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Abstract

In their article “Coupling at a distance HDG and BEM” [7], Cockburn, Sayas and Solano
proposed an iterative coupling of the hybridizable discontinuous Galerkin method (HDG) and the
boundary element method (BEM) to solve an exterior Dirichlet problem. The novelty of the
numerical scheme consisted of using a computational domain for the HDG discretization whose
boundary did not coincide with the coupling interface. In their article, the authors provided
extensive numerical evidence for convergence, but the proof of convergence and the error analysis
remained elusive at that time. In this article we fill the gap by proving the convergence of a
relaxation of the algorithm and providing a priori error estimates for the numerical solution.
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1 Introduction

The goal of this article is to conclude the work started by Cockburn, Sayas and Solano in the article
Coupling at a distance [7], where an iterative solution method for a classic exterior elliptic problem
was introduced. The proposed scheme amounted to a Schur complement-style algorithm that alter-
nates between a Hybridizable Discontinuous Galerkin Method (HDG) for an interior problem and the
Boundary Element Method (BEM) for an exterior problem. At the time of publication, the novelty of
the method resided in the use of non-touching grids for the discretization of each of the two problems.
The ready availability of two separate, uncoupled, codes for each of the discretization methods and
the eagerness to show the viability of such a non-touching coupling led to the choice of an iterative
alternating procedure—even though the problem in question is in fact linear.

When [7] was published, the technique for transferring information between the two grids had only
been recently incorporated into the HDG literature [8] and, despite the fact that convincing numerical
evidence of convergence at an optimal rate was provided, a rigorous analysis of the coupled scheme
proved elusive at the time. A few years after Coupling at a distance appeared, a method for the analysis
of HDG discretizations involving the transfer technique—that we now like to call the transfer path
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method—was developed in [5] for interior elliptic problems. Since then, both the transfer technique
and the analysis method have been successfully employed for the study of linear [20, 32, 33], and
non-linear [22, 25, 26, 27, 28] interior problems, as well as problems with interfaces [23, 31], however
the analysis of the HDG-BEM coupling had fallen by the wayside and remained unfinished.

The current special issue honoring Francisco–Javier Sayas, one of the co-authors of the original
article, seemed like the perfect venue for the missing analysis. In that sense, the present communication
shall not be considered a novel contribution, but rather the conclusion, long overdue, of the original
work, an after-note to the original work Coupling at a distance. With that in mind, we will stick to the
iterative alternating procedure proposed in [7], even if a more efficient monolithic approach where the
HDG and BEM discrete systems—along with the discrete coupling terms—are solved simultaneously
is possible. The study of such a monolithic scheme applied to nonlinear problems is the subject of
ongoing work that will be communicated in a separate publication [24].

The method proposed in [7], rather than approaching the problem as a single coupled unit, follows
the spirit of domain decomposition methods. It relies on an iterative approximation of a Dirichlet
to Neumann mapping through the independent solution of an interior and an exterior problem that
communicate through their Dirichlet and Neumann traces. Since these two problems are dealt with
independent solvers, we will analyze their discretizations separately. After establishing the well posed-
ness of the independent discretizations, we will then prove that, at the discrete level, the alternating
solution of an interior Dirichlet and (with HDG) an exterior Neumann problem (with BEM) converges
to the solution of the original unbounded problem. This latter result constitutes the main contribution
of this article.

We will describe the problem setting and its reformulation as a system of coupled interior/exterior
problems at the continuous level in Section 2. The discretizations of the interior problem and the
boundary integral formulation for the exterior problem are described respectively in sections 3 and 4.
Finally, in Section 5, we show that it is possible to define a relaxation of the iterative process presented
in [7], alternating between the solution of the interior and the boundary problems, that converges to
the solution of the original problem.

2 Continuous Formulation

2.1 Problem setting

Consider a bounded domain Ω0 ⊂ R2 that has a smooth parametrizable boundary that will be denoted
by Γ0 := ∂Ω0. We will denote the unbounded complement of its closure by Ωc

0 := Rd \ Ω0. In this
section, we will be concerned with the analysis of a discretization for the following diffusion problem

∇ · qtot = f in Ωc
0, (2.1a)

qtot + κ ∇utot = 0 in Ωc
0, (2.1b)

utot = u0 on Γ0, (2.1c)
utot = O(1) as x → ∞. (2.1d)

The function f will be taken to be compactly supported and square integrable on Ωc
0. The diffusion

coefficient κ is a strictly positive matrix-valued function such that, denoting the identity matrix is as I,
the difference (I−κ) is compactly supported in Ωc

0. This condition implies that outside of supp(I−κ)
equations (2.1a) and (2.1b) in fact coincide with Poisson’s equation. We will also require that there
exist positive constants κ and κ such that, for any component function κij of κ it holds that

κ ≤ κij(x) ≤ κ ∀ x ∈ Ω.
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Figure 1: Left: The artificial boundary Γ splits the domain of definition of Problem (2.1) into an
unbounded region Ωext and a bounded annular domain Ω. Right: The computational domain Ωh is
discretized by an un-fitted triangulation (blue), with boundary Γh ∪ Γ0,h.

The Dirichlet boundary data u0 will be considered to be an element of the trace space H1/2(Γ0). The
radiation condition at infinity (2.1d) is equivalent to assuming that there is a constant u∞ such that
u = u∞ + O(|x|−1) [18].

2.2 Interior and exterior problems

To deal with the unboundedness of the domain, later on we will make use of an integral representation
that will reduce the computations to a bounded domain. To this avail, we introduce an artificial,
smoothly parametrizable interface Γ enclosing Ω0, the support of f and the support of (I − κ). We
will also require that Γ ∩ Γ0 = ∅. The domain interior to Γ will be denoted Ω, while the unbounded
complementary region will be denoted Ωext. The boundary of Ω will be denoted as ∂Ω and consists
of two disjoint components: the artificial boundary Γ and the original problem boundary Γ0, so that
∂Ω = Γ ∪ Γ0. We will denote the unit normal vector to ∂Ω, pointing in the direction of Ωext for points
in Γ and in the direction of Ω0 for points in Γ0, by n. This geometric decomposition, depicted in
Figure 1, splits our region of interest into two disjoint domains and allows us to rewrite the problem
(2.1) in terms of an interior and an exterior problem coupled by continuity conditions at the artificial
boundary Γ.

Since we aim to use an integral equation formulation, for the exterior problem we will prefer a
second order formulation and will eliminate qext from the system. We will represent the solutions to
(2.1) as the superposition

utot = u+ uext and qtot = q + ∇uext,

where the functions u and q are supported in Ω, while uext is supported in Ωext. The pair (u, q)
satisfies the interior problem

∇ · q = f in Ω, (2.2a)
q + κ ∇u = 0 in Ω, (2.2b)

u = g on Γ, (2.2c)
q · n = λ on Γ, (2.2d)

u = u0 on Γ0. (2.2e)
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On the other hand, the exterior function uext satisfies

−∆uext = 0 in Ωext, (2.3a)
uext = g on Γ, (2.3b)

∇uext · n = −λ on Γ, (2.3c)
utot = O(1) as |x| → ∞ . (2.3d)

Above, the boundary value g ∈ H1/2(Γ) corresponds to the trace of utot over the artificial boundary
Γ, while λ ∈ H−1/2(Γ) is the value of the normal flux. These two functions are unknown at this point
and will have to be retrieved as part the solution process. However, the knowledge of g (resp. λ) is
enough to fully determine the solution to (2.2) or (2.3) considered as independent problems—as long
as the equation containing λ (resp. g) is removed from the system. This observation will motivate the
alternating solution scheme to be described in Section 5.

2.3 Boundary integral formulation for the exterior problem.

We will now reformulate (2.3) as a boundary integral equation. To do that, we will make use of some
standard results from potential theory; we refer the reader interested in further details to the classic
references [13, 18] for a comprehensive account, or to [12] for a more concise treatment.

We start by introducing the single layer and double layer potentials defined respectively for η ∈
H1/2(Γ), µ ∈ H−1/2(Γ) and x ∈ R2 \ Γ as

Sµ(x) :=
∫︂

Γ
G(x,y)µ(y) dΓy (Single layer),

Dη(x) :=
∫︂

Γ
∂n(y)G(x,y)η(y) dΓy (Double layer),

where G(x,y) is the Green function for Poisson’s equation. The functions defined by these two
potentials satisfy Equation (2.3a), and the following jump conditions

[[Sµ]] := 0 , [[∇Sµ]] := µ , [[Dη]] := −η , [[∇Dη]] := 0 ,

where the jump operator is defined for y ∈ Γ and scalar and vector functions v and v respectively as

[[v]] := lim
ϵ→0

(v(y − ϵn) − v(y + ϵn)) and [[v]] := lim
ϵ→0

(v(y − ϵn) − v(y + ϵn)) · n(y). (2.4)

In a similar fashion we can define the average operators as

{{v}} := 1
2 lim
ϵ→0

(v(y − ϵn) + v(y + ϵn)) and {{v}} := 1
2 lim
ϵ→0

(v(y − ϵn) + v(y + ϵn)) · n(y), (2.5)

and use them to define the following boundary integral operators

Vµ := {{Sµ}} , K′µ := {{∇ (Sµ)}} , Kη := {{Dη}} , and Wη := −{{∇ (Dη)}}.

We are now in a position to recast the exterior problem (2.3) in terms of boundary integral equations.
To that avail, we will represent uext in Ωext as

uext = Dg − Sλ+ u∞ (2.6)
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and extend it by zero for x ∈ Ω. The constant u∞ captures the far field behavior of the function
and will have to be determined. Since uext ≡ 0 in Ω, by applying the integral operators above to the
integral representation (2.6), the boundary condition (2.3b) leads to

{{uext}} = 1
2g = Kg − Vλ+ 1

2u∞,

giving rise to the integral equation (︂
1
2 − K

)︂
g = −Vλ+ 1

2u∞. (2.7a)

To ensure that uext = u∞ as |x| → ∞, we must impose the additional restriction∫︂
Γ
λ = 0. (2.7b)

Equation (2.7a) will be used as part of the alternating scheme described in Section 5, where an
approximation of λ will be produced by a numerical solution of the interior problem (2.2) and the
density g solving (2.7a) will be then used as the Dirichlet datum for (2.2).

