
Unified and Incremental SimRank: Index-Free
Approximation With Scheduled Principle

Fanwei Zhu , Yuan Fang , Kai Zhang, Kevin Chen-Chuan Chang,

Hongtai Cao, Zhen Jiang, and Minghui Wu

Abstract—SimRank is a popular link-based similarity measure on graphs. It enables a variety of applicationswith different modes of

querying (e.g., single-pair, single-source and all-pair modes). In this paper, we proposeUISim, a unified and incremental framework for all

SimRankmodes based on a scheduled approximation principle. UISim processes queries with incremental and prioritized exploration of

the entire computation space, and thus allows flexible tradeoff of time and accuracy. On the other hand, it creates and shares common

“building blocks” for online computation without relying on indexes, and thus is efficient to handle both static and dynamic graphs. Our

experiments on various real-world graphs show that to achieve the same accuracy, UISim runs faster than its respective state-of-the-art

baselines, and scaleswell on larger graphs.

Index Terms—SimRank approximation, unification, index-free, scheduled principle, scalability

Ç

1 INTRODUCTION

GRAPHS are ubiquitous nowadays, requiring effective
similarity measures based on their link structures.

Among the link-based similarity measures, SimRank has
attracted much attention since it was first proposed by Jeh
et al. [6]. The intuition behind SimRank is “ two objects are
similar if they refer to similar objects”, which is recursive
with “one object is maximally similar to itself” as the base
case. Such intuition naturally simulates human judgements
on the similarity of objects based on their connections, and
thus has a wide range of applications.

Consider the following scenarios on a DBLP network
with interconnected nodes such as researchers, papers and
conferences.

Scenario 1 (Single-pair SimRank) Collaboration predic-
tion. Given two researchers r1 and r2, could r1 be collaborated
with r2 in the future? In this case, we can compute a SimRank
score sðr1; r2Þ and compare it with some heuristic threshold to
make a prediction.

Scenario 2 (Single-source SimRank) Bibliographic
search. Given a paper p, what are the most relevant papers to
p in the entire corpus? In this case, the input query is a paper p,
and the output is a ranking over all the paper nodes according

to the SimRank similarity between p and each paper in the
network.

Scenario 3 (All-pair SimRank) Research community
discovery. What are the similar papers, researchers, and con-
ferences that form a community of certain research interest? In
this case, the similarity between each pair of nodes should be
computed and further leveraged by clustering methods such as
K-means to detect the research communities in the graph.

As shown in the above scenarios, there are generally three
popular modes of the SimRank problem on a graph G ¼
ðV;EÞ: single-pair SimRank computes the similarity score
sðu; vÞ between a pair of nodes u and v (Scenario 1); single-
source SimRank computes the similarity score between a
query node u and every node v 2 V (Scenario 2); all-pair Sim-
Rank computes the similarity for every pair of nodes in G
(Scenario 3).

As a general form of SimRank problems, partial-pairs
SimRank (or SimRank-based Similarity Join) [13], [17], [21],
[29], [30], is defined over two subsets of nodes where only
similarities between node-pairs from those subsets are com-
puted. Most of existing partial-pair SimRank focus on the
subset of node-pairs that have higher similarity than the
others in a graph, either returning the top-K similar node-
pairs [13], [21] or the node-pairs with similarities greater
than a given threshold [17], [30]. More discussions about
SimRank Join can be found in Section 2.

We summarize these SimRank modes in Table 1, where a
SimRank query is formalized as Q ¼ ðA;BÞ with each of A
and B being a single node, a subset of nodes, or all the
nodes V , and the output SðQÞ is the set of corresponding
similarity scores.

While SimRank is confirmed to be an effective similarity
measure in practical applications [7], the computation of
SimRank is not trivial. A straightforward approach for Sim-
Rank is to compute the similarity scores iteratively. Specifi-
cally, the SimRank similarity between two nodes u and v is

� Fanwei Zhu, Kai Zhang, Zhen Jiang, and Minghui Wu are with the Zhe-
jiang University City College, Hangzhou 310015, China. E-mail: {zhufw,
mhwu}@zucc.edu.cn, drogozhang@gmail.com, jzjzjzzju@zju.edu.cn.

� Yuan Fang is with the Singapore Management University, Singapore
188065, Singapore. E-mail: yfang@smu.edu.sg.

� Kevin Chen-Chuan Chang and Hongtai Cao are with the University of Illi-
nois at Urbana-Champaign, Champaign, IL 61820 USA. E-mail: {kcchang,
hongtai2}@illinois.edu.

Manuscript received 18 Feb. 2020; revised 1 June 2021; accepted 24 Aug. 2021.
Date of publication 10 Sept. 2021; date of current version 3 Feb. 2023.
(Corresponding author: Yuan Fang.)
Recommended for acceptance by L. Zou.
Digital Object Identifier no. 10.1109/TKDE.2021.3111734

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023 3195

1041-4347 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

recursively computed based on their in-neighbors InðuÞ and
InðvÞ, as follows [6].

sðu; vÞ ¼
C

jInðuÞjjInðvÞj
X

i2InðuÞ

X

j2InðvÞ
sði; jÞ u 6¼ v

1 u ¼ v

8

<

:

: (1)

Due to the iterative nature, the computation is expensive
even on a moderately large graph. Thus, many works have
devoted to speedup SimRank computation with approxima-
tion. In this paper, we also focus on the efficient approxima-
tion of SimRank. We summarize three major challenges in
SimRank approximation and motivate our solution as fol-
lows– the detailed study of existing works can be found in
Section 2.

First, as there are distinct modes of SimRank for different
scenarios, it is desirable to support all different modes in a
unified manner by one algorithm for simplicity and robust-
ness of system maintenance. In contrast, virtually all exist-
ing algorithms are designed for specific modes. E.g.,
ProbeSim [14] and PRSim [26] the state-of-the-art methods
based on Monte Carlo simulation, sample random tours
from a single-source query node which cannot be naturally
extended to sampling for single-pair queries where the two
ends are fixed and must meet.

Second, as different applications may have specific req-
uirement of the approximation– some online tasks empha-
size on a fast estimate while some others may rely on more
accurate scores, it is desirable to support flexible tradeoffs
of efficiency and accuracy. For example, in the Bibliographic
search scenario, a fast estimate of SimRank similarities is
expected to quickly return a ranked list of relevant papers,
while in the Collaboration prediction scenario, more accurate
SimRank scores would be preferred for an effective pre-
diction. In contrast, most other algorithms exhibit often a
narrow range of tradeoff. E.g., ProbeSim’s random trials
requires a certain amount of minimal “significant” samples
of the computation space, which restricts its range of
tradeoffs.

Third, as most real-world graphs are dynamic with fre-
quent updates (e.g., social networks such as Twitter), it is
desirable to support efficient online computation without
relying indexes. In contrast, many other algorithms need to
precompute and maintain an index to process online
queries, and thus are not flexible to handle dynamic graphs.
E.g., FLPMC, FBLPMC [24], the state-of-the-art index-based
single-pair SimRank algorithms needs 100ms to 1s to update
its index for each edge insertion or deletion on medium-

sized graphs, and with the increasing of graph size, the
index update time grows exponentially.

Our Principle. Motivated by the three challenges, we pro-
pose a unified and incrementally-enhanced framework,
UISim, to efficiently process different modes of SimRank
queries based on the random surfer-pair model [6] where the
SimRank similarity sðu; vÞ is interpreted as the probability
that two random surfers can meet if they randomly walk
backwards on the graph G, from nodes u and v respectively.

Specifically, UISim has three major ingredients–unified
computation space, prioritized exploration of the space, and
online sharing of common computation– which are expected to
tackle the above challenges.

First, to support unification of different modes, it identifies a
“computation space of query tours” that is naturally adapt-
able to each distinct mode– For any SimRank query Q ¼
ðA;BÞ where each of A and B is set of query nodes, its com-
putation space is conceptually viewed as the aggregate of
necessary random walk tours starting from A and B. Thus,
to calculate any similarity scores SðQÞ, we can simply enu-
merate the set of corresponding query tours TQ and process
them in a unified framework– all tours in TQ aggregate to the
exact scores, while a subset of tours gives an approximation.

Second, to support flexible tradeoff of time and accuracy, it sug-
gests “a prioritized exploration of the computation space” to
gradually cover the query tours in an important-first man-
ner– TQ is further partitioned into disjoint subsets TQ ¼
T 0
Q [� � � [T h

Q such that tours in any T i
Q are more important

than tours in T iþ1
Q . We then handle TQ throughmultiple itera-

tions, with each iteration i computing a SimRank increment
ŜiðQÞ over the tours in T i

Q, adding up to an overall estimate

ŜðhÞðQÞ ¼ Ŝ0ðQÞ þ � � � þ ŜhðQÞ after h iterations. Unlike ran-
dom sampling, our scheduled approximation is determin-
istic, intentionally prioritized and incrementally enhanced,
and thus we can support a wide range of tradeoffs without
being burdened by statistically-necessaryminimal sampling.

Third, for efficient computation without relying indexes, it
allows us to create and share common ”building blocks”
computed on-the-fly to accelerate the iterative computation–
We factorize the query tours into fine-grained segments (i.e.,
hub segments) that shared across iterations, and organize
them to create basic computation units which can be easily
computed and reused online. Thus, each SimRank increment
ŜiðQÞ can be efficiently derived from the “assembling” of
common building blocks. Unlike other indexed approaches,
our principle achieves high efficiency by sharing online com-
putations rather than relying on precomputed indexes, and
thusworkswell on both static and dynamic graphs.

