
measure the two-point correlation function of GW events
with a spherical-harmonic decomposition of the sum of
individual event localizations while assuming the sensitivity
of the detector network was uniform over the entire sky.
They also found no evidence for an excess of correlation at
any angular scale.

Maps of upper limits on anisotropies in the stochastic
GW background are routinely produced under various
assumptions in either the pixel or spherical-harmonic
domains. Although no statistically significant detection
has been made, these analyses typically make assumptions
about the power spectrum of the stochastic GW back-
ground and produce maximum likelihood estimates of the
angular distribution of the intensity. See Ref. [25] for a
review. While there has been no unambiguous detection of
the stochastic GW background to date, let alone the
detection of anisotropies, there may still be information
about the distribution of merging binaries at high redshift
encoded in the nondetection (see, e.g., Ref. [26]).

Additionally, anisotropies are of general interest in
other high-energy astrophysical phenomena. Analyses
of GRBs show that they are consistent with isotropic
distributions, regardless of how the catalog is subdivided
[14], the distribution of fast-radio bursts (FRBs) is an
active area of research [27], and multiple groups have
claimed detections of anisotropies in the arrival directions
of cosmic rays [28-31].

Therefore, it is of general interest to develop methods to
constrain the rate of mergers as a function of their position
on the celestial sphere. We use hierarchical Bayesian
inference to construct posterior processes for the distribu-
tion of merging compact binaries over the sky using 63
confidently detected binaries, including binary black hole
(BBH), neutron star-black hole (NSBH), and binary neutron
star (BNS) sources, from the LVK’s third observing run
(03, 1 April 2019-27 March 2022 [32-34]). In addition to
the nearly six-fold increase in sample size from GWTC-1,
our analysis benefits from estimates of survey sensitivity
derived from simulated signals injected into real detector
noise and processed directly with the searches used to
construct the catalog [35]. These injections implicitly
account for variability in each detector’s sensitivity and
correlations between the times when detectors record data.'

1Appendix B shows that the O3 catalog’s sensitivity is nearly
uniform over the entire sky, although measurable deviations exist.
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This improves upon previous estimates of survey sensitivity,
which depended on approximations with poorly quantified
systematic uncertainties [21,23]. We also self-consistently
incorporate realistic models of the masses, spins, and
redshift distributions of merging binaries derived from
GW observation [1,36].

We find mild evidence in favor of isotropy. This agrees
with Refs. [21,23], but we place tighter constraints on
anisotropies because of the larger sample size now avail-
able. In fact, we find Bayes factors in favor of isotropy
(B;"i) similar to Refs. [21,23] when we use only events
from GWTC-1, and these increase by a factor of two when
we only use the 63 events from O3. Although there are a
few persistent “hot pixels” from O3 in all our models on
average, we cannot confidently bound the rate density in
these directions to be inconsistent with isotropy. Indeed, we
bound the relative variability (standard deviation) in the rate
density to <16% of the isotropic rate at 90% credibility if
the correlation length scale in the rate density is >10°, and
this is improved to <3.5% if the length scale is >20°.

The rest of this paper is structured as follows. In Sec. II,
we perform a simple counting experiment by dividing the
sky into hemispheres, showing that most of the information
about (an)isotropy comes from the best-localized events
(Iess than half our catalog). Section III presents additional
models of varying complexity, including pixelized repre-
sentations like Ref. [21] (Sec. III B 1) and representations
based on low-order spherical-harmonic expansions like
Ref. [23] (Sec. III B 2), culminating in a nonparametric
description of the rate density as a Gaussian random field
(Sec. III C). We discuss implications of current constraints
and conclude in Sec. IV.

II. COUNTING EXPERIMENTS

We begin with a simple counting experiment: divide the sky
into two hemispheres and “count” the number of events that
fall within each.” In the context of GW catalogs, this simple
model is useful because of the symmetry inherent in the
sensitivity for current interferometers. Each interferometer’s
sensitivity has even parity when reflected across the plane
defined by its arms. This means that the sensitivity to each
hemisphere will be equal regardless of how many interfer-
ometers participate in the survey and exactly where hemi-
spheres are drawn as long as they divide the sky in half equally.

To wit, we construct a model that divides the sky in half,
assigning a different rate density to each hemisphere; the
expected fraction of events coming from the “northern”
hemisphere is f, and the corresponding fraction from the
“southern” hemisphere is 1— f. We also consider all
possible hemispheres by sampling over Euler angles that
rotate the simple north-south hemisphere model into

Because GW events often have very broad localizations, we
always employ hierarchical Bayesian inference to account for
measurement uncertainty. See Sec. IIl A for more details.

—— prior
- —— posterior A
< —— isotropy
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0.0 0.2 0.4 0.6 0.8 1.0
f
FIG. 1. Marginal prior (blue) and posterior (orange) for the

mixing fraction in the rotated-hemisphere model (Table II). The
data favor isotropy (gray, f = 0.5) by a factor of B} = 3.7 and
rule out anisotropies bigger than 3:1.

arbitrarily oriented hemispheres. This rotated model is
similar to the approach in Ref. [21]. Inference proceeds
by effectively counting the number of events consistent
with each hemisphere and inferring the expected fraction of
events and the hemispheres’ orientation most consistent
with the observations. Uncertainty in the fraction of events
in a particular hemisphere, then, roughly corresponds to
counting uncertainty from a binomial distribution. We list
the prior ranges for the rotated-hemisphere model and
compare it to others in Table II.

Much of the information about isotropy comes from the
best-localized events, and we find that the data prefer equal
fractions of events from each hemisphere (f = 0.5) by a
factor of B = 3.7, assuming uniform priors for f and the

ani
Euler angles and calculating Bi% via the Savage-Dickey
density ratio [37] (Fig. 1). The model also finds no
preference for specific rotations, which is expected if
f ~ 0.5. Furthermore, the number of events in one hemi-
sphere is binomially distributed, and the uncertainty in the
fraction of events will be a% = f(1 = f)/N with N events.