Therefore, if Γ has two continuous derivatives and λ ∈ H−1/2(Γ) is problem data satisfying the
constraint (2.7b), then the unique solvability of equation (2.7) and continuous dependence on problem
data follow from standard results in boundary integral equations (see, for instance [14, Section 6.4]).
Moreover, there exists a constant c > 0, depending only on Γ and the norms of (1/2 − K)−1 and V,
such that

∥g∥1/2,Γ ≤ c∥λ∥−1/2,Γ. (2.8)

Moreover, from this estimate and the representation formula (2.6), it follows that there exists CBIE > 0
such that

∥uext∥Ω ≤ CBIE∥λ∥−1/2,Γ + |u∞|. (2.9)

2.4 Variational formulation for the interior problem

In this Section, we will study the interior Dirichlet boundary value problem obtained from (2.2) by
removing (2.2d) altogether and considering that the boundary trace g, appearing in (2.2c), is known.
This yields the problem

∇ · q = f in Ω, (2.10a)
κ−1 q + ∇u = 0 in Ω, (2.10b)

u = ξ0 on ∂Ω. (2.10c)

Above, the source term f ∈ L2(Ω) and the Dirichlet boundary data ξ0 ∈ H1/2(∂Ω) is given by

ξ0 =
{︄
u0 on Γ0,
g on Γ.

To derive the weak formulation of this system, we test (2.10a) with an arbitrary w ∈ L2(Ω) and
(2.10b) with v ∈ H(div; Ω), integrate by parts and incorporate (2.10c) leading to

(∇ · q, w)Ω = (f, w)Ω

(κ−1 q,v)Ω − (u,∇ · v)Ω = − ⟨v · n, ξ0⟩∂Ω,
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where (·, ·)Ω and ⟨·, ·⟩∂Ω denote the L2-inner products over Ω and ∂Ω, respectively. From the three
preceding equations, we arrive at the variational problem:

Find (q, u) ∈ H(div; Ω) × L2(Ω) such that

˜︁A(q,v) + ˜︁B(v, u) = ˜︁F1(v) ∀ v ∈ H(div; Ω), (2.11a)˜︁B(q, w) = ˜︁F2(w) ∀w ∈ L2(Ω), (2.11b)

where the bilinear forms ˜︁A : H(div; Ω) × H(div; Ω) → R, ˜︁B : H(div; Ω) × L2(Ω) → R, and the
functionals ˜︂F1 : H(div; Ω) → R and ˜︂F2 : L2(Ω) → R are defined by

˜︁A(q,v) := (κ−1q,v)Ω,˜︁B(q, w) := −(w,∇ · q)Ω,˜︁F1(v) := −⟨ξ0,v · n⟩∂Ω,˜︁F2(w) := −(f, w)Ω.

The well-posedness of (2.11) follows from standard arguments of Babǔska-Brezzi theory [11, Sec.
2.4] and the solution satisfies

∥q∥div,Ω + ∥u∥0,Ω ≤ Cstabκ1/2
(︂
∥f∥0,Ω + ∥ξ0∥1/2,∂Ω

)︂
= Cstabκ1/2

(︂
∥f∥0,Ω + ∥g∥1/2,Γ + ∥u0∥1/2,Γ0

)︂
.

(2.13)
We will, however, not solve the problem as stated above and instead will consider a slightly different

version posed in a subdomain. This approach, known as the transfer path method will be described
in detail in Section 3.2, and will require us first to discuss the geometric setting of the discretization,
which we will do next.

3 HDG discretization of the interior problem

3.1 Geometric setting and notation

The computational domain. We will consider, a family of polygonal subdomains Ωh ⊂ Ω that
approximate Ω in the sense that the Lebesgue measure µ(Ω \ Ωh) → 0, as h → 0. We will refer to
any such Ωh as a computational domain and will triangulate Ωh by a shape-regular triangulation Th
as depicted in Figure 1. A generic element in Th will be denoted by T and the mesh parameter h will
be defined as diameter of a circle inscribing an element T ∈ Th. The set ∂Th := ⋃︁

{∂T : T ∈ Th}, will
be referred to as the skeleton of the triangulation. The set of edges, e, of Th will be denoted by Eh
and we will distinguish between those edges lying entirely in the computational boundary

E∂h := {e ∈ Eh : e ∩ ∂Ωh = e} ,

and those that are either interior or have at most their endpoints in the computational boundary

E◦
h := {e ∈ Eh : e ∩ ∂Ωh ̸= e} .

We will refer to the former as boundary edges and to the latter as interior edges. Note that Eh = E∂h∪E◦
h.

Just as the boundary associated to the continuous problem (2.2) has two separate connected com-
ponents, the boundary of the computational domain can be split as ∂Ωh = Γh ∪ Γh,0, where

Γh := {e ∈ Th : d(e,Γ) ≤ d(e,Γ0)} and Γh,0 := {e ∈ Th : d(e,Γ0) < d(e,Γ)} .
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We will require that the computational domain Ωh and the triangulation Th satisfy the following
local proximity condition: for any point in the computational boundary ∂Ωh, the minimum distance
between x and the boundary ∂Ω = Γ ∪ Γ0 should be, at most, of the same order of magnitude
as the diameter of the smallest triangle T ∈ Th, such that x ∈ T . In view of this condition, the
process of mesh refinement should not be understood as a sequence of finer triangulations for a fixed
computational domain Ωh. Instead, as the mesh diameter h → 0, the process involves the passage
through a sequence of pairs domain/triangulation (Ωh, Th) that satisfy the local proximity condition
and exhaust the original domain Ω as the refinement progresses. We refer the reader to [26], where
this condition is discoursed in more detail, and to [28] where an algorithm for building a sequence
{(Ωh, Th)}h is described.

Mesh-dependent subspaces and inner products. For the discrete formulation we will have
introduce the following mesh-dependent inner products

(u,w)Th
:=

∑︂
T∈Th

∫︂
T
uw ∀u,w ∈ L2(Th),

(q,v)Th
:=

∑︂
T∈Th

∫︂
T

q · v ∀ q,v ∈ L2(Th),

⟨u,w⟩∂Th
:=

∑︂
T∈Th

∫︂
∂T
uw ∀u,w ∈ L2(∂Th),

⟨u,w⟩∂Th\Γh
:=

∑︂
T∈Th

∑︂
e∈∂T\Γh

∫︂
e
uw ∀u,w ∈ L2(∂Th),

⟨u,w⟩∂Th\Γh,0 :=
∑︂
T∈Th

∑︂
e∈∂T\Γh,0

∫︂
e
uw ∀u,w ∈ L2(∂Th).

These inner products induce mesh-dependent norms that will be denoted, respectively, by

∥w∥Ωh
:= (w,w)1/2

Th
, ∥w∥∂Th

:= ⟨w,w⟩1/2
∂Th

and ∥w∥Γh
:= ⟨w,w⟩1/2

∂Th\Γh
.

The finite dimensional discontinuous polynomial subspaces that will be used for discretization, for
k ≥ 0, are given by

V h := {v ∈ L2(Th) : v|T ∈ [Pk(T )]2, ∀ T ∈ Th},
Wh := {w ∈ L2(Th) : w|T ∈ Pk(T ), ∀ T ∈ Th},
Mh := {µ ∈ L2(Eh) : µ|T ∈ Pk(F ), ∀ F ∈ Eh},

where, Pk(T ) denotes the space of polynomials of degree at most k defined in T ∈ Th. Similarly, Pk(e)
denotes the space of polynomials of degree at most k defined over a face e ∈ Eh.

Extension patches and extrapolation. Since the discrete spaces are defined only over the ele-
ments of the triangulation we will need to define a way to compute our approximations in the region
Ω \ Ωh between the boundary and the computational boundary. To this purpose, we will tesselate this
region as follows. Let:

• x1 and x2 be the endpoints of a boundary edge e ∈ ∂Ωh.
• x1 and x2 be the corresponding points in ∂Ω—as determined by the mapping (3.2).
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• σ1 and σ2 the straight segments connecting x1 to x1 and x2 to x2.

We will refer to the open region of Ω\Ωh delimited by e, σ1 and σ2 and the segment of ∂Ω connecting
x1 to x2 as an extension patch and will denote it by T ext

e . It is clear that for every e ∈ Γh there is one
and only one such T ext

e (this justifies subindex in the notation) and that Ω \ Ωh = ∪e∈Γh
T

ext
e .

It also follows from this construction that for every T ext
e there is only one element Te in the trian-

gulation such that Kext
e ∩ T e = e. We will use this fact to define an extrapolation operator that will

extend the value of the piecewise polynomial functions defined on Te onto the corresponding extension
patch T ext

e , thus extending functions the discrete spaces above into the full domain Ω. With this in
mind, we will define the values of polynomial function p on T ext

e by extrapolating the values of the
corresponding polynomial from Te, and will denote its as Ep(x) for any x ∈ T ext

e .
For a given domain Ωh and corresponding triangulation Th, the usual notion of the exterior normal

vector is well defined for almost all points in the boundary, with the possible exception of the vertices
of the triangulation. We will define the exterior normal vector to the computational domain, nh in
the usual manner, and extend the definition to nh(x) = σ(x) for those vertices for which the standard
normal vector is not well defined. On the other hand, we will define the unit normal vector exterior
to each element T ∈ Th as νh, which will coincide with the exterior normal nh on element edges
belonging to the computational boundary Γh.

Finally, for every edge e ∈ E∂h we will denote the ratio between its distance to the boundary and
the diameter, hTe , of its parent element as re := d(e, ∂Ω)/hTe , and will define the boundary proximity
parameter as

Rh := max
e∈E∂

h

re,

and will assume for this work that the family of admissible domains and triangulations (Ωh, Th) is such
that: 1) Rh → 0 as h → 0, and 2) ∥nh − n∥∞ = o(h1/2) as h → 0, where the normal nh should be
understood as coinciding with σ for those points in which the standard normal vector is not defined.

3.2 Transferal of boundary conditions

Having introduced all the necessary geometric concepts we can now return to the interior problem
(2.10) which we will now pose in a polygonal computational domain Ωh ⊂ Ω satisfying the admissibility
requirements discussed in the previous section. In addition, we will need to define a bijective1 mapping

ϕ : ∂Ωh −→ ∂Ω (3.2)
x ↦−→ x

assigning a point x ∈ ∂Ω to every point x ∈ ∂Ωh.
For any fixed computational domain Ωh, the solution pair to (2.11) satisfies the related problem

∇ · q = f in Ωh, (3.3a)
κ−1 q + ∇u = 0 in Ωh, (3.3b)

u = φq
0 on ∂Ωh, (3.3c)

1As numerous numerical experiments have shown [8, 9, 27, 28], the algorithm is robust with respect to the particular
choice for this mapping, so long as distance between x and its corresponding x remains comparable to the local mesh
diameter. In this article we will limit ourselves to consider solely those computational domains Ωh for which such a
mapping exists.
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where the boundary condition φq
0 can be calculated by integrating equation (2.10b) along a path

connecting ∂Ω to ∂Ωh. More precisely, if we denote the distance between x and x by l(x), and by t
the unit vector (x − x)/|x − x|, the boundary conditions on Γh can be expressed in terms of the flux
q and the trace of u on ∂Ω, as

φq
0(x) := ξ0 ◦ ϕ(x) +

∫︂ l(x)

0
κ−1q(x + t(x)s) · t(x)ds ∀ x ∈ ∂Ωh. (3.4)

Note that the required bijectivity of ϕ(x) implies that t can not be tangent to a boundary edge. Thus,
the solution of (2.11) also satisfies the abstract formulation

A(q,v) + AT (q,v) + B(v, u) = F1(v) ∀ v ∈ H(div; Ωh),
B(q, w) = F2(w) ∀w ∈ L2(Ωh),

where the bilinear forms A : H(div; Ωh) × H(div; Ωh) → R, B : H(div; Ωh) ×L2(Ωh) → R, and the
functionals F1 : H(div; Ωh) → R and F2 : L2(Ωh) → R are defined by

A(q,v) := (κ−1q,v)Ωh
,

AT (q,v) :=
∑︂

e⊂∂Ωh

∫︂
e

(︄∫︂ l(x)

0
κ−1q(x + t(x)s) · t(x)

)︄
v(x) · νh ds dSx,

B(q, w) := −(w,∇ · q)Ωh
,

F1(v) := −⟨ξ0 ◦ ϕ,v · νh⟩∂Ωh
,

F2(w) := −(f, w)Ωh
.