Realization Challenges. Note that, the scheduled approxi-
mation of UISim shares similar insight with a previous
work FastPPV [31] which efficiently handles PPV queries by
arranging the important tours first for a fast estimate, as
there is a fundamental connection between SimRank and
PPV computation– both can be conceptualized as the incre-
mental aggregation of random walk tours with varying
importance. However, realizing such principle in SimRank
setting posts unique challenges due to the complex query
tours and the diverse query modes:

� First, complex query tours. The query tours TQ SimRank
deals with are complex two-side tours u

ˆ

xˆ v that

TABLE 1
SimRank Problems on a Graph G ¼ ðV;EÞ

3196 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

meet at any common node x, while the principle in
FastPPV is originally designed for regular tours uˆ v
from one node to the other. Simply adapting FastPPV
to incrementally expand the regular tours on each side
of meeting nodes waste a lot of computations as most
of the spanned tours would not have the same length
or ending node and thus can not be assembled as valid
SimRank tours. One the other hand, the scheduled
approximation principle of FastPPV can only ensure
the one-side regular tours are partitioned and incre-
mentally processed by their importance, while assem-
bling two sets of important regular tours may not
necessarily result in an important partition of two-side
SimRank tours as the number of valid assembling
from those tours are not guaranteed. Thus, to incre-
mentally explore the computation space of SimRank
queries for an important-first approximation, we need
to develop new techniques to prioritize the generation
of the two-side query tours TQ ¼ T 0

Q [� � � [T
h

Q from
regular one-side tours onG.

� Second, diverse query modes. SimRank has a variety of
concrete modes, each of which has its own require-
ment to identify the computation space, while
FastPPV only solves one kind of single-source query.
Extending FastPPV to other modes is problematic.
For example, for single-pair queries, spanning of
tours from a source to all reachable nodes would be
wasteful as many of the spanned tours would not
reach the specific target node; while for all-pair
queries, redundant computation over shared tours
spanned from different source nodes should be
avoided. Thus, we need to efficiently specialize the
generation of each T i

Q for different mode of queries
such that a complex query (e.g., single-source Sim-
Rank sðuÞ) can be better processed than trivially
repeating a set of the basic queries (e.g., single-pair
SimRank sðu; vÞ for each v 2 V).

To concretely realize the principle, we investigate the
necessary query tours in different SimRank modes, and pro-
pose to unify their computation space with the assembling
of two query-specific “partial-tour” sets PA ffl PB in Sec-
tion 3. We then develop a hub-based benefit model to parti-
tion those partial tours and assemble their partitions in an
incremental and prioritized manner such that the query
tours that bring more contribution in the computation
would be generated earlier in Section 4. We further identify
the shared tour segments in different partial-tour partitions
and propose a subgraph expansion model to use those sub-
structure as building blocks to speed up the iterative online
computation in Section 5. We analyze the complexity and
error bound of UISim in Section 6.

Empirical Evaluation. We conduct extensive experiments
on various real-world datasets in Section 7. We empirically
study the effect of parameters in UISim, and compare it with
the state-of-the-art baselines in different modes, and find out
UISim significantly outperforms its respective baselines in
each mode– compared to the strongest baselines designed
specifically for each mode, to achieve the same level of accu-
racy, the running time of the unified UISim is significantly less
than that of the baseline. We also validate the scalability of
UISim in growing graphs.

2 RELATED WORK

Numerous studies have been devoted to speeding up the
computation of SimRank on a single machine, which fall
into three main categories in the following.

Iterative Methods. Some early approaches directly opti-
mize the basic iterative algorithm, by reducing unnecessary
computation and reusing shared computation both within
and across iterations. Lizorkin et al. [15] propose to memo-
rize the reusable partial sums across iterations to prevent
repeated computation for all-pair SimRank. Yu et al. [27]
further reduce the redundancy in computing partial sums
with sub-summation sharing in all-pair mode. Li et al. [12]
employ position probability to reduce the computation not
relevant to a query in the single-pair mode. However, even
the state-of-the-art iterative methods [12], [27] require
OðkjV j2Þ time for k iterations in the worst case, which is still
infeasible to handle large graphs.

Linear System Solution.Another line of research transforms
the iterative SimRank equation into linear system representa-
tion, and applies the linear algebra techniques such asmatrix
decomposition to approximation SimRank. Li et al. [11]
derive a linear system and performs singular value decom-
position (SVD) on the similarity matrix to get SimRank
approximation. Fujiwara et al. [5] propose SimMat that com-
putes SimRank based on the Sylvester equation and low-
rank approximation of the similarity matrix. Yu et al. [28]
relax the constraint that the graph should be non-singular
and provides a treatment of SimMat, by supporting similar-
ity assessment on non-invertible adjacency matrices. Wang
et al. [25] propose a new closed-form solution of exact Sim-
Rankmatrix, based onwhich a local push algorithm is devel-
oped for all-pairs SimRank computation. The linear system
basedmethods breaks the holistic nature of SimRank compu-
tation, however, they cannot guarantee the first-meeting con-
straint in the original SimRank definition. Moreover, they
require quadratic time to obtain a low-rank representation
and loss accuracy from the optimization techniques.

RandomWalk-Based Approximation.To handle large graphs,
the majority of studies solve SimRank based on random
walks. Fogaras et al. [4] apply MC simulation to sample ran-
domwalk paths between two nodes, which addresses single-
pair SimRank. Kusumoto et al. [8] later extend it to address
the single-sourcemode through extensive pruning. Although
MC methods are promising in handling large graphs, they
can only achieve a higher level of accuracy throughmore and
more samples at the cost of efficiency. Wang et al. [24] pro-
pose to combine the local push technique [25] with MC sam-
pling to reduce the sample size. However, the worst case
complexity of the proposed index-free version BLPMC is the
same as the pureMC sampling, while amore efficient version
FLPMC relies on an index precomputed on a conceptual
graph with jV j2 nodes. Wei et al. propose an index-free sin-
gle-source algorithm ProbeSim [14] that performs MC simu-
lation to sample the

ffiffiffi

c
p � walk of query node, and then from

each visited node probes the
ffiffiffi

c
p � walk on the other side to

compute the probability of walk pairs. The authors also pro-
pose an index-based algorithm PRSim [26] that decomposes
a SimRank query sðu; vÞ into two l� hop RPPR (reversed Per-
sonalized PageRank values) and a last meeting probabilities,
combining MC sampling and local push techniques to solve

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE 3197

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

the decomposed computations with precomputed RPPRs.
Wang et al. [23] further combine the ideas of PRSim and line-
arization to derive a probabilistic exact single-source Sim-
Rank algorithm ExactSim with additive error of at most
�min ¼ 10�7, which can be used to compute the ground truth
on billion-edge graphs. Instead of sampling the randomwalk
tours of a query, a recent work SimPush [19] proposes to
focus on the query tours around a small set of attention nodes
in the close vicinity of the query node to answer single-source
SimRank queries. Although ignoring tours around non-atten-
tion nodes reduces the computation overhead, it can also hurt
the accuracy of approximation. Moreover, in order to select
the attention nodes, SimPush needs to compute the hitting
probabilities for all nodes in a source graph– a lot of computa-
tions arewasted on non-attention nodes.

Comparison to Our Work. First, in terms of problem, UISim
proposes to unify all three modes of SimRank with the
scheduled approximation principle, and develops mode-
specific techniques to efficiently handle different SimRank
queries. On the contrary, most previous work only focuses
on one specific mode of SimRank problem. Extending the
algorithms designed for one mode to other modes is not fea-
sible. For example, if we adapt the single-source solution
ProbeSim or PRSim to answer a single-pair query sðu;wÞ,
most of the probes or backward walks would be wasted as
they may not hit the specific node w. Although some previ-
ous work [16], [29] also address different modes of Sim-
Rank, their techniques are essentially designed for certain
modes. In particular, Yu et al. [29] conceptually integrate
different modes of SimRank problems by a general defini-
tion partial pair SimRank (i.e., SimRank similarity between
any two sets of nodes). However, they develop an opti-
mized technique for single-source SimRank only, and pro-
poses to decompose the partial-pair problem into multiple
single-source problems. Maehara et al. [16] propose a linear-
ized technique to efficiently tackle single-pair and single-
source, while the all-pair problem is solved by trivially
repeating the single-source solution. To answer threshold-
based SimRank Join queries, the authors further propose a
filter-and-verification framework [17] to prune the node-
pairs based on their SimRank bounds in the filter phase;
and assess the similarity of the candidate pairs in the verifi-
cation phase.

It is worth noting, although it is not tailored for SimRank
Join, UISim naturally supports top-K SimRank Join due to its
important-first nature– the most similar node-pairs would
always be computed earlier as the tours between them have
higher importance to be scheduled earlier in our incremental
processing framework. On the contrary, existing SimRank
Join algorithms mainly rely on some pruning techniques to
find a candidate set of promising nodes for further verifica-
tion given a specific similarity threshold [17], [30] or the
number of expected results [13], [21], which is less flexible

than the prioritized and incrementally-enhanced approxi-
mation of UISim.

Second, in terms of technique, our work follows the line
of approximating SimRank over random walk tours. How-
ever, instead of randomly stimulating fingerprints, we
structurally organize all the tours in the computation space
based on their importance, and enumerate them in a priori-
tized way. Thus, UISim has two distinct properties,
“important-first” and “incrementally-enhanced”, compared
to existing works in the same line. Note that, TopSim [9]
and SimPush [19] are also based on path enumeration rather
than random simulation. However, they only consider ran-
dom walk tours in a fixed-length neighborhood of query
node, or around some attention nodes in the neighborhood.
On the contrary, UISim allows a wide range of tradeoff of
time and accuracy by gradually cover the tours in the entire
computation space. Another line of local push based algo-
rithms [24], [25] have the same issue that a certain amount
of local push operations are required to explore the useful
query tours. Therefore, when the time budget is limited, the
performance of local push based algorithms is significantly
inferior than that of UISim.

Third, in terms of applications, UISim is capable of han-
dling both static and dynamic graphs. Different from the
index-based algorithms which needs expensive cost to
update their index on dynamic graph [18], [24], UISim runs
all the computations at query time and thus can support
real-time queries on any graphs. There are also some index-
free algorithms proposed to support dynamic updates [9],
[14], but UISim outperforms them in query efficiency as we
factorize the tours handled in iteration into fine-grained
building blocks that can be computed efficiently online and
shared across iterations.