With our selection of 63 events and assuming isotropy, we
expect 6y = 6.3%. However, this is significantly smaller
than the actual standard deviation observed in Fig. 1, which
corresponds to only 23.5 effective events (o, = 10.3%).
While this could be due in part to the trials factor associated
with sampling over possible rotations, it is likely because
many of the events in our catalog have uninformative broad
localization uncertainties. Indeed, if we only use the 25 best-
localized events from our catalog,3 we find op = 12.6% and

B;{’l = 2.7, only slightly less constraining than the uncer-

tainty obtained with the full catalog. Similarly, if we only
include the ten best-localized events, we obtain 6, = 17.5%

and B*% = 1.9, only slightly worse than expected from the

ani

binomial distribution (6, = 15.8% with ten events).

’In general, selecting events in this way may significantly
complicate our estimate of the catalog’s sensitivity. However, our
Rotated Hemisphere model is immune to such considerations
because of the symmetry of the interferometer antenna patterns.
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This should be contrasted with the constraints obtained
using only GWTC-1: Bis" =13 and oy = 18.9%.*
Reference [21] found B;fl = 1.3 and Ref. [23] quote
B;;(’l ~ 1.1-1.6 depending on how many spherical harmon-
ics they include. We see, then, that our larger sample size
provides the tightest constraints to date.

Note that one could combine all events from O1, O2, and
03 in order to obtain an even tighter constraint on anisotropy
under the rotated-hemisphere model without accurate esti-
mates of search sensitivity because of the symmetry in the
model. We avoid this because of the expectation that
systematic uncertainty from the relatively strong assump-
tions behind the shape of anisotropies allowed by this model
will be more important than any improved statistical
uncertainty, and therefore focus on more flexible models
of isotropy, for which accurate estimates of search sensitivity
are more important, in what follows.

III. HIERARCHICAL MODELS

We now consider several additional representations of
the distribution of merging binaries and construct maps of
the merger rate across the sky with each. Section III A
briefly reviews hierarchical Bayesian inference before
Secs. IIB, MNIC, and HID provide our results.
Comparing different modeling choices allows us to exam-
ine, to some extent, which features are constrained by the
data and which are dominated by our modeling choices.

In what follows, we assume fixed distributions for the
source-frame component masses, redshift, spins, inclination,
orientation, and arrival time of GWs from binary systems.
These are described in Table 1. In order to focus on isotropy,
we only infer the parameters of the distribution over right
ascension (a) and declination (6). While we do not expect the
assumption of, e.g., fixed masses, redshift, and spin distri-
butions to affect our conclusions about (an)isotropy, it would
be worthwhile to check this. However, we leave studies of
possible correlations between the direction to the source and
other source properties to future work.

We only consider events from O3 (GWTC-2 [32],
GWTC-2.1 [33], and GWTC-3 [34]), as the publicly
available set of simulated signals processed with real
searches used to estimate the catalog’s sensitivity only
covers O3 [35]. However, we consider all events from O3,
including BNS, NSBH, and BBH systems. We approximate
the catalog selection by requiring the false alarm rate (FAR)
from at least one pipeline within GWTC-3 to be < 1/year.’

4Although our sensitivity estimates only cover O3, we can
analyze GWTC-1 without accounting for selection effects be-
cause of the symmetry in this model.

*We include all searches present in GWTC-3: both modeled
(GstLAL, MBTA, PyCBC broad, and PyCBC BBH) and un-
modeled (cWB) searches. See Ref. [34] for more details about
individual searches.

With this selection threshold, we retain 63 events from O3.
See Appendix B for more details.

A. Formalism

We employ hierarchical Bayesian inference to infer the
rate density of merging compact binaries,

dN

= Rp(IA). (1)
where each event is described by parameters € (masses,
redshift, right ascension, declination, etc.), the population
distribution p(@|A) is described by some set of parameters
A (minimum and maximum masses, anisotropy parameters,
etc.), and R acts as an overall normalization constant.

Specifically, we sample from the rate-marginalized

inhomogeneous Poisson likelihood for the observed data
{D;} from N events

J dop(D;|0)p(6]A)
PUDHA) = HdeP (det|0) p(O]A)
with a corresponding prior for A. Here, P(det|0) is the
(time-averaged) probability of detecting a signal with
parameters 6. Equation (2) implicitly assumes p(R) ~
1/R within the marginalization over R. We estimate the
numerators in Eq. (2) via Monte Carlo importance sampling
of single-event posterior samples for each event, and the
denominator with a set of detected simulated signals
(Appendix B). See, e.g., Refs. [39-42] and references
therein for more details.

B. Cartography

Within the hierarchical framework, we consider several
different representations of the distributions over the sky.
Broadly, these can be classified as those based on pixeli-
zations (like the rotated-hemisphere model in Sec. II)
and those based on spherical-harmonic decompositions.
Table II summarizes our models, their parameters, and
the priors chosen for those parameters. While there is no
fundamental difference between the two approaches, each
introduces different priors on the types of variation over the
sky. Nonetheless, as we will see, we obtain comparable
results regardless of the precise model choices.

1. Pixelized representations

The simple rotated-hemisphere model (Sec. II) found
weak evidence for isotropy, but this could be due to the
assumptions implicit in the model. We now focus on
pixelization schemes that allow for more complex anisot-
ropies. Figure 2 shows Mollweide projections of p(Q)
derived from different modeling assumptions. Specifically,
we employ the Healpix pixelization scheme [43] and
consider models with 12, 48, and 192 pixels, respectively.
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TABLE L

Fixed population models for the source-frame primary mass (m,), secondary mass (m, < m;), Cartesian-spin vectors for

each component (5, 5,), and redshift (z). We employ the maximum a posteriori values for the Broken Power-Law + dip model from
Ref. [36] as well as a flat ACDM cosmology with H, = 67.32 km/s/Mpc, Q;; = 0.3158, and Q, = 1 — Q,, (first column of Table 1 in
Ref. [38]). While there is evidence that the (BBH) population evolves with redshift and the spins are not isotropically distributed, these
effects are not expected to strongly influence our inference for the right ascension and declination. We also assume events’ orbital
inclinations are isotropically distributed, events’ phases at coalescence and polarization angles are uniformly distributed throughout their
physical ranges, and that events’ arrival times are uniformly distributed throughout the duration of the experiment.