Beyond the difference in the domain of definition, the system above differs from the original problem
(2.11) in the presence of the term AT , introduced by the transfer of boundary condition. The well
posedness of problems of this form was established in [21]. On the interest of brevity, we shall not
repeat the argument here and instead will now discuss the discretization of this problem along with
that of the integral equation (2.7).

3.3 Discrete variational formulation

Having defined all the required notation, we can now state the HDG discretization of (2.10) which,
for Dirichlet data ξ0 ∈ H1/2(∂Ω), seeks an approximation (qh, uh, ûh) ∈ V h ×Wh ×Mh satisfying

(κ−1qh,v)Th
− (uh,∇ · v)Th

+ ⟨ûh,v · νh⟩∂Th
= 0, (3.7a)

(∇ · qh, w)Th
+ ⟨τ uh, w⟩∂Th

− ⟨τ ûh, w⟩∂Th
= (f, w)Th

, (3.7b)
⟨µ, q̂h · νh⟩∂Th\∂Ωh

= 0, (3.7c)
⟨ûh, µ⟩∂Ωh

= ⟨φqh
0 , µ⟩∂Ωh

, (3.7d)

for any test (v, w, µ) ∈ V h×Wh×Mh. Following [8], the approximate boundary data on ∂Ωh appearing
on the right hand side of (3.7d) is given by

φ
qh
0 (x) := ξ0 ◦ ϕ(x) +

∫︂ l(x)

0
κ−1E qh(x + t(x)s) · t(x) ds for x ∈ ∂Ωh. (3.7e)

Where E denotes the extrapolation operator. The numerical flux in the normal direction ˆ︁qh · νh is
defined as

q̂h · νh = qh · νh + τ (uh − ûh) on ∂Th, (3.8)
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where τ stabilization function. Throughout this analysis we will only require 0 < τ ≤ τ < ∞, where
τ denotes the maximum value of τ .

Note that, the terms ⟨ûh,v · νh⟩∂Th
and ⟨τ ûh, w⟩∂Th

, given in (3.7a) and (3.7b), respectively, can be
split into the contributions of the interior edges and of the boundary edges as

⟨ûh,v · νh⟩∂Th
= ⟨ûh,v · νh⟩∂Th\∂Ωh

+ ⟨φqh
0 ,v · νh⟩∂Ωh

,

⟨τ ûh, w⟩∂Th
= ⟨τ ûh, w⟩∂Th\∂Ωh

+ ⟨τφqh
0 , w⟩∂Ωh

.

Replacing now the numerical flux (3.8) in (3.7c), results in

⟨µ, qh · νh⟩∂Th\∂Ωh
+ ⟨µ, τ(uh − ûh)⟩∂Th\∂Ωh

= 0.

In order to apply known results from functional analysis, we rewrite the numerical trace ûh in terms
of averages and jumps. For this, we use the equation (3.7c) and separate the term featuring ûh as

0 = ⟨µ, qh · νh⟩∂Th\∂Ωh
+ ⟨µ, τuh⟩∂Th\∂Ωh

− ⟨µ, τ ûh⟩∂Th\∂Ωh

=
∑︂
T∈Th

∑︂
e∈∂T\∂Ωh

∫︂
e

(µ qh · νh + τ µ uh − τ µ ûh)

=
∑︂
e∈E◦

h

∫︂
e

([[qh]]µ+ 2τ {{uh}}µ− 2τ ûh µ) =
∫︂

E◦
h

([[qh]] + 2 τ {{uh}} − 2 τ ûh)µ ∀µ ∈ Mh.

Above, we have used the fact that the hybrid variable ûh is single valued, and the average {{·}} and
jump [[·]] operators are defined for every edge e in a fashion analogous to (2.4) and (2.5). Then, taking
as test function µ = [[qh]] + 2 τ {{uh}} − 2 τ ûh ∈ Mh in the expression above, we deduce that

ûh = 1
2τ

−1[[qh]] + {{uh}} on E◦
h.

We make use of this identity to obtain

⟨ûh,v · νh⟩∂Th\∂Ωh
= ⟨ûh, [[v]]⟩E◦

h
= 1

2⟨τ−1[[qh]], [[v]]⟩E◦
h

+ ⟨{{uh}}, [[v]]⟩E◦
h

and

⟨τ ûh, w⟩∂Th\∂Ωh
= 2⟨τ{{w}}, ûh⟩E◦

h
= ⟨[[qh]], {{w}}⟩E◦

h
+ 2⟨τ{{w}}, {{uh}}⟩E◦

h
.

In this way, replacing the definition of φqh
0 —see (3.7e)—in (3.7a) and (3.7b), together with the fore-

going identities, we obtain that (3.7) is equivalent to finding (qh, uh) ∈ V h ×Wh such that

Ah(qh,v) + AT (qh,v) + Bh(v, uh) = F1,h(v) ∀ v ∈ V h, (3.10a)
BT (qh, w) + Bh(qh, w) − Ch(uh, w) = F2,h(w) ∀w ∈ Wh, (3.10b)

where the bilinear forms Ah : V h × V h → R, Bh,BT : V h × Wh → R , Ch : Wh × Wh → R, and the
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functionals F1,h : V h → R and F2,h : Wh → R are defined by

Ah(qh,v) := (κ−1qh,v)Th
+ 1

2⟨τ−1[[qh]], [[v]]⟩E◦
h
, (3.11a)

AT (q,v) :=
∑︂

e⊂∂Ωh

∫︂
e

(︄∫︂ l(x)

0
κ−1q(x + t(x)s) · t(x)

)︄
v(x) · νh ds dSx, (3.11b)

Bh(qh, w) := −(w,∇ · qh)Th
+ ⟨[[qh]], {{w}}⟩E◦

h
(3.11c)

BT (qh, w) :=
∑︂
e⊂Ωh

∫︂
e
τ

(︄∫︂ l(x)

0
κ−1qh(x + t(x)s) · t(x)

)︄
w(x) ds dSx, (3.11d)

Ch(uh, w) := ⟨τ uh, w⟩∂Th
− 2⟨τ{{uh}}, {{w}}⟩E◦

h
, (3.11e)

F1,h(v) := −⟨ξ0 ◦ ϕ,v · νh⟩∂Ωh
, (3.11f)

F2,h(w) := −(f, w)Th
− ⟨τ ξ0 ◦ ϕ,w⟩∂Ωh

. (3.11g)

The unique solvablity of the scheme (3.10) will be proved by an energy argument. To that end, for
e ∈ ∂Ωh and v ∈ L2(T ext

e ), it is convenient to define the following norm on the extension patch T ext
e :

|||v|||e :=
(︄∫︂

e

∫︂ l(x)

0
|v(x + st(x))|2 ds dSx

)︄1/2

.

This norm is equivalent to the standard L2(T ext
e )-norm as shown first in [21] for the two dimensional

and later extended to three dimensions in [20]. That is, there exist positive constants Ce1 and Ce2 ,
independent of h, such that,

Ce1 |||v|||e ≤ ∥v∥T ext
e

≤ Ce2 |||v|||e. (3.12)

This equivalence holds true under certain conditions on the transferring vectors t(x) (cf. [20, 21]))
ensuring, roughly speaking, that they cannot deviate too much from the vector normal to e.

We also introduce the element-wise constants

Ceext := 1
√
re

sup
χ∈Vk

|||χ|||e
∥χ∥Te

and Ceinv := h⊥
e sup

χ∈Vk

|||∇χ|||Te

∥χ∥Te

, (3.13)

where Vk :=
{︁
p ∈ [Pk(T exte ∪ Te)]2 : p ̸= 0

}︁
. These constants are independent of h, but depend on

the polynomial degree k and the mesh regularity parameter as shown in [5].
We now proceed to derive an energy inequality that will lead to the well-posedness of (3.10).

Lemma 1. Let αh = Rhκ−1(κ − κ1/2h1/2τ1/2) and βh = κ−1κ1/2Rhh
1/2τ1/2. It holds

(1 − αh)∥κ−1/2qh∥2
0,Ωh

+ (1 − βh)∥τ1/2uh∥2
∂Ωh

+ ∥τ1/2(uh − {{uh}})∥2
∂Th\∂Ωh

+ ∥τ−1/2[[qh]]∥2
E◦

h

≲ ∥κ1/2h−1/2ξ0 ◦ ϕ∥2
∂Ωh

+ ∥f∥0,Ω∥uh∥0,Ωh
. (3.14)

Proof. By taking v = qh and w = uh in (3.10), and subtracting the resulting expressions we obtain

∥κ−1/2qh∥2
0,Ωh

+ 1
2∥τ−1/2[[qh]]∥2

E◦
h

+ AT (qh, qh) + BT (qh, uh) + Ch(uh, uh)

= −⟨ξ0 ◦ ϕ, qh · νh⟩∂Ωh
− (f, uh)Th

− ⟨τ ξ0 ◦ ϕ, uh⟩∂Ωh
. (3.15)
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First of all, after performing algebraic calculations, we observe that C is a semi-definite operator from
Wh ×Wh to R. In fact,

Ch(uh, uh) = ⟨τ uh, uh⟩∂Th
− 2⟨τ{{uh}}, {{uh}}⟩E◦

h
= ∥τ1/2(uh − {{uh}})∥2

∂Th\∂Ωh
+ ∥τ1/2uh∥2

∂Ωh
. (3.16)

We will now obtain a lower bound for the non-positive terms of left hand side of (3.15). In this
direction, the operator AT can be bounded as follows. Let e ∈⊂ ∂Ωh and x ∈ e. By the Cauchy-
Schwarz inequality and the definition in (3.13),∫︂ l(x)