3 UNIFIED COMPUTATION SPACE: AGGREGATING

TOURS

As motivated in Section 1, there are distinct modes of Sim-
Rank in real applications, requiring a unified algorithm to
process different queries. To support unified SimRank, we
first investigate the computation space of the general Sim-
Rank queries. To illustrate, we introduce a toy graph G in
Fig. 1, and in Fig. 2 we list the query tours of an example
partial-pair query Q ¼ ðfag; fb; ggÞ. We observe that the
computation space of Q is composed of a set of two-side
tours ended with node a and nodes b; g on each side, which
can be partialized into two sets of regular tours at the cen-
tered nodes x1, x2, x3.

Conceptual View of Computation Space. Conceptually, we
can model the computation space of any SimRank query
Q ¼ ðA;BÞ as a set of query tours TQ w.r.t. the query nodes A
and B, formalized as

Fig. 1. A toy graph G.

Fig. 2. Query tours of Q ¼ ðfag; fb; ggÞ.

3198 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

TQ ¼ fu u1

ˆ

uk x! vkˆ v1 ! vju 2 A;

v 2 B; x 2 X; 8i 2 ½1; k�; ui 6¼ vig;
(2)

where X ¼ fxjx 2 V; jOutðxÞj � 2g is defined as the set of
meeting nodes, i.e., any node x with at least two out-neigh-
bors jOutðxÞj � 2 on G. Note that, we use

ˆ

(ˆ) to denote
a sequence of edges and (!) to denote a direct edge
throughout this paper.

Then any SimRank similarity can be interpreted as the
first-meeting probability of two backward random surfer onG,
starting fromA andB respectively, i.e., the aggregated reach-
abilities of tours in TQ. Specifically, sðu; vÞ can be calculated
by aggregating the reachabilities of the two-side first-meeting
tours, u

ˆ

x ˆ v, which endwith u and v on each side [12]

sðu; vÞ ¼
X

t2fu ˆx ˆ vg
RðtÞ: (3)

It is worth noting that if the graph contains cycles or self-
loops, the computation space of certain queries would con-
sist of infinite number of tours. However, a large number of
longer tours containing circles would have trivial contribu-
tion to the overall score. In other words, although in this
cases the exact SimRank scores should be computed over a
finite set of query tours, we can still obtain a good approxi-
mation over a smaller set of important tours.

Concrete Tour Space. To partition TQ for a scheduled
approximation, we notice that TQ is a set of complex “two-
side” tours which can not be directly identified on G– they
have to be assembled (or partialized) first. Specifically, each
two-side query tour should be assembled from two regular
tours on G. For example, for a single-pair query Q ¼ ða; bÞ,
the query tours Tða;bÞ is built by assembling the same-length
regular tours from the same meeting nodes to a and b
respectively. Formally, for any two regular tours pu : xˆ u
and pv : x

0
ˆ v on G, we define pu � pv as the constrained

assembling of pu and pv if they 1) start at the same meeting
node, and 2) have the same length. That is

pu � pv 	 u

ˆ

x ˆ v iff x ¼ x0and LðpuÞ ¼ LðpvÞ;
(4)

where LðpÞ denotes the length of an arbitrary tour p. To
avoid ambiguity, we also refer a two-side query tour as a
full tour, and each regular tour as a partial tour.

Generally, the query tours TQ in any SimRank modes can
be assembled from two corresponding partial-tour sets PA

and PB. Let PU denote the set of partial tours ending at a
node u 2 U , i.e., PU ¼ fp : vˆ uju 2 U; v 2 V g, in realization,
we construct TQ as

TQ 	 PA ffl PB ¼ fpa � pbjpa 2 PA; pb 2 PBg: (5)

Note that, in Eq. (4), we relax the first-meeting constraint, i.e.,
two partial tours should meet at only one node, similar as
previous works [18], [21], [22], [26]. Including the multi-
meeting tours (i.e., full tours that have more than one meet-
ing node) would make the score larger than the exact one,
but the error is bounded and small [18]. Therefore, as an
approximation algorithm, UISim is developed based on
Eq. (4) in the following of the paper, and we will provide a
deterministic multi-meeting tours correction method in

Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2021.3111734, while the existing works [22],
[26] rely on a probabilistic approximation of the induced
error with random sampling.

The unification of computation space discussed above is
naturally adaptable to each distinct SimRank mode:

� First, any SimRank query SðQÞ can be processed by
incrementally aggregating the reachabilities of cer-
tain query tours TQ– all tours in TQ aggregate to the
exact scores, while tours in certain partitions T i

Q give
an approximation.

� Second, the scheduled approximation principle (see
Section 1) applies to any mode by enumerating and
prioritizing the corresponding partial tours PA and
PB, which we will discuss in Section 4.

4 INCREMENTAL APPROXIMATION: REALIZING

WITH PARTIAL TOURS

We now discuss how to concretely realize the scheduled
approximation principle with partial tours to support flexible
tradeoff of time and accuracy. Specifically, to incrementally
generate the partitions of TQ, we will explore how to partition
partial tours (e.g., PA) into subsets (e.g., PA ¼ P 0

A [� � � [P i
A),

and schedule the assembling of these partitions (e.g., P i
A ffl

P j
BÞ in a way that the full tours generated earlier would bring

more accuracy improvement to the computation.

4.1 Hub-Based Benefit Model

Conceptually, we define the benefit of a partial-tour assem-
bling as the accuracy improvement from handling the
assembled tours, and propose to schedule the assembling of
partial tours based on their benefit. As the benefit of an
assembling depends on the importance of each full (assem-
bled) tour and the number of full tours, i.e., handling more
important tours would better improve the accuracy of esti-
mation, we develop two rules to schedule the assembling of
partial tours as follows:

� Rule 1 (Important-First): Important partial tours assem-
bled earlier. As the reachability (i.e., importance) of
any full tour Rðpu � pvÞ can be computed as the prod-
uct of its partial tours’ reachability RðpuÞRðpvÞ

CLðpuÞ
, by

assembling the important partial tours earlier, we
can also obtain the important full tours earlier.

� Rule 2 (Symmetric-Preferred): Symmetric partitions of
partial tours assembled earlier. As each full tour must
be symmetric (in terms of tour length) at the meeting
node, by assembling symmetric partial tours, we can
expect more valid matches.

Guided by the two rules, we now propose a hub-based ben-
efit model to concretely partition the partial tours and incre-
mentally assemble their partitions.

First, Partitioning Partial Tours. To partition partial tours,
we need a simple yet effective metric to quantify the above
rules. In the SimRank setting, the reachability of a specific
partial tour p : x! w1 ! � � � ! wk with length LðpÞ, is the
probability of reaching x from wk through p in a reverse ran-
dom walk where at each step, the random surfer would go

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE 3199

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

to one of its in-neighbors, with probability C, i.e., the damp-
ing factor in random walks. That is,

RðpÞ , CLðpÞ
Y

LðpÞ

i¼1

1

jInðwiÞj
: (6)

Therefore, nodes with a large number of in-neighbors sig-
nificantly decay the reachability of the tours passing
through. In other words, the importance of partial tours can
be indicated by the number of high in-degree nodes. On the
other hand, the symmetry of two partial tours can also be
indicated by the number of high in-degree nodes they pass
through. Tours passing through more high in-degree nodes
tend to be longer in terms of their natural length, and vice
versa. While this correlation is intuitive, we also empirically
verified it, and found that the average correlation coefficient
of the number of high-degree nodes in a tour and the tour
length in the real-world datasets is around 0.99.

In summary, the number of high in-degree nodes is effec-
tive to measure both tour importance and symmetry. We
also refer to the high in-degree nodes as hub nodes and the
number of hub nodes in a tour p (excluding the starting
node as it does not decay the reachability of p) as the hub
length of p, denoted by LhðpÞ.

Therefore, given a set of hub nodes H selected on G, any
partial tour set Pu can be partitioned into h disjoint subsets
P i
u, each of which contains only the tours of hub length i,

formalized as

Pu ¼ P 0
u [. . . [P h

u s.t. 8i 2 f0; . . . ; hg; P i
u ¼ fp j p 2 Pu;LhðpÞ ¼ ig:

(7)

Second, Assembling Full Tour.With the hub length notion, we
can concretize the two rules to prioritize the assembling of
partial-tour partitions: 1) According to the Important-First
Rule, any two partitions with a smaller sum of hub length
should be assembled earlier; 2) According to Symmetric-Pre-
ferred Rule, partitions with a smaller difference in the hub
length should be assembled earlier.

More formally, for any two assemblies Aij : P
i
u ffl P j

v and
Ai0j0 : P

i0
u ffl P j0

v , we should schedule Aij in an earlier itera-
tion than Ai0j0 , denoted by Aij
 Ai0j0 , with the following cri-
teria:

Aij
 Ai0j0 if

iþ j � i0 þ j0

and

ji� jj � ji0 � j0j

8

<

:

: (8)

We also notice that, the two rules may conflict some-
times. For example, consider two assemblies P 0

u ffl P 1
v with

P 1
u ffl P 1

v , the first one should be scheduled earlier according
to Rule 1, while it should be scheduled later according to
Rule 2. Generally, when the order of two assemblies con-
flicts by each individual rule, the benefit of their assembling
can not be differentiated, and thus can be scheduled in
either order.

4.2 Prioritized SimRank Approximation With Benefit
Model

To leverage the benefit model for a prioritized SimRank
approximation, We propose to integrate the above two rules

into Maxði; jÞ and use it as the overall priority index of any
P i
u ffl P j

v , since Maxði; jÞ equals ðiþ jÞ þ ji� jj, i.e., larger
iþ j and larger ji� jj would result in a larger Maxði; jÞ,
and thus has a higher priority to be scheduled. Note that,
other metrics are also possible as long as they are consistent
with Eq. (8), and easy to check.

