IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

3195

Unified and Incremental SimRank: Index-Free
Approximation With Scheduled Principle

Fanwei Zhu™', Yuan Fang

, Kai Zhang, Kevin Chen-Chuan Chang,

Hongtai Cao, Zhen Jiang, and Minghui Wu

Abstract—SimRank is a popular link-based similarity measure on graphs. It enables a variety of applications with different modes of
querying (e.g., single-pair, single-source and all-pair modes). In this paper, we propose UISim, a unified and incremental framework for all
SimRank modes based on a scheduled approximation principle. UISim processes queries with incremental and prioritized exploration of
the entire computation space, and thus allows flexible tradeoff of time and accuracy. On the other hand, it creates and shares common
“building blocks” for online computation without relying on indexes, and thus is efficient to handle both static and dynamic graphs. Our
experiments on various real-world graphs show that to achieve the same accuracy, UISim runs faster than its respective state-of-the-art

baselines, and scales well on larger graphs.

Index Terms—SimRank approximation, unification, index-free, scheduled principle, scalability

1 INTRODUCTION

RAPHS are ubiquitous nowadays, requiring effective
similarity measures based on their link structures.
Among the link-based similarity measures, SimRank has
attracted much attention since it was first proposed by Jeh
et al. [6]. The intuition behind SimRank is “ two objects are
similar if they refer to similar objects”, which is recursive
with “one object is maximally similar to itself” as the base
case. Such intuition naturally simulates human judgements
on the similarity of objects based on their connections, and
thus has a wide range of applications.
Consider the following scenarios on a DBLP network
with interconnected nodes such as researchers, papers and
conferences.

Scenario 1 (Single-pair SimRank) Collaboration predic-
tion. Given two researchers r1 and ro, could 1 be collaborated
with ry in the future? In this case, we can compute a SimRank
score s(r1,r9) and compare it with some heuristic threshold to
make a prediction.

Scenario 2 (Single-source SimRank) Bibliographic
search. Given a paper p, what are the most relevant papers to
p in the entire corpus? In this case, the input query is a paper p,
and the output is a ranking over all the paper nodes according

o Fanwei Zhu, Kai Zhang, Zhen Jiang, and Minghui Wu are with the Zhe-
jiang University City College, Hangzhou 310015, China. E-mail: {zhufw,
mhwu j@zucc.edu.cn, drogozhang@gmail.com, jzjzjzzju@zju.edu.cn.

o Yuan Fang is with the Singapore Management University, Singapore
188065, Singapore. E-mail: yfang@smu.edu.sg.

o Kevin Chen-Chuan Chang and Hongtai Cao are with the University of Illi-
nois at Urbana-Champaign, Champaign, IL 61820 USA. E-mail: {kcchang,
hongtai2 }@illinois.edu.

Manuscript received 18 Feb. 2020, revised 1 June 2021; accepted 24 Aug. 2021.
Date of publication 10 Sept. 2021; date of current version 3 Feb. 2023.
(Corresponding author: Yuan Fang.)

Recommended for acceptance by L. Zou.

Digital Object Identifier no. 10.1109/TKDE.2021.3111734

to the SimRank similarity between p and each paper in the
network.

Scenario 3 (All-pair SimRank) Research community
discovery. What are the similar papers, researchers, and con-
ferences that form a community of certain research interest? In
this case, the similarity between each pair of nodes should be
computed and further leveraged by clustering methods such as
K-means to detect the research communities in the graph.

As shown in the above scenarios, there are generally three
popular modes of the SimRank problem on a graph G =
(V,E): single-pair SimRank computes the similarity score
s(u,v) between a pair of nodes v and v (Scenario 1); single-
source SimRank computes the similarity score between a
query node u and every node v € V (Scenario 2); all-pair Sim-
Rank computes the similarity for every pair of nodes in G
(Scenario 3).

As a general form of SimRank problems, partial-pairs
SimRank (or SimRank-based Similarity Join) [13], [17], [21],
[29], [30], is defined over two subsets of nodes where only
similarities between node-pairs from those subsets are com-
puted. Most of existing partial-pair SimRank focus on the
subset of node-pairs that have higher similarity than the
others in a graph, either returning the top-K similar node-
pairs [13], [21] or the node-pairs with similarities greater
than a given threshold [17], [30]. More discussions about
SimRank Join can be found in Section 2.

We summarize these SimRank modes in Table 1, where a
SimRank query is formalized as @ = (A, B) with each of A
and B being a single node, a subset of nodes, or all the
nodes V, and the output S(Q) is the set of corresponding
similarity scores.

While SimRank is confirmed to be an effective similarity
measure in practical applications [7], the computation of
SimRank is not trivial. A straightforward approach for Sim-
Rank is to compute the similarity scores iteratively. Specifi-
cally, the SimRank similarity between two nodes u and v is

1041-4347 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

3196
TABLE 1
SimRank Problems on a Graph G = (V, E)
SimRank Problems 8‘:&1;) Output
General Partial-pair ACV s(u,v): a A-by-B similarity matrix,
definition artial-pai BCV with each entry [S],., = s(u,v)
Sinele-pai A={u} s(u,v): a single SimRank similarity
Popular 1ngle-pair B={v} score between u and v
modes Sinel A={u} [S].: a|V|-by-1 similarity vector,
mngle-source | g_y with each entry [S1,, = s(,v)
. A=V [S]: a [V]-by-|V]| similarity matrix,
All-pair B=V with each entry [S],, = s(u,v)

recursively computed based on their in-neighbors I'n(u) and
In(v), as follows [6].

C
e SN (i) v
\In(u)”]n(v)\ i€In(u) jeln(v) '
1 U=

1)

s(u,v) =

Due to the iterative nature, the computation is expensive
even on a moderately large graph. Thus, many works have
devoted to speedup SimRank computation with approxima-
tion. In this paper, we also focus on the efficient approxima-
tion of SimRank. We summarize three major challenges in
SimRank approximation and motivate our solution as fol-
lows- the detailed study of existing works can be found in
Section 2.

First, as there are distinct modes of SimRank for different
scenarios, it is desirable to support all different modes in a
unified manner by one algorithm for simplicity and robust-
ness of system maintenance. In contrast, virtually all exist-
ing algorithms are designed for specific modes. E.g.,
ProbeSim [14] and PRSim [26] the state-of-the-art methods
based on Monte Carlo simulation, sample random tours
from a single-source query node which cannot be naturally
extended to sampling for single-pair queries where the two
ends are fixed and must meet.

Second, as different applications may have specific req-
uirement of the approximation— some online tasks empha-
size on a fast estimate while some others may rely on more
accurate scores, it is desirable to support flexible tradeoffs
of efficiency and accuracy. For example, in the Bibliographic
search scenario, a fast estimate of SimRank similarities is
expected to quickly return a ranked list of relevant papers,
while in the Collaboration prediction scenario, more accurate
SimRank scores would be preferred for an effective pre-
diction. In contrast, most other algorithms exhibit often a
narrow range of tradeoff. E.g., ProbeSim’s random trials
requires a certain amount of minimal “significant” samples
of the computation space, which restricts its range of
tradeoffs.

Third, as most real-world graphs are dynamic with fre-
quent updates (e.g., social networks such as Twitter), it is
desirable to support efficient online computation without
relying indexes. In contrast, many other algorithms need to
precompute and maintain an index to process online
queries, and thus are not flexible to handle dynamic graphs.
E.g., FLPMC, FBLPMC [24], the state-of-the-art index-based
single-pair SimRank algorithms needs 100ms to 1s to update
its index for each edge insertion or deletion on medium-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

sized graphs, and with the increasing of graph size, the
index update time grows exponentially.

Our Principle. Motivated by the three challenges, we pro-
pose a unified and incrementally-enhanced framework,
UlSim, to efficiently process different modes of SimRank
queries based on the random surfer-pair model [6] where the
SimRank similarity s(u,v) is interpreted as the probability
that two random surfers can meet if they randomly walk
backwards on the graph G, from nodes u and v respectively.

Specifically, UISim has three major ingredients—unified
computation space, prioritized exploration of the space, and
online sharing of common computation— which are expected to
tackle the above challenges.

First, to support unification of different modes, it identifies a
“computation space of query tours” that is naturally adapt-
able to each distinct mode- For any SimRank query @ =
(A, B) where each of A and B is set of query nodes, its com-
putation space is conceptually viewed as the aggregate of
necessary random walk tours starting from A and B. Thus,
to calculate any similarity scores S((), we can simply enu-
merate the set of corresponding query tours Ty and process
them in a unified framework- all tours in Ty, aggregate to the
exact scores, while a subset of tours gives an approximation.

Second, to support flexible tradeoff of time and accuracy, it sug-
gests “a prioritized exploration of the computation space” to
gradually cover the query tours in an important-first man-
ner— Ty is further partitioned into disjoint subsets T =
T(g U---UT such that tours in any Té are more important
than tours in Tgl. We then handle Ty through multiple itera-
tions, with each iteration i computing a SimRank increment
Si(Q) over the tours in T},, adding up to an overall estimate
S0(Q) = 8°Q) + - - - + S"(Q) after 7 iterations. Unlike ran-
dom sampling, our scheduled approximation is determin-
istic, intentionally prioritized and incrementally enhanced,
and thus we can support a wide range of tradeoffs without
being burdened by statistically-necessary minimal sampling.

Third, for efficient computation without relying indexes, it
allows us to create and share common ”building blocks”
computed on-the-fly to accelerate the iterative computation—
We factorize the query tours into fine-grained segments (i.e.,
hub segments) that shared across iterations, and organize
them to create basic computation units which can be easily
computed and reused online. Thus, each SimRank increment
S”(Q) can be efficiently derived from the “assembling” of
common building blocks. Unlike other indexed approaches,
our principle achieves high efficiency by sharing online com-
putations rather than relying on precomputed indexes, and
thus works well on both static and dynamic graphs.

Realization Challenges. Note that, the scheduled approxi-
mation of UISim shares similar insight with a previous
work FastPPV [31] which efficiently handles PPV queries by
arranging the important tours first for a fast estimate, as
there is a fundamental connection between SimRank and
PPV computation— both can be conceptualized as the incre-
mental aggregation of random walk tours with varying
importance. However, realizing such principle in SimRank
setting posts unique challenges due to the complex query
tours and the diverse query modes:

e First, complex query tours. The query tours Ty SimRank
deals with are complex two-side tours u e~ z~»v that

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE

meet at any common node z, while the principle in
FastPPV is originally designed for regular tours u~-v
from one node to the other. Simply adapting FastPPV
to incrementally expand the regular tours on each side
of meeting nodes waste a lot of computations as most
of the spanned tours would not have the same length
or ending node and thus can not be assembled as valid
SimRank tours. One the other hand, the scheduled
approximation principle of FastPPV can only ensure
the one-side regular tours are partitioned and incre-
mentally processed by their importance, while assem-
bling two sets of important regular tours may not
necessarily result in an important partition of two-side
SimRank tours as the number of valid assembling
from those tours are not guaranteed. Thus, to incre-
mentally explore the computation space of SimRank
queries for an important-first approximation, we need
to develop new techniques to prioritize the generation
of the two-side query tours Ty = Tcg U---u Tg from
regular one-side tours on G.

e Second, diverse query modes. SimRank has a variety of
concrete modes, each of which has its own require-
ment to identify the computation space, while
FastPPV only solves one kind of single-source query.
Extending FastPPV to other modes is problematic.
For example, for single-pair queries, spanning of
tours from a source to all reachable nodes would be
wasteful as many of the spanned tours would not
reach the specific target node; while for all-pair
queries, redundant computation over shared tours
spanned from different source nodes should be
avoided. Thus, we need to efficiently specialize the
generation of each Té) for different mode of queries
such that a complex query (e.g., single-source Sim-
Rank s(u)) can be better processed than trivially
repeating a set of the basic queries (e.g., single-pair
SimRank s(u,v) for each v € V).

