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Local noncollapsing for complex
Monge–Ampère equations

By Bin Guo at Newark and Jian Song at Piscataway

Abstract. We prove a local volume noncollapsing estimate for Kähler metrics induced
from a family of complex Monge–Ampère equations, assuming a local Ricci curvature lower
bound. This local volume estimate can be applied to establish various diameter and gradient
estimate.

1. Introduction

The non-local collapsing of Ricci flow on Riemannian manifolds is a fundamental theo-
rem for the compactness of Ricci flows [20], which states that along the flow the volume of the
geodesic balls is uniformly bounded below by a positive constant, if the scalar curvature along
the flow is bounded. In Kähler geometry, it has generated great interest to study degenerating
families of Kähler metrics, satisfying certain complex Monge–Ampère (MA) equations [22].
Analogous to Ricci flow, it is tempting to study the non-local collapsing of Kähler metrics
along a degenerating family.

Complex Monge–Ampère equations have been an important tool in the construction of
canonical Kähler metrics, ever since Yau’s solution to the Calabi conjecture [26]. A priori
estimates on the Kähler potentials are the keys to study the geometry of the Kähler metrics.
By using pluripotential theory, Kołodziej [15] first proved the sharp C 0 estimate for complex
MA equations, assuming the right side belongs to some Orlicz space. Kołodziej’s approach was
generalized to a family of complex MA equations, allowing the Kähler classes to degenerate in
[4–6, 16, 27]. Recently, a PDE-based method [9] was utilized to give a new and uniform proof
of C 0 estimates for a class of fully nonlinear partial differential equations, which include in
particular the complex MA and Hessian equations. In [7], X. Fu and the authors first revealed
the relationship between the C 0 estimate of the Kähler potentials with the global diameter
bound of the Kähler metrics, generalizing the distance estimate in [22]. The current paper aims
to study how the C 0 estimates of Kähler potentials affect the geometry locally.

Let .X; !X / be a compact Kähler manifold of complex dimension n. Suppose that � is
a smooth closed .1; 1/-form such that the class Œ�� is nef, which means the class Œ�� lies in the
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closure of the Kähler cone of X . For t 2 .0; 1�, we consider a family of smooth closed forms

y!t D �C t!X :

Though y!t may not be Kähler forms, each Œy!t � is a Kähler class. We consider the following
complex Monge–Ampère equation:

(1.1) .y!t C iàNà't /n D cteF !nX ; sup
X

't D 0;

where F is a smooth function normalized such thatZ
X

eF !nX D

Z
X

!nX D V; ct D
Vt

V
D O.tn��/; Vt D

Z
X

y!nt

and � 2 ¹0; : : : ; nº is the numerical dimension of the class Œ��.
We denote !t D y!t C iàNà't to be the Kähler metric satisfying (1.1) and write gt for the

associated Riemannian metric. The following is our main theorem.

Theorem 1.1. For any p > n and R0 2 .0; 1�, if !t solves (1.1) for t 2 .0; 1� and the
Ricci curvature Ric.gt0/ satisfies

Ric.gt0/ � �
K2

R20
on Bgt0

.z0; 2R0/

for some K � 0, t0 2 .0; 1� and z0 2 X , then

(1.2)
Volgt0

.Bgt0
.z0; R0//

Volgt0
.X/

� CR
2np
p�n

0

for some constant C > 0 depending only on n; p;K; !X ; � and keF kL1.logL/p .

We remark that if p !1, then the power exponent of R0 in (1.2) tends to 2n, which
is natural since the metrics !t are close to Euclidean ones when R0 is small. However, an
example on Riemann surfaces (i.e. n D 1) shows that this power exponent 2np

p�n
is sharp in

some sense (see Example 3.1). If eF 2 Lq.X; !nX / for some q > 1, the right side of (1.2) can
be made as C"R2nC"0 for any " > 0 with the constant C" > 0 depending additionally on ":

Estimate (1.2) can be viewed as an analogue of Perelman’s �-noncollapsing theorem
[20] as the following. Let g.t/ be the smooth solution of the Ricci flow on a real n-dimensional
compact RiemannianM for t 2 Œ0; T /with the initial metric g0. Let .x0; t0/ 2M � Œ0; T / and
r0 2 .0; .t0/

1
2 /. If the scalar curvature satisfies

R < r�20 on Bg.t0/.x0; r0/;

then
Volg.t0/.B.x0; t0; r0// � �r

n
0

for some constant � > 0 that only depends on n and �Œg0; 2T �, Perelman’s �-functional at the
initial time.