Now, we are able to generate the full tours through itera-
tions to incrementally evaluate SimRank. For any two parti-
tions P i

u and P j
v , they will be assembled in iteration

Maxði; jÞ. In other words, in iteration k, all the partial-tours
assemblies P i

u ffl P j
v with Maxði; jÞ ¼ k would be scheduled

to generate a set of full tours, formalized as

T k
ðu;vÞ ¼

[

Maxði;jÞ¼k
P i
u ffl P j

v : (9)

Example: Scheduled Assembling of Full Tours. Fig. 3 illustrates
the process of generating the full tours of sða; bÞ with partial
tours in a prioritized manner. First, the partial tours in Pa

and Pb are partitioned by their hub lengths into P 0
a , P

1
a and

P 0
b , P

1
b respectively. As we can see, the reachabilities of tours

in P 0
a (or P 0

b) are smaller than that of tours in P 1
a (or P 1

b).
Next, according to their priority index Maxði; jÞ, tours in P 0

a

are assembled with tours in P 0
b (Maxð0; 0Þ ¼ 0) to generate

the most important full tours T 0
ða;bÞ in iteration-0, and the

other assemblies of partial tour partitions withMaxði; jÞ ¼ 1

(i.e., P 0
a ffl P 1

b , P
1
a ffl P 0

b , and P 1
a ffl P 1

b) are scheduled to gen-
erate tours T 1

ða;bÞ in iteration-1.
With the scheduled generation of full tour partitions, the

kth SimRank increment ŝkðu; vÞ is calculated as

ŝkðu; vÞ ¼
X

Maxði;jÞ¼k
RðP i

u ffl P j
v Þ; (10)

and the SimRank score ŝðhÞðu; vÞ estimated after iteration-
h is

ŝðhÞðu; vÞ ¼
X

h

k¼0

X

Maxði;jÞ¼k
RðP i

u ffl P j
v Þ ¼

X

i;j�h
RðP i

u ffl P j
v Þ:

(11)

The incremental approximation with prioritized assem-
bling of partial tours allows flexible tradeoff of accuracy
and time– a fast yet good estimate can be obtained with a

Fig. 3. An example of prioritized generation of full tour partitions with
benefit model (C=0.75).

3200 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

small h, which can be further enhanced by increasing the
number of iterations.

5 INDEX-FREE SOLUTION: SHARING ACROSS

ITERATIONS

To process SimRank queries in the incremental manner
(Eq. (11)) without relying on any precomputed indexes, we
now further examine the specific query tours in each itera-
tions for efficient online realization. Specifically, given any
queryQ ¼ ðA;BÞ, we will investigate how to efficiently span
the partial tours P i

u, P
j
v and generate the valid full tours.

First, partial tours spanning. To motivate, let’s examine the
partial tours in the first two iterations of estimating sða; bÞ
(i.e., ŝ0ða; bÞ and ŝ1ða; bÞ) in our toy graph.

We observe that the all the tours P 1
a (e.g., a d x3)

in iteration-1 can be “extended” from the tours ended
with hubs in P 0

a (e.g., a d), by adding corresponding
“extension” tours at that hub node (e.g., d x3). The reason
behind such extension is because we partition partial tours
by their hub length– tours in P i

u are one hub-length shorter
than tours in P iþ1

u and thus can be viewed as the “prefix”
tours of P iþ1

u . Generally, we use a graph expansion model to
illustrate such tour extension. We refer to the set of any par-
tial tours P i

u (i.e., hub-length-i tours ending at u) as the i-level
in-subgraph of u, as they actually form a subgraph of incom-
ing tours to u, formalized as Giðuj�Þ ¼ fp : u

ˆ

vjv 2
V ;LhðpÞ � ig. The 0-level in-subgraphs are also referred to
as the prime in-subgraphs. Then, by expanding the (i-1)-level
in-subgraph of u at its “border” hubs, denoted byHi�1

u , with
the hub-length-0 “extension” tours ending at hub, we can
obtain the i-level in-subgraph Giðuj�Þ consisting of the hub-
length-i partial tours

GiðujvÞ ¼
[

h2Hi�1
u

Gi�1ðujhÞ
G0ðhjvÞ: (12)

The reachability of the hub-length-i partial tours can be
“extended” similarly. Formally, let riðujvÞ be the overall
reachability of the extended tours in GiðujvÞ, we have

riðujvÞ ¼
X

h2Hi�1
u

ri�1ðujhÞ � r0ðhjvÞ: (13)

Such hub-by-hub graph expansion allows us to efficiently
enumerate the partial tours in each iteration by dynamically
creating and sharing the common “building blocks” across
iterations, i.e., the prime subgraphs of hub nodes– on the one
hand, once a prime subgraph is computed, it can be reused
in later iterations to build longer tours, as the set of partial
tours in any iteration are assembled from hub segments (i.e.,
hub-length-0 tours); on the other hand, the prime subgraphs

can be efficiently computed on-the-fly as it only consists
of the hub-length-0 tours in the neighborhood of certain
nodes.

Next, to assemble full tours over partial-tour partitions,
we notice that partial tours in a partition can have differ-
ent natural length, while the valid query tours should
have the same length on either side of the meeting nodes
by definition (Eq. (4)). Thus, to assemble two partial-tour
sets, we can skip those “mis-matching” partial tours as
they are not able to generate valid full tours. Accordingly,
the aggregated reachability of full tours in Ghðuj�Þ ffl
Ghðvj�Þ, can be obtained by assembling the reachability of
length-matched partial tours that start at the same meet-
ing node

R Giðuj�Þ ffl Gjðvj�Þ
� �

¼
X

x2X

X

l�M

1

Cl
ri;lðujxÞ � ri;lðvjxÞ
� �

;

(14)

where M is the maximal natural length in computation (i.e.,
the number of iterations required for the fixed-point method
to converge [6]), and in ri;lðujxÞ we expand the superscript
of hub length i to also denote natural length l as i; l.

Example: Efficient SimRank Estimation With Graph Expan-
sion. Fig. 4 shows an example of estimating ŝð1Þða; bÞ on our
toy graph (Fig. 1) with hub nodes H ¼ fa; b; c; d; gg. First, in
Fig. 4a the prime subgraphs of query nodes G0ðaj�Þ, G0ðbj�Þ
are expanded at their border hubs d; g; c. The corresponding
prime subgraphs G0ðdj�Þ, G0ðgj�Þ, G0ðcj�Þ are assembled to
generate the hub-length-1 tours in the expanded graphs
G1ðaj�Þ and G1ðbj�Þ. Then, tours in G1ðaj�Þ and G1ðbj�Þ are
assembled length-by-length at common meeting nodes.
Since there is no length-3 tours from node a, we will not get
a match for length-3 tours in G1ðbj�Þ as Fig. 4b shows.
Finally, ŝð1Þða; bÞ is estimated by aggregating the reachabil-
ities of all valid full tours where each reachability can be
efficiently obtained by reusing the reachability of shared
hub segments, illustrated in Fig. 4c.

Specification for Other Modes. Such hub-by-hub extension of
partial tours and length-by-length matching of full tours can
naturally apply to different SimRankmodes as we explained
in the unified principle. But since the partial tours PA and PB

in different modes can have different forms, i.e., they can be
ending at a single node, a subset of V , or any node in V , we
can utilize the special properties of partial tours in each
mode to designmore efficient implementations.

We start with two single nodes. To span the partial tours
from u to v (i.e., fuˆ vg), we can enumerate the incoming
tours of v from u, or outgoing tours of u to v. Such enumera-
tion can be done by growing a subgraph from v or u at differ-
ent directions– expanding the in-subgraph of v, denoted by

Fig. 4. An example of efficiently estimating ŝð1Þða; bÞ with graph expansion and length-aware assembling.

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE 3201

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

Gðvj�Þ ¼ fp : v

ˆ

wjw 2 V g, or out-subgraph of u, denoted by
Gð�juÞ ¼ fp : u ˆ wjw 2 V g. It is worth noting that, no mat-
ter the direction of expansion, the prime subgraphs are
always bordered by hub nodes (i.e., high in-degree nodes),
as by definition (Eq. (6)) the reachability of tours in both in-
subgraphs and out-subgraphs are decayed by the in-degree
(rather than out-degree) of nodes they pass through.

Now consider how to efficiently span a set of partial
tours PU . To assemble full tours, the valid partial tours in
PU should start from certain meeting nodes, and thus we
are able to compare the number of query nodes jU j with the
number of reachable meeting nodes jXU j to decide the
directions of subgraph expansion. If U only consists of a sin-
gle node u (as in the single-pair mode), we should expand
an in-subgraph Gðuj�Þ to obtain PU , since the other way of
expanding an out-subgraph Gð�jxÞ for each meeting node x
would waste more effort in tours that do not end at u. I.e.,
we choose to expand from U since jU j ¼ 1� jXj. In con-
trast, if tours in PU are from X to V , i.e., U ¼ V , we would
instead expand out-subgraphs Gð�jxÞ from each meeting
node x. That is, we now choose to expand from X, since
jXj < jU j ¼ jV j. Generally, we should expand the set with
fewer nodes– expanding jPU j in-subgraphs from query
nodes U if jPU j < jXU j or jXU j out-subgraphs from meeting
nodes XU if jXU j < jPU j. Therefore, given a parital-pair
SimRank query Q ¼ ðA;BÞ, we should compare jPAj, jPBj
with jXAj, jXBj respectively, and decide the direction of
expansion accordingly.

Example: Mode-Specific Spanning of Tours. Fig. 5 gives the
example of mode-specific tours spanning and assembling
using our toy graph G. For single-pair estimation ŝ0ða; bÞ,
the prime in-subgraph of a and b are spanned and then the
partial tours are assembled at the common meeting nodes
x3. For single-source estimation ŝ0ða; �Þ, first the prime in-
subgraph G0ðaj�Þ are spanned, then the prime out-subgraphs
of meeting nodes x1 and x3 in G0ðaj�Þ are spanned to gener-
ate the full tours. For all-pair estimation ŝ0ð�; �Þ, the out-
subgraphs of all meeting nodes x1, x2 and x3 in G are
spanned, and matched tours in each subgraph are assem-
bled as full tours.