Variates Name/Description Functional form Visualization
' 102 T
1 1 log1o(mimep(my, m
EN 1 3
Q = 1
plmy,ms) & p(m)p(my) & =1
e m Broken power-law X Pos (12, 1o/ m1) H g 1S
1, M2 dip (BPL -+ Di pair \ /142, 112 1
+dip ( +Dip) see Refs. [1,36]
0 1 2 10°
mife mi[Mo]
Uniform in N
z comoving volume p(z) « (dV./dz)/(1 +z) Q
and source-frame time
T T T T 1-0 T T T T
l0g10(p(sx, Sy))
) 0.8 E
’U% L - 0.6 E
o oo Uniform in magnitude . - a &
51:%2 and isotropic orientation p(S;) = 1/45;] | i} 0.4 i
0.2 5
0.0 0.2 0.45 0.6 0.8 1.0 090 02 04 06 08 1.0
X Sx

In each model, the rate density in each pixel is independ-
ently, exponentially distributed a priori. The exponential
distribution is convenient because it only has support for
non-negative rate densities. Furthermore, the independent
priors for each pixel give models with more pixels more
freedom. That is, as the number of pixels increases, the
prior not only allows for, but actually prefers increased
variation across the sky.

We additionally consider a radically different pixeliza-
tion scheme; the 88 constellations® defined by the

6Although there are only 88 constellations, we fit the rate in
89 pixels, dividing Serpens (Ser) into its two disjoint regions.

International Astronomical Union (IAU) [44]. Although
we expect the IAU constellations to be completely unre-
lated to GW events, which come from much greater
distances than the stars that make up the constellations,
they provide a convenient and memorable alternative
pixelization. As with the Healpix models, the rate in each
constellation is independently exponentially distributed
a priori. Because we parametrize the model in terms of
the rate (count per steradian) within each constellation, this
implies that the expected number of events from a con-
stellation scales with the constellation’s area.

Unlike our rotated-hemisphere model and Ref. [21],
we do not consider rotations of these pixelizations.
Reference [21] only used 12 pixels and introduced three

043016-5



REED ESSICK et al.

PHYS. REV. D 107, 043016 (2023)

TABLE II.

Population models for the distribution over right ascension («) and declination (). See text for more detailed definitions of

each model’s parameters. We denote the uniform distribution between X and Y as U(X,Y), the exponential distribution with scale
parameter Z as Exp[Z] (p(x) = Z~'e™*/%), and the multivariate normal distribution with mean vector  and covariance matrix Z as

N (u, E). Where relevant, we denote the area of pixel i with A;.

Variates Name Parameters Functional form Example
f~U(0,1) Rotate by Euler angles (¢, 6, y).
Rotated Hemisphere ¢~ U(0,2x) a,6— a,d
(RH) 0~ U(0,2x) In the rotated frame ‘
y =0 p=(f0(3>0)+(1-)OB <0))/21
bl ~ U(0. 1)
Simple Dipole arctan(b, /b,) = ¢ ~ U(0.27) p=>0+b-Q)/4x
(SD) b./|bl| =cosO~U(-1,+1) B <1
Healpix pixelization
(HP: Ny, = 12, 48, 192)
Q=a s fi~Exp(A7")

TIAU constellations
(IAU: Ny, = 89)

Vi€ [l ..., Nyl

log(f:/A;) ~N(0,E;)

Gaussian random field Y 9~ U8 1/3)

— — )2/92
= = o'%,rﬁij + o°e (Ag’-’) /9

p=20"f,A7'0((a.5) € A,)
S fi=1

(GRF) o~ U(0,3)
Own = 0/10
. R{bj5° } ~U(=10,+10)
Exponentiated 1{ b;gn?dx =0 P X exp (Zb;” Y (a, 5))

spherical harmonics

>0
ESH: [, = 1,2, 3, 4 R,

{p5° } ~U(=10,+10)

} ~ U(=10, +10)

Im

b= ()

Euler angles to attempt to control for model systematics
associated with the placement of the 12 pixels. We instead
use models with more pixels and different methods of
partitioning the sky to test for model systematics.

Figure 2 shows one-dimensional summary statistics
defined for each direction on the sky. We show the average
a posteriori rate for each direction (Q)

(p(Q)) = /dAp(AI{Di})p(QIA)’ (3)
where p(A|{D;}) is the hyperposterior distribution inferred
via Eq. (2). This average is normalized by the equivalent
rate for an isotropic distribution: p(Q|iso) = 1/4x. We also
show the difference (p(Q)) — p(Qliso) divided by the
standard deviation of the one-dimensional marginal pos-
terior distribution: 6 ,(q).

We find similar features with all models. Although there
are “hot pixels” throughout the sky for each, on average (left
column of Fig. 2) there is a consistently hot pixel near
(a,8) = (—45°,410°). This hot spot lies within Equuleus

(Equ: the “little horse”), which has the second smallest area of
any of the AU constellations and is associated with a handful
of relatively well localized events (see Appendix B). Even
though the horse is little, at face value it may play a big role in
GW anisotropy measurements. However, while hot pixels can
at times correspond to rates several times larger than the rate
for an isotropic distribution, there is still significant uncer-
tainty in the posterior. In fact, the expected value of the rate in
any pixel is always less than £1.5 standard deviations away
from isotropy a posteriori (right column of Fig. 2).

We note that the size of the deviations from isotropy are
less significant within models with more pixels. This is
because there are fewer expected events per pixel and
therefore greater relative uncertainty in each pixel’s rate
density. Indeed, while there are always some pixels for
which the rate is not confidently bounded away from zero,
there are (many) more poorly constrained pixels for models
with larger N;. See Appendix A for more discussion.