0
κ−1qh(x + t(x)s) · t(x)ds ≤ l(x)1/2

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
κ−1qh

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
e

≤ h
1/2
Te
reκ

−1κ1/2Ceext∥κ−1/2qh∥Te ,

where we have used the bound l(x) ≤ hT ere. Then, by the discrete trace inequality, we have

−AT (qh, qh) ≤|AT (qh, qh)| ≲ κ−1κ1/2 ∑︂
e⊂∂Ωh

h
1/2
Te
rh∥κ−1/2qh∥e∥qh · νh∥e

≲Rhκ−1κ∥κ−1/2qh∥2
Ωh
. (3.17)

The same arguments yield to

−BT (qh, uh) ≤|BT (qh, uh)| ≲ κ−1κ1/2Rhh
1/2τ1/2∥κ−1/2qh∥0,Ωh

∥τ1/2uh∥0,∂Ωh

≤κ−1κ1/2Rhh
1/2τ1/2

(︃1
2∥κ−1/2qh∥2

0,Ωh
+ 1

2∥τ1/2uh∥2
0,∂Ωh

)︃
. (3.18)

Therefore, combining the above estimates and (3.15), we deduce that

(1 −Rhκ−1κ − κ−1κ1/2Rhh
1/2τ1/2)∥κ−1/2qh∥2

0,Ωh
+ (1 − κ−1κ1/2Rhh

1/2τ1/2)∥τ1/2uh∥2
∂Ωh

+ ∥τ−1/2[[qh]]∥2
E◦

h
+ ∥τ1/2(uh − {{uh}})∥2

∂Th\∂Ωh

≲ |⟨ξ0 ◦ ϕ, qh · νh⟩∂Ωh
| + |(f, uh)Th

| + |⟨τ ξ0 ◦ ϕ, uh⟩∂Ωh
|.

Finally, the result follows by the discrete trace inequality applied to the boundary terms on the
right hand side, Young’s inequality and the definition of αh and βh.

Corollary 1. The HDG scheme (3.10) is well-posed for h sufficiently small.

Proof. Let f ≡ 0 and ξ0 = 0. By (3.14) we obtain that qh = 0. Moreover, since τ > 0, we have that
uh = 0 on the boundary Ωh and uh = {{uh}} on ∂Th; therefore uh is continuous. These facts, together
with (3.10b) lead to

0 = − (uh,∇ · v)Th
+ ⟨[[v]], uh⟩E◦

h
= (∇uh,v) ∀ v ∈ V h.

Thus, taking v = ∇uh we conclude that uh = 0 since it vanishes at the boundary.

The energy estimate in Lemma 1 provides the stability bound for the vector-valued unknown qh. On
the other hand, the stability for the scalar approximation uh can be obtained by a duality argument
that we omit since it is not need it for the analysis of the coupled problem. We refer the reader to
the proof of Lemma 3.5 in [5] or the proof of Theorem 3.1 in [33] for details regarding the duality
argument employed in this type of unffited HDG methods. Therefore, it is possible to conclude that
there is a constant CHDG > 0, independent of h, such that
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J(qh, uh) + ∥uh∥Ωh
≤ CHDG

(︂
∥f∥Ωh

+ ∥κ1/2h−1/2ξ0 ◦ ϕ∥∂Ωh

)︂
, (3.19)

where, for convenience of notation of the forthcoming analysis, we have denoted

J(qh, uh) :=
(︂
∥κ−1/2qh∥2

Ωh
+ ∥τ1/2uh∥2

∂Ωh
+ ∥τ1/2(uh − {{uh}})∥2

∂Th\∂Ωh
+ ∥τ−1/2[[qh]]∥2

E◦
h

)︂1/2
. (3.20)

Having established the well posedness of the discrete formulation, in the following section we will
study the behavior of the discretization error.

3.4 A priori error analysis

To establish a priori error bounds for the HDG discretization we will make use of a tool introduced
by Francisco–Javier Sayas, Jay Gopalakrishnan and Bernardo Cockburn in [4]. The idea is to use a
projection, known as the HDG projection, to decompose the discretization into a component involving
the approximation properties of the discrete spaces V h and Wh, and another component involving
the error introduced by projecting into these spaces. The HDG projection over V h ×Wh, denoted by
Π(q, u) := (Πvq,Πwu), is the unique element-wise solution pair of

(Πvq,v)T = (q,v)T ∀ v ∈ [Pk−1(T )]e, (3.21a)
(Πwu,w)T = (u,w)T ∀ w ∈ Pk−1(T ), (3.21b)

⟨Πvq · n + τΠwu, µ⟩e = ⟨q · n + τu, µ⟩e ∀ µ ∈ Pk(e), (3.21c)

for every element T ∈ Th, and e ⊂ ∂T . The approximation properties of Π are stated in Section A.
Using this projection we can then define

εq := ΠV q − qh εu := ΠWu− uh and Iq := q − ΠV q Iu := u− ΠWu,

where ΠV is the HDG projector onto Vh, and ΠW is the HDG projector onto Wh. The terms εq and
εu are known as the projections of the errors and the terms Iq and Iu are the errors of the projections.
The full discretization error can then be split as

q − qh = εq + Iq and u− uh = εu + Iu.

We will now show that the scheme (3.10) is consistent and the discretization error is driven solely by
the approximation properties of the discrete spaces, as encoded by Iq, and Iu. We start by noting
that from (3.10a) and the decompositions above, it follows that

Ah(q − εq − Iq,v) + AT (q − εq − Iq,v) + Bh(v, u− εu − Iu) = F1,h(v) ∀v ∈ V h. (3.22)

However, since q and u satisfy (2.10) in a distributional sense, we have that q ∈ H(div; Ωh) and
therefore [[q]] = 0 in E◦

h. This also implies that u ∈ H1(Ωh) since ∇u = −κ−1q ∈ L2(Ωh). Hence,

Ah(q,v)+AT (q,v) + Bh(v, u) − F1,h(v)

=(κ−1q,v)Th
+

∑︂
e⊂∂Ωh

∫︂
e

(︄∫︂ l(x)

0
κ−1q(x + t(x)s) · t(x)

)︄
v(x) · νh ds dSx

+ ⟨[[v]], {{uh}}⟩E◦
h

− (u,∇ · v)Th
+ ⟨ξ0 ◦ ϕ,v · νh⟩∂Ωh

=(κ−1q,v)Th
+ ⟨[[v]], {{u}}⟩E◦

h
− (u,∇ · v)Th

+ ⟨u,v · νh⟩∂Ωh
,
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where in the last equality we have used the fact that q satisfies the transfer equation (3.4) and u
satisfies (3.3c). Then, by integrating by parts and considering equation (3.3b), we obtain that

Ah(q,v) + AT (q,v) + Bh(v, u) − F1,h(v) =⟨[[v]], {{u}}⟩E◦
h

− ⟨u,v · νh⟩∂Th
+ ⟨u,v · νh⟩∂Ωh

= 0.

Analogously, from (3.10b) we have

BT (q − εq − Iq, w) + Bh(q − εq − Iq, w) − Ch(u− εu − Iu, w) = F2,h(w). (3.23)

Analyzing the terms above that involve q ∈ H(div; Ωh) and u ∈ H1(Ωh), and using again the facts
that q satisfies the transfer equation (3.4) and u satisfies (3.3c), it is easy to verify that

BT (q, w) + Bh(q, w) − Ch(u,w) − F2,h(w) = − ⟨τ u,w⟩∂Th
+ 2⟨τ u, {{w}}⟩E◦

h
+ ⟨τ u,w⟩∂Ωh

= 0

Putting these arguments together it follows from (3.22) and (3.23) that the scheme is consistent and
the following error equations for (εq, εu) ∈ V h ×Wh hold

Ah(εq,v) + AT (εq,v) + Bh(v, εu) = −Ah(Iq,v) − AT (Iq,v) + Bh(v, Iu),
BT (εq, w) + B(εq, w) − C(εu, w) = −BT (Iq, w) − Bh(Iq, w) + Ch(Iu, w),

∀(v, w) ∈ V h × Wh. Now, by the orthogonality properties of the HDG projection (3.21), we deduce
that

Ah(Iq,v) + Bh(v, Iu) = (κ−1 Iq,v)Th

and
−Bh(Iq, w) + Ch(Iu, w) = 0.

In this way, we conclude that the projection of the errors (εq, εu) ∈ V h ×Wh satisfy

Ah(εq,v) + AT (εq,v) + Bh(v, εu) = G1(v), (3.25a)
BT (εq, w) + B(εq, w) − C(εu, w) = G2(w). (3.25b)

∀(v, w) ∈ V h ×Wh, with
G1(v) := −(κ−1 Iq,v)Th

− AT (Iq,v)

and
G2(w) := −BT (Iq, w).

Theorem 1. For h sufficiently small, there hold

∥κ−1/2(q − qh)∥Ωh
≲ ∥κ−1/2Iq∥Ωh

+ (Rhκ−2κ + τ)1/2∥κ−1/2Iq∥Ωc
h
. (3.26)

Moreover, under elliptic regularity it holds

∥u− uh∥Ωh
≲
(︂
h+

(︂
hτ1/2 + h1/2

)︂
Rh
)︂

∥κ−1/2Iq∥Ωh

+
(︂
h1/2 τ1/2Rh + 1

)︂
∥Iu∥Ωh

+Rh
(︂
τ1/2 + h1/2

)︂
∥h∂t(Iq · t)∥Ωc

h
. (3.27)

Proof. By proceeding exactly as in the proof of Lemma 1, but in the context of the equation of the
projection of the errors (3.25), for h sufficiently small, we deduce that

J(εq, εu) ≲ |G1(εq)| + |G2(εu)|,
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where we recall the definition of J in (3.20). In order to bound the terms on the right-hand side, we
employ the Cauchy-Schwarz and discrete trace inequalities and obtain that

|G1(εq)| ≤∥κ−1/2Iq∥Ωh
∥κ−1/2εq∥Ωh

+ κ−1 ∑︂
e⊂∂Ωh

|||Iq|||e ∥l1/2 εq · n∥e

≲

⎛⎝∥κ−1/2Iq∥2
Ωh

+Rhκ−2κ
∑︂

e⊂∂Ωh

|||Iq|||2e

⎞⎠1/2

∥κ−1/2εq∥2
Ωh

where we have also used the fact that l(x) ≲ Rhh for all x ∈ ∂Ωh. Similarly,

|G2(εu)| ≤

⎛⎝ ∑︂
e⊂∂Ωh

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓
τ1/2Iq

⃓⃓⃓⃓⃓⃓ ⃓⃓⃓2
e

⎞⎠1/2

∥τ1/2εu∥∂Ωh
.