Details of the unified index-free solution for three Sim-
Rank modes are illustrated in Algorithm 1. First, we select a
set of hub nodes H on the input graph G– Given jHj, the
number of hubs, jHj nodes with the highest in-degree are
chosen as hubs (Line 1). In our current discussion, we only
explore the decaying power of hubs for discriminating
tours, and thus we select hub nodes by their in-degree (i.e.,
higher in-degree indicates higher decaying power). The
number of hubs depends on the structure of graph, which
we will explain in the Section 7. Then we chose mode-spe-
cific graph expansion technique to compute the reachability
of partial tours, which will be further assembled in a length-

aware manner at the same meeting nodes and aggregate to
the overall approximation. The subroutine of incremental
graph expansion is sketched in Algorithm 2.

Algorithm 1. Incremental & Unified SimRank
Approximation

Input: a graph G; number of hub nodesH; number of
iteration h; query Q ¼ ðA;BÞ; max tour lengthM

Output: estimated SimRank ŜðhÞðQÞ
H Select jHj hubs on G;
if A ¼ fug; B ¼ fvg then
rðhÞðuj�Þ GraphExpðG;u; 0I 0; hÞ;
Xu meeting nodes in rðhÞðuj�Þ;
rðhÞðvj�Þ GraphExpðG; v; 0I 0; hÞ;
Xv meeting nodes in rðhÞðvj�Þ;
foreach x 2 Xu \Xv do
foreach l 2 ½1;M� do
sðu; vÞ sðu; vÞ þ rðhÞ;lðuj�ÞrðhÞ;lðvj�Þ;
ŜðhÞðQÞ sðu; vÞ

end
end

if A ¼ fug; B ¼ V then
rðhÞðuj�Þ GraphExpðG;u; 0I 0; hÞ;
Xu meeting nodes in rðhÞðuj�Þ;
foreach x 2 X do
rðhÞð�jxÞ GraphExpðG;x; 0O0; hÞ;
foreach v 2 V do
foreach l �M do
sðu; vÞ sðu; vÞ þ rðhÞ;lðuj�ÞrðhÞ;lð�jxÞ;
^½S�̂½S�u;v sðu; vÞ;

end
end

end
ŜðhÞðQÞ ^½S�̂½S�;

if A ¼ B ¼ V then
X meetingnodesinG;
foreach x 2 X do
rðhÞð�jxÞ GraphExpðG;x; 0O0; hÞ;
foreach v 2 V do
foreach l �M do
sðu; vÞ sðu; vÞ þ rðhÞ;lðujxÞrðhÞ;lðvjxÞ;
^½S�̂½S�u;v sðu; vÞ;

end
end

end
ŜðhÞðQÞ ^½S�̂½S�;

return ŜðhÞðQÞ.

6 COMPLEXITY AND ERROR ANALYSIS

In this section, we present an analysis of the UISim algo-
rithm, in terms of its complexity and error bound.

Fig. 5. An example of spanning partial tours in different modes.

3202 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2. GraphExp (Subroutine)

Input: a graph G; a root node u; type of subgraph k, number
of iterations h

Output: reachability over h-level subgraph rðhÞu

1: if k ¼ 0I 0 then
2: Construct prime in-subgraph G0ðuj�Þ on G;
3: r0u r0ðuj�Þ;
4: if k ¼ 0O0 then
5: Construct prime out-subgraph G0ð�juÞ on G;
6: r0u r0ð�juÞ;
7: rðhÞu r0u;
8: if h > 0 then
9: for i ¼ 1 . . . h do
10: Hi hubs in ri�1u ;
11: foreach hi 2 Hi do
12: if k ¼ 0I 0 then
13: Expand Gi�1ðujhiÞwith G0ðhij�Þ;
14: riu r0ðujhiÞr0ðhij�Þ;
15: if k ¼ 0O0 then
16: Expand Gi�1ðhijuÞwith G0ð�jhiÞ;
17: riu r0ð�jhiÞr0ðhijuÞ;
18: end
19: rðhÞu rðhÞu þ riu;
20: end
21: return rðhÞu .

6.1 Complexity Analysis

Time Analysis. Since hub selection can be done in constant
time, we focus the complexity analysis on 1) initial prime
subgraphs processing cost, 2) prime subgraphs expansion
cost, and 3) full tours assembling cost.

First, initial prime subgraph processing cost. Depending
on the mode of SimRank query, we have different kinds of
prime subgraphs—prime in-subgraphs of u and v for a sin-
gle-pair query Q ¼ ðu; vÞ, prime in-subgraph of u and prime
out-subgraphs of the corresponding meeting nodes x 2 Xu

for a single-source query Q ¼ ðu; V Þ, and prime out-sub-
graphs of each meeting node x 2 X for an all-pair query
Q ¼ ðV; V Þ. Given an average degree d and an input prime
subgraph of size m (i.e., of m nodes), while the processing
time consists of the construction time and reachability com-
putation time, the former is dominated by the latter. In par-
ticular, the reachabilities can be computed using the fixed
point power-iteration method [31], which takes Oððmþ
mdÞIÞ ¼ OðmdIÞ time, where I is the number of power iter-
ations andmd is the number of edges. Note that the number
of power iterations I is the number of times to multiply the
transition matrix in the power-iteration method until con-
vergence, which is typically a small constant. In contrast,
the construction of the prime subgraph is done using a
depth-first search, which takes OðmþmdÞ ¼ OðmdÞ time
only. Therefore, the overall processing time is OðmdIÞ.

Second, prime subgraph expansion cost. Prime sub-
graphs expansion is to extend the initial prime subgraphs at
their border hubs (i.e., assemble the prime subgraph of each
border hub), iteration by iteration, to build the candidate
partial tours. Assuming an average degree of d, the sum of
degrees of all hubs nodes dH and the sum of degree of all
nodes dV , there are T ¼ Oððdð1� dH=dV ÞÞLÞ partial tours of
up to length L in each prime subgraph. That is, at each node

(starting from the query node), among the d neighbors,
dðdH=dV Þ is the number of hub nodes (given that dH=dV is
the probability of an outgoing edge leading to a hub) where
the expansion would stop, and dð1� dH=dV Þ is the number
of non-hubs which will be further expanded to span longer
tours. Note that, hub nodes are typically nodes with largest
degrees, and thus 1� dH=dV would be small. Moreover,
when H becomes larger, 1� dH=dV and hence T will
decrease—a prime subgraph reduces its size significantly
when the number of hubs increases.

Suppose a prime subgraph has j �Hj border hubs. Clearly,
j �Hj � jHj, and in most cases j �Hj � jHj. In each iteration:

� For single-pair mode, we extend j �Hj prime in-sub-
graphs (each of which contains T tours) on each side
of the query node.

� For single-source mode, we extend j �Hj prime in-sub-
graphs on the side of the query node, and j �Xjj �Hj
prime out-subgraphs on the side of meeting nodes �X
for the given query. Clearly j �Xj � jXj where X is the
set of all meeting nodes.

� For all-pair mode, we extend at most jXjj �Hj prime
out-subgraphs on all meeting nodesX.

Thus, the complexity of h iterations of expansion is
bounded by Oðj �HjhT Þ, Oðj �Xjj �HjhT Þ and OðjXjj �HjhT Þ for
the three modes, respectively.

Note that, in UISim we use iteration to refer to the exten-
sion of subgraphs, which is different from the fixed-point
iteration as used in traditional iterative methods. Specifi-
cally, the fixed-point iterative method generally stabilizes
after 5 iterations [6], which means we only need to handle
partial tours of natural length up to 5 (i.e., L ¼ 5). In UISim,
the hub length of a tour is generally much smaller than its
natural length, and thus it is sufficient to cover the neces-
sary tours with only 1–2 expansions (i.e., h � 2), as our
experiments in Section 7 would also confirm.

Lastly, full tour assembling cost. When the candidate
partial tours on each side of the meeting nodes are spanned,
they will be matched to build the full tours. To generate
valid full tours, only the partial tours of the same length
will be assembled. Given an expanded subgraph, there are
T partial tours up to length L as discussed earlier. Thus, the
cost to match two set of partial tours up to length L in a sub-
graph is T 2. That is, we have T tours on each set, and we
need to do pair-wise assembling of them. Thus, for single-
pair mode where only two subgraphs will be handled, the
assembling cost is OðT 2Þ, for single-source mode, it costs
Oðj �XjT 2Þ to assemble j �Xj pairs of subgraphs, and for all-
pair mode, OðjXjT 2Þ is required to assemble jXj pairs of
subgraphs.

Space Analysis. The space cost depends on the number of
prime subgraphs handled in each iteration. Following the
time analysis, all the modes require OðmdÞ space for the ini-
tial prime subgraphs. In addition, the single-pair mode
requires an extra space of Oðmdj �HjhÞ to store the prime sub-
graphs used in h expansions. Similarly, the single-source
and all-pair modes require an extra space of Oðmdj �Xjj �HjhÞ
and OðmdjXjj �HjhÞ, respectively.

Summary. We summarize the time and space complexity
analysis in Table 2. We make two remarks on the computa-
tion of UISim.

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE 3203

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

First, the three modes of UISim are necessary for efficient
mode-specific computation. Comparing across the three
modes, we clearly observe that the advantage of mode-spe-
cific query processing techniques in terms of both time and
space. Specifically, the single-source cost is smaller than that
of repeating single-pair queries for jV j times since j �Xj � jV j,
and the all-pair cost is much smaller than repeating the sin-
gle-pair mode for jV j2 times since jXj � jV j2, or repeating the
single-sourcemode for jV j times since jXj � jV jj �Xj.