We define the radius of Ricci curvature lower bound at z for the metric gt by

Nrgt
.z/ D sup

²
r > 0 W Ric.gt / � �

1

r2
in Bgt

.z; r/

³
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as an analogue of the curvature radius introduced in [1]. An equivalent way to state Theorem 1.1
is that under the same setup

Volgt
.Bgt

.z; Nrgt
.z///

Volgt
.X/

� C Nrgt
.z/

2np
p�n for any z 2 X

for some constant C > 0 depending only on n; p; !X ; � and keF kL1.logL/p .
The main idea of the proof of Theorem 1.1 is motivated by that in [9, 10], that is, we

compare the Kähler metric !t to some auxiliary complex Monge–Ampère equation, with the
function on the right side being truncated squared distance function of gt . Additionally we also
need the Riemannian geometric tools like the Laplacian comparison and volume comparison
theorems.

Theorem 1.1 immediately implies the following diameter bound established in [7], by
choosing R0 D 1 in Theorem 1.1.

Corollary 1.1. For any p > n, if !t solves (1.1) for t 2 .0; 1� and the Ricci curvature
Ric.gt / is bounded below by

Ric.gt / � �K2

for someK � 0, then there exists C > 0 depending only on n; p;K; !X ; � and keF kL1.logL/p

such that
Diam.X; gt / � C

for all t 2 .0; 1�.

We also establish a local gradient estimate as an application of Theorem 1.1. We consider
the following complex Monge–Ampère equation:

(1.3) .!X C iàNà'/n D eF !nX ; sup
X

' D 0

on a compact Kähler manifold .X; !X / of complex dimension n with F 2 C1.X/ satisfying
the normalization condition

R
X e

F !nX D
R
X !

n.

Theorem 1.2. Let ' be the solution of equation (1.3) and let g be the Kähler metric
corresponding to the Kähler form ! D !X C iàNà'. Given p > n and R0 2 .0; 1�, if

Ric.g/ � �
K2

R20
on Bg.z0; 2R0/

for some K � 0 and z0 2 X , then

jr'j2g � C on Bg.z0; R0/

for some constant C > 0 depending on n; p; !X ; keF kL1.logL/p , K and R0.

We will prove Theorem 1.1 in Section 2. In Section 3, we construct an example and show
that the exponent in (1.2) is sharp. In Section 4, we will prove Theorem 1.2 and discuss some
other applications of Theorem 1.1 and Corollary 1.1 on the diameter bound of Kähler metrics
satisfying certain complex Monge–Ampère equations.
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2. Proof of Theorem 1.1

Since y!t may not be Kähler, we define the “envelope” associated to y!t :

Vt D sup¹v W v 2 PSH.X; y!t /; v � 0º:

It is known that for each t 2 .0; 1�, Vt is a C 1;1 function. We recall the following uniform
L1-estimates on 't , the solution to (1.1).

Lemma 2.1 ([7, 11]). There is a constant C0 > 0 depending only on n; p; !X ; � and
keF kL1.logL/p such that

sup
X

j't � Vt j � C0 for all t 2 .0; 1�:

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We break the proof into four steps.