To concretely realize the principle, we investigate the
necessary query tours in different SimRank modes, and pro-
pose to unify their computation space with the assembling
of two query-specific “partial-tour” sets P4 > Pg in Sec-
tion 3. We then develop a hub-based benefit model to parti-
tion those partial tours and assemble their partitions in an
incremental and prioritized manner such that the query
tours that bring more contribution in the computation
would be generated earlier in Section 4. We further identify
the shared tour segments in different partial-tour partitions
and propose a subgraph expansion model to use those sub-
structure as building blocks to speed up the iterative online
computation in Section 5. We analyze the complexity and
error bound of UISim in Section 6.

Empirical Evaluation. We conduct extensive experiments
on various real-world datasets in Section 7. We empirically
study the effect of parameters in UISim, and compare it with
the state-of-the-art baselines in different modes, and find out
UISim significantly outperforms its respective baselines in
each mode- compared to the strongest baselines designed
specifically for each mode, to achieve the same level of accu-
racy, the running time of the unified UISim is significantly less
than that of the baseline. We also validate the scalability of
UISim in growing graphs.

3197

2 RELATED WORK

Numerous studies have been devoted to speeding up the
computation of SimRank on a single machine, which fall
into three main categories in the following.

Iterative Methods. Some early approaches directly opti-
mize the basic iterative algorithm, by reducing unnecessary
computation and reusing shared computation both within
and across iterations. Lizorkin et al. [15] propose to memo-
rize the reusable partial sums across iterations to prevent
repeated computation for all-pair SimRank. Yu et al. [27]
further reduce the redundancy in computing partial sums
with sub-summation sharing in all-pair mode. Li et al. [12]
employ position probability to reduce the computation not
relevant to a query in the single-pair mode. However, even
the state-of-the-art iterative methods [12], [27] require
O(K|V|?) time for k iterations in the worst case, which is still
infeasible to handle large graphs.

Linear System Solution. Another line of research transforms
the iterative SimRank equation into linear system representa-
tion, and applies the linear algebra techniques such as matrix
decomposition to approximation SimRank. Li et al. [11]
derive a linear system and performs singular value decom-
position (SVD) on the similarity matrix to get SimRank
approximation. Fujiwara et al. [5] propose SimMat that com-
putes SimRank based on the Sylvester equation and low-
rank approximation of the similarity matrix. Yu et al. [28]
relax the constraint that the graph should be non-singular
and provides a treatment of SimMat, by supporting similar-
ity assessment on non-invertible adjacency matrices. Wang
et al. [25] propose a new closed-form solution of exact Sim-
Rank matrix, based on which a local push algorithm is devel-
oped for all-pairs SimRank computation. The linear system
based methods breaks the holistic nature of SimRank compu-
tation, however, they cannot guarantee the first-meeting con-
straint in the original SimRank definition. Moreover, they
require quadratic time to obtain a low-rank representation
and loss accuracy from the optimization techniques.

Random Walk-Based Approximation. To handle large graphs,
the majority of studies solve SimRank based on random
walks. Fogaras et al. [4] apply MC simulation to sample ran-
dom walk paths between two nodes, which addresses single-
pair SimRank. Kusumoto et al. [8] later extend it to address
the single-source mode through extensive pruning. Although
MC methods are promising in handling large graphs, they
can only achieve a higher level of accuracy through more and
more samples at the cost of efficiency. Wang et al. [24] pro-
pose to combine the local push technique [25] with MC sam-
pling to reduce the sample size. However, the worst case
complexity of the proposed index-free version BLPMC is the
same as the pure MC sampling, while a more efficient version
FLPMC relies on an index precomputed on a conceptual
graph with |V|* nodes. Wei et al. propose an index-free sin-
gle-source algorithm ProbeSim [14] that performs MC simu-
lation to sample the /¢ — walk of query node, and then from
each visited node probes the \/c — walk on the other side to
compute the probability of walk pairs. The authors also pro-
pose an index-based algorithm PRSim [26] that decomposes
a SimRank query s(u,v) into two [— hop RPPR (reversed Per-
sonalized PageRank values) and a last meeting probabilities,
combining MC sampling and local push techniques to solve

Authorized Ticensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

3198
IOy
ALY
v// fﬁf
/é\ mii)/“ b

Fig. 1. A toy graph G.

the decomposed computations with precomputed RPPRs.
Wang et al. [23] further combine the ideas of PRSim and line-
arization to derive a probabilistic exact single-source Sim-
Rank algorithm ExactSim with additive error of at most
€min = 1077, which can be used to compute the ground truth
on billion-edge graphs. Instead of sampling the random walk
tours of a query, a recent work SimPush [19] proposes to
focus on the query tours around a small set of attention nodes
in the close vicinity of the query node to answer single-source
SimRank queries. Although ignoring tours around non-atten-
tion nodes reduces the computation overhead, it can also hurt
the accuracy of approximation. Moreover, in order to select
the attention nodes, SimPush needs to compute the hitting
probabilities for all nodes in a source graph—a lot of computa-
tions are wasted on non-attention nodes.

Comparison to Our Work. First, in terms of problem, UISim
proposes to unify all three modes of SimRank with the
scheduled approximation principle, and develops mode-
specific techniques to efficiently handle different SimRank
queries. On the contrary, most previous work only focuses
on one specific mode of SimRank problem. Extending the
algorithms designed for one mode to other modes is not fea-
sible. For example, if we adapt the single-source solution
ProbeSim or PRSim to answer a single-pair query s(u,w),
most of the probes or backward walks would be wasted as
they may not hit the specific node w. Although some previ-
ous work [16], [29] also address different modes of Sim-
Rank, their techniques are essentially designed for certain
modes. In particular, Yu et al. [29] conceptually integrate
different modes of SimRank problems by a general defini-
tion partial pair SimRank (i.e., SimRank similarity between
any two sets of nodes). However, they develop an opti-
mized technique for single-source SimRank only, and pro-
poses to decompose the partial-pair problem into multiple
single-source problems. Maehara et al. [16] propose a linear-
ized technique to efficiently tackle single-pair and single-
source, while the all-pair problem is solved by trivially
repeating the single-source solution. To answer threshold-
based SimRank Join queries, the authors further propose a
filter-and-verification framework [17] to prune the node-
pairs based on their SimRank bounds in the filter phase;
and assess the similarity of the candidate pairs in the verifi-
cation phase.

It is worth noting, although it is not tailored for SimRank
Join, UISim naturally supports top-K SimRank Join due to its
important-first nature— the most similar node-pairs would
always be computed earlier as the tours between them have
higher importance to be scheduled earlier in our incremental
processing framework. On the contrary, existing SimRank
Join algorithms mainly rely on some pruning techniques to
find a candidate set of promising nodes for further verifica-
tion given a specific similarity threshold [17], [30] or the
number of expected results [13], [21], which is less flexible

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Two-side Query Tours | Partial Tours | Partial Tours

A={a}, B={b, g} ending atA ending at B
aex,=b b

a < [x]|[x
aex—g —’ 9

a—dex,2>c—=b

aede acab

aede
a%e& Fa]me=b

a—dex3—>c—=b

&

a—ee«x3->c—=b

Fig. 2. Query tours of Q = ({a}, {b, g}).

than the prioritized and incrementally-enhanced approxi-
mation of UISim.

Second, in terms of technique, our work follows the line
of approximating SimRank over random walk tours. How-
ever, instead of randomly stimulating fingerprints, we
structurally organize all the tours in the computation space
based on their importance, and enumerate them in a priori-
tized way. Thus, UISim has two distinct properties,
“important-first” and “incrementally-enhanced”, compared
to existing works in the same line. Note that, TopSim [9]
and SimPush [19] are also based on path enumeration rather
than random simulation. However, they only consider ran-
dom walk tours in a fixed-length neighborhood of query
node, or around some attention nodes in the neighborhood.
On the contrary, UISim allows a wide range of tradeoff of
time and accuracy by gradually cover the tours in the entire
computation space. Another line of local push based algo-
rithms [24], [25] have the same issue that a certain amount
of local push operations are required to explore the useful
query tours. Therefore, when the time budget is limited, the
performance of local push based algorithms is significantly
inferior than that of UISim.

Third, in terms of applications, UISim is capable of han-
dling both static and dynamic graphs. Different from the
index-based algorithms which needs expensive cost to
update their index on dynamic graph [18], [24], UISim runs
all the computations at query time and thus can support
real-time queries on any graphs. There are also some index-
free algorithms proposed to support dynamic updates [9],
[14], but UISim outperforms them in query efficiency as we
factorize the tours handled in iteration into fine-grained
building blocks that can be computed efficiently online and
shared across iterations.

3 UNIFIED COMPUTATION SPACE: AGGREGATING
TOURS

As motivated in Section 1, there are distinct modes of Sim-
Rank in real applications, requiring a unified algorithm to
process different queries. To support unified SimRank, we
first investigate the computation space of the general Sim-
Rank queries. To illustrate, we introduce a toy graph G in
Fig. 1, and in Fig. 2 we list the query tours of an example
partial-pair query Q = ({a},{b,g}). We observe that the
computation space of @) is composed of a set of two-side
tours ended with node a and nodes b, g on each side, which
can be partialized into two sets of regular tours at the cen-
tered nodes 1, x2, x3.

Conceptual View of Computation Space. Conceptually, we
can model the computation space of any SimRank query
Q = (A, B) as a set of query tours T w.r.t. the query nodes A
and B, formalized as

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE

T ={u—u o~ uy — . — v~y — vu € A,

v € B,z € X,Vi € [1,k],u; # v}, @
where X = {z|z € V,|Out(z)| > 2} is defined as the set of
meeting nodes, i.e., any node = with at least two out-neigh-
bors |Out(z)| > 2 on G. Note that, we use « (~-) to denote
a sequence of edges and « (—) to denote a direct edge
throughout this paper.

Then any SimRank similarity can be interpreted as the
first-meeting probability of two backward random surfer on G,
starting from A and Brespectively, i.e., the aggregated reach-
abilities of tours in Tjy. Specifically, s(u,v) can be calculated
by aggregating the reachabilities of the two-side first-meeting
tours, u «~~ x ~»v, which end with v and v on each side [12]

s(u,v) = R(t). (3

te{ue~ z~ v}

It is worth noting that if the graph contains cycles or self-
loops, the computation space of certain queries would con-
sist of infinite number of tours. However, a large number of
longer tours containing circles would have trivial contribu-
tion to the overall score. In other words, although in this
cases the exact SimRank scores should be computed over a
finite set of query tours, we can still obtain a good approxi-
mation over a smaller set of important tours.

Concrete Tour Space. To partition Ty for a scheduled
approximation, we notice that 7y is a set of complex “two-
side” tours which can not be directly identified on G- they
have to be assembled (or partialized) first. Specifically, each
two-side query tour should be assembled from two regular
tours on G. For example, for a single-pair query Q = (a,b),
the query tours T, is built by assembling the same-length
regular tours from the same meeting nodes to a and b
respectively. Formally, for any two regular tours p, : x~u
and p,:2’~v on G, we define p, op, as the constrained
assembling of p, and p, if they 1) start at the same meeting
node, and 2) have the same length. That is

fo r = x,and ‘C(pu) = ﬁ(pv):

DPuOPy =USNT U

)

where L(p) denotes the length of an arbitrary tour p. To
avoid ambiguity, we also refer a two-side query tour as a
full tour, and each regular tour as a partial tour.