Second, UISim is efficient and scalable. Its time cost is domi-
nated by the prime subgraphs expansion cost (e.g.,Oðj �HjhT Þ,
where h is typically in [0,2], and j �Hj � jV j. More importantly,
given more hubs, each prime subgraph handled in computa-
tion becomes smaller rapidly. That is, both m and T signifi-
cantly decrease with a larger number of hubs. Similarly, the
prime subgraph construction and full tour assembling cost
also decreases with a larger H. Therefore, UISim is scalable to
larger graphs by selecting a large number of hubs.

6.2 Error Bound Analysis

As UISim incrementally handles partitions of query tours to
approximate the SimRank score of any nodes u and v, the
accuracy of the approximation improves with more itera-
tions of enhancement. Formally, we establish the following
theorem on the expected error after h iterations.

Theorem 1. Consider a random edge from the graph. Suppose
the probability of the edge ending at any node is proportional to
the node degree. Then, the expected error in ŝðhÞðu; vÞ, which
represents the SimRank estimation between u and v after h iter-
ations, satisfies the following bound:

Eu;v2V sðu; vÞ � ŝðhÞðu; vÞ
h i

� dH
dV

� �hþ1
Chþ2; (15)

where dV is the sum of degrees of all nodes, and dH is the sum
of degrees of all hub nodes.

Proof. To compute the expected error, we investigate the
length of partial tours covered after h iterations. First, all of
the partial tours up to length hþ 1 have been covered. Par-
tial tours of exactly length hþ 1 only accounts for a fraction
of ðdHdV Þ

h of all tours starting from the query node. Further-
more, for such a partial tour, there is a probability of dH

dV
when the partial tour ends at a hub node and thus cannot
extend further. Thus, among all the partial tours, a fraction
of ðdHdV Þ

hþ1 will not extend to length hþ 2 or longer. In other
words, this fraction of the set of partial tours of length hþ
2 or longer are not covered after h iterations. As established
previously [15], the total contribution of all hþ 2 or longer
partial tours is bounded by Chþ2. Thus, in our case, the
expected error is bounded by ðdHdV Þ

hþ1Chþ2. tu

Since C < 1 and dH
dV

< 1, the bound approaches 0 at an
exponential rate as h grows. In other words, an earlier itera-
tion contributes exponentially more to the SimRank score.
Plugging in some plausible values C ¼ 0:75, dH

dV
¼ 0:2 and

h ¼ 2, we get the bound as 0.00253, which is fairly tight
given that 0 � sðu; vÞ � 1.

Remark. Our bound is built upon the skewed degree dis-
tribution of nodes. Moreover, we are assuming an undi-
rected graph in the analysis here, which means the in- and
out-degrees are the same. (In the case of a directed graph,
the analysis should use in-degrees instead, i.e., the probabil-
ity of a directed edge ending at any node is proportional to
the node in-degree.) In particular, hub nodes have higher
degrees and partial tours are more likely to run into a hub
node, i.e., dHdV �

jHj
jV j . That means, the probability of a random

edge ending at a hub node is skewed w.r.t. the degree,
rather than uniformly distributed over all nodes.

7 EMPIRICAL EVALUATION

We empirically evaluated UISim on several real-world
graphs. The experiments showed that UISim is substantially
more efficient than previous state-of-the-art baselines in all
three modes, and can also scale to larger graphs.

7.1 Experimental Setup

Datasets. We use eight real-world datasets from different
domains and with different properties and sizes summa-
rized in Table 3. In particular, six datasets are used for base-
line comparison where three smaller graphs of them are also
used for parameter study, and two evolving graphswith sev-
eral snapshots are used to test the scalability of UISim.

Environment. We implement all methods in C++, and
evaluate them on a Linux system with 3.5 GHz CPU and
192 GB RAM.

7.2 Experiments on Smaller Graphs

We first evaluate the algorithms on three smaller graphs,
4Area, WikiVote and CondMat. As the ground truth, the
exact SimRank scores are computed by the power-iteration
method with 55 iterations which ensures at most 10�12 abso-
lute error.

Test Queries and Evaluation. In the single-pair and single-
source modes, we randomly sample 100 queries from each
graph. Given a query, all the methods compute approximate
SimRank scores. Thus, we need to evaluate their accuracy w.
r.t. the exact scores based on the n€aive computation. In par-
ticular, for single-pair queries, we adopt the metrics of Abso-
lute Error (AbsErr) and Relative Goodness (RG). For a node
pair, suppose its exact SimRank score is s and the estimated
score is ŝ. Subsequently, AbsErr is simply defined as s� ŝj j,
and RG as min ðsþ dÞ=ðŝþ dÞ; ðŝþ dÞ=ðsþ dÞf g where d is a
small number to avoid division by zero. We then report the
average of the 100 test pairs for eachmetric.

For each single-source query, we compute the SimRank
scores of other nodes w.r.t. the query node, which enable us
to obtain a ranking of nodes in decreasing SimRank scores.
Given that users are often more interested in first few
ranked results, we evaluate the accuracy of top K nodes in
the ranking, where K ¼ f10; 20; 30g on smaller graphs and
K ¼ f200; 300; 500g on larger graphs. The average AbsErr

TABLE 2
Time and Space Analysis of the Three Modes

3204 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

(AvgErr) can be computed on the exact and estimated Sim-
Rank scores of these K result nodes for each query. RG can
be extended to measure the “relative goodness” of a rank-
ing, called Relative Average Goodness (RAG) as defined previ-
ously [2], [31], [32]. As both AvgErr and RAG evaluate the
accuracy of the scores, we additionally use precision (Prec)
to evaluate the accuracy of rankings, which is the fraction of
correct nodes in the top K lists. We also average over the
100 test queries for each metric.

In all-pair mode, we initially compute the SimRank scores
of all 1

2
jV j2 node pairs (i.e., there is only one query consisting

of all the pairs). Since the vast majority of this enormous
number of pairs are uninteresting with very low SimRank
scores, we evaluate the accuracy of the top K ¼ f200; 500;
1000; 1500g most similar pairs with largest SimRank scores.
We also use AvgErr, RAG and Prec as our accuracy metrics.
Note that, as analyzed in Section 1, returning the Kmost simi-
lar pairs from all-pair SimRank results actually solves the top-
K SimRank Join problem, and thus we also compare all-pair
UISim to top-K SimRank Join algorithm in our experiments.

Impacts of Different Settings. As discussed, we have two
main parameters, namely, number of hubs jHj and number of
iterations h. We first study their impacts on the performance

of UISim and discuss how to set the parameters. For single-
source queries, we report the results on top K=20 results and
for all-pair queries, top K=200 results. The results are shown
in Figs. 6 and 7 respectively. Note that, for a consistent presen-
tation, we plot the complement of AbsErr (or AvgErr) instead,
i.e., 1-AbsErr (or 1-AvgErr). Thus all themetrics indicate a bet-
ter accuracywith a larger value.

Number of Hubs. We first illustrate the effect of varying
number of hubs jHj in Fig. 6, where we fix h ¼ 2. On the one
hand, in most scenario having more hubs drastically
reduces the average query time of UISim, just as we have
expected in Section 6. That is, with more hubs H, the num-
ber of partial tours in each prime subgraph T decreases
exponentially, and thus both the subgraph extension time
and full tour assembling time are decreased. On the other
hand, when we have more hubs, we also observe a slight
decrease in accuracy as the number of non-hubs which will
be further expanded to span longer tours decreases. That is,
more expansions are stopped by the border hubs, poten-
tially hurting accuracy. Nevertheless, as we reasonably
increase jHj in Fig. 6, most drops in accuracy are very minor
while query processing becomes much faster, which is con-
sistent with our theoretical analysis in Section 6. That is,

TABLE 3
Summary of Datasets

Fig. 6. Impact of number of hubs on accuracy metrics: AbsErr, AvgErr,
RAG, Prec@K (left y-axis) and query time (right y-axis) in three modes:
single pair (SP), single source (SS) and all pair (AP).

Fig. 7. Impact of number of iterations on accuracy metrics: AbsErr,
AvgErr, RAG, Prec@K (left y-axis) and query time (right y-axis) in three
modes: single pair (SP), single source (SS) and all pair (AP).

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE 3205

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

when jHj becomes larger, the decrease in running time is
exponential while the increase in expected error is linear.
Thus, it is still beneficial to use a relatively large jHj.

In practice, we should also consider the structure of graphs
(e.g., dH and dV in Eq. (15)) to set the value jHj. More hubs
should be selected on larger and denser graphs. To determine
the number of hubs, a simple rule is jHj ¼ blog ðdÞjV j, where
d is the average node degree for some choice of b > 0. Empir-
ically, the desirable range of b is between 0.1 and 0.5 for a rea-
sonable trade-off between accuracy and time.

Number of Iterations. Next, we study the ability of incre-
mental query processing by UISim. We vary the number of
expansion iterations h in Fig. 7, where we fix jHj. Our
results show that more iterations result in better accuracy (if
not already good at h ¼ 0), but require longer time to pro-
cess. Thus, the accuracy of our SimRank estimation indeed
improves in an incremental manner. In particular, accuracy
improvement is generally more significant in earlier itera-
tions (from h ¼ 0 to 1 as compared to from h ¼ 1 to 2). In
most cases, high accuracy can be obtained with very few
iterations at h ¼ 1. It is interesting to observe that, the
experiments also reveal the different contribution of Sim-
Rank increments ŝkðu; vÞ in our scheduled approximation–
when h ¼ 0, only the most important increment ŝ0ðu; vÞ con-
tributes to the final scores, while when h ¼ 1, the first two
increments ŝ0ðu; vÞ and ŝ1ðu; vÞ make contributions, and so
on. Thus, the results validate that the increments with small
k contribute more than the increments with large k.