Step 1. We fix a family of smooth positive functions �k W R! RC such that �k.x/
converges uniformly and decreasingly to the function x � �RC.x/ as k !1. We solve the
auxiliary complex Monge–Ampère equations

(2.1) .y!t C iàNà t;k/n D ct
�k.R

2
0 � d

2
t /

Ak;t
eF !nX ; sup

X

 t;k D 0;

where
0 < Ak;t D

ct

Vt

Z
X

�k.R
2
0 � d

2
t /e

F !nX

is the normalizing constant making equation (2.1) solvable by Yau’s theorem [26]. Here we
write dt .x/ D dgt

.x; z0/ to be the geodesic distance of x to the fixed point z0 under the varying
metric gt . We note that although the positive function on the right-hand side of (2.1) is only
Lipschitz but not necessarily smooth, the solution  t;k is still in C 2;˛.X/ for some ˛ > 0,
which follows from the regularity theory of complex Monge–Ampère equations (see, e.g., [2,
19]). We observe that by the dominated convergence theorem

Ak;t ! At WD
ct

Vt

Z
Bgt .z0;R0/

.R20 � d
2
t /e

F !nX as k !1:

Step 2. We aim to compare  t;k with the solution 't . As in [9, 10], we look at the test
function

ˆ WD �".� t;k C 't C C1/
n

nC1 C .R20 � d
2
t /;

where C1 D C0 C 1 and C0 > 0 is the constant in Lemma 2.1, and " > 0 is chosen as

(2.2) " D

�
n3 C .nC 1/.4nC 2K/

n2

� n
nC1

A
1

1Cn

k;t
DW C2A

1
1Cn

k;t
;

where we fix the constant C2 > 0 which depends on n andK. As an initial observation we note
that on X

� t;k C 't C C1 D �. t;k � Vt /C .'t � Vt /C C0 C 1 � 1;

by Lemma 2.1 and the fact  t;k � Vt for each k. Thus the function ˆ < 0 on XnBgt
.z0; R0/.
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We claim that ˆ � 0 on X . To prove this, let xmax 2 X be a maximum point of ˆ. If
xmax … Bgt

.z0; R0/, we are done. So we may assume xmax 2 Bgt
.z0; R0/. Applying Calabi’s

trick if necessary [21], we may assume d2t is smooth at xmax. Then at xmax we have (write
� D �!t

)

0 � �!t
ˆ.xmax/

D
n"

nC 1
.� t;k C 't C C1/

� 1
1Cn .� t;k ��'t /

C
n"

.nC 1/2
.� t;k C 't C C1/

�
nC2
nC1 jr. t;k � 't /j

2
!t
��d2t

�
n"

nC 1
.� t;k C 't C C1/

� 1
1Cn .tr!t

! t;k
� tr!t

!t / � 2dt�dt � 2

�
n2"

nC 1
.� t;k C 't C C1/

� 1
1Cn

�!n t;k

!nt

� 1
n

�
n2"

nC 1
.� t;k C 't C C1/

� 1
1Cn

� 2dt

�
2n � 1

dt
C
K

R0

�
� 2

�
n2"

nC 1
.� t;k C 't C C1/

� 1
1Cn

�
�k.R

2
0 � d

2
t /

Ak;t

� 1
n

�
n2"

nC 1
� 4n � 2K

�
n2"

nC 1
.� t;k C 't C C1/

� 1
1Cn

�
R20 � d

2
t

Ak;t

� 1
n

�
n2"

nC 1
� 4n � 2K;

where we write !� D y!t C iàNà� for a function � 2 PSH.X; y!t /, in the fifth line we apply
the arithmetic-geometric inequality and the fact tr!t

!t D n, in the sixth line we apply the
Laplace comparison theorem [21] of the distance function which holds under our assumption
that Ric.!t / � �K2R�20 on the geodesic ball Bgt

.z0; 2R0/, in the seventh line we use the
equations satisfied by  t;k and 't and in the last line we apply the choice of �k which satisfies
�k.s/ � s for s � 0. Hence at xmax we have

R20 � d
2
t � Ak;t

�
nC

.nC 1/.4nC 2K/

n2"

�n
.� t;k C 't C C1/

n
nC1

< ".� t;k C 't C C1/
n

nC1 ;

by the choice the " in (2.2). This finishes the proof of the claim that ˆ � 0 on X .