Generally, the query tours Tp in any SimRank modes can
be assembled from two corresponding partial-tour sets P,
and Pp. Let Py denote the set of partial tours ending at a
node u € U, i.e., Py = {p : v~u|u € U,v € V}, in realization,
we construct Ty as

Tg = P4 < Pp = {ps o py|pa € Pa;ps € Pp}. (5)

Note that, in Eq. (4), we relax the first-meeting constraint, i.e.,
two partial tours should meet at only one node, similar as
previous works [18], [21], [22], [26]. Including the multi-
meeting tours (i.e., full tours that have more than one meet-
ing node) would make the score larger than the exact one,
but the error is bounded and small [18]. Therefore, as an
approximation algorithm, UISim is developed based on
Eq. (4) in the following of the paper, and we will provide a
deterministic multi-meeting tours correction method in

3199

Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2021.3111734, while the existing works [22],
[26] rely on a probabilistic approximation of the induced
error with random sampling.

The unification of computation space discussed above is
naturally adaptable to each distinct SimRank mode:

e First, any SimRank query S(Q) can be processed by
incrementally aggregating the reachabilities of cer-
tain query tours Ty— all tours in Ty aggregate to the
exact scores, while tours in certain partitions Té) give
an approximation.

e Second, the scheduled approximation principle (see
Section 1) applies to any mode by enumerating and
prioritizing the corresponding partial tours P4 and
Pg, which we will discuss in Section 4.

4 INCREMENTAL APPROXIMATION: REALIZING
WITH PARTIAL TOURS

We now discuss how to concretely realize the scheduled
approximation principle with partial tours to support flexible
tradeoff of time and accuracy. Specifically, to incrementally
generate the partitions of Ty, we will explore how to partition
partial tours (e.g., P4) into subsets (e.g., Py = P U---U P}),
and schedule the assembling of these partitions (e.g., le >
P}) in a way that the full tours generated earlier would bring
more accuracy improvement to the computation.

4.1 Hub-Based Benefit Model

Conceptually, we define the benefit of a partial-tour assem-
bling as the accuracy improvement from handling the
assembled tours, and propose to schedule the assembling of
partial tours based on their benefit. As the benefit of an
assembling depends on the importance of each full (assem-
bled) tour and the number of full tours, i.e., handling more
important tours would better improve the accuracy of esti-
mation, we develop two rules to schedule the assembling of
partial tours as follows:

e Rule 1 (Important-First): Important partial tours assem-
bled earlier. As the reachability (i.e., importance) of
any full tour R(p, o p,) can be computed as the prod-
uct of its partial tours’ reachability %, by
assembling the important partial tours earlier, we
can also obtain the important full tours earlier.

e Rule 2 (Symmetric-Preferred): Symmetric partitions of
partial tours assembled earlier. As each full tour must
be symmetric (in terms of tour length) at the meeting
node, by assembling symmetric partial tours, we can
expect more valid matches.

Guided by the two rules, we now propose a hub-based ben-
efit model to concretely partition the partial tours and incre-
mentally assemble their partitions.

First, Partitioning Partial Tours. To partition partial tours,
we need a simple yet effective metric to quantify the above
rules. In the SimRank setting, the reachability of a specific
partial tour p: x — wy — --- — wy, with length L(p), is the
probability of reaching « from wy, through p in a reverse ran-
dom walk where at each step, the random surfer would go

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

3200

to one of its in-neighbors, with probability C, i.e., the damp-
ing factor in random walks. That is,

Rp)2C* [77— (6)

Therefore, nodes with a large number of in-neighbors sig-
nificantly decay the reachability of the tours passing
through. In other words, the importance of partial tours can
be indicated by the number of high in-degree nodes. On the
other hand, the symmetry of two partial tours can also be
indicated by the number of high in-degree nodes they pass
through. Tours passing through more high in-degree nodes
tend to be longer in terms of their natural length, and vice
versa. While this correlation is intuitive, we also empirically
verified it, and found that the average correlation coefficient
of the number of high-degree nodes in a tour and the tour
length in the real-world datasets is around 0.99.

In summary, the number of high in-degree nodes is effec-
tive to measure both tour importance and symmetry. We
also refer to the high in-degree nodes as hub nodes and the
number of hub nodes in a tour p (excluding the starting
node as it does not decay the reachability of p) as the hub
length of p, denoted by L (p).

Therefore, given a set of hub nodes H selected on G, any
partial tour set P, can be partitioned into n disjoint subsets
P!, each of which contains only the tours of hub length i,
formalized as
P,=P)U

U

...UPIst. Vi€ {0,...,7}},Ri ={p|pe€P,Lyp) =i}

(7)

Second, Assembling Full Tour.With the hub length notion, we
can concretize the two rules to prioritize the assembling of
partial-tour partitions: 1) According to the Important-First
Rule, any two partitions with a smaller sum of hub length
should be assembled earlier; 2) According to Symmetric-Pre-
ferred Rule, partitions with a smaller difference in the hub
length should be assembled earlier.

More formally, for any two assemblies A;; : P < P/ and
Apy Rj/ < P/, we should schedule A;j in an earlier itera-

v’

tion than A;;, denoted by A;; < Ay, with the following cri-
teria:

i+g<i+y

i—jl <" =7

We also notice that, the two rules may conflict some-
times. For example, consider two assemblies P <t P! with
P! < P}, the first one should be scheduled earlier according
to Rule 1, while it should be scheduled later according to
Rule 2. Generally, when the order of two assemblies con-
flicts by each individual rule, the benefit of their assembling
can not be differentiated, and thus can be scheduled in
either order.

4.2 Prioritized SimRank Approximation With Benefit
Model
To leverage the benefit model for a prioritized SimRank

approximation, We propose to integrate the above two rules
Authorized licensed use limited to:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

a. Partitioning partial tours by hub length

Py La(Py) | R(P) | Partition
Py c=b 0 0.25

P, Ly(P,) | R(P,) | Partition
0.25

Py:d—a Prat X2 b 0 0.25

po
Pt e—a 0.25 Pp: fob 0 0.25 ’

Pu: X3 e—a 0.19 Pas 0.09

ey

0
0
Po: x; > a 0 0.25 Ppy: g f b 0 0.19
0
1
1

Pus: X, > d—>a 0.09 . P

0.09 oy

6: X; > Cc>b

Py

Pas: X3 2> d—>a X9 f - 0.07

1

1 0.09
b1
b1

Pra: X1 > g - f - 0.07

b. Scheduled assembling of partial partitions

B B
Pl P'wP P’ ™ B Iter0: Max(i,j)=0 | T, =P'n B’
P P.,l o Pbﬂ p; X Pbl Iterl: Max(i,j)=1 | T, =P XB UPXE UP KB

Fig. 3. An example of prioritized generation of full tour partitions with
benefit model (C=0.75).

into Max(z, j) and use it as the overall priority index of any
Pipa PJ, since Max(i,j) equals (i +j) + |i — j|, i.e., larger
i+ j and larger |i — j| would result in a larger Mazx(s,j),
and thus has a higher priority to be scheduled. Note that,
other metrics are also possible as long as they are consistent
with Eq. (8), and easy to check.

Now, we are able to generate the full tours through itera-
tions to incrementally evaluate SimRank. For any two parti-
tions P! and PJ, they will be assembled in iteration
Maz(i, j). In other words, in iteration k, all the partial-tours
assemblies P > P/ with Max(i, j) = k would be scheduled

to generate a set of full tours, formalized as

T = U

Maa(i,j)=k

Pl P 9

Example: Scheduled Assembling of Full Tours. Fig. 3 illustrates
the process of generating the full tours of s(a, b) with partial
tours in a prioritized manner. First, the partial tours in P,
and P, are partitioned by their hub lengths into P’, P! and
P, P} respectively. As we can see, the reachabilities of tours
in P? (or P)) are smaller than that of tours in P! (or P}).
Next, according to their priority index Maz(i, §), tours in P?
are assembled with tours in P (Maz(0,0) = 0) to generate
the most important full tours 7(, , in iteration-0, and the
other assemblies of partial tour partitions with Maz (i, j) = 1
(i.e., P? < P!, P! ba P, and P! < P}) are scheduled to gen-
erate tours 7}, , in iteration-1.

With the scheduled generation of full tour partitions, the
kth SimRank increment §*(u, v) is calculated as

Y. RE= P,

Max(i,j)=k

& (u,v) =

(10)

and the SimRank score 5 (u, v) estimated after iteration-
nis

n

80 (u,v) = Z Z R(P > P)) = Z R(P, > P)).

k=0 Mazx(i.j)=k i.<n
11
The incremental approximation with prioritized assem-

bling of partial tours allows flexible tradeoff of accuracy
and time- a fast yet good estimate can be obtained with a

niversity of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE

(a) Hub-by-hub graph expansion

(b) Length-by-Length tours assembling

3201

(c) SimRank estimation $"(a,5)

:‘é°(v*‘i')- Ny ‘X"1" V: G°ﬂ‘|"’ X1 L :Tours in G'(a[*): Tours in G'(b]*) Valid full tours §(a,b) = Z R(P,X P} = Z RO «— ?ga%:r:ggitl?;

' | S e —— S — ijE©O,1) 1€t}

' / —f— 1 i a<x b « x, t:a<x—b

‘a ,<_ X3 b f g L X1 ! Gogl) o e:_x L ,' 1 A =r%a|x) - r*'(b]x,) <«— over length-1 tours

' T ; { 3 i@ — € X3 C—>

de—xa! ::t::::::: 2 lacdex ;’"“”‘3 Kaedeyscab +r%%a|xy) - 1B 1 el xy)

"""""7"!\)(2;0“(v} ________»_;?sz Go(cl) a—dex, Sl ta—dex,>c—>b +r°"(a|d)r0"(d|xj)-ro"(blc)ro"(clxa) <— over length-2 tours

_________] i X2, befegex 0.1 01 0,1 0.1 i
__________ +r%(a|d)r®'(d|xy) - r*' (b |)r(c| x; (shared computation)

aal)) 8 NA hefegen N/A raldrtdlx) - Glortiel) Shae compuinten

Fig. 4. An example of efficiently estimating 5(!)

small 7, which can be further enhanced by increasing the
number of iterations.

5 INDEX-FREE SOLUTION: SHARING ACROSS
ITERATIONS

To process SimRank queries in the incremental manner
(Eq. (11)) without relying on any precomputed indexes, we
now further examine the specific query tours in each itera-
tions for efficient online realization. Specifically, given any
query @ = (A4, B), we will investigate how to efficiently span
the partial tours P!, P/ and generate the valid full tours.

First, partial tours spanning. To motivate, let's examine the
partial tours in the first two iterations of estimating s(a, b)
@(i.e., 3°(a,b) and §'(a, b)) in our toy graph.

We observe that the all the tours P! (e.g., a «— d «— x3)
in iteration-1 can be “extended” from the tours ended
with hubs in P? (e.g., a < d), by adding corresponding
“extension” tours at that hub node (e.g., d < x3). The reason
behind such extension is because we partition partial tours
by their hub length- tours in P! are one hub-length shorter
than tours in P'*! and thus can be viewed as the “prefix”
tours of P, Generally, we use a graph expansion model to
illustrate such tour extension. We refer to the set of any par-
tial tours P! (i.e., hub-length-i tours ending at u) as the i-level
in-subgraph of u, as they actually form a subgraph of incom-
ing tours to wu, formalized as Gi(u|x) = {p:u~vfve
V; Ly (p) < i}. The 0-level in-subgraphs are also referred to
as the prime in-subgraphs. Then, by expanding the (i-1)-level
in-subgraph of u at its “border” hubs, denoted by H!~!, with
the hub-length-0 “extension” tours ending at hub, we can
obtain the i-level in-subgraph G’ (u|*) consisting of the hub-
length-i partial tours

(u|1} (12)

U & 'wlh) & GO(hv).
heHi~!
The reachability of the hub-length-i partial tours can be

“extended” similarly. Formally, let ri(ulv) be the overall
reachability of the extended tours in G*(u|v), we have

r(up) = Y T (ulh) 10 (hv).

heHi!