While comparisons based on only one-dimensional
marginal posteriors do not actually represent a full test
of isotropy (the rate density must be consistent with
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N,

pix

mean significance

((p(Q)) — p(Qlis0))/0p(q)

(p(Q))/p(Qliso)
({p(Q)) — p(Qlis0))/opq)

| \
AL TN

(p(Q))/p(Qliso)
(p(Q)) = p(Qis0))/Tp(ay

— p(Q[is0))/0pq)

Lob
o w
({(p(Q))

I
=
wn

FIG. 2. Mollweide projections of the posterior for the rate density across the sky with pixelized representations. (top to bottom)
Healpix pixelizations with 12, 48, and 192 pixels as well as a pixelization based on the 88 IAU Constellations (89 pixels; Serpens is
divided into two disjoint regions). (left) The average rate density a posteriori scaled by the rate for an isotropic distribution. (right) A
measure of statistical significance; the difference between the average rate density and the rate for an isotropic distribution scaled by the
standard deviation of the rate density in each pixel a posteriori.

isotropy in all pixels simultaneously, not just separately for 2. Spherical-harmonic representations

egch pixel), this is nevertheless suggestive. We also eschew We now turn our attention to representations of p(Q)
B, for these models due to the possibly strong dependence  based on spherical-harmonic decompositions. There are
on our prior choices (see discussions in, e.g., Refs. [45,46]).  many ways to construct a representation of a positive
We quantify constraints on anisotropies in more detail in  semidefinite function defined on S, in terms of spherical
Sec. I D. harmonics. We explored several models of the form
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Inax m=+1
pa-r(5 5 me) e
=0 m=-I
with the additional constraint b;™ = (b;™)* to ensure the

sum is real, where (-)* denotes complex conjugation.
To begin, we consider a Simple Dipole model described
by a single vector b so that

pQ) =4 (1+5-9) (5

with |b| < 1. This model is similar to the rotated-
hemisphere model from Sec. II, but avoids sharp features
in the rate density. It corresponds to F(x) = x and [, = 1
in Eq. (4). With a uniform prior over |b| and isotropic priors
on its orientation, we constrain |I; | <0.5 at 90% credibility,
in agreement with the rotated-hemisphere model. We
also find foﬁ = 2.5, slightly smaller than the rotated-
hemisphere model. This is because the Simple Dipole
lacks sharp features in p(Q) and therefore larger anisot-
ropies are harder to constrain.

We now additionally consider [, > 1. Although we
find consistent results with several choices of F (x),7 we
focus on F(x) = e*, which we refer to as the Exponentiated
Spherical-Harmonic (ESH) model. That is, we model the
logarithm of the probability density with a spherical-
harmonic decomposition. This preserves the parity of all
Y7, thereby removing many of the degeneracies introduced
by other choices and simplifying the interpretation of
posterior constraints for b}".

We consider independent, uniform priors for the real and
imaginary parts of b}" (subject to the reality constraint) up
to several maximum harmonic numbers (/,,). Just as
larger Ny; allow for more model freedom, larger /,, allow
the spherical-harmonic decomposition to represent more
complex distributions over the sky. Figure 3 shows maps
constructed with this Exponentiated Spherical-Harmonic
model for [, = 1, 2, and 3.

As a rule of thumb, constraints on low-/ coefficients
weaken as [, increases. However, we consistently find
that the / = 1 (dipole) coefficients are constrained to be
rather small, consistent with the rotated-hemisphere and
Simple Dipole models. Constraints on higher harmonics are
weaker, but they are also all constrained to be relatively

"Reference [23] chose F(x)=x2, and we also explored
F(x) = |x|. However, both of these approaches complicate the
interpretation of the model as they introduce strong degeneracies.
That is, multiple distinct sets of b can produce similar p(€2). For
example, a distribution with only b) # 0 produces similar p(Q)
to a distribution with only b‘z’ # 0. It is this mixing between
different / can be difficult to interpret. These degeneracies render
the posterior for {b{'} multimodal, which in part motivated
Ref. [23]’s choice to limit the magnitude of b}" to small values
a priori.

small. Figure 4 shows the prior and posterior for individual
by when [, = 2. We again eschew B¢ for this model
because of ambiguity in the choices for the prior bounds on
the {b)"}. Indeed, because the posterior is consistent with
isotropy, we can make B¢ as large as we like by simply
increasing the extent of the prior.

When [, > 2, we begin to see structure appear across
the sky on average a posteriori (Fig. 3). This resembles the
structure observed with pixelized representation, and, like
the pixelized representations, there are large fluctuations in
the posterior that render the difference between the mar-
ginal means and isotropy statistically insignificant. Another
way to view this is to examine the power in each harmonic.
Figure 4 shows these distributions as well. Indeed, the
power allowed in each harmonic a posteriori is larger for
higher harmonics, but it is always much smaller than the
prior, showing that the data favor isotropy.

C. Gaussian random fields

We complete our survey of the impact of model choices
by modeling the (logarithm of the) rate density as a Gaussian
random field (GRF), also known as a Gaussian process [47].

Specifically, we assume a Healpix pixelization scheme
with many pixels but, importantly, do not assign indepen-
dent priors to each pixel. Instead, we assume the rate
density in each pixel is correlated with neighboring pixels
according to a covariance kernel

Cov[ln(p(€)). In(p(;))] =E;

Ry

composed of a white-noise component (uncorrelated
variance within each pixel scaled by 62,) and a squared
exponential component (described by a marginal variance
o2 and correlation length scale 9) that correlates neighbor-
ing pixels based on the angular separation between their
centers (A0;;). We fix o,,, = 6/10, as we wish pixels to be
significantly correlated and only include the white-noise
variance for numerical stability. While this choice was
made primarily to guarantee numerical stability within
Cholesky decompositions of (at times) ill-conditioned
covariance matrices with large 9, it also introduces a
natural resolution scale at which o, from many pixels
tends to dominate the variance in p(Q) over the sky. For
large 9 (strong squared-exponential correlations), we
expect o, to contribute a significant fraction of the overall
variability when N 2 100 if o, = ¢/10. However, for
9 ~ 60°, this increases to Ny ~ 1100, and for 9 ~ 10° it
increases to N, ~ 41,000. We therefore expect our results
to not depend strongly on the choice oy, = ¢/10 given
the range of J included and the number of pixels used.
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Mollweide projections of the posterior rate density across the sky when it is represented by a spherical-harmonic

decomposition. Analogous to Fig. 2. (fop to bottom) Spherical harmonics are included up to /,,,, = 1, 2, and 3. As more harmonics are
included, we observe structure across the sky similar to what is found with the pixelized representations. However, as in Fig. 2, the
fluctuations in the posterior are larger than the difference between the mean a posteriori and an isotropic distribution.

We confirmed this by also investigating o, = ¢/100 and
own = 6/1000, finding consistent results.