Therefore, by combining the the above inequalities, we obtain

J(εq, εu)2 ≲ ∥κ−1/2Iq∥2
Ωh

+ (Rhκ−2κ + τ)
∑︂

e⊂∂Ωh

|||Iq|||2e

and (3.26) follows by the fact that ∥κ−1/2(q − qh)∥Ωh
≤ ∥κ−1/2Iq∥Ωh

+ J(εq, εu) and the norm
equivalence (3.12). On the other hand, by a duality argument (Lemma 3.9 in [5]), it is possible to
derive that

∥εu∥Ωh
≲ (h+ (hτ1/2 + h1/2)Rh)∥κ−1/2Iq∥Ωh

+ τ1/2h1/2Rh∥Iu∥Ωh
+Rh(h1/2 + τ1/2)∥h∂t(Iq · t)∥Ωc

h
,

which implies (3.27).

Corollary 2. If (q, u) ∈ Hk+1(Ω) ×Hk+1(Ω) and τ is of order one, then

∥κ−1/2(q − qh)∥Ωh
+ ∥u− uh∥Ωh

≲ hk+1 (|q|k+1,Ω + |u|k+1,Ω) . (3.28)

Moreover, if (q, u) ∈ H1(Ω) ×H1(Ω), then

J(q − qh, u− uh) ≲(κ−1/2 + τ−1/2h1/2 + 1)|q|1,Ω + (τ1/2 + 1)τ1/2|u|1,Ω. (3.29)

Proof. The first inequality follows from the approximation properties of the HDG projection stated
in Section A. On the other hand,

J(q − qh, u− uh) ≤J(εq, εu) + J(Iq, Iu)
≲∥κ−1/2Iq∥Ωh

+ (Rhκ−2κ + τ)1/2∥κ−1/2Iq∥Ωc
h

+ J(Iq, Iu).

But, using the approximation estimates (A.1), we have

J(Iq, Iu)2 =∥κ−1/2Iq∥2
Ωh

+ ∥τ1/2Iu∥2
∂Ωh

+ ∥τ1/2(Iu − {{Iu}})∥2
∂Th\∂Ωh

+ ∥τ−1/2[[Iq]]∥2
E◦

h

≲(κ−1 + τ−1h−1)h2|q|21,Ω + (τ + 1)τh2|u|2H1(Ω) + h2|∇ · q|21,Ω

and (3.29) follows.
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4 BEM discretization of the exterior problem

For the discretization of the integral equation (2.7) we will take advantage of the fact that the
parametrization of artificial boundary Γ is smooth and does not intersect with the support of the
source term. It is a standard result in potential theory that these two conditions imply that the
densities λ and g are both C∞, which allows for a simple, spectrally convergent discretization using
interpolating trigonometric polynomials—an idea that had been implemented in [19] coupled with
the finite element method over curved triangulations. For two dimensional problems, an exhaustive
account of the theory of periodic boundary integral equations and their approximation can be found
in the monograph by Saranen and Vainikko [29]. Here we will present only those basic results that
will be used for the coupled formulation that will be described later.

If we let y be a 2π−periodic, C∞ parametrization of Γ such that |y′(·)| > 0 and t ̸= s ∈ [0, 2π)
implies that y(t) ̸= y(s), then the integral operators appearing in (2.7) can be written in parametric
form as

Vg(x(t)) =
∫︂ 2π

0
V (s, t)λ ◦ y(s)|y′(s)|ds and Kg(x(t)) =

∫︂ 2π

0
K(s, t)φ ◦ y(s)|y′(s)|ds.

Where the integral kernels are the 2D Green function for the minus Laplacian and its normal derivative,
namely

V (s, t) := − 1
2π log |y(s) − y(t)| and K(s, t) := 1

2π
(y(s) − y(t)) · n(y(s))

|y(s) − y(t)|2
.

The idea is then to discretize the parameterization of Γ into 2n equispaced points t0, . . . , t2n−1 ∈ [0, 2π)
and use these points as interpolation nodes to collocate equation (2.7a). Due to the periodicity, it
is natural to use trigonometric polynomials as a basis, and we will now introduce two spaces of
trigonometric polynomials

Tn :=

⎧⎨⎩
n∑︂
j=0

aj cos(jt) +
n−1∑︂
j=1

bj sin(jt) : aj , bj ∈ R

⎫⎬⎭ , and T0
n :=

{︃
λn ∈ Tn :

∫︂ 2π

0
λn ds = 0

}︃
.

For real numbers p ≤ q and any function λ ∈ Hq(0, 2π) the space Tn has the following approximation
property [3]

∥λ− Pλ∥Hp(0,2π) ≤ (n/2)p−q∥λ∥Hq(0,2π),

where P is the L2 projector onto Tn. The Lagrangian basis for interpolation in Tn is given by

Lj(t) := 1
2n

(︄
1 + 2

n−1∑︂
k=1

cos (k(t− tj)) + cos (n(t− tn))
)︄

for j = 0, 1, . . . , 2n− 1.

These functions can be used to build the basis for T0
n, which is given by the set

{Lj − L0 : j = 0, 1, . . . , 2n− 1} .

If we denote by Q0
n the interpolation operator over T0

n, the following estimate holds [29] for q > 1/2
and 0 ≤ p ≤ q:

∥u− Q0
nu∥Hp(0,2π) ≤ cq(n/2)p−q∥u∥Hq(0,2π),

where cq =
(︂
1 +∑︁∞

j=1
1
j2q

)︂
. Therefore, if λ : Γ → R is known, the discrete version of the problem

(2.7) becomes that of finding gn such that gn ◦ y|y′(·)| ∈ T0
n, and∫︂ 2π

0

(︃1
2gn − Kgn

)︃
(y(s))ψ(s)ds = −

∫︂ 2π

0
(V λ)(y(s))ψ(s)ds ∀ψ ∈ T0

n. (4.1)
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Note that the term involving the constant u∞ drops out of the formulation when testing with
ψ ∈ T0

n. To determine u∞ we go back to (4.1) and notice that we can define an approximation un∞ to
u∞ by testing with any ϱ ∈ Tn \ T0

n. Setting ϱ = 1 then leads to

un∞ := 1
2π

(︃∫︂ 2π

0
(V λ)(y(s))ds+

∫︂ 2π

0

(︃1
2gn − Kgn

)︃
(y(s))ds

)︃
.

Hence, we first solve (4.1) for λn and then fix the value of un∞ by means of the definition above. It
is clear that as the approximation λn converges, the value of un∞ will converge as well. Pertaining the
well-posedness of the discrete integral equation, it is pointed out that (as shown in [29, Sec. 6.3–6.5])
the periodic operator V is a Fredholm operator of index 0 over the periodic space

H
−1/2
0 (0, 2π) :=

{︃
λ ∈ H−1/2(0, 2π) :

∫︂ 2π

0
λds = 0

}︃
,

from which the unique solvability of (4.1) follows. Moreover, for a Galerkin approximation of (4.1) it
can be shown [29, Thm. 9.4.1] that the following error estimate holds

∥g − gn∥Hp(0,2π) ≤ cqn
p−q∥g∥Hq(0,2π) for q − p > 1/2.

Combining this approximation result with the stability estimate (2.8) and the boundedness of the
single layer operator V we arrive at

∥g − gn∥Hp(0,2π) ≤ Cq,V n
p−q∥λ∥Hq(0,2π) for q − p > 1/2.

5 Iterative coupled procedure

In Coupling at a distance, the authors proposed an iterative method to find the solution to the original
problem(2.1) by alternating between the solutions of the interior and exterior problems using HDG
and spectral BEM respectively. The idea can be traced back to [6] and involves using the Dirichlet
trace of u over the artificial boundary as the unknown coupling variable and alternating between the
solution of an interior and an exterior problem.

We start by observing that, from the discrete version of the transmission condition (2.2d)∫︂ 2π

0
qh(x(s)) · n(x(s)) η(s)ds+

∫︂ 2π

0
λn(x(s))η(s)ds = 0 ∀ η ∈ T0

n,

the Neumann trace of the exterior problem can be written in terms of its interior counterpart as

λn = −P(qh · n), (5.1)

where P : V h → T0
n, is the L2−projector onto the space of mean zero trigonometric polynomials. This

suggests the following iterative strategy: given an initial g0 ∈ H1/2(Γ), it can be used as Dirichlet
datum for the HDG solver which will produce a solution pair (qh, uh) to the interior problem (2.2).
The flux qh obtained in this fashion can then be transformed, using (5.1), into the Neumann datum
for the exterior problem (2.3) and the process continues until the succesive solutions have stabilized.
Note that n is the normal vector of the artificial boundary Γ (rather than the normal vector of
the computational boundary Γh, which is denoted by nh) hence, the approximation obtained on the
computational domain Ωh must be first extrapolated to Γ and then projected onto T0

n .
This algorithm amounts to a Schur complement strategy where the Dirichlet-to-Neumann map

(DtN) for the interior problem is approximated via HDG, and the Neumann-to-Dirichlet mapping
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(NtD) for the exterior problem is approximated via spectral BEM. As we have shown in the previous
sections, both of these problems are uniquely and stably solvable, therefore, it remains to show that
the iterated composition of these mappings will converge, and that the limits will in fact be the discrete
Dirichlet and Neumann traces over Γ of the solution to (2.1).

To explain the procedure at the continuous level we start by fixing f ∈ L2(Ω) and u0 ∈ H1/2(Γ),
and defining the mapping T : H1/2(Γ) → H1/2(Γ) that associates to g ∈ H1/2(Γ) the function
Tg ∈ H1/2(Γ) given by the following two-step process:

Step 1: Solve the interior Dirichlet boundary value problem

∇ · q = f in Ω
q + κ∇u = 0 in Ω

u = g on Γ
u = u0 on Γ0

(5.2a)

Step 2: Solve the boundary integral equation

(︂
1
2 − K

)︂
Tg = −V(q · n) on Γ (5.2b)

We can then summarize the algorithm as, staring from an initial boundary datum g0 ∈ H1/2(Γ),
generating a sequence of updates by gn+1 = Tgn. The iterative process is continued until the relative
change between consecutive iterations falls below a prescribed tolerance. An essentially equivalent
idea (where the problems in the two domains are dealt with in PDE form) has been known to the
domain decomposition community for a while; it can be traced back at least to [1], where it was used
as preconditing step within a Schur complement algorithm to determine the Dirichlet trace along Γ
of the solution. The convergence of this straightforward idea depends on specific properties of the
domains and can not be ensured in general, however a relaxed version of the method was proposed in
[10, 16] and proven to be convergent in [17].

What we will show in this section is that, as the distance between Γ and Γh tends to zero, the
convergence of this procedure is not affected by the introduction of boundary integral equation and
the transfer of boundary information between the non-touching grids.