13)

Such hub-by-hub graph expansion allows us to efficiently
enumerate the partial tours in each iteration by dynamically
creating and sharing the common “building blocks” across
iterations, i.e., the prime subgraphs of hub nodes— on the one
hand, once a prime subgraph is computed, it can be reused
in later iterations to build longer tours, as the set of partial
tours in any iteration are assembled from hub segments (i.e.,
hub-length-0 tours); on the other hand, the prime subgraphs

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29

(a, b) with graph expansion and length-aware assembling.

can be efficiently computed on-the-fly as it only consists
of the hub-length-0 tours in the neighborhood of certain
nodes.

Next, to assemble full tours over partial-tour partitions,
we notice that partial tours in a partition can have differ-
ent natural length, while the valid query tours should
have the same length on either side of the meeting nodes
by definition (Eq. (4)). Thus, to assemble two partial-tour
sets, we can skip those “mis-matching” partial tours as
they are not able to generate valid full tours. Accordingly,
the aggregated reachability of full tours in G"(ul*) <
G"(v|*), can be obtained by assembling the reachability of
length-matched partial tours that start at the same meet-
ing node

R(G

H(ul*) > G (v]*) "I(U|3;‘)>,

(14)

ZZCZ r(ulz)

zeX I<M

where M is the maximal natural length in computation (.e.,
the number of iterations required for the fixed-point method
to converge [6]), and in 7/ (u|z) we expand the superscript
of hub length i to also denote natural length [as 4, I.

Example: Efficient SimRank Estimation With Graph Expan-
sion. Fig. 4 shows an example of estimating 5(!)(a,b) on our
toy graph (Fig. 1) with hub nodes H = {a,b, ¢,d, g}. First, in
Fig. 4a the prime subgraphs of query nodes G(a|x), G°(b|*)
are expanded at their border hubs d, ¢, c. The corresponding
prime subgraphs G°(d|*), G°(g|), G°(c|*) are assembled to
generate the hub-length-1 tours in the expanded graphs
G'(al*) and G*(b|*). Then, tours in G'(a|*) and G*(b|*) are
assembled length-by-length at common meeting nodes.
Since there is no length-3 tours from node a, we will not get
a match for length-3 tours in G'(b|x) as Fig. 4b shows.
Finally, 5 (a,b) is estimated by aggregating the reachabil-
ities of all valid full tours where each reachability can be
efficiently obtained by reusing the reachability of shared
hub segments, illustrated in Fig. 4c.

Specification for Other Modes. Such hub-by-hub extension of
partial tours and length-by-length matching of full tours can
naturally apply to different SimRank modes as we explained
in the unified principle. But since the partial tours P, and Pp
in different modes can have different forms, i.e., they can be
ending at a single node, a subset of V, or any node in V, we
can utilize the special properties of partial tours in each
mode to design more efficient implementations.

We start with two single nodes. To span the partial tours
from u to v (i.e,, {u~v}), we can enumerate the incoming
tours of v from u, or outgoing tours of u to v. Such enumera-
tion can be done by growing a subgraph from v or u at differ-

ent directions— expanding the in- subRgmph of v, denoted by
TC from IEEE Xplore. Restrictions apply

3202 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

(a) Single-pair mode (b) Single-source mode | 7; a ! (c) All-pair mode

I e B e T L L P T R SR
| / : | N | / |) b | > Lo -~ Lo |
rar—d | I c—*b! ra+s—d ' ZozZzDoooooo i :X1_>g_>fw o Xe*C ’ Xs*e—a,
C Neexs g—tT 1 N o d OS2 e
o 9T e e Treral ey L R0 T 90 ° |

GO(al*) GO(bl*) GO(al*) | c ! GO(*|x1) GO(*[x2) GO(*|xa)

Fig. 5. An example of spanning partial tours in different modes.

G(v|*) = {p : ve~ w|w € V}, or out-subgraph of u, denoted by
G(*|u) = {p : u~w|w € V}. It is worth noting that, no mat-
ter the direction of expansion, the prime subgraphs are
always bordered by hub nodes (i.e., high in-degree nodes),
as by definition (Eq. (6)) the reachability of tours in both in-
subgraphs and out-subgraphs are decayed by the in-degree
(rather than out-degree) of nodes they pass through.

Now consider how to efficiently span a set of partial
tours FPy. To assemble full tours, the valid partial tours in
Py should start from certain meeting nodes, and thus we
are able to compare the number of query nodes |U| with the
number of reachable meeting nodes |Xy| to decide the
directions of subgraph expansion. If U only consists of a sin-
gle node u (as in the single-pair mode), we should expand
an in-subgraph G(u|*) to obtain Py, since the other way of
expanding an out-subgraph G(x|z) for each meeting node =
would waste more effort in tours that do not end at w. Le.,
we choose to expand from U since |U] =1 <« |X|. In con-
trast, if tours in Py are from X to V, i.e.,, U =V, we would
instead expand out-subgraphs G(*|z) from each meeting
node z. That is, we now choose to expand from X, since
|X| < |U| = |V]. Generally, we should expand the set with
fewer nodes- expanding |Py| in-subgraphs from query
nodes U if |Py| < |Xy| or | Xy| out-subgraphs from meeting
nodes Xy if |Xy| < |Py|. Therefore, given a parital-pair
SimRank query @ = (A, B), we should compare |P4|, |Pp|
with |X,|, |Xp| respectively, and decide the direction of
expansion accordingly.

Example: Mode-Specific Spanning of Tours. Fig. 5 gives the
example of mode-specific tours spanning and assembling
using our toy graph G. For single-pair estimation 5%(a,b),
the prime in-subgraph of a and b are spanned and then the
partial tours are assembled at the common meeting nodes
3. For single-source estimation 3°(a, *), first the prime in-
subgraph G°(a|*) are spanned, then the prime out-subgraphs
of meeting nodes z; and z3 in G°(a|*) are spanned to gener-
ate the full tours. For all-pair estimation 3°(x,), the out-
subgraphs of all meeting nodes z;, z; and z3 in G are
spanned, and matched tours in each subgraph are assem-
bled as full tours.

Details of the unified index-free solution for three Sim-
Rank modes are illustrated in Algorithm 1. First, we select a
set of hub nodes H on the input graph G- Given |H|, the
number of hubs, |H| nodes with the highest in-degree are
chosen as hubs (Line 1). In our current discussion, we only
explore the decaying power of hubs for discriminating
tours, and thus we select hub nodes by their in-degree (i.e.,
higher in-degree indicates higher decaying power). The
number of hubs depends on the structure of graph, which
we will explain in the Section 7. Then we chose mode-spe-
cific graph expansion technique to compute the reachability
of partial tours, which will be further assembled in a length-

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE

aware manner at the same meeting nodes and aggregate to
the overall approximation. The subroutine of incremental
graph expansion is sketched in Algorithm 2.

Algorithm 1. Incremental & Unified SimRank

Approximation

Input: a graph G; number of hub nodes H; number of
iteration n; query @ = (A, B); max tour length M
Output: estimated SimRank S (Q)
H «— Select |H| hubs on G;
if A = {u}, B = {v} then
0 (u|%) < GraphExp(G,u,'T’, n);
X, « meeting nodes in r(" (u|*);
7 (v|*) < GraphBxp(G,v,T,n);
X, « meeting nodes in " (v|*);
foreach x € X, N X, do
foreach ! € [1, M] do
5(u,v) — s(u, v) + 7 (ul)r (v]%);
SU(Q) — s(u,v)
end
end
if A= {u},B=V then
7 (u|*) «— GraphExp(G,u,'T,n);
X, « meeting nodes in 7" (u*);
foreach x € X do
0 (x|z) — GraphExp(G,z,'0',n);
foreachv € V do
foreach { < M do
s(u, v) + s(u,v) + 70 u)£)rt (x| 2);

[S],., < s(u,v);
end
end
end .
S0(Q) — [S];

if A= B=V then
X — meetingnodesinG;
foreach z € X do
0 (x|z) — GraphExp(G,z,'0',n);
foreach v € V do
foreach [< M do
s(u,v) — s(u,v) + rW (u)z)r (v]z);

[S]’U.’U — S(u7 v);
end
end
end .
S(Q) — [S);

return S0 (Q).

6 COMPLEXITY AND ERROR ANALYSIS

In this section, we present an analysis of the UISim algo-

rithm, in terms of its complexity and error bound.
plore. Restrictions apply.

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE

Algorithm 2. GraphExp (Subroutine)

Input: a graph G; a root node u; type of subgraph «, number
of iterations n
Output: reachability over n-level subgraph 7"

1: if k ='I’ then
2: Construct prime in-subgraph G°(u|*) on G;
3) O(ulx);
4: if k ='O' then
5: Construct prime out-subgraph G°(+|u) on G;
6: 10— r0(x|u);
7 rg’) — 7“2;
8: if n > 0 then
9: fori=1...ndo
10: H; « hubsinri;
11: foreach h; € H; do
12: if « ='I' then
13: Expand G'~!(u|h;) with GO(h;|*);
14: i — 10 (ulh;)r0 (hi]%);
15: if « ='0’ then
16: Expand G'~!(h;|u) with G°(x|h;);
17: i — 10k hy)r0 (hy|w);
18: end
19: 0) 4yl s
20: end

21: return r{".

6.1 Complexity Analysis

Time Analysis. Since hub selection can be done in constant
time, we focus the complexity analysis on 1) initial prime
subgraphs processing cost, 2) prime subgraphs expansion
cost, and 3) full tours assembling cost.

First, initial prime subgraph processing cost. Depending
on the mode of SimRank query, we have different kinds of
prime subgraphs—prime in-subgraphs of v and v for a sin-
gle-pair query @ = (u,v), prime in-subgraph of v and prime
out-subgraphs of the corresponding meeting nodes = € X,
for a single-source query @ = (u,V), and prime out-sub-
graphs of each meeting node = € X for an all-pair query
@ = (V,V). Given an average degree d and an input prime
subgraph of size m (i.e., of m nodes), while the processing
time consists of the construction time and reachability com-
putation time, the former is dominated by the latter. In par-
ticular, the reachabilities can be computed using the fixed
point power-iteration method [31], which takes O((m +
md)I) = O(mdlI) time, where I is the number of power iter-
ations and md is the number of edges. Note that the number
of power iterations I is the number of times to multiply the
transition matrix in the power-iteration method until con-
vergence, which is typically a small constant. In contrast,
the construction of the prime subgraph is done using a
depth-first search, which takes O(m + md) = O(md) time
only. Therefore, the overall processing time is O(mdlI).