Just as our GRF model is related to our pixelized models
with a different prior, it can also be expressed in terms of a
spherical-harmonic representation. Specifically, the b}" are
independently, normally distributed within a GRF prior,
and their individual variances depend on the form of the
covariance kernel (see, e.g., Refs. [48,49]). The GRF prior
controls how the prior uncertainty in b}" decreases as [
increases; the contribution of high-/ modes are limited and
the resulting rate density is smooth. Similarly, the same
prior controls how quickly the rate density is allowed to
vary from pixel to pixel.

The key advantages of the GRF approach are that it is
straightforward to learn the correlation parameters at the
same time we fit the data and that it does not depend
strongly on how many pixels or harmonics are included.
That is, we need not make strong (and poorly understood)

prior choices about how many pixels or b} to include. The
data itself will determine which correlations are preferred.
Figure 5 shows the resulting posteriors for the GRF
parameters. The data prefer small 6 when & = 15°, and
are consistent with the isotropic limit (¢ — 0) for all 9.

The data do not strongly constrain the correlation length,
although the constraints on ¢ are more stringent for longer
9. In other words, if neighboring pixels are significantly
correlated, then the data are less consistent with large
fluctuations in the rate density across the sky. This is similar
to the fact that we are able to more tightly constrain the
low-1 coefficients in the spherical-harmonic model com-
pared to high-/ coefficients.

Finally, Fig. 6 shows Mollweide projections analogous to
Figs. 2 and 3 when we impose several lower limits on the
correlation length (8 > 9,,;,)- The key differences between
Figs. 6 and 2 are that the most extreme excursions of
the posterior’s mean are smaller for the GRF models due to
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FIG. 4. Prior (blue) and posterior (orange) for the spherical-harmonic coefficients (b}') with I,,,,, = 2. Other [, produce similar

behavior. (lower left) Distributions over bj". Although the marginal posteriors for some b

" o peak at nonzero values, they are all

consistent with isotropy. Our priors are, perhaps, unrealistically broad, but were intentionally chosen to be much broader than the
posterior. (upper right) Distributions over the power in each angular harmonic. Even though isotropy is strongly disfavored a priori, the
data constrain the power in higher harmonics to be small compared to the prior.

the correlations between neighboring pixels from the prior.
We also note that, correspondingly, the fluctuations that do
occur in the GRF model appear even less significant.

Nevertheless, we see features reminiscent of individual
events within the posterior process’s mean when 9, is
small. This is not unexpected, as the posterior mean is
related to the sum of individual events’ posteriors when
the anisotropies are small. Appendix A describes this in
more detail.

D. Quantifying constraints on anisotropy

As we have discussed, it can be difficult to interpret
Bayes factors within our models because of ambiguity in
the choices of prior ranges. For example, 1% can be made
as large or as small as one would like within the
Exponentiated Spherical-Harmonic model by changing
the prior ranges allowed for each bj'. Therefore, we
propose a more direct measure of the extent of anisotropies:
the variance of the rate density across the sky,
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FIG. 5. Posterior probability for GRF parameters (¢: marginal
uncertainty; J: correlation length) assuming independent, uni-
form priors for each (see Table II) when we use Healpix
decompositions with (light blue) 192, (dark blue) 768, and
(green) 3072 pixels. The distributions do not depend strongly
on the number of pixels used.

@Mzi/ﬂ%mm—if. (7)

This is closely related to the GRF model’s ¢ parameter.
Isotropy corresponds to the limit ¢,q) = 0.

In both the Healpix and Exponentiated Spherical-
Harmonic models, we find that the posterior supports
larger amounts of variability as we increase Npix OF Ly
That is, the data does not strongly constrain rapid oscil-
lations within the distribution over the sky, and the
variability in the inferred distribution is dominated by
the prior induced over these high-/ modes. In particular,
both the Healpix and exponentiated spherical harmonic
a priori have vanishingly small support for small variance
over the sky. This carries over to the posterior, and any
upper limit on the variance will strongly depend on
the prior.

The GRF model, on the other hand, naturally avoids this
issue by simultaneously sampling over both the correlation
parameters and the distribution over the sky. Because the
GRF model contains support for all correlation lengths (9),
as opposed to a fixed choice of Ny or /,, we do not
observe vanishing support for small variances. Indeed, we
obtain a consistent upper limit within the GRF model when
9in = 10° regardless of the number of pixels used. The
distribution of merging binaries produces 6 ,q) < 16% of
the isotropic rate at 90% credibility when 9 > 10°. That is,
the rate density fluctuates by <16% across the sky. When
& > 20°, this is reduced to <3.5%.

Additionally, we compare multiple representations of
the rate-density in order to assess possible model system-
atics associated with each. These systematics can be
thought of as correlations within the prior process for
the distribution over the sky that determine the allowed
shapes of the distribution. See Ref. [50] for more dis-
cussion in the context of the neutron star equation of state.
These correlations can be very high dimensional and
therefore difficult to visualize. What is more, statistics
based on one-dimensional marginal prior distributions
analogous to those shown in Figs. 2, 3, and 6 are
uninformative; our priors were intentionally designed to
have the same marginal distribution for the rate in all
directions (although this is only approximately true for the
ESH models).

Because the high-dimensional correlations induced by
different model assumptions are difficult to visualize
directly, we only compare a few summaries of the posterior
process over the sky. Nevertheless, these show that prior
assumptions can strongly affect the types of anisotropies
inferred a posteriori. While we leave a full investigation to
future work, Appendix A presents techniques to help
diagnose which features are constrained by the data and
which are constrained by the prior.

IV. DISCUSSION

Using 63 confidently detected GW sources from the
LVK’s third observing run, including BNS, NSBH, and
BBH systems, we constrained the distribution of merging
binaries across the celestial sphere. Our constraints improve
upon previous work that used the 11 events from GWTC-1,
finding constraints on anisotropies (59) that are a factor of
a few stronger. However, because of ambiguity in the
interpretation of B¢ due to arbitrary prior choices, we
instead quantify constraints on anisotropies with a direct
measure of how much p(Q) varies over the sky. Modeling
anisotropies as a Gaussian random field, we constrain the
fluctuations to be <16% if the field is correlated with a
length scale >10°. That is, the distribution of merging
binaries varies by <16% of the isotropic rate at 90%
credibility.