Comparison to Baselines. We compare UISim with the state-
of-the-art competitors in each query mode: BLPMC [24], the
single-pair solution; ProbeSim [14], PRSim [26] and Sim-
Push [19], the single-source solutions; FLP [25], the all-pair
solution, and TreeWand [21], the SimRank Join solution.
Since PRSim is an index-based algorithm, for fair compari-
son, we also perform its index-free version by setting the
number of precomputed hubs to zero. In the following, We
refer to the original index-based PRSim as PRSim w/, and its
index-free version as PRSim w/o. The threshold-based Sim-
Rank Joinmethod [17] is not included as a baseline because it
has a different setting where the threshold of similarity need
to be specified. When the threshold is set to zero, it reduces
to all-pair SimRank and it is two orders of magnitude slower
than FLP algorithm (i.e., the state-of-the-art all-pair baseline
in our experiments) as reported in Reference [25].

As all algorithms compute approximate SimRank scores,
there is a trade-off between accuracy and query time. In order
to fairly compare different methods, we should fix their accu-
racy at a similar level, and then compare the running time
under these settings. To obtain comparable accuracy, the
parameter settings in different methods cannot be directly

derived from their theoretical error bounds, which have dif-
ferent formulations (e.g., some are deterministic, some are
probabilistic, and some are in the expectation sense), and
have varying degrees of tightness. Therefore, to systemati-
cally compare different methods in practice, we vary the
parameters of each method in a reasonably large range, so as
to evaluate a large number of different configurations. Subse-
quently, we compare different methods under these configu-
rations that give similar accuracy.

Parameter Setting. For all algorithms, we set the damping
factor C ¼ 0:75. Specifically, �, the error bound in BLPMC is
varied from 0.005 to 0.015 at the step of 0.001; "a, the maxi-
mum absolute error in ProbeSim and PRSim is varied from
0.001 to 0.2 at the step of 0.001. Other parameters are speci-
fied according to the original papers. For UISim we vary jHj
in the range discussed earlier, and for each value of jHj we
try h ¼ f0; 1; 2g.

We run all the settings and evaluate their accuracy using
the metrics explained earlier. For single-pair and single-
source mode, we plot the results of settings with running
time falling into a same range in Fig. 8, where x-axis is the
running time and y-axis is the accuracy. Here we only pres-
ent AbsErr for the single-pair mode and precision for the
single-source mode as the accuracy metric, since we observe
similar trends in other metrics as well. Typically, we focus
on relatively small running time (e.g., from 0 to 20 ms in the
single-source mode) as many applications will require a fast
online computation of SimRank. For each method, if we
observe different accuracy with the same running time, we
report the highest accuracy.

From Fig. 8, we can clearly observe the advantage of UISim.
On the one hand, UISim always need less time to achieve the
same accuracy as its baseline. More concretely, we compare
different methods under configurations that give similar
accuracy. We exhibit the detailed accuracy and the running
time of several “accuracy-moderated” configurations in
Tables 4 and 5. As observed, to achieve similar accuracy,
UISim runs faster than the respective baselines in each mode.
For example, as shown in Table 5, UISim outperforms the
strongest index-free single-source baseline SimPush, and is
even faster than the index-based PRSim w/ on smaller
graphs. We also observe that SimPush is more sensitive to the
graph structure. For example, SimPush is more inferior than
UISim on 4Area (Fig. 8d) and CondMat (Fig. 8f) compared
with their performance on WikiVote (Fig. 8e). The reason is
because generally the source graph of a query is also large (or
dense) on 4Area/CondMat, and thus more time is wasted in
identifying attention nodes and conducting reverse push at
each level. On the other hand, UISim can achieve a good accu-
racy very fast while the baselines do not perform well within

Fig. 8. Comparison of accuracy against time with baselines in single pair (SP) and single source (SS) modes.

3206 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

limited time. For example, as shown in Fig. 8e, UISim can
achieve a precision above 0.9 within 5 ms, while given the
same time, the best accuracy of the baselines is around 0.8.
Such observation also validates the benefit of the “important-
first” property of UISim discussed in Section 1.

For all-pair SimRank and SimRank Join, since the range of
time we observed in UISim and the baseline TreeWand are
vastly different (running one configuration can take several of
hours for TreeWand), we only report the detailed results of
nine configurations in Table 6. The results show that to achieve
similar or better accuracy levels,UISim runs up to 4 times faster
than FLP, and several orders of magnitude faster than Tree-
Wand. It is worth noting that on 4Area and CondMat, the pre-
cision of all algorithms are around 1, but the AvgErr is
relatively large. The reason is that there are many top ranked
node pairs with the same exact SimRank scores, and the esti-
mates for them are mostly the same (although not equal to the
exact scores). Thus, the relative ranking obtainedwith approx-
imate algorithms are still quite similar as the true ones.

We also evaluate the results with different K under the
same configurations for single-source and all-pair queries.
For single-source queries, we vary K from 10 to 30, and for
all-pair queries, from 500 to 1500. Note that TreeWand is
not included in the evaluation as it is running time increases
with larger K (while other algorithms can compute the Sim-
Rank scores of all pairs, not just the K results). As shown in
Fig. 9, UISim stably achieves higher accuracy than the base-
line with larger K, while the accuracy of SimPush drops
prominently with large K, mainly due to the pruning of
non-attention nodes. For all-pair queries, since the precision
of UISim and FLP are similar in some cases, we also evalu-
ate the AvgErr with different K and observe that UISim can
always obtain a smaller AvgErr of top K results.

7.3 Experiments on Larger Graphs

We next evaluate UISim on three large graphs Enwiki2013,
IT2004 and Friendster, with up to 65million nodes and 1.8 bil-
lion edges (Table 3). We focus on the single-source node com-
parison with the baselines, since for single-pair queries, the
baseline method runs out of memory on all the three graphs.
All-pair mode is also not evaluated here, as most applications
would not need all-pair results on graphs of this scale.

On large graphs, it is impractical to calculate the exact
SimRank similarities with Power Method. However, a latest
work ExactSim [23] provides a probabilistic exact single-
source Simrank solution that can achieve a precision of 7
decimal places with high probability. We thus use the
results of ExactSim with " ¼ 10�7 as ground truth on large
graphs to evaluate UISim and the baselines ProbeSim,
PRSim w/, PRSim w/o, and SimPush. We vary the parame-
ters of different algorithms in the suggested range and com-
pare them under “accuracy-moderated” configurations,
similarly as we experiment with smaller graphs.

On each graph, 50 random queries are chosen and their
average results are reported. We plot the trade-off between
precision and query time (in log scale) in Fig. 10, and
observe that generally the accuracy of eachmethod increases
with more query time. However, the baselines need more
time (by one order of magnitude) to achieve a higher preci-
sion above 0.9; while after that, the precision of all methods
increase slightly, evenwith longer query time.

The detailed comparison of concrete settingswith accuracy
up to 0.97 are shown in Table 7. For example, on Friendster, to
achieve the precision around 0.93, UISimneeds 10.75mswhile
the strongest baseline SimPush needs 105.7ms; to increase the
query time (to 20.08 ms for UISim and 128.5 ms for SimPush),
the precision only increase by 0.007 (K=500).

TABLE 4
Detailed Comparison Under Accuracy-Moderated

Configurations in Single-Pair Mode

Dataset L1S RAG Time (ms)

UISim BLPMC UISim BLPMC UISim BLPMC

4Area
.978 .954 .563 .570 0.007 0.014
.984 .969 .571 .531 0.009 0.019
.990 .983 .648 .648 0.01 0.024

WikiVote
.960 .939 .781 .815 0.014 0.033
.961 .950 .781 .790 0.016 0.029
.977 .972 .871 .882 0.031 0.045

CondMat
.999 .944 .666 .660 0.007 0.013
.999 .974 .666 .663 0.009 0.019
.999 .995 .669 .671 0.017 0.048

TABLE 5
Detailed Comparison Under Accuracy-Moderated Configurations in Single-Source Mode (K = 20)

TABLE 6
Detailed Comparison Under Accuracy-Moderated

Configurations in All-Pair Mode (K = 200)

Dataset Precision AvgErr Time (s)

UISim FLP TreeWand UISim FLP TreeWand UISim FLP TreeWand

4Area
1 1 1 .032 .034 .682 4.050 6.655 11740
1 1 1 .030 .030 .680 5.089 8.782 11867
1 1 1 .014 .015 .651 7.642 32.495 12045

WikiVote
.905 .930 .935 .011 .013 .0102 0.682 2.49 400.21
.960 .950 .980 .004 .009 .0038 4.615 8.197 401.97
.970 .955 .981 .003 .009 .0037 5.036 11.346 402.59

CondMat
1 1 .980 .044 .049 .547 1.291 1.509 2413.2
1 1 .980 .043 .045 .546 1.457 1.750 2580.1
1 1 1 .038 .040 .618 2.458 2.831 2696.1

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE 3207

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

For thorough comparison, we also evaluate the accuracy
of different algorithms with varied K. It can be observed
that, UISim is up to 10 times faster than the strongest baseline
SimPush while they produce results with a accuracy higher
than 0.9.

7.4 Scalability on Growing Graphs

Finally, we test the scalability of UISim on two growing graphs
Gnutella and Dblp. In particular, Gnutella includes snapshots
on different dates, whereas Dblp includes snapshots of differ-
ent years. Each subsequent snapshot has a larger number of
nodes jV j and edges jEj, as shown in Table 8.

The key to scaling UISim is to increase the number of hubs
jHj. As discussed in Section 7.2, using more hubs can reduce

query time. Thus, we reasonably increase jHj on a larger
snapshot (jHj ¼ blog ðdÞjV j with b ¼ 0:25). As shown in
Table 8, by using more hubs, we are able to achieve an
approximate linear scale-up of query time in single-pair and
single-source modes. That is, when we double the size of the
graph, the average query time roughly doubles too. On the
other hand, with more hubs, only a sub-linear increase of
memory cost is observed on growing graphs. The reason is
that althoughmore prime subgraphs of hubs are involved in
the expansion when the number of hubs increases, the aver-
age size of prime subgraphs decreases as more tours would
be truncated by hubs in the prime subgraphs.