Second, prime subgraph expansion cost. Prime sub-
graphs expansion is to extend the initial prime subgraphs at
their border hubs (i.e., assemble the prime subgraph of each
border hub), iteration by iteration, to build the candidate
partial tours. Assuming an average degree of d, the sum of
degrees of all hubs nodes dy and the sum of degree of all
nodes dy, there are 7 = O((d(1 — dg /dy))") partial tours of
up to lenéth L in each prime subgraph. That is, at each node

3203

(starting from the query node), among the d neighbors,
d(dy/dy) is the number of hub nodes (given that dy/dy is
the probability of an outgoing edge leading to a hub) where
the expansion would stop, and d(1 — dy/dy) is the number
of non-hubs which will be further expanded to span longer
tours. Note that, hub nodes are typically nodes with largest
degrees, and thus 1 —dy/dy would be small. Moreover,
when H becomes larger, 1 —dy/dy and hence 7 will
decrease—a prime subgraph reduces its size significantly
when the number of hubs increases.

Suppose a prime subgraph has |H| border hubs. Clearly,
|H| < |H|, and in most cases || < |H|. In each iteration:

e For single-pair mode, we extend |H| prime in-sub-
graphs (each of which contains 7 tours) on each side
of the query node.

e For single-source mode, we extend |H| prime in-sub-
graphs on the side of the query node, and |X|/H|
prime out-subgraphs on the side of meeting nodes X
for the given query. Clearly | X| < | X| where X is the
set of all meeting nodes.

e For all-pair mode, we extend at most |X||H| prime
out-subgraphs on all meeting nodes X.

Thus, the complexity of 7 iterations of expansion is
bounded by O(|H|"T), O(|X||H|"T) and O(|X||H|"T) for
the three modes, respectively.

Note that, in UISim we use iteration to refer to the exten-
sion of subgraphs, which is different from the fixed-point
iteration as used in traditional iterative methods. Specifi-
cally, the fixed-point iterative method generally stabilizes
after 5 iterations [6], which means we only need to handle
partial tours of natural length up to 5 (i.e., L = 5). In UISim,
the hub length of a tour is generally much smaller than its
natural length, and thus it is sufficient to cover the neces-
sary tours with only 1-2 expansions (i.e., n <2), as our
experiments in Section 7 would also confirm.

Lastly, full tour assembling cost. When the candidate
partial tours on each side of the meeting nodes are spanned,
they will be matched to build the full tours. To generate
valid full tours, only the partial tours of the same length
will be assembled. Given an expanded subgraph, there are
T partial tours up to length L as discussed earlier. Thus, the
cost to match two set of partial tours up to length L in a sub-
graph is 77. That is, we have 7 tours on each set, and we
need to do pair-wise assembling of them. Thus, for single-
pair mode where only two subgraphs will be handled, the
assembling cost is O(7?), for single-source mode, it costs
O(|X|T?) to assemble |X| pairs of subgraphs, and for all-
pair mode, O(|X|7?) is required to assemble |X| pairs of
subgraphs.

Space Analysis. The space cost depends on the number of
prime subgraphs handled in each iteration. Following the
time analysis, all the modes require O(md) space for the ini-
tial prime subgraphs. In addition, the single-pair mode
requires an extra space of O(md|H|") to store the prime sub-
graphs used in 7 expansions. Similarly, the single-source
and all-pair modes require an extra space of O(md|X||H|")
and O(md|X||H|"), respectively.

Summary. We summarize the time and space complexity
analysis in Table 2. We make two remarks on the computa-
tion of UISim.

uthorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

3204
TABLE 2
Time and Space Analysis of the Three Modes
Time
Mode subgraph subgraph full tour Space
construction extension assembling
Single-pair O(HI"T) O(T?) O(md|H|")
Single-source O(Imd) O(X||H"T) o(X|77?%) O(md\X||H|™)
All-pair OXIHMT) O(X|1T? | O(mdX|H")
where 7~ = (d(1 — dy/dy))*

First, the three modes of UISim are necessary for efficient
mode-specific computation. Comparing across the three
modes, we clearly observe that the advantage of mode-spe-
cific query processing techniques in terms of both time and
space. Specifically, the single-source cost is smaller than that
of repeating single-pair queries for |V| times since | X| < |V,
and the all-pair cost is much smaller than repeating the sin-
gle-pair mode for |V|? times since | X| < |V]?, or repeating the
single-source mode for |V| times since | X| < |V[| X].

Second, UISim is efficient and scalable. Its time cost is domi-
nated by the prime subgraphs expansion cost (e.g., O(|H|"T),
where 7 is typically in [0,2], and |H| < |V|. More importantly,
given more hubs, each prime subgraph handled in computa-
tion becomes smaller rapidly. That is, both m and 7 signifi-
cantly decrease with a larger number of hubs. Similarly, the
prime subgraph construction and full tour assembling cost
also decreases with a larger H. Therefore, UISim is scalable to
larger graphs by selecting a large number of hubs.

6.2 Error Bound Analysis

As UISim incrementally handles partitions of query tours to
approximate the SimRank score of any nodes u and v, the
accuracy of the approximation improves with more itera-
tions of enhancement. Formally, we establish the following
theorem on the expected error after n iterations.

Theorem 1. Consider a random edge from the graph. Suppose
the probability of the edge ending at any node is proportional to
the node degree. Then, the expected error in §(">(u, v), which
represents the SimRank estimation between u and v after n iter-
ations, satisfies the following bound:

dH n+1
Eu,vEV |:3('U/, U) — §<")(u7 ’U):| < (E) CYHQ’

(15)

where dy is the sum of degrees of all nodes, and dy is the sum
of degrees of all hub nodes.

Proof. To compute the expected error, we investigate the
length of partial tours covered after 5 iterations. First, all of
the partial tours up to length n + 1 have been covered. Par-
tial tours of exactly length n 4 1 only accounts for a fraction
of (Z—‘If)” of all tours starting from the query node. Further-
more, for such a partial tour, there is a probability of Z—f‘f
when the partial tour ends at a hub node and thus cannot
extend further. Thus, among all the partial tours, a fraction
of (Z—ﬁ)"“ will not extend to length 1 + 2 or longer. In other
words, this fraction of the set of partial tours of length n +
2 or longer are not covered after 7 iterations. As established
previously [15], the total contribution of all # + 2 or longer
partial tours is bounded by C"*2, Thus, in our case, the
expected error is bounded by (%) C7+2,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Since C < 1 and fl—"f < 1, the bound approaches 0 at an
exponential rate as n grows. In other words, an earlier itera-
tion contributes exponentially more to the SimRank score.
Plugging in some plausible values C' = 0.75, ZTH =0.2 and
n =2, we get the bound as 0.00253, which is fairly tight
given that 0 < s(u,v) < 1.

Remark. Our bound is built upon the skewed degree dis-
tribution of nodes. Moreover, we are assuming an undi-
rected graph in the analysis here, which means the in- and
out-degrees are the same. (In the case of a directed graph,
the analysis should use in-degrees instead, i.e., the probabil-
ity of a directed edge ending at any node is proportional to
the node in-degree.) In particular, hub nodes have higher
degrees and partial tours are more likely to run into a hub
node, i.e., d—f > % That means, the probability of a random
edge ending at a hub node is skewed w.r.t. the degree,

rather than uniformly distributed over all nodes.

7 EMPIRICAL EVALUATION

We empirically evaluated UISim on several real-world
graphs. The experiments showed that UISim is substantially
more efficient than previous state-of-the-art baselines in all
three modes, and can also scale to larger graphs.

7.1 Experimental Setup
Datasets. We use eight real-world datasets from different
domains and with different properties and sizes summa-
rized in Table 3. In particular, six datasets are used for base-
line comparison where three smaller graphs of them are also
used for parameter study, and two evolving graphs with sev-
eral snapshots are used to test the scalability of UISim.
Environment. We implement all methods in C++, and
evaluate them on a Linux system with 3.5 GHz CPU and
192 GB RAM.

7.2 Experiments on Smaller Graphs

We first evaluate the algorithms on three smaller graphs,
4Area, WikiVote and CondMat. As the ground truth, the
exact SimRank scores are computed by the power-iteration
method with 55 iterations which ensures at most 10~'% abso-
lute error.

Test Queries and Evaluation. In the single-pair and single-
source modes, we randomly sample 100 queries from each
graph. Given a query, all the methods compute approximate
SimRank scores. Thus, we need to evaluate their accuracy w.
r.t. the exact scores based on the naive computation. In par-
ticular, for single-pair queries, we adopt the metrics of Abso-
lute Error (AbsErr) and Relative Goodness (RG). For a node
pair, suppose its exact SimRank score is s and the estimated
score is 5. Subsequently, AbsErr is simply defined as |s — 3],
and RG as min{(s+8)/(5+3), (8§ +8)/(s+)} where § is a
small number to avoid division by zero. We then report the
average of the 100 test pairs for each metric.

For each single-source query, we compute the SimRank
scores of other nodes w.r.t. the query node, which enable us
to obtain a ranking of nodes in decreasing SimRank scores.
Given that users are often more interested in first few
ranked results, we evaluate the accuracy of top K nodes in
the ranking, where K = {10, 20,30} on smaller graphs and
K ={200,300,500} on larger graphs. The average AbsErr

O
Authorized licensed use Iimitedr{éﬁy: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE 3205
TABLE 3
Summary of Datasets
Dataset Description Directed Nodes Edges Purpose
4Area DBLP bibliographic network in four areas, similar to ref. [20], [3] no 12413 91192 Parameter study, and
WikiVote Wikipedia administrator election network [10] (dangling nodes removed) yes 1300 39456 . .
A) comparison to baselines
CondMat Collaboration network of Arxiv Condensed Matter [10] no 23133 93497
enwiki2013 A snapshot of the English part of Wikipedia[10] [1] yes 4206785 101355853
it2014 A fairly large crawl of the .it domain [1] yes 41291594 1150725436 Comparison to baselines
Friendster On-line gaming network [10] no 65 608 366 1806067 135
Gnutella Gnutella peer to peer network with several snapshots [10] yes 62586 147892 Scalability study
Dblp Full DBLP bibliographic network with several snapshots, similar to ref. [3] no 207313 2575941

(AvgErr) can be computed on the exact and estimated Sim-
Rank scores of these K result nodes for each query. RG can
be extended to measure the “relative goodness” of a rank-
ing, called Relative Average Goodness (RAG) as defined previ-
ously [2], [31], [32]. As both AvgErr and RAG evaluate the
accuracy of the scores, we additionally use precision (Prec)
to evaluate the accuracy of rankings, which is the fraction of
correct nodes in the top K lists. We also average over the
100 test queries for each metric.

In all-pair mode, we initially compute the SimRank scores
of all § |V|? node pairs (i.e., there is only one query consisting
of all the pairs). Since the vast majority of this enormous
number of pairs are uninteresting with very low SimRank
scores, we evaluate the accuracy of the top K = {200, 500,
1000, 1500} most similar pairs with largest SimRank scores.
We also use AvgErr, RAG and Prec as our accuracy metrics.
Note that, as analyzed in Section 1, returning the K most simi-
lar pairs from all-pair SimRank results actually solves the top-
K SimRank Join problem, and thus we also compare all-pair
UISim to top-K SimRank Join algorithm in our experiments.