5.1 Continuous problem

Fixed point operator and relaxation. We start by introducing the space of admissible Neumann
traces for the exterior problem at the continuous level

X :=
{︃
µ ∈ H−1/2(Γ) :

∫︂
Γ
µ = 0

}︃
.

The Dirichlet to Neumann mapping for the interior problem is then defined as

S1 : H1/2(Γ) −→ X

g ↦−→ (qg · n)|Γ, (5.3)

where qg is the first component of (qg, ug), the unique solution of (2.11) having g and u0 as Dirichlet
boundary data on Γ and Γ0, respectively, and source term f . We can deduce a stability estimate for
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S1 as follows. From the trace inequality for functions in H(div; Ω), and the continuous dependence
(2.13), we know that there exists a positive constant CS1 such that

∥S1g∥−1/2,Γ ≤ CS1κ1/2
(︂
∥f∥0,Ω + ∥g∥1/2,Γ + ∥u0∥1/2,Γ

)︂
∀g ∈ H1/2(Γ).

Similarly, we can define the Neumann to Dirichlet map for the exterior problem as

S2 : X −→H1/2(Γ)
λ ↦−→ gλ|Γ,

where gλ is the unique solution of (2.7) having λ as Neumann boundary data on Γ. Moreover, from
the continuous dependence (2.8), there exists a positive constant CS2 such that

∥S2λ∥1/2,Γ ≤ CS2∥λ∥−1/2,Γ ∀λ ∈ X.

The iterative procedure consists on the alternated application of these mappings, and is thus de-
scribed by the repeated application of the operator

T : H1/2(Γ) −→H1/2(Γ)
g ↦−→Tg := (S2 ◦ S1)g,

which, by the arguments given above, satisfies the stability estimate

∥Tg∥1/2,Γ ≤ CS2CS1κ1/2
(︂
∥f∥0,Ω + ∥g∥1/2,Γ + ∥u0∥1/2,Γ

)︂
∀g ∈ H1/2(Γ).

As mentioned earlier, the simple iterative process described in previous section is not convergent in
general. However this drawback can be overcome by the introduction of an additional relaxation step
and a relaxation parameter ω ∈ (0, 1), resulting in

Step 1: Solve the interior Dirichlet boundary value problem

∇ · qn = f in Ω
qn + κ∇un = 0 in Ω

un = gn−1 on Γ
un = u0 on Γ0

(5.4a)

Step 2: Solve the boundary integral equation

(︂
1
2 − K

)︂
g̃ = −V(qn · n) on Γ (5.4b)

Step 3: Update the Dirichlet trace

gn = ωg̃ + (1 − ω)gn−1. (5.4c)

We will denote the operator mapping a trace g to the update defined by the relaxed process described
above by Tω : H1/2(Γ) −→ H1/2(Γ), and note that Tω = ωT+(1−ω)I, where I is the identity operator.
The following simple observation will be key in our analysis.
Lemma 2. Assume that g ∈ H1/2(Γ) is a fixed point of the relaxed operator Tω (i.e. Tω = g). Then
g is also a fixed point of the unrelaxed operator T .

Proof. If g is a fixed point of Tω it follows that g = Tωg = ωTg+ (1 −ω)g. A simple calculation shows
that this implies that Tg = g.
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Contraction property of Tω. We will now show that the relaxed mapping is indeed a contraction
and therefore, by the observation above, the operator T has indeed a fixed point. To do so, we will
adapt the ideas applied by Marini and Quarteroni in [17], where they dealt with a primal formulation
involving only PDE formulations in the two subdomains.

We are interested in showing that the repeated application of the operator Tω is a contraction.
With this in mind, we observe that the difference between successive applications Tnω g and Tn+1

ω g will
be associated with the solution to an interior boundary value problem with source term f = 0 and
boundary condition u0 = 0 on Γ0. With these two ideas in mind we associate to every ξ ∈ H1/2(Γ)
the function qξ ∈ H(div; Ω) satisfying the interior boundary value problem

(κ−1qξ,v)Ω − (uξ,∇ · v)Ω = −⟨v · n, ξ⟩Γ ∀v ∈ H(div,Ω),
(v,∇ · qξ)Ω = 0 ∀v ∈ L2(Ω).

}︄
(5.5)

The problem above is a particular instance of (2.11), which has been shown to be uniquely solvable.
Recalling that ∂Ω = Γ ∪ Γ0, the first equation implies that the trace of uξ over Γ0 vanishes. With this
in mind it is easy to check that qξ = 0 if and only if ϕ = 0 from which it follows that qξ = qψ implies
ξ = ψ. We will use this mapping and the fact that κ is symmetric and positive definite positive to
define the inner product over H1/2(Γ)

((ξ, ψ)) := (κ−1qξ, qψ)Ω = (κ−1qψ, qξ)Ω ∀ξ, ψ ∈ ˜︁H1/2(Γ). (5.6)

This induces a norm over H1/2(Γ) given by

|||ξ||| := ((ξ, ξ))1/2.

Moreover, from the definition of qϕ and qψ, it follows that

((ξ, ψ)) = −⟨ξ, qψ · n⟩Γ = −⟨ψ, qξ · n⟩Γ. (5.7)

Lemma 3. The following estimates hold for g ∈ H1/2(Γ)

|||g|||2 ≤ κ

κ
CS1∥g∥2

1/2,Γ, (5.8)

((g, Tg)) ≤ − c∥Tg∥2
1/2,Γ, (5.9)

|||Tg||| ≤ CS1κ

cκ
|||g|||, (5.10)

|||g||| ≤CPSσ∥Tg∥1/2,Γ. (5.11)

Proof. The first estimate follows readily from the definition of the inner product ((·, ·)) in (5.6), and
the stability estimate for the interior problem

|||g|||2 = ((g, g)) = ∥κ−1/2qg∥2
Ω ≤ CS1κ

cκ
∥g∥2

1/2,Γ.

For (5.9) we start from (5.7) and make use of the fact that, by construction, Tg satisfies the boundary
integral equation (5.2b), leading to

((g, Tg)) = ⟨Tg, qg · n⟩Γ = −
⟨︂
Tg,V−1

(︂
1
2 − K

)︂
Tg
⟩︂

Γ
. (5.12)

Using now the representation V−1
(︂

1
2 − K

)︂
= W +

(︂
1
2 − K′

)︂
V−1

(︂
1
2 − K

)︂
, it is possible to show [30]

that there exists a positive constant c such that

c∥g∥2
1/2,Γ ≤

⟨︂
g,V−1

(︂
1
2 − K

)︂
g
⟩︂

Γ
. (5.13)
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Combining the last two expressions we arrive at (5.9). The inequality (5.10) follows readily from (5.8)
and (5.9) as follows

|||Tg|||2 ≤ CS1
κ

κ
∥Tg∥2

1/2,Γ ≤ −CS1κ

cκ
((g, Tg)) ≤ CS1κ

cκ
|||g||||||Tg|||.

Finally, we will use the fact that qg and g are linked by the interior problem (5.5) as follows

|||g|||2 = ((g, g)) = (κ−1qg, qg)Ω = − ⟨qg · n, g⟩Γ (By (5.5) with v = qg)

= ⟨V−1
(︂

1
2 − K

)︂
Tg, g⟩Γ (By (5.2b))

≤CPS∥Tg∥1/2,Γ∥g∥1/2,Γ

≤CPSσ∥Tg∥1/2,Γ|||g|||,

where in the last inequality we have appealed to an argument from [15, 17] pointing to the existence
of a positive constant σ such that

∥g∥1/2,Γ ≤ σ|||g|||, (5.14)

and the constant CPS follows from the continuity of the Poincaré-Steklov operator V−1
(︂

1
2 − K

)︂
.

Using the estimates from the previous lemma, we can now compute

|||Tωg|||2 =ω2|||Tg|||2 + (1 − ω)2|||g|||2 + 2ω(1 − ω)((g, Tg))
≤ω2|||Tg|||2 + (1 − ω)2|||g|||2 − 2ω(1 − ω)c∥Tg∥2

1/2,Γ (By (5.9))

≤
(︃
ωCS1κ

cκ

)︃2
|||g|||2 + (1 − ω)2|||g|||2 − 2ω(1 − ω)c∥Tg∥2

1/2,Γ (By (5.10))

≤
(︃
ωCS1κ

cκ

)︃2
|||g|||2 + (1 − ω)2|||g|||2 − 2ω(1 − ω)c

(σCPS)2 |||g|||2 (By (5.11)

= ˆ︁C(ω)|||g|||2, ,

where we have defined

ˆ︁C(ω) :=
(︄(︃

ωCS1κ

cκ

)︃2
+ (1 − ω)2 − 2ω(1 − ω)c

(σCP S)2

)︄
=
(︄(︃

CS1κ

cκ

)︃2
+ 2c

(σCP S)2 + 1
)︄
ω2−2

(︃
1 + c

(σCP S)2

)︃
ω+1.

We note that the quantity ˆ︁C(ω) is a continuous function of the relaxation parameter ω that attains
its minimum value for

ω = ωm :=
1 + c

(σCP S)2

1 + 2c
(σCP S)2 + CS1

cκ

∈ (0, 1).

This implies that ˆ︁C(ω) is a decreasing function of ω within the interval (−∞, ωm). Therefore, sinceˆ︁C(0) = 1, we conclude that there exists ω∗ > 0 such that for every ω ∈ (0, ω∗) it holds that 0 <ˆ︁C(ω) < 1. Combining this argument with Lemma 2, we have thus proven the following

Theorem 2. There exists ω∗ > 0 such that, for any value of the relaxation parameter ω ∈ (0, ω∗),
the mapping Tω is a contraction. As a consequence, the iterative procedure described by the problems
(5.4) converges to the functions q, u, g satisfying problems (5.2).
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5.2 Discrete problem

We will follow the main ideas introduced for the analysis of the continuous counterpart, but we will
have to adapt them to account for the additional challenges posed by the discretization and the transfer
technique.

Discrete fixed point operator and relaxation. In this section we construct the discrete coun-
terpart of the operators defined in Section 5.1. To that end, we let

Xh :=
{︃
µ ∈ L2(Γ) : ∀e ∈ E∂h , µ|Γe = (Eph · n)|Γe with ph ∈ [Pk(Te)]2 and

∫︂
Γ
µ = 0

}︃
,

and define the discrete version of the operator S1 (cf. (5.3)) as

Sh : Pk(E∂h ) −→Xh

gh ↦→Shgh := (Eqgh · n)|Γ,

where qgh is the first component of (qgh, u
g
h), the unique solution of (3.10) having gh and u0 as Dirichlet

boundary data on Γ and Γ0, resp., and source term f . Moreover, by (3.19), we have that

J(qgh, u
g
h) ≤ CHDG

(︂
∥f∥0,Ωh

+ ∥κ1/2h−1/2u0∥Γ0 + ∥κ1/2h−1/2gh ◦ ϕ∥Γ
)︂
.