8 CONCLUSION

In this paper, we presented an index-free approach to effi-
ciently process all three modes of SimRank in a unified
framework. As our key principle, we conceptually scheduled
the tours for a prioritized computation, which exhibits two
desirable properties: “important-first” and “incrementally-
enhanced.” To realize this principle, we developed a benefit-
based tour assembling model and mode-specific tour span-
ning and matching techniques to effectively process each
mode of queries. Empirically, UISim is not only superior to
the strongest baselines designed specifically for each mode,
but also scalable to larger graphs.

ACKNOWLEDGMENTS

The authors would like to thank Yichen Shen (Zhejiang Uni-
versity City College), Zemin Liu (Singapore Management
University), and Chengfeng Mao (University of Illinois at
Urbana-Champaign) for their participation and contribution
in this work. This work was supported in part by the Pri-
mary Research and Development Plan of Zhejiang Province,
China, under Grant 2021C01164, in part by the National Sci-
ence Foundation under Grants IIS 16-19302 and IIS 16-
33755, in part by Zhejiang University ZJU Research under
Grant 083650, in part by Futurewei Technologies under
Grants HF2017060011 and 094013, in part by IBM-Illinois
Center for Cognitive Computing Systems Research (C3SR) a

Fig. 9. Comparison of accuracy with different K under time-moderated configurations in single-source (SS) and all-pair (AP) modes.

Fig. 10. Comparison of accuracy against time with baselines in single
source mode on large graphs.

TABLE 7
Detailed Comparison Under Accuracy-Moderated Configurations in Single-Source Mode on Large Graphs

TABLE 8
Scalability of UISim on Growing Graphs

3208 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

research collaboration as part of the IBM Cognitive Horizon
Network, in part by eBay and in part by Microsoft Azure, in
part by UIUC OVCR CCIL Planning under Grant 434S34, in
part by UIUC CSBS Small under Grant 434C8U, and in part
by UIUC New Frontiers Initiative. Any opinions, findings,
and conclusions or recommendations expressed in this pub-
lication are those of the author(s) and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] P. Boldi, A. Marino, M. Santini, and S. Vigna, “BUbiNG: Massive
crawling for the masses,” in Proc. 23rd Int. Conf. World Wide Web,
2014, pp. 227–228.

[2] S. Chakrabarti, “Dynamic personalized pagerank in entity-rela-
tion graphs,” in Proc. Conf. World Wide Web, 2007, pp. 571–580.

[3] Y. Fang, K. C. Chang, and H. W. Lauw, “RoundTripRank: Graph-
based proximity with importance and specificity?,” in Proc. IEEE
29th Int. Conf. Data Eng., 2013, pp. 613–624.

[4] D. Fogaras and B. R�acz, “Scaling link-based similarity search,” in
Proc. 14th Int. Conf. World Wide Web, 2005, pp. 641–650.

[5] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka,
“Efficient search algorithm for SimRank,” in Proc. IEEE Int. Conf.
Data Eng., 2013, pp. 589–600.

[6] G. Jeh and J. Widom, “SimRank: A measure of structural-context
similarity,” in Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2002, pp. 538–543.

[7] G. Jeh and J. Widom, “Scaling personalized web search,” in Proc.
Conf. World Wide Web, 2003, pp. 271–279.

[8] M. Kusumoto, T. Maehara, and K.-I. Kawarabayashi, “Scalable
similarity search for SimRank,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2014, pp. 325–336.

[9] P. Lee, L. V. S. Lakshmanan, and J. X. Yu, “On top-k structural
similarity search,” in Proc. Int. Conf. Data Eng., 2012, pp. 774–785.

[10] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” Jun. 2014. [Online]. Available: http://snap.
stanford.edu/data.

[11] C. Li et al., “Fast computation of SimRank for static and dynamic
information networks,” in Proc. IEEE 28th Int. Conf. Data Eng.,
2010, pp. 465–476.

[12] P. Li, H. Liu, J. X. Yu, J. He, and X. Du, “Fast single-pair Sim-
Rank computation,” in Proc. SIAM Int. Conf. Data Mining,
2010, pp. 571–582.

[13] R. Li, X. Zhao, H. Shang, Y. Chen, and W. Xiao, “Fast top-K simi-
larity join for SimRank,” Inf. Sci., vol. 381, pp. 1–19, 2017.

[14] Y. Liu et al., “ProbeSim: Scalable single-source and top-K SimRank
computations on dynamic graphs,” Proc. VLDB Endowment, vol. 11,
no. 1, pp. 14–26, 2017.

[15] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov, “Accuracy
estimate and optimization techniques for SimRank computation,”
VLDB J., vol. 19, no. 1, pp. 45–66, 2010.

[16] T. Maehara, M. Kusumoto, and K. Kawarabayashi, “Efficient sim-
rank computation via linearization,” in Proc. 8th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2014, pp. 1426–1435.

[17] T. Maehara, M. Kusumoto, and K.-i. Kawarabayashi, “Scalable
SimRank join algorithm,” in Proc. IEEE Int. Conf. Data Eng., 2015,
pp. 603–614.

[18] Y. Shao, B. Cui, L. Chen, M. Liu, and X. Xie, “An efficient similar-
ity search framework for SimRank over large dynamic graphs,”
Proc. VLDB Endowment, vol. 8, no. 8, pp. 838–849, 2015.

[19] J. Shi, T. Jin, R. Yang, X. Xiao, and Y. Yang, “Realtime index-free
single source SimRank processing on web-scale graphs,” 2020,
arXiv:2002.08082.

[20] Y. Sun, J. Han, J. Gao, and Y. Yu, “iTopicModel: Information net-
work-integrated topic modeling,” in Proc. IEEE Int. Conf. Data
Mining, 2009, pp. 493–502.

[21] W. Tao and G. Li, “Efficient top-K SimRank-based similarity
join,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2014,
pp. 1603–1604.

[22] B. Tian and X. Xiao, “Sling: A near-optimal index structure for
SimRank,” in Proc. Int. Conf. Manage. Data, 2016, pp. 1859–1874.

[23] H. Wang, Z. Wei, Y. Yuan, X. Du, and J.-R. Wen, “Exact single-
source SimRank computation on large graphs,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2020, pp. 653–663.

[24] Y. Wang, L. Chen, Y. Che, and Q. Luo, “Accelerating pairwise
SimRank estimation over static and dynamic graphs,” Proc. VLDB
Endowment, vol. 28, no. 1, pp. 99–122, 2019.

[25] Y. Wang, X. Lian, and L. Chen, “Efficient SimRank tracking in
dynamic graphs,” in Proc. Int. Conf. Data Eng., 2018, pp. 545–556.

[26] Z. Wei et al., “PRSim: Sublinear time SimRank computation on
large power-law graphs,” in Proc. Int. Conf. Manage. Data, 2019,
pp. 1042–1059.

[27] W. Yu, X. Lin, and W. Zhang, “Towards efficient SimRank computa-
tion on large networks,” inProc. Int. Conf. Data Eng., 2013, pp. 601–612.

[28] W. Yu and J. A. McCann, “Sig-SR: SimRank search over singular
graphs,” in Proc. 37th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2014, pp. 859–862.

[29] W. Yu and J. A. McCann, “Efficient partial-pairs SimRank search on
large networks,” Proc. VLDB Endowment, vol. 8, no. 5, pp. 569–580,
2015.

[30] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao, “Efficient Sim-
Rank-based similarity join over large graphs,” Proc. VLDB Endow-
ment, vol. 6, no. 7, pp. 493–504, 2013.

[31] F. Zhu, Y. Fang, K. C.-C. Chang, and J. Ying, “Incremental and accu-
racy-aware personalized pagerank through scheduled approx-
imation,” Proc. VLDBEndowment, vol. 6, no. 6, pp. 481–492, 2013.

[32] F. Zhu, Y. Fang, K. C.-C. Chang, and J. Ying, “Scheduled approxi-
mation for personalized pagerank with utility-based hub selec-
tion. Int. J. Very Large Data Bases, vol. 24, no. 5, pp. 655–679, 2015.

Fanwei Zhu received the PhD degree in com-
puter science from Zhejiang University in 2012.
She is currently an associate professor with Zhe-
jiang University City College. Her research inter-
ests include graphbased proximity search and
social network analysis.

Yuan Fang received the PhD degree in computer
science from the University of Illinois at Urbana-
Champaign in 2014. He is currently an assistant
professor with the School of Computing and Infor-
mation Systems, Singapore Management Univer-
sity. His research interests include graph based
machine learning and data mining, and their appli-
cations for theWeb and social media.

Kai Zhang received the bachelor’s degree in com-
puter science from ZhejiangUniversity City College
in 2020. He is currently a research assistant with
Tsinghua University. His research interests include
information extraction and datamining.

Kevin Chen-Chuan Chang is currently a profes-
sor with the University of Illinois at Urbana-Cham-
paign. His research interests include large scale
information access, for search, mining, and inte-
gration across structured and unstructured big
data including Web data and social media. He
also co-founded Cazoodle for deepening vertical
data-aware search over the Web.

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE 3209

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

Hongtai Cao received the bachelor of engineering
degree from Zhejiang University and the master of
science degree from the University of Southern
California. He is currently working toward the PhD
degree in computer science with the University of
Illinois Urbana-Champaign. His research interests
include graph database systems and data analysis.

Zhen Jiang received the bachelor’s degree in intel-
ligence science and technology fromCentral South
University. He is currently pursuing his master’s
degree of computer science with Zhejiang. His
research interests include machine learning and
deep graph learning.

MinghuiWu received the PhD degree in computer
science and engineering from Zhejiang University.
He is currently a professor of computer science
with Zhejiang University City College. His research
interests include artificial intelligence, big data,
mobile application, and software engineering.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3210 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: University of Illinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