Impacts of Different Settings. As discussed, we have two
main parameters, namely, number of hubs | H| and number of
iterations n. We first study their impacts on the performance

(a) SP, 4Area (b) SP, WikiVote (c) SP, CondMat

1.0 — 1.0 — 1.0 036 _
. e, A I
> =z | = » | =
é 0.7 g ; 0.7 P g 0.7~ 024 2
3 s 3 =5 =
2 04 § o< o4 11§ 2 osf o2 g
T R < T R < [R | &
0.1 0 0.1 0
IK 2K 3K 4K 200 400 600 800 0.1 5K 6K 7K 8K 0
Number of hubs Number of hubs Number of hubs
—»— 1-AbsErr —6— Time
(d) SS, 4Area (e) SS, WikiVote (f) SS, CondMat
z < - =z = 24 2
1.0 12 Z 1.0 #1252 1.0 [¥ z
g 07 9 28 o7 20 28 o7} e 2
E 23 23 2
8 6 £ 8 £8 -5
< 04 S < 04 L5 T< 041 08 =
0.1 38 oL _L & 1l 00 &
1K 2K 3K 4K 200 400 600 800 5K 6K 7K 8K
Number of hubs Number of hubs Number of hubs
—>— 1-AvgErr —— RAG Prec@20 —o— Time
(g) AP, 4Area (h) AP, WikiVote (i) AP, CondMat
1.0 7z 1.0 z 101 1 ‘FI.S z
= E=B S o S
gorp 45 = Z o7 =g 0-7M1~2:
3 g3 £3 £
< 04 3 ‘é < 04 g< 0.4 - —0.6 g
o) 15} o]
ol 1y & ol 13 & oil—_L Loy &
1K 2K 3K 4K 200 400 600 800 5K 6K 7K 8K
Number of hubs Number of hubs Number of hubs

—x— I-AvgErr —— RAG Prec@200 —— Time

Fig. 6. Impact of number of hubs on accuracy metrics: AbsErr, AvgErr,
RAG, Prec@K (left y-axis) and query time (right y-axis) in three modes:
single pair (SP), single source (SS) and all pair (AP).

of UISim and discuss how to set the parameters. For single-
source queries, we report the results on top K=20 results and
for all-pair queries, top K=200 results. The results are shown
in Figs. 6 and 7 respectively. Note that, for a consistent presen-
tation, we plot the complement of AbsErr (or AvgErr) instead,
i.e., 1-AbsErr (or 1-AvgErr). Thus all the metrics indicate a bet-
ter accuracy with a larger value.

Number of Hubs. We first illustrate the effect of varying
number of hubs |H| in Fig. 6, where we fix n = 2. On the one
hand, in most scenario having more hubs drastically
reduces the average query time of UISim, just as we have
expected in Section 6. That is, with more hubs H, the num-
ber of partial tours in each prime subgraph 7 decreases
exponentially, and thus both the subgraph extension time
and full tour assembling time are decreased. On the other
hand, when we have more hubs, we also observe a slight
decrease in accuracy as the number of non-hubs which will
be further expanded to span longer tours decreases. That is,
more expansions are stopped by the border hubs, poten-
tially hurting accuracy. Nevertheless, as we reasonably
increase |H| in Fig. 6, most drops in accuracy are very minor
while query processing becomes much faster, which is con-
sistent with our theoretical analysis in Section 6. That is,

(a) SP, 4Area (b) SP, WikiVote (c) SP, CondMat

1.0 1.0 1.0 0.45

g o8 s Zos s Zos 03 o
5 £ = £ E ©E
3 S > 8 -
< 06 2 206 g < 06 0.15 &
3 3 3
o o o
0.4 0.4 0.4 0
Number of iterations Number of iterations Number of iterations
—x— 1-AbsErr —6— Time
(d) SS, 4Area (e) SS, WikiVote (f) SS, CondMat
15 2 z z
1.0 | = 1.0 £ 1.0 =
= S S S
g 09 1028 o9 =g o9 =
< 08 = < 0.8 = < 0.8 =
3 o} 3
07 0 & o7 S o7 IS
’ ’ © 0 1 2
Number of iterations Number of iterations Number of iterations
—>— 1-AvgErr —— RAG Prec@20 —&— Time
(g) AP, 4Area (h) AP, WikiVote (i) AP, CondMat
1ol []6 & 1.0 24 & 10 09 g
X - 2 <
209 S g 09 16 =2 09 06 =
£ 3 £3 £
< 0.8 % < 08 0.8 g< 0.8 0.3 E\
b5} 3 3
3 3 3
0.7 SV AR L oo & 07 00 &

0 1 2
Number of iterations
—»— 1-AvgErr —— RAG

Number of iterations
Prec@200 —o— Time

Number of iterations

Fig. 7. Impact of number of iterations on accuracy metrics: AbsErr,
AvgErr, RAG, Prec@K (left y-axis) and query time (right y-axis) in three
modes: single pair (SP), single source (SS) and all pair (AP).

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

3206
(a) SP, 4Area (b) SP, WikiVote (c) SP, CondMat

0.15 0.15 —— 0.15
= 0.1 =) = 0.1
4 a a
=) =] =]
< 0.05 < < 0.05

)

0 |
0.01 0.03 0.05
Time (ms)

—&— UISim —+—BLPMC

0 =3 il
0.01 0.03 0.05
Time (ms)

Time (ms)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

(d) SS, 4Area (e) SS, WikiVote
L7 L1

(f) SS, CondMat

0.8

)

Precision

0.6

Precision
o g
[=)}
%
|
Precision

I —
0 5 10 15 20

0.4

04LEL 1|

"0 5 10 15 20
Time(ms)
PRSim w/

0'60 5 10 15 20
Time(ms)
PRSim w/0o —A&— SimPush

Time(ms)

—&— UISim —+— ProbeSim

Fig. 8. Comparison of accuracy against time with baselines in single pair (SP) and single source (SS) modes.

when |H| becomes larger, the decrease in running time is
exponential while the increase in expected error is linear.
Thus, it is still beneficial to use a relatively large |H|.

In practice, we should also consider the structure of graphs
(e.g., dg and dy in Eq. (15)) to set the value |H|. More hubs
should be selected on larger and denser graphs. To determine
the number of hubs, a simple rule is |H| = Blog (d)|V|, where
d is the average node degree for some choice of § > 0. Empir-
ically, the desirable range of 8 is between 0.1 and 0.5 for a rea-
sonable trade-off between accuracy and time.

Number of Iterations. Next, we study the ability of incre-
mental query processing by UISim. We vary the number of
expansion iterations 5 in Fig. 7, where we fix |H|. Our
results show that more iterations result in better accuracy (if
not already good at n = 0), but require longer time to pro-
cess. Thus, the accuracy of our SimRank estimation indeed
improves in an incremental manner. In particular, accuracy
improvement is generally more significant in earlier itera-
tions (from 7 =0 to 1 as compared to from n =1 to 2). In
most cases, high accuracy can be obtained with very few
iterations at n = 1. It is interesting to observe that, the
experiments also reveal the different contribution of Sim-
Rank increments 8*(u,v) in our scheduled approximation-
when 7 = 0, only the most important increment 8 (u, v) con-
tributes to the final scores, while when n = 1, the first two
increments 5°(u,v) and 5'(u,v) make contributions, and so
on. Thus, the results validate that the increments with small
k contribute more than the increments with large k.

Comparison to Baselines. We compare UISim with the state-
of-the-art competitors in each query mode: BLPMC [24], the
single-pair solution; ProbeSim [14], PRSim [26] and Sim-
Push [19], the single-source solutions; FLP [25], the all-pair
solution, and TreeWand [21], the SimRank Join solution.
Since PRSim is an index-based algorithm, for fair compari-
son, we also perform its index-free version by setting the
number of precomputed hubs to zero. In the following, We
refer to the original index-based PRSim as PRSim w/, and its
index-free version as PRSim w/o. The threshold-based Sim-
Rank Join method [17] is not included as a baseline because it
has a different setting where the threshold of similarity need
to be specified. When the threshold is set to zero, it reduces
to all-pair SimRank and it is two orders of magnitude slower
than FLP algorithm (i.e., the state-of-the-art all-pair baseline
in our experiments) as reported in Reference [25].

As all algorithms compute approximate SimRank scores,
there is a trade-off between accuracy and query time. In order
to fairly compare different methods, we should fix their accu-
racy at a similar level, and then compare the running time
under these settings. To obtain comparable accuracy, the
parameter settings in different methods cannot be directly

derived from their theoretical error bounds, which have dif-
ferent formulations (e.g., some are deterministic, some are
probabilistic, and some are in the expectation sense), and
have varying degrees of tightness. Therefore, to systemati-
cally compare different methods in practice, we vary the
parameters of each method in a reasonably large range, so as
to evaluate a large number of different configurations. Subse-
quently, we compare different methods under these configu-
rations that give similar accuracy.

Parameter Setting. For all algorithms, we set the damping
factor C' = 0.75. Specifically, ¢, the error bound in BLPMC is
varied from 0.005 to 0.015 at the step of 0.001; ¢,, the maxi-
mum absolute error in ProbeSim and PRSim is varied from
0.001 to 0.2 at the step of 0.001. Other parameters are speci-
fied according to the original papers. For UISim we vary |H]|
in the range discussed earlier, and for each value of |H| we
try n = {0,1,2}.

We run all the settings and evaluate their accuracy using
the metrics explained earlier. For single-pair and single-
source mode, we plot the results of settings with running
time falling into a same range in Fig. 8, where z-axis is the
running time and y-axis is the accuracy. Here we only pres-
ent AbsErr for the single-pair mode and precision for the
single-source mode as the accuracy metric, since we observe
similar trends in other metrics as well. Typically, we focus
on relatively small running time (e.g., from 0 to 20 ms in the
single-source mode) as many applications will require a fast
online computation of SimRank. For each method, if we
observe different accuracy with the same running time, we
report the highest accuracy.

From Fig. 8, we can clearly observe the advantage of UISim.
On the one hand, UISim always need less time to achieve the
same accuracy as its baseline. More concretely, we compare
different methods under configurations that give similar
accuracy. We exhibit the detailed accuracy and the running
time of several “accuracy-moderated” configurations in
Tables 4 and 5. As observed, to achieve similar accuracy,
UISim runs faster than the respective baselines in each mode.
For example, as shown in Table 5, UISim outperforms the
strongest index-free single-source baseline SimPush, and is
even faster than the index-based PRSim w/ on smaller
graphs. We also observe that SimPush is more sensitive to the
graph structure. For example, SimPush is more inferior than
UISim on 4Area (Fig. 8d) and CondMat (Fig. 8f) compared
with their performance on WikiVote (Fig. 8e). The reason is
because generally the source graph of a query is also large (or
dense) on 4Area/CondMat, and thus more time is wasted in
identifying attention nodes and conducting reverse push at
each level. On the other hand, UISim can achieve a good accu-
racy very fast while the baselines do not perform well within

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE

TABLE 4
Detailed Comparison Under Accuracy-Moderated
Configurations in Single-Pair Mode

Dataset L1S RAG Time (ms)
uisim BLPMC UiSim BLPMC UiSim BLPMC
978 .954 563 570 0.007 0.014
4Area .984 .969 571 531 0.009 0.019
.990 .983 648 648 0.01 0.024
960 .939 781 815 0.014 0.033
WikiVote .961 .950 781 790 0.016 0.029
977 972 871 882 0.031 0.045
.999 .944 666 660 0.007 0.013
CondMat .999 974 666 663 0.009 0.019
.999 .995 669 671 0.017 0.048

limited time. For example, as shown in Fig. 8e, UISim can
achieve a precision above 0.9 within 5 ms, while given the
same time, the best accuracy of the baselines is around 0.8.
Such observation also validates the benefit of the “important-
first” property of UISim discussed in Section 1.

For all-pair SimRank and SimRank Join, since the range of
time we observed in UISim and the baseline TreeWand are
vastly different (running one configuration can take several of
hours for TreeWand), we only report the detailed results of
nine configurations in Table 6. The results show that to achieve
similar or better accuracy levels, UISim runs up to 4 times faster
than FLP, and several orders of magnitude faster than Tree-
Wand. It is worth noting that on 4Area and CondMat, the pre-
cision of all algorithms are around 1, but the AvgErr is
relatively large. The reason is that there are many top ranked
node pairs with the same exact SimRank scores, and the esti-
mates for them are mostly the same (although not equal to the
exact scores). Thus, the relative ranking obtained with approx-
imate algorithms are still quite similar as the true ones.