On the other hand, consider a mesh edge e ∈ E∂h and recall the bijective mapping ϕ, defined in (3.2);
we will denote the image of an edge e ⊂ Γh under ϕ by Γe := ϕ(e). Now, by considering Lemma 4 in
[2], it is possible to deduce that there exists a non-negative constant CΓe , independent of h, such that

∥Eqgh · n∥Γe ≤ CΓeC
e
extC

e
2h

−1/2
e ∥qgh∥T e . (5.15)

Therefore, the above two estimates imply that there exists CSh
> 0, independent of h, such that

∥Shgh∥0,Γ ≤ CSh
h−1/2

(︂
∥f∥0,Ωh

+ ∥κ1/2h−1/2u0∥Γ0 + ∥κ1/2h−1/2gh ◦ ϕ∥Γ
)︂
. (5.16)

Similarly, the discrete version of the operator S2 is given by

Sn : T0
n −→T0

n

λn ↦→Snλn := g0
n,

where g0
n is the unique solution of the equation (4.1) with Neumann data λn, and satisfies

∥Snλn∥1/2,Γ = ∥g0
n∥1/2,Γ ≤ CBEM∥λn∥−1/2,Γ. (5.17)

We can now define the following discrete analogue to the operator T from Section 5.1 as

T h,n : T0
n −→T0

n

g0
n ↦−→T h,ng0

n := Sn ◦ Q0
n ◦ Sh ◦ Πh ◦ (g0

n ◦ ϕ),

where Πh and Q0
n are the L2-projections into Pk(E∂h ) and T0

n, respectively.
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Contraction property of T h,n. We define the discrete version of (5.6). For φ,ψ ∈ T0
n,

((φ,ψ))h := Ah(qφh , q
ψ
h ) + Ch(uφh , u

ψ
h ) (5.18)

where (qφh , uφ) and (qψh , uψ) are the solutions to (3.10) with source term f = 0, u0 = 0 on Γ0 and
boundary data over Γ given by φ and ψ respectively. This is, in fact, an inner product on T0

n. In order
to see that, first let us note that Ch is a semi-definite positive operator from Wh × Wh (cf. (3.16)).
Therefore, if ((ψ,ψ))h = 0, then qψh = 0 and C(uψh , u

ψ
h ) = 0. Moreover, by (3.16) we have that uψh is

single-valued and vanishes on the the boundary. Thus, considering all this information, from (3.10b)
we have that

⟨τ uψh , w⟩∂Th
− 2⟨τuψh , {{w}}⟩E◦

h
= −⟨τ ψ ◦ ϕ,w⟩Γ ∀w ∈ Wh.

Now, expressing the integral over ∂Th in terms of summation over edges and recalling that uψh = {{uψh}}
and uψh = 0 on the boundary, we deduce that the right hand side of the expression above must vanish
for all w ∈ Wh. In particular, taking w = 1 it follows that

0 = −⟨τ ψ ◦ ϕ, 1⟩∂Ωh
= −⟨τ ψ, 1⟩Γ.

Therefore, since τ is positive and ψ ∈ T0
n, we must have ψ = 0. This inner product induces the norm

|||φ|||h := ((φ,φ))1/2
h and we notice that

|||φ|||2h = |||φ|||2 + 1
2∥τ−1/2[[qφh ]]∥2

Eo
h

+ Ch(uφh , u
φ
h) ≥ |||φ|||2. (5.19)

We now establish the relationship between the discrete norm |||·|||h, the continuous norms in H1/2(Γ)
and L2(Γ).

Lemma 4. Let gn ∈ T0
n. There hold

∥gn∥Γ ≤ ∥gn∥1/2,Γ ≤ σ|||gn|||h. (5.20)

Proof. Let gn ∈ T0
n. By employing (5.14) we have that ∥gn∥2

1/2,Γ ≤ σ2|||gn|||2 ≤ σ2|||gn|||2h, where in the
last inequality we made use of (5.19). The second inequality follows by the characterization of the
H1/2-norm in terms of the Fourier coefficients of the function and, the fact that the parametrization
of Γ is smooth, and the fact that gn is a trigonometric polynomial (see, for instance, [29]).

The following identity and the one in the subsequent corollary establish the connection between the
inner product ((·, ·))h, defined through the interior problem, and the exterior problem. This will play
a key role in deriving the discrete analogue of (5.12).

Lemma 5. Let φ,ψ ∈ T0
n. There holds

((φ,ψ))h = −
⟨︃
φ,V−1Q0

n

(︃1
2 − K

)︃
Sn(Q0

n(qψh ◦ ϕ−1))
⟩︃

Γ
− ⟨(Id− Q0

n)(V−1φ,VQ0
n((qψh ◦ ϕ−1) · n)⟩Γ

− ⟨φ, (qψh ◦ ϕ−1) · (nh − n)⟩Γ + ⟨τ φ ◦ ϕ, uψh ⟩Γh
− AT (qφh , q

ψ
h ) + BT (qφh , u

ψ). (5.21)

Proof. Let φ,ψ ∈ T0
n. By the definition of ((φ,ψ))h and the equations (3.10) satisfied by (qφh , uφ) and

(qψh , uψ), it is possible to deduce the identity

((φ,ψ))h =F1,h(qψh ) − F2,h(uψ) − AT (qφh , q
ψ
h ) + BT (qφh , u

ψ)
= − ⟨φ ◦ ϕ, qψh · nh⟩Γh

+ ⟨τ φ ◦ ϕ, uψh ⟩Γh
− AT (qφh , q

ψ
h ) + BT (qφh , u

ψ).
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Now, since ϕ is a bijective mapping, we write the first term of the right hand side as follows:

−⟨φ ◦ ϕ, qψh · nh⟩Γh
= − ⟨φ, (qψh ◦ ϕ−1) · nh⟩Γ

= − ⟨φ, (qψh ◦ ϕ−1) · n⟩Γ − ⟨φ, (qψh ◦ ϕ−1) · (nh − n)⟩Γ

= − ⟨φ,Q0
n((qψh ◦ ϕ−1) · n)⟩Γ − ⟨φ, (qψh ◦ ϕ−1) · (nh − n)⟩Γ,

where we have added and subtracted nh and used the fact that φ ∈ T0
n in the last step.

We now conveniently rewrite the first term on the right hand. More precisely, since V is invertible
and self-adjoint,

⟨φ,Q0
n((qψh ◦ ϕ−1) · n)⟩Γ =⟨V−1φ,VQ0

n((qψh ◦ ϕ−1) · n)⟩Γ

=⟨Q0
n(V−1φ),VQ0

n((qψh ◦ ϕ−1) · n)⟩Γ

+ ⟨(Id− Q0
n)(V−1φ),VQ0

n((qψh ◦ ϕ−1) · n)⟩Γ,

where we added and subtracted Q0
n(V−1φ).

Then, taking Q0
n(V−1φ) as a test function in (4.1) Neumann data λ := Q0

n(qφh ◦ ϕ−1) and unique
solution gλ := Sn(Q0

n(qψh ◦ ϕ−1)), we have that

⟨φ,Q0
n((qψh ◦ ϕ−1) · n)⟩Γ =

⟨︃
Q0
n(V−1φ),

(︃1
2 − K

)︃
gλ
⟩︃

Γ
+ ⟨(Id− Q0

n)(V−1φ,VQ0
n((qψh ◦ ϕ−1) · n)⟩Γ

=
⟨︃
φ,V−1Q0

n

(︃1
2 − K

)︃
gλ
⟩︃

Γ
+ ⟨(Id− Q0

n)(V−1ψ,VQ0
n((qψh ◦ ϕ−1) · n)⟩Γ,

Gathering all the above identities, we obtain (5.21).

In the particular case of a circular interface Γ, the integral operators applied to trigonometric
polynomials are also trigonometric polynomials. Therefore, we have the following identity.

Corollary 3. Let us suppose that Γ is a circular interface. For φ,ψ ∈ T0
n, there holds

((φ,ψ))h = −
⟨︃
φ,V−1

(︃1
2 − K

)︃
Sn(Q0

n(qψh ◦ ϕ−1))
⟩︃

Γ

− ⟨φ, (qψh ◦ ϕ−1) · (nh − n)⟩Γ + ⟨τ φ ◦ ϕ, uψh ⟩Γh
− AT (qφh , q

ψ
h ) + BT (qφh , u

ψ). (5.22)

We recall that the interface Γ has been introduced artificially and its shape can be chosen to facilitate
computations. In particular, all the boundary integrals can be explicitly computed in the case of a
circular interface. This actually the case of the numerical examples reported in [7]. From now on, for
the sake of simplicity of the exposition, we will consider Γ is a circular interface.

The next lemma provides a discrete version of the inequalities presented in Lemma 3. To that end,
let us first notice that the solution u of (2.11) is actually in H1(Ω). In addition, if we assume that
q ∈ H1(Ω), we have the following stability estimate

∥q∥1,Ω + ∥u∥1,Ω ≤ Cstabκ1/2
(︂
∥f∥0,Ω + ∥g∥1/2,Γ + ∥u0∥1/2,Γ0

)︂
. (5.23)

Lemma 6. Let gn ∈ T0
n and assume (5.23) holds true. We have that

|||gn|||2h ≤C0(τ)∥gn∥2
1/2,Γ, (5.24)
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where

C0(τ) := C(κ−1/2 + τ−1/2 + 1 + (τ1/2 + 1)τ1/2)(Cstabκ1/2 + 1) + τ

and

((gn, T h,ngn))h ≤ − c∥T h,ngn∥2
1/2,Γ + C1(h, τ)|||gn|||2h, (5.25)

with

C1(h, τ) :=C
(︃
Rhκ−1κ + κ−1κ1/2Rhh

1/2τ1/2 + σh−1/2κ1/2∥(nh − n)∥∞,Γ

)︃
.

Moreover,

|||T h,ngn|||2h ≤C0(τ)c−1
(︂
C0(τ)c−1 + C1(h, τ)

)︂
|||gn|||2h (5.26)

and

|||gn|||2h ≤C2
PSσ

2|||T h,ngn|||2h + C1(h, τ)σ2|||gn|||2h. (5.27)

Proof. To prove (5.23) we start by using the definition of the norm |||·|||h to compute

|||gn|||2h = ∥κ−1/2qgn

h ∥2
Ωh

+ 1
2∥τ−1/2[[qgn

h ]]∥2
E◦

h
+ ∥τ1/2(ugn

h − {{ugn

h }})∥2
∂Th\∂Ωh

+ ∥τ1/2ugn

h ∥2
∂Ωh

.