We also observe consistently hot pixels within all of our
models of p(Q). While none of these are statistically
significant, the brightest pixel is in the direction of the
constellation Equuleus. Our hot pixels tend to fall near the
equator on average, and they do not match the hot spots
found in previous work with GWTC-1 [21,23]. This is
consistent with the expectation that the distribution is
isotropic, and we are in effect “fitting noise” when we
construct maps of the mean p(Q).

Nonetheless, it may be interesting to extend this work in
the future. In particular, we have only studied isotropy, and
the cosmological principle also predicts homogeneity. It
may be of interest to not only consider clustering in three
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FIG. 6. Mollweide projections of the mean and significance of the rate density marginalized over correlation parameters within the

GRF model with N,

= 3072. We observe generally consistent results with the rest of our models, with a decrease in the difference

between the posterior mean and isotropy as the minimum allowed correlation length (8,,;,) increases.

spatial dimensions,8 but also correlations between intrinsic
source properties (masses, spins, etc.) and extrinsic proper-
ties (location, orientation, etc.). Furthermore, correlating
anisotropies and/or inhomogeneities in GW catalogs with
other catalogs will be of increasing importance. Under the
assumption that GW events only come from galaxies,
current galaxy catalogs have been used to provide a weak
constraint on the Hubble parameter [2]. With larger GW
catalogs, it may be possible to directly test the assumption
that GWs only come from galaxies, or to determine which
types of galaxies are more likely to host GW sources [7,8].
More generally, this may constrain cosmic structure, and
clustering scales in GW catalogs could connect to the mass
scales of typical host galaxies [9]. Of course, there may also
be synergies from connecting the distribution of nearby,

¥The rate of GW sources almost certainly evolves over cosmic
time [1,51]. This means we will need to consider the effect of
lookback time when considering inhomogeneities in the spatial
distribution.

well-resolved systems with the stochastic GW background
from the myriad more distant sources [26].

The LVK also searches for unmodeled “burst” events. If
such events are detected and no obvious source presents
itself, determining whether the sources are isotropically
distributed or correlated with local structure can inform the
distance to the events and therefore their energy scale.
Demonstrating the ability to perform such a measurement
and determining the size of the catalog needed to rule out
isotropy9 may be worth establishing before such events are
detected.

For all these reasons and more, it is worth studying in
greater detail which properties of individual events make
them informative and over what angular scales. Indeed, as
the size of the catalog grows, we may wish to know whether
the isotropy constraints will always be dominated by the
best-localized events or whether the legion of poorly

°Note that even a single event may rule out the correlation with
local structure, and therefore ruling out isotropy when the events
do correlate with local structure is likely to be of greater interest.
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localized events will eventually dominate through sheer
force of numbers. We have also shown that most of the
information about (an)isotropy is carried by the best-
localized events. As searches become more sensitive to
quieter events and/or events detected in a single interfer-
ometer, we may expect the rate at which isotropy con-
straints improve to slow as a larger fraction of GW catalogs
will have large, uninformative localizations. "

Here we used 63 confident BNS, NSBH, and BBH
detections from O3 to place limits on the anisotropy of
gravitational wave events on the sky. We do not find any
evidence for anisotropy. On the contrary, using flexible and
data-driven models we bound the variability of the gravi-
tational wave merger rate over the sky to <16% on scales
larger than 10°, or <3.5% on scales larger than 20°. As the
GW catalog continues to grow, our methodology will lead
to more definitive measurements. Understanding the homo-
geneity and isotropy of GW sources is an important
astrophysical and cosmological probe of this newly dis-
covered population. There are still many unknowns about
the distribution of merging binaries, and future catalogs
will continue to provide surprises if we continue to look
for them.
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APPENDIX A: PERTURBATIVE ANALYSIS FOR
SMALL ANISOTROPIES

We consider in detail how the data constrain different
degrees of freedom in the distribution of merging binaries.
Reference [58] introduced expressions for the Fisher
information matrix that describes how constraining the
data is expected to be on average. We instead consider the
constraints from a particular realization of data by per-
turbing the likelihood directly.

In particular, we construct a model that perturbs a “base
distribution” over the single-event parameters 6 by a small
amount. That is, we consider a rate density

aN

—g = RPEIA)(1+1(6)) (A1)

with |n| <1 V 6. Inserting this into the inhomogeneous
Poisson likelihood [39-41,58], we obtain

Inp({D:)[R.Aut) =NI(R] =R [ doP(aetlo)p(@N)(1+1(0)+ D n| [ aop(D,j0)p(6In)1 +1(0)

:Nln[R]—R/dGP(det|9)p(9A)+Zln Udep(p,.w)p(e/\)]

_ R/ dOP(det|0) p(0|A)n(0) + Z

1

We recognize

p(Di0)p(|A)

v {fde(Diw)p(eA)n(e)_;(fdepwiw)p(em)n(e))z ]
Jdop(D{0)p(OIn) 2 |

Jdop(Di|0)p(0]A)
(A2)

J d0p(D;|0)p(6]A)

= p(0|D;, A) (A3)

mAppendix A introduces an eigenvalue analysis of which anisotropies can be best constrained with current data. The magnitude
of the eigenvalues rapidly decreases, suggesting that it may take many more events to precisely constrain high-/ modes compared to

low-/ modes.
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FIG. 7. Nonvanishing eigenvalues and example eigenvectors from the perturbative analysis of 63 events from O3. (top, left to right)
The best-constrained eigenvector and two less constrained eigenvectors. (bottom) The distribution of eigenvalues, which decays roughly
exponentially up to the 63rd eigenvalue. After that, the eigenvalues for the remaining eigenvectors are many orders of magnitude

smaller.

and, retaining only terms up to second order in #, obtain

Inp({D;}|R. A.n) = p({D;}[R. A, = 0) =

1 , a , ,
—E/daden(a) [Zp(ew,-,/\)p(@ IDi,A)}n(9>

We see, then, that the inhomogeneous Poisson likelihood
naturally induces a Gaussian process over small perturba-
tions away from a base distribution. In particular, the
Gaussian process has a positive semidefinite inverse
covariance matrix

Cov~![n(0

Zp 6|D;, A)

Examining the mean vector in more detail, we see that it is
proportional to the difference of two terms. Taking the
maximum likelihood estimate for R conditioned on A and
N, we expect RP(det|A) = N. Therefore, the mean vector
is proportional to the difference between the distribution
over 6 for detectable sources and the average of the single-
event posteriors. This is intuitively appealing and explains
why stacking (adding) posteriors can often produce useful
diagnostics even if it is not the correct way to perform a
hierarchical inference [39]. This is also why the mean of the
GRF model in Sec. III C at times displays features remi-
niscent of individual events. Some events are well localized

p(O'[Di, A)  (AS)

—/d@r](é)[RP(detA) (6] det, A) — Zp(au),, ]

(A4)

relative to p(6)| det, A) and therefore the mean looks as if we
simply summed the posteriors of each event (compare
Figs. 6 and 9).