We also evaluate the results with different K under the
same configurations for single-source and all-pair queries.
For single-source queries, we vary K from 10 to 30, and for
all-pair queries, from 500 to 1500. Note that TreeWand is
not included in the evaluation as it is running time increases
with larger K (while other algorithms can compute the Sim-
Rank scores of all pairs, not just the K results). As shown in
Fig. 9, UISim stably achieves higher accuracy than the base-
line with larger K, while the accuracy of SimPush drops
prominently with large K, mainly due to the pruning of
non-attention nodes. For all-pair queries, since the precision
of UISim and FLP are similar in some cases, we also evalu-
ate the AvgErr with different K and observe that UISim can
always obtain a smaller AvgErr of top K results.

3207

TABLE 6
Detailed Comparison Under Accuracy-Moderated
Configurations in All-Pair Mode (K = 200)

Dataset Precision AvgErr Time (s)
UlISim FLP TreeWand UISim FLP TreeWand UISim FLP TreeWand

1 1 1 032 .034 .682 4.050 6.655 11740
4Area 1 1 1 .030 .030 .680 5.089 8782 11867
1 1 1 .014 .015 .651 7.642 32495 12045
905 .930 935 .011 .013 .0102 0.682 249 400.21
WikiVote .960 .950 .980 .004 .009 .0038 4.615 8.197 401.97
970 .955 981 .003 .009 .0037 5.036 11.346 402.59
1 1 .980 .044 .049 .547 1.291 1.509 2413.2
CondMat 1 1 .980 .043 .045 .546 1.457 1.750 2580.1
1 1 1 .038 .040 .618 2.458 2.831 2696.1

7.3 Experiments on Larger Graphs

We next evaluate UISim on three large graphs Enwiki2013,
IT2004 and Friendster, with up to 65 million nodes and 1.8 bil-
lion edges (Table 3). We focus on the single-source node com-
parison with the baselines, since for single-pair queries, the
baseline method runs out of memory on all the three graphs.
All-pair mode is also not evaluated here, as most applications
would not need all-pair results on graphs of this scale.

On large graphs, it is impractical to calculate the exact
SimRank similarities with Power Method. However, a latest
work ExactSim [23] provides a probabilistic exact single-
source Simrank solution that can achieve a precision of 7
decimal places with high probability. We thus use the
results of ExactSim with ¢ = 1077 as ground truth on large
graphs to evaluate UISim and the baselines ProbeSim,
PRSim w/, PRSim w/o, and SimPush. We vary the parame-
ters of different algorithms in the suggested range and com-
pare them under “accuracy-moderated” configurations,
similarly as we experiment with smaller graphs.

On each graph, 50 random queries are chosen and their
average results are reported. We plot the trade-off between
precision and query time (in log scale) in Fig. 10, and
observe that generally the accuracy of each method increases
with more query time. However, the baselines need more
time (by one order of magnitude) to achieve a higher preci-
sion above 0.9; while after that, the precision of all methods
increase slightly, even with longer query time.

The detailed comparison of concrete settings with accuracy
up to 0.97 are shown in Table 7. For example, on Friendster, to
achieve the precision around 0.93, UISim needs 10.75ms while
the strongest baseline SimPush needs 105.7 ms; to increase the
query time (to 20.08 ms for UISim and 128.5 ms for SimPush),
the precision only increase by 0.007 (K=500).

TABLE 5

Detailed Comparison Under Accuracy-Moderated Configurations in Single-Source Mode (K = 20)
Dataset Precision AvgErr RAG Query Time(ms) Tr;:l;);sss\:;ﬁ
UISim ProbeSim PRSim_PRSim SimPush | UISim ProbeSim PRSim_PRSim SimPush [UISim ProbeSim PRSim PRSim SimPush | UISim ProbeSim PRSim_PRSim SimPush Space Time
w/o w/ w/o w/ w/o w/ w/o W, (KB) (ms)
0.701 0.675 0.636 0.638 0.697| 0.012 0.017 0.005 0.014 0.014| 0.733 0.714 0.677 0.663 0.726| 0.442 6.345 12935 5.021 5.170 40 5.28
4Area 0.821 0.799 0.818 0.799 0.817| 0.011 0.012 0.002 0.009 0.011| 0.846 0.822 0.840 0.821 0.838| 2.530 7.656 44729 6.610 9.652 56 5.52
0.893 0.874 0.875 0.880 0.892| 0.006 0.012 0.005 0.006 0.010] 0.910 0910 0.891 0.898 0.909]11.142 18.287 97.624 10.742 16.540| 172 742
0.843 0.794 0.802 0.791 0.803] 0.011 0.010 0.001 0.012 0.011| 0.852 0812 0.820 0.807 0.811] 1.627 11.657 46.698 7.827 2.061 48 6.67
WikiVote || 0.883 0.862 0.855 0.843 0.882| 0.010 0.010 0.001 0.011 0.009 | 0.892 0.875 0.869 0.856 0.890| 4.191 22.342 102.699 10.043 4.890 68 8.30
0.908 0.888 0.895 0.884 0.908| 0.009 0.011 0.000 0.007 0.008 | 0.917 0.898 0.905 0.895 0.915]10.808 43.730 176.557 33.998 12.083| 572 29.34
0.905 0.905 0.867 0.855 0.897| 0.017 0.022 0.007 0.016 0.008| 0.944 0942 0945 0917 0.949] 0.230 1.819 2.001 2.093 6.703| 152 9.88
CondMat || 0.916 0.900 0.887 0.884 0.908| 0.015 0.022 0.005 0.011 0.006 | 0.950 0945 0.955 0.934 0.955| 0.565 1.931 3.007 3.385 8.321| 300 14.92
0.924 0.923 0914 0.926 0.925]| 0.012 0.022 0.003 0.007 0.004 | 0.954 0953 0.969 0.959 0.964| 1.988 2.684 7.146 6487 12.669| 612 24.87

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

3208

(a) SS, 4Area

1

T

X 0.9 |z =
®
B

& 08| -

|

%750 20 30

K

Prec@K

—&— UISim —+— ProbeSim

(b) SS, WikiVote

L T T
0.9 [—=B=—F|
0.8 —
07 ! !

10 20 30
K
PRSim w/

(c) SS, CondMat

Prec@K

0.

0.

0.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

L
9

8

7 L
10

20
K

30

PRSim w/0 —&— SimPush

Prec@K

0.4

0.6

(d) AP, 4Area

&

=)

=]

B

K

C—o—=0
500 1,000 1,5000 0

0.1

Prec@K

o

AvgErr
[=)}

(e) AP, WikiVote

1

o
%

0.1

.4
0 500 1,000 1,5000

K
—8— UISim-Prec —+—FLP-Prec —6— UISim-AvgErr —<— FLP-AvgErr

AvgErr

Prec@K

0.6

0.4 1
500

(f) AP, CondMat

0.8

0.1

AvgErr

K

Fig. 9. Comparison of accuracy with different K under time-moderated configurations in single-source (SS) and all-pair (AP) modes.

1,000 1 ,5()00

TABLE 7

Detailed Comparison Under Accuracy-Moderated Configurations in Single-Source Mode on Large Graphs
K=500 K=300 : Tndex Cost of
Dataset Precision AveErT Precision AveErr Query Time(ms) PRSim
UlSim | SimPush | TROM PRSI 5 4 oSim | UtSim | SimPush | o™ | PRSI T esim | USim | SimPush | TRO ™ [PRSI [besim | UISim| SimPush] RO ™ [PRSI by obesim | ULSim | SimPush | TR0 ™ [PRSI by e | SPace | Time
wo| w wo| w/ wo| w wo| w/ wo| w ™MB)| (9
0.893 0.882| 0.874| 0.814 0.867| 0.003 0.002| 0.002| 0.005 0.001| 0.899 0.899| 0.886| 0.866 0.894| 0.003 0.002{ 0.002| 0.004 0.001| 1.720| 10.208 26.4 11 85.4 292 6.4
Enwiki2013 | 0.906| 0.895| 0.887| 0.854| 0.901| 0.003| 0002 0.002| 0.004| 0.001| 0.905| 0912| 0.891| 0.880| 0.919] 0.003| 0.002| 0.002| 0.003| 0.001| 7.247| 135| 366| 132 99| 348| 7.8
0.907| 0.900| 0.908| 0.897| 0936] 0.004| 0.001] 0.002| 0.003| 0001 0.906| 0917 0917| 0.900| 0.945| 0.004] 0002 0.002| 0.003| 0.001| 1411| 2206| 568 17 160| 45| 96
0.898 0.885| 0.872| 0.811 0.853] 0.025 0.015] 0.018 | 0.029 0.030[0.910 0.909] 0.908| 0.866 0.888 | 0.024 0.014] 0.016| 0.023 0.027] 5.533 17.545 541 36.6 121.4[14759] 615
1T2004 0.904 0.893| 0.877| 0.865 0.877| 0.025 0.014| 0.024| 0.024 0.023| 0911 0.917| 0.896| 0.866 0.888| 0.023 0.014| 0.021| 0.019 0.020| 7.487 24.09| 2450| 121.8 757(3116.2| 105.7
0907| 0.917] 0.890| 0.902| 0880] 0.024| 0.011] 0.024] 0016] 0024 0912| 0927] 0912 0921| 0.918] 0.023| 0012 0.020| 0.015| 0.020| 8.838| 165.15| 14726| 416] 1385[6100.6| 172
0.930 0.898| 0.882] 0.881 0.898 [2E-04 1E-04| 2E-04| 2E-04 1E-04| 0.931 0.924] 0911 0914 0.926 [2E-04 1E-04| 3E-04| 3E-04 1E-04| 10.75 105.7 158 157 2240 525] 1348
Friendster 0.937 0.910| 0.937| 0.940 0.955 | 2E-04 1E-04| 2E-04 | 1E-04 1E-04| 0.942 0.939| 0.949| 0.957 0.967 | 2E-04 1E-04| 2E-04 | 2E-04 1E-04| 20.08 128.5 323 325 4595| 106.5| 496.4
0942 0.936] 0.961| 0.967| 0971| 2E-04| 1E-04] IE-04| IE-04| 1E-04] 0945| 0965 0966 0973| 0.979| 2B-04| 1E-04] 1E-04| 1E-04| IE-04| 4233 1644| 717| 716 6797| 2143|1263

For thorough comparison, we also evaluate the accuracy
of different algorithms with varied K. It can be observed
that, UISim is up to 10 times faster than the strongest baseline
SimPush while they produce results with a accuracy higher
than 0.9.

7.4 Scalability on Growing Graphs
Finally, we test the scalability of UISim on two growing graphs
Gnutella and Dblp. In particular, Gnutella includes snapshots
on different dates, whereas Dblp includes snapshots of differ-
ent years. Each subsequent snapshot has a larger number of
nodes |V|and edges | E|, as shown in Table 8.