However, since ugn ∈ H1(Ω) and qgn ∈ H(div,Ω) it follows that

|||gn|||2h ≤ ∥κ−1/2(qgn

h − qgn)∥2
Ωh

+ 1
2∥τ−1/2[[qgn

h − qgn ]]∥E◦
h

+ ∥τ1/2((ugn

h − ugn) − {{ugn

h − ugn}})∥2
∂Th\∂Ωh

+ ∥τ1/2(ugn

h − ugn)∥2
∂Ωh

+ ∥κ−1/2qgn∥2
Ωh

+ ∥τ1/2ugn∥2
∂Ωh

= J(q − qh, u− uh) + ∥κ−1/2qgn∥2
Ωh

+ ∥τ1/2ugn∥2
∂Ωh

(By the definition (3.20))
= J(q − qh, u− uh) + ∥κ−1/2qgn∥2

Ωh
+ ∥τ1/2ugn∥2

∂Ωh
(By (2.13))

≤C(κ−1/2 + τ−1/2h1/2 + 1)|q|1,Ω + (τ1/2 + 1)τ1/2|u|1,Ω (By (3.29))
+ ∥κ−1/2qgn∥2

Ωh
+ ∥τ1/2ugn∥2

∂Ωh

≤C(κ−1/2 + τ−1/2h1/2 + 1 + (τ1/2 + 1)τ1/2)(Cstabκ1/2 + 1)∥gn∥2
1/2,Γ + τ∥gn∥2

Γ (By (5.23)),

which implies (5.24).
Now, let φ,ψ ∈ T0

n. By the previous Corollary 3, the Cauchy-Schwarz inequality and the continuity
properties of the operators AT and BT (cf. (3.17) and (3.18)), and denoting by C a generic positive
constant independent of the discretization parameters, we can deduce that

((φ,ψ))h ≤ −
⟨︃
ψ,V−1

(︃1
2 − K

)︃
Sn(Q0

n(qφh ◦ ϕ−1))
⟩︃

Γ
− ⟨ψ, (qφh ◦ ϕ−1) · (nh − n)⟩Γ

+ CRhκ−1κ∥κ−1/2qφh∥Ωh
∥κ−1/2qψh∥Ωh

+ Cκ−1κ1/2Rhh
1/2τ1/2

(︃1
2∥κ−1/2qφh∥2

Ωh
+ 1

2∥τ1/2uψh∥2
∂Ωh

)︃
≤ −

⟨︃
ψ,V−1

(︃1
2 − K

)︃
Sn(Q0

n(qφh ◦ ϕ−1))
⟩︃

Γ
− ⟨ψ, (qφh ◦ ϕ−1) · (nh − n)⟩Γ

+ 1
2C
(︃
Rhκ−1κ + κ−1κ1/2Rhh

1/2τ1/2
)︃(︃

|||φ|||2h + |||ψ|||2h
)︃
.
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For the second term on the right hand side we have that

−⟨ψ, (qφh ◦ ϕ−1) · (nh − n)⟩Γ ≤∥ψ∥Γ∥qφh ◦ ϕ−1∥Γ∥(nh − n)∥∞,Γ

≤∥ψ∥Γh
−1/2κ1/2∥κ−1/2qφh∥Ωh

∥(nh − n)∥∞,Γ

≤σh−1/2κ1/2∥(nh − n)∥∞,Γ|||φ|||h|||ψ|||h,

where in the last inequality we employed (5.20) and the definition of |||·|||h. Hence,

((φ,ψ))h ≤ −
⟨︃
ψ,V−1

(︃1
2 − K

)︃
Sn(Q0

n(qφh ◦ ϕ−1))
⟩︃

Γ

+ 1
2C
(︃
Rhκ−1κ + κ−1κ1/2Rhh

1/2τ1/2 + σh−1/2κ1/2∥(nh − n)∥∞,Γ

)︃(︃
|||φ|||2h + |||ψ|||2h

)︃
.

(5.28)

Now, by setting φ = gn and ψ = T h,ngn = Sn(Q0
n(qgn

h ◦ϕ−1)) and recalling that ((·, ·))h is symmetric,
(5.28) implies (5.25).

On the other hand, (5.25) implies

∥T h,ngn∥2
1/2,Γ ≤c−1|||g0

n|||h|||T h,ngn|||h + c−1C1(h, τ)|||gn|||2h. (5.29)

Then, by (5.24) and Young’s inequality we obtain

|||T h,ngn|||2h ≤C0(τ)∥T h,ngn∥2
1/2,Γ ≤ C0(τ)c−2|||gn|||2h + |||T h,ngn|||2h + c−1C1(h, τ)C0(τ)|||gn|||2h

and (5.26) follows.
Finally, taking gn = ψ = φ in (5.28), the definition of C1(h, τ) and (5.20), we obtain

|||gn|||2h ≤ −
⟨︃
gn,V−1

(︃1
2 − K

)︃
Sn(Q0

n(qgn

h ◦ ϕ−1))
⟩︃

Γ
+ C1(h, τ)∥gn∥2

Γ

= −
⟨︃
gn,V−1

(︃1
2 − K

)︃
T h,ngn

⟩︃
Γ

+ C1(h, τ)∥gn∥2
Γ

≤CPSσ∥gn∥1/2,Γ|||T h,ngn|||h + C1(h, τ)σ2|||gn|||2h
≤CPSσ2|||gn|||h|||T h,n|||h + C1(h, τ)σ2|||gn|||2h

≤1
2 |||gn|||2h + 1

2C
2
PSσ

2|||T h,ngn|||2h + C1(h, τ)σ2|||gn|||2h,

which implies (5.27).

Similarly to the case of the operator Tω, we define the operator

T h,nω : T0
n −→T0

n

g0
n ↦→T h,nω g0

n := ωT h,ng0
n + (1 − ω)g0

n.

We can now use the previous lemmas to prove the main result of this communication, namely the
convergence of the iterative procedure.

Theorem 3. If the mesh parameter h is small enough, it is possible to find values of the relaxation
parameter ω in the interval (0, 1) for which the discrete operator T h,nω is a contraction. Therefore, the
iterative procedure (5.4) converges.
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Proof. Let gn ∈ T0
n. By employing the estimates in Lemma 6

|||T h,nω gn|||2h =ω2|||T h,ngn|||2h + (1 − ω)2|||gn|||2h + 2ω(1 − ω) ((gn, T h,ngn))h
≤ω2C0(τ)c−1

(︂
C0(τ)c−1 + C1(h, τ)

)︂
|||gn|||2h + (1 − ω)2|||gn|||2h

− 2c ω(1 − ω) ∥T h,ngn∥2
1/2,Γ + 2ω(1 − ω)C1(h, τ)|||gn|||2h

≤ω2C0(τ)c−1
(︂
C0(τ)c−1 + C1(h, τ)

)︂
|||gn|||2h + (1 − ω)2|||gn|||2h

− 2c ω(1 − ω)C0(τ)|||T h,ngn|||2h + 2ω(1 − ω)C1(h, τ)|||gn|||2h.

where in the last inequality we made use of (5.24). Then, by (5.27),

|||T h,nω gn|||2h ≤ω2C0(τ)c−1
(︂
C0(τ)c−1 + C1(h, τ)

)︂
|||gn|||2h

+ (1 − ω)2|||gn|||2h − 2c ω(1 − ω)C0(τ)C−2
PSσ

−2|||gn|||2h
+ 2c ω(1 − ω)σ−2C0(τ)C−2

PSC1(h, τ)|||gn|||2h + 2ω(1 − ω)C1(h, τ)|||gn|||2h
= ˆ︁Ch,n(ω)|||gn|||2h,

where ˆ︁Ch,n(ω) :=ω2C0(τ)c−1
(︂
C0(τ)c−1 + C1(h, τ)

)︂
+ (1 − ω)2 − 2c ω(1 − ω)C0(τ)C−2

PSσ
−2

+ 2c ω(1 − ω)C0(τ)C−2
PSσ

−2C1(h, τ) + 2ω(1 − ω)C1(h, τ).

Analogously to the analysis of the continuous operator, we observe that ˆ︁Ch,n(ω) is of the formˆ︁Ch,n(ω) = αω2 + βω + 1,

with

α := 1 +
(︃
C0(τ)
c

)︃(︃
C0(τ)
c

+ C1(h, τ)
)︃

+ 2
(︃
cC0(τ)

(CPSσ)2 (1 − C1(h, τ)) − C1(h, τ)
)︃
,

β := − 2 (1 − C1(h, τ))
(︃
cC0(τ)

(CPSσ)2 + 1
)︃
.

The extreme value for ˆ︁Ch,n(ω) is attained at

ω = ωm := − β

2α.

Since C1(h, τ) vanishes as h → 0, for a fine enough mesh it will hold that α > 0 and β < 0. Therefore,
ωm will belong to the interval (0, 1) and will in fact be a minimizer of ˆ︁Ch,n. Moreover, since ˆ︁Ch,n(0) = 1
and ˆ︁Ch,n is decreasing in (0, ωm) ⊂ (0, 1), we conclude that it is possible to choose ω ∈ (0, 1) such
that T h,nω is contractive. For these values of ω, the convergence of the iterative process (5.4) follows
from Banach’s fixed-point theorem.

We note that for the case of a fitted geometry (i.e. whenever Ω ≡ Ωh) the distance parameter
Rh = 0. This implies that C1(h, τ) = 0 and then

ˆ︁Ch,n(ω) =
(︄(︃1 + τ

c

)︃2
+ 2c(1 + τ)

(CPSσ)2 + 1
)︄
ω2 − 2

(︃
1 + c(1 + τ)

(CPSσ)2

)︃
ω + 1,

in coincidence with the continuous case. Above, the presence of the parameter τ stems from the
discretization, while the absence of factors involving κ is due to the choice of discrete norms.
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A HDG projection.

Given constants lu, lq ∈ [0, k], T ∈ Th and a pair of functions (q, u) ∈ H1+lq (T ) × H1+lu(T ), by [4]
there is a constant C > 0 independent of T and τ such that

∥Πvq − q∥T ≲ h
lq+1
T |q|lq+1,T + hlu+1

T τ∗
T |u|lu+1,T , (A.1a)

∥Πwu− u∥T ≲ hlu+1
T |u|lu+1,T + h

lq+1
T

τmax
T

|∇ · q|lqT , (A.1b)

where τ∗
T := max τ |∂T\F ∗ and F ∗ is a face of T at which τ |∂T is maximum. As is customary, the

symbol | · |Hs is to be understood as the Sobolev semi norm of order s ∈ R. Now, in the context of
the unfitted HDG method, the projection errors in Ωc

h satisfies (Lemma 3.8 [5])

∥Πvq − q∥Ωc
h
≲ R

1/2
h ∥Πvq − q∥Ωh

+ hlq+1|q|lq ,Ωh
.
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