We can also consider which types of features are
constrained by the data by examining the eigenvectors
and eigenvalues of the inverse covariance matrix. While
this analysis is completely general,11 we specialize to the
case at hand: an isotropic base distribution with masses,
spins, and redshifts distributed as in Table 1. We also only
perturb the distribution over the sky. Immediately, we see
that the only pixels that are constrained by the data are

"Similar “semiparametric” analyses have been conducted for
the mass distribution, although they implemented a spline model
for the deviations from the base model [59]. However, consid-
ering the full Gaussian process induced by the likelihood and
adopting a conjugate prior may allow for a clearer determination
of exactly which features are driven by the data and which are
driven by the prior assumptions, particularly when the correla-
tions in the prior span high-dimensional spaces. Furthermore, this
type of perturbative analysis can be conducted completely post
hoc given any base distribution, even semiparametric or non-
parametric representations of p(6|A).
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Distribution of detected injections from O3 [35] assuming an isotropic population with mass, spin, and redshift distributions

listed in Table I. (left) Scatter plot of detected events in a Mollweide projection. (right) Marginal distributions of the detected population
(red) and the isotropic distribution (black) for reference. Shaded regions correspond to 1, 2, and 3¢ uncertainty on the detected

distribution’s marginals from the finite number of injections.

those that have nonzero probability of containing at least
one event under the base model [p(0]|D;, A) # 0 for at least
one D;]. It is natural to control these poorly constrained
eigenvectors with a Gaussian process prior, like the one
introduced in Sec. IIIC. Indeed, if we fix the base
distribution (including the rate), then we can construct a
posterior for x analytically.

What is more, the magnitude of the inverse-covariance
matrix’s eigenvalues rapidly decays. Figure 7 demon-
strates this with our selection of 63 events from O3. As
such, we can always expect there to be many eigenvectors
that are dominated by the prior for any finite catalog.
Figure 7 also shows a few eigenvectors. Typically, the
best-constrained eigenvectors resemble well-localized
individual events, or just a few pixels on the sky, while
less constrained eigenvectors resemble the overlap of
multiple events.

APPENDIX B: SELECTED EVENTS
AND CATALOG SENSITIVITY

For completeness, we present the estimates of our
survey’s sensitivity (false alarm rate for any search
< 1/year) across the sky assuming the mass, spin, and
redshift populations in Table I. As the injected distribution
within Ref. [35] is somewhat complicated and not particu-
larly astrophysically motivated, we have reweighed the
injections so the injected distribution matches the distri-
butions listed in Table I. Figure 8 shows the distribution of
detected events from an isotropic source distribution.

While the search sensitivity is nearly uniform, we do
observe slight excesses of detected injections from the
midlatitudes and a dearth of detections near the equator, in
agreement with Fig. 1 of Ref. [22]. We also note that the
diurnal cycle identified by Ref. [22] during the first
observing run (O1) is not apparent in O3. This is likely
due to a combination of factors: the detector duty cycles

were higher in O3 than in O1 [60], and O3 lasted for nearly
a full calendar year, thereby washing out the impact of a
diurnal cycle (determined by the Earth’s orientation to the
Sun) when projected on the celestial sphere.

Figure 9 shows the superposition of all the individual
events’ localizations assuming an isotropic distribution
and reweighing individual events’ posterior samples to
match the mass, spin, and redshift populations listed in
Table I. Overdensities of points correspond to hotspots in
Fig. 6, as expected based on the analysis in Appendix A.
Table III shows the medians and 90% symmetric credible
intervals for the component masses, spins, and redshifts
of each of the 63 selected events after reweighing the
posteriors samples so the prior matches the distributions in
Table I and an isotropic distribution over the sky.

Single-event posterior samples for all events detected
during the first half of O3 (0O3a; GWTC-2 [32]) were taken

v _ 1
#.150°-120°-9
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30° 60° 90° 120%150°%
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FIG. 9. Superposition of localization estimates from all 63
events considered in this study. Each point is a fair draw from one
event’s posterior assuming an isotropic distribution over the sky
and the mass, spin, and redshift distributions in Table I. Darker
shading corresponds to areas with many overlapping events or
extremely well localized events, and roughly correspond to the
hot-spots seen in the posterior means in Fig. 6. See Table III for
individual events’ localizations.
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TABLE III. Medians and 90% symmetric credible regions for each of our 63 events assuming an isotropic source distribution and the
mass, spin, and redshift distributions from Table I. We also show the smallest area on the sky that contains 90% of the posterior
probability and a scatter plot of posterior samples. Brighter colors in scatter plots correspond to higher likelihoods, and each point is a
fair draw from the posterior.