Step 3. From ˆ � 0 we infer that on Bgt
.z0; R0/

.R20 � d
2
t /

nC1
n

A
1=n

k;t

� C
nC1

n

2 .� t;k C 't C C1/:

We can view  t;k as a C3!X -PSH function for some C3 > 0 depending only on � and !X .
So the Hörmander–Tian estimate [14, 24] holds for each  t;k . We thus have a small constant
˛ D ˛.!X ; �;K/ > 0 such that the following Trudinger-type inequality holds:

(2.3)
Z
Bgt .z0;R0/

e
˛

.R2
0
�d2

t /
nC1

n

A
1=n
k;t !nX �

Z
X

e˛C
nC1

n
2 .� t;kC'tCC1/!nX � C

for some uniform constant C > 0, where we have chosen ˛ > 0 small so that ˛C
nC1

n

2 is smaller
than the ˛-invariant of .X; C3!X /.
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Step 4. It then follows from a generalized Young’s inequality that

vpeF � eF .1C jF jp/C Cpe
2v

which applied to v D ˛ .R
2
0�d

2
t /

nC1
n

2A
1=n

k;t

yields by (2.3) that

(2.4)
Z
Bgt .z0;R0/

.R20 � d
2
t /

nC1
n
peF !nX � CA

p
n

k;t

for some constant C > 0 depending on n; p; !X ; �;K and keF kL1.logL/p . Letting k !1,
inequality (2.4) implies thatZ

Bgt .z0;R0/

.R20 � d
2
t /

nC1
n
peF !nX � CA

p
n

t :

On the other hand, by the Hölder inequality we have

At D
ct

Vt

Z
Bgt .z0;R0/

.R20 � d
2
t /e

F

�

�Z
Bgt .z0;R0/

.R20 � d
2
t /

nC1
n
peF !nX

� n
p.nC1/

�

�Z
Bgt .z0;R0/

eF !nX

� 1
q

� CA
1=.nC1/
t

�Z
Bgt .z0;R0/

eF !nX

� 1
q

;

where q D p.nC1/
p.nC1/�n

is the conjugate of p. We thus conclude that

(2.5) At � C

�Z
Bgt .z0;R0/

eF !nX

�nC1
nq

D C

�Z
Bgt .z0;R0/

eF !nX

�1Cp�n
np

:

Note that ct

Vt
is uniformly bounded, so (2.5) shows that there exists a uniform constant C > 0

such that Z
Bgt .z0;R0/

.R20 � d
2
t /e

F !nX � C

�Z
Bgt .z0;R0/

eF !nX

�1Cp�n
np

:

In particular, we obtain

(2.6) R20

Z
Bgt .z0;R0=2/

eF !nX � C

�Z
Bgt .z0;R0/

eF !nX

�1Cp�n
np

:

Multiplying ct on both sides of (2.6), we get

(2.7) R20 Volgt

�
Bgt

�
z0;

R0

2

��
�

C

c
p�n
np

t

.Volgt
.Bgt

.z0; R0///
1Cp�n

np :

By volume comparison [21], the function .0; 2R0/ 3 r 7! r�2ne
� K

R0
r Volgt

.Bgt
.z0; r// is

non-increasing, which implies

Volgt
.Bgt

.z0; R0// � C.n;K/Volgt

�
Bgt

�
z0;

R0

2

��
:
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Combined with (2.7), this implies that

R
2np
p�n

0 Vt � C Volgt
.Bgt

.z0; R0//;

where as usual Vt D
R
X !

n
t and C > 0 is a uniform constant. This finishes the proof of Theo-

rem 1.1.

3. An example

In this section, we will construct an example and demonstrate that the exponent 2np
p�n

is
sharp in the estimate of Theorem 1.1. In other words, the estimate in Theorem 1.1 may fail with
the exponent replaced by 2np

p�n
� " for any " > 0.

Example 3.1. Let D � C � CP1 be the disk with radius 1
2

. Consider the function
'.z/ D .� log jzj2/�a for some a > 0. We calculate the “metric” defined by iàNà':

! D iàNà' D a.aC 1/
idz ^ d Nz

jzj2.� log jzj2/aC2
D eF idz ^ d Nz:

Straightforward calculations show that keF kL1.logL/p.D/ is bounded for any 1 < p < aC 1
and is unbounded when p � aC 1. Fix a point z0 2 Dn¹0º close to 0, and a point w 2 D with
arg z0 D argw. By the