The key to scaling UISim is to increase the number of hubs
|H|. As discussed in Section 7.2, using more hubs can reduce

TABLE 8
Scalability of UISim on Growing Graphs

Dataset # Nodes # Edges # Hubs Que;);’tlme (mSSS) Mesrgory (Mgg
Gnutellal 6,301 20,777 816 0.36 200.8 3.69 4.10
Gnutella2 8,717 31,525 1,217 0.48 | 344.56 4.51 553
Gnutella3 10,876 39,994 1,538 0.52 4122 5.02 6.14
Gnutella4 22,687 54,705 2,168 0.314 | 308.17 7.68 9.22
Gnutella5 36,682 88,328 3,500 0.323 275.7 | 11.57 13.31
Gnutella6b 62,586 147,892 5,843 0311 | 371.38 | 18.74 20.58

DBLPI1 360,248 3,299,662 86,628 97.73 | 5709.6 | 158.7 | 172.03

DBLP2 588,076 5,942,059 | 147,681 | 374.83 10931 | 272.9 | 282.62

DBLP3 943,308 | 10,349,565 | 245,323 | 490.68 15905 | 457.3 | 481.28

DBLP4 1,585,596 | 18,862,938 | 426,294 | 2116.2 | 49780 | 785.4 796.7

DBLP5 2,073,139 | 25,759,412 | 567,163 | 2513.6 | 69744 | 1061 1113

—— UISim —+— ProbeSim PRSim w/ PRSim w/0o —&— SimPush

1 (UL AL AL 1 g
@E—?ﬁ»
£ 08] : | g e 00
.§ .§ 081 _fk — é 0.8 - 1
=1 =1 =1
& 0.6 N a [
0.7 - — 0.7 - -
4 Ll ool 1 0.6 (T R R 0.6 TS W HANIT A}
10 10" 107 10° 10" 10* 10° 10" 102 10°
Time(ms) Time(ms) Time(ms)
(a) Enwiki (b) IT2004 (c) Friendster

Fig. 10. Comparison of accuracy against time with baselines in single
source mode on large graphs.

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from

query time. Thus, we reasonably increase |H| on a larger
snapshot (|H| = Blog(d)|V] with B=0.25). As shown in
Table 8, by using more hubs, we are able to achieve an
approximate linear scale-up of query time in single-pair and
single-source modes. That is, when we double the size of the
graph, the average query time roughly doubles too. On the
other hand, with more hubs, only a sub-linear increase of
memory cost is observed on growing graphs. The reason is
that although more prime subgraphs of hubs are involved in
the expansion when the number of hubs increases, the aver-
age size of prime subgraphs decreases as more tours would
be truncated by hubs in the prime subgraphs.

8 CONCLUSION

In this paper, we presented an index-free approach to effi-
ciently process all three modes of SimRank in a unified
framework. As our key principle, we conceptually scheduled
the tours for a prioritized computation, which exhibits two
desirable properties: “important-first” and “incrementally-
enhanced.” To realize this principle, we developed a benefit-
based tour assembling model and mode-specific tour span-
ning and matching techniques to effectively process each
mode of queries. Empirically, UISim is not only superior to
the strongest baselines designed specifically for each mode,
but also scalable to larger graphs.

ACKNOWLEDGMENTS

The authors would like to thank Yichen Shen (Zhejiang Uni-
versity City College), Zemin Liu (Singapore Management
University), and Chengfeng Mao (University of Illinois at
Urbana-Champaign) for their participation and contribution
in this work. This work was supported in part by the Pri-
mary Research and Development Plan of Zhejiang Province,
China, under Grant 2021C01164, in part by the National Sci-
ence Foundation under Grants IIS 16-19302 and IIS 16-
33755, in part by Zhejiang University Z]JU Research under
Grant 083650, in part by Futurewei Technologies under
Grants HF2017060011 and 094013, in part by IBM-Illinois

Center for Cognitive Comﬁ)suting Systems Research (C35R) a
EE Xplore. Restrictions apply.

ZHU ETAL.: UNIFIED AND INCREMENTAL SIMRANK: INDEX-FREE APPROXIMATION WITH SCHEDULED PRINCIPLE 3209

research collaboration as part of the IBM Cognitive Horizon
Network, in part by eBay and in part by Microsoft Azure, in
part by UIUC OVCR CCIL Planning under Grant 434534, in
part by UIUC CSBS Small under Grant 434C8U, and in part
by UIUC New Frontiers Initiative. Any opinions, findings,
and conclusions or recommendations expressed in this pub-
lication are those of the author(s) and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] P. Boldi, A. Marino, M. Santini, and S. Vigna, “BUbiNG: Massive
crawling for the masses,” in Proc. 23rd Int. Conf. World Wide Web,
2014, pp. 227-228.

[2] S. Chakrabarti, “Dynamic personalized pagerank in entity-rela-
tion graphs,” in Proc. Conf. World Wide Web, 2007, pp. 571-580.

[3] Y.Fang, K. C. Chang, and H. W. Lauw, “RoundTripRank: Graph-
based proximity with importance and specificity?,” in Proc. IEEE
29th Int. Conf. Data Eng., 2013, pp. 613-624.

[4] D. Fogaras and B. Racz, “Scaling link-based similarity search,” in
Proc. 14th Int. Conf. World Wide Web, 2005, pp. 641-650.

[5] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka,
“Efficient search algorithm for SimRank,” in Proc. IEEE Int. Conf.
Data Eng., 2013, pp. 589-600.

[6] G.Jeh and J. Widom, “SimRank: A measure of structural-context
similarity,” in Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2002, pp. 538-543.

[7]1 G.Jeh and J. Widom, “Scaling personalized web search,” in Proc.
Conf. World Wide Web, 2003, pp. 271-279.

[8] M. Kusumoto, T. Maehara, and K.-I. Kawarabayashi, “Scalable
similarity search for SimRank,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2014, pp. 325-336.

[91 P. Lee, L. V. S. Lakshmanan, and J. X. Yu, “On top-k structural
similarity search,” in Proc. Int. Conf. Data Eng., 2012, pp. 774-785.

[10] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” Jun. 2014. [Online]. Available: http://snap.
stanford.edu/data.

[11] C. Liet al., “Fast computation of SimRank for static and dynamic
information networks,” in Proc. IEEE 28th Int. Conf. Data Eng.,
2010, pp. 465-476.

[12] P. Li, H. Liu, J. X. Yu, J. He, and X. Du, “Fast single-pair Sim-
Rank computation,” in Proc. SIAM Int. Conf. Data Mining,
2010, pp. 571-582.

[13] R.Li, X. Zhao, H. Shang, Y. Chen, and W. Xiao, “Fast top-K simi-
larity join for SimRank,” Inf. Sci., vol. 381, pp. 1-19, 2017.

[14] Y. Liu et al., “ProbeSim: Scalable single-source and top-K SimRank
computations on dynamic graphs,” Proc. VLDB Endowment, vol. 11,
no. 1, pp. 14-26,2017.

[15] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov, “Accuracy
estimate and optimization techniques for SimRank computation,”
VLDB]., vol. 19, no. 1, pp. 45-66, 2010.

[16] T.Maehara, M. Kusumoto, and K. Kawarabayashi, “Efficient sim-
rank computation via linearization,” in Proc. 8th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2014, pp. 1426-1435.

[17] T. Maehara, M. Kusumoto, and K.-i. Kawarabayashi, “Scalable
SimRank join algorithm,” in Proc. IEEE Int. Conf. Data Eng., 2015,
pp. 603-614.

[18] Y. Shao, B. Cui, L. Chen, M. Liu, and X. Xie, “An efficient similar-
ity search framework for SimRank over large dynamic graphs,”
Proc. VLDB Endowment, vol. 8, no. 8, pp. 838-849, 2015.

[19] J. Shi, T. Jin, R. Yang, X. Xiao, and Y. Yang, “Realtime index-free
single source SimRank processing on web-scale graphs,” 2020,
arXiv:2002.08082.

[20] Y. Sun,]. Han, J. Gao, and Y. Yu, “iTopicModel: Information net-
work-integrated topic modeling,” in Proc. IEEE Int. Conf. Data
Mining, 2009, pp. 493-502.

[21] W. Tao and G. Li, “Efficient top-K SimRank-based similarity
join,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2014,
pp- 1603-1604.

[22] B. Tian and X. Xiao, “Sling: A near-optimal index structure for
SimRank,” in Proc. Int. Conf. Manage. Data, 2016, pp. 1859-1874.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

H. Wang, Z. Wei, Y. Yuan, X. Du, and J.-R. Wen, “Exact single-
source SimRank computation on large graphs,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2020, pp. 653-663.

Y. Wang, L. Chen, Y. Che, and Q. Luo, “Accelerating pairwise
SimRank estimation over static and dynamic graphs,” Proc. VLDB
Endowment, vol. 28, no. 1, pp. 99-122, 2019.

Y. Wang, X. Lian, and L. Chen, “Efficient SimRank tracking in
dynamic graphs,” in Proc. Int. Conf. Data Eng., 2018, pp. 545-556.
Z. Wei et al., “PRSim: Sublinear time SimRank computation on
large power-law graphs,” in Proc. Int. Conf. Manage. Data, 2019,
pp- 1042-1059.

W. Yu, X. Lin, and W. Zhang, “Towards efficient SimRank computa-
tion on large networks,” in Proc. Int. Conf. Data Eng., 2013, pp. 601-612.
W. Yu and]J. A. McCann, “Sig-SR: SimRank search over singular
graphs,” in Proc. 37th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2014, pp. 859-862.

W.Yu and J. A. McCann, “Efficient partial-pairs SimRank search on
large networks,” Proc. VLDB Endowment, vol. 8, no. 5, pp. 569-580,
2015.

W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao, “Efficient Sim-
Rank-based similarity join over large graphs,” Proc. VLDB Endow-
ment, vol. 6, no. 7, pp. 493-504, 2013.

F.Zhu, Y. Fang, K. C.-C. Chang, and J. Ying, “Incremental and accu-
racy-aware personalized pagerank through scheduled approx-
imation,” Proc. VLDB Endowment, vol. 6, no. 6, pp. 481492, 2013.

F. Zhu, Y. Fang, K. C.-C. Chang, and]. Ying, “Scheduled approxi-
mation for personalized pagerank with utility-based hub selec-
tion. Int. J. Very Large Data Bases, vol. 24, no. 5, pp. 655679, 2015.

Fanwei Zhu received the PhD degree in com-
puter science from Zhejiang University in 2012.
She is currently an associate professor with Zhe-
jiang University City College. Her research inter-
ests include graphbased proximity search and
social network analysis.

Yuan Fang received the PhD degree in computer
science from the University of lllinois at Urbana-
Champaign in 2014. He is currently an assistant
professor with the School of Computing and Infor-
mation Systems, Singapore Management Univer-
sity. His research interests include graph based
machine learning and data mining, and their appli-
cations for the Web and social media.

Kai Zhang received the bachelor’s degree in com-
puter science from Zhejiang University City College
in 2020. He is currently a research assistant with
Tsinghua University. His research interests include
information extraction and data mining.

Kevin Chen-Chuan Chang is currently a profes-
sor with the University of lllinois at Urbana-Cham-
paign. His research interests include large scale
information access, for search, mining, and inte-
gration across structured and unstructured big
data including Web data and social media. He
also co-founded Cazoodle for deepening vertical
data-aware search over the Web.

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Hongtai Cao received the bachelor of engineering
degree from Zhejiang University and the master of
science degree from the University of Southern
California. He is currently working toward the PhD
degree in computer science with the University of
lllinois Urbana-Champaign. His research interests
include graph database systems and data analysis.

Zhen Jiang received the bachelor’s degree in intel-
ligence science and technology from Central South
University. He is currently pursuing his master’s
degree of computer science with Zhejiang. His
research interests include machine learning and
deep graph learning.

Minghui Wu received the PhD degree in computer
science and engineering from Zhejiang University.
He is currently a professor of computer science
with Zhejiang University City College. His research
interests include artificial intelligence, big data,
mobile application, and software engineering.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of lllinois. Downloaded on July 02,2023 at 04:39:29 UTC from IEEE Xplore. Restrictions apply.