Name mi [Mo] my [Mo) Z Dy, [Mpc] AQqy, [deg’] Skymap
GW190408_181802 22.89°311 19.88135 0.291947 1540.36183] 70 179.2
GW190412 26.10533 9.453% 0.141503 694.54 5717 833
GW190413_052954 29.96%3% 25.6578% 0.601039 3633.561 70406 1425.1
GW190413_134308 41.19059%3* 3524185 0.741539 47345513008 562.5
GW190421_213856 38.18773% 33.247873 0.501030 2936.101 3% 49 1033.4
GW190424_180648 37.30178 32.78183; 0.41797 2297.441 115340 25972.7
GW190425 1904933 1.4419% 0.04150) 161.23753 % 8517.3
GW190503_185404 38.261177 3187558 0.29191, 1519.474827! 108.3
GW190512_180714 18.8613% 1512433 0.2810% 1470.5273)1% 245.9
GW190513_205428 28.331757 23.241450 0.387013 2096.741 99007 462.5
GW190517_055101 33.08173% 27.9872%) 0.36101 1998.601557%¢" 429.2
GW190519_153544 59.041 )29 44.101758, 0.4919% 2835.401 735773 820.9
GW190521 82.90113:32 703611750 0.7249% 4514.92333042 887.6
GW190521_074359 4025438 34.611453 0.2410% 1252.811395-07 491.7
GW190527_092055 30.7015% 25.6718%% 0.441057 2506.951 250 33294
GW190602_175927 61.2773%7¢ 5157192 0.5159% 2982.27+ 158103 725.1

(Table continued)
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TABLE III. (Continued)

Name my [Mg) my [Mg) z D; [Mpc] AQqgq, [deg?] Skymap

GW190620_030421 48.091)%32 39.74154 0.54%931 3185.491/3%%81 6158.8

GW190630_185205 31.7373% 26.65173 0.171 504 837619303 1558.4

GW190701_203306 49.52787¢ 43157891 0.3870+1 2096.04 17532 66.7

GW190706_222641 554911538 43595104 0.8210%) 5335.3113308 620.9

GW190707_093326 10.5874:537 9.061039 0.17:008 857.19733314 1416.8

GW190708_232457 16317778 1420177 0.17595% 876.65 33102 10021.6

GW190719_215514 28.9712%) 24.501%5 0.64703% 3942.611 753358 2579.4

GW190720_000836 10.941759 9.21419 0.181547 882.9315083 616.7 @t

GW190725_174728 9.32128 7.8810¢; 0.2053 50 1034.40139850 2162.7 \% /3

GW190727_060333 3537709 30.8713% 0.561939 3367.627 /45839 741.7 @

GW190728_064510 10747228 9.251% 0.1749 %5 856.361 3110 325.0

GW190731_140936 36.957 0% 31.371748 0.58703 3535.481 50350 3091.9
<

GWI190803_022701 33817731 2019763 05702 341079+18216 1458.4 @

GW190805_211137 413411 34.741958 0.89:03 5914.411376037 3533.6 )

X A

GW190814 23414112 2575008 ,05+00! 245.77+4013 292 Q
N

GW190828_063405 30.67137s 27.12733¢ 0.3812 2128.2518886) 475.0 K /’

043016-17
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TABLE III. (Continued)

Name my (M) my [Mg) z D, [Mpc] AQoq, [deg?]
GW190828_065509 1739158 13447377 0.321919 1714.5118345 745.9
GW190910_112807 41.621%18 36.51723 0.29718 1535.745 07 (7 9838.2
GW190915_235702 30.8415% 26.7613 % 0.31591) 1699.1578/53 362.5
GW190924_021846 720705 6.06"9-0¢ 0.12790¢ 572.774335:3¢ 358.4
GW190929_012149 50.071] 3 35.38" 41 0.717935 4440.24 330354 1954.3
GW190930_133541 10.58 222 9.02 % 0.15500¢ 758.74 354 % 1683.5
GW191103_012549 10.33727 8.98110! 0.1970% 968.08 45821 2558.5
GW191105_143521 9.697 550 8.41108 0.22:4067 1147.37{9%:73 820.9
GW191109_010717 60.18"/04 48.187 %32 0.2770% 1409.53 745376 1579.3
GW191127_050227 326072387 281173478 0.5210% 3041.051 5238 1029.2
GW191129_134029 9.1813%9 77708 0.1519 02 765.837 2554 1333.4
GW191204_171526 10.827 241 9.031)% 0.1310%¢ 632.63037% 329.2
GW191215_223052 22857333 19.76338 0.34751 1879.79 93083 562.5
GW191216_213338 10401278 8.821078 0.07-505 338.991133%¢ 241.7
GW191222_033537 41.82133 36.4017 77 0.50207; 2903.371{7957° 1991.8
GW191230_180458 44214338 38.46152 0.7219% 4529.7213005 72 1100.1

(Table continued)
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TABLE III. (Continued)

Name my (M) my [Mg) z D, [Mpc] AQoq, [deg?]
GW200105_162426 9.1317:40 1.8959% 0.0610% 271.86111370 7496.4
GW200112_155838 33.67135 29.29°340 0.241067 1276.291430 7 3204.4
GW200115_042309 6.32119 137503 0.0670:% 288.407 3534 366.7
GW200128_022011 3841779 3334132 0.57793% 3399.78 740l 0s 2466.8
GW200129_065458 33.6613%; 29.5513% 0.1970% 942.171239%8 45.8
GW200202_154313 9.175138 8.09113¢ 0.09150; 41193114020 1583
GW200208_130117 34.537972 29.7212 2 0.407 014 2244.011 528 333
GW200209_085452 3247110 2799787 0.561073 3352.151 8502 1025.1
GW200216_220804 41.65575° 35.68°850 0.68103; 4272.531 330058 3104.4
GW200219_094415 34.1177% 29.4083} 0.581057 352291788078 745.9
GW200224_222234 3835534 33.6742 0.3219% 1725.50 48884 50.0
GW200225_060421 17.9173% 1544538 0.2270% 110417132851 616.7
GW200302_015811 314758 2426730 0.30731% 1608.821700 13! 8684.0
GW200311_115853 32.607 48 28.8317% 0.237993 1169.68728)2 45.8
GW200316_215756 11001719 9.20127 0.22:49 68 11202143387 370.9

from Ref. [61], with the exception of two events first are available in Ref. [62]. Samples for events from the
published in GWTC-2.1 [33]: GW190725_174728 and second half of O3 (O3b; GWTC-3 [34]) are available
GW190805_211137. Posterior samples for these events within Ref. [63].
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Although only used to benchmark our constraints from
03, posterior samples for events from GWTC-1 are avail-
able in Ref. [64]. Because these samples do not include all

the Cartesian spin components and because spin inference
largely decouples from localization, we do not include the
prior for the spin within analyses of GWTC-1.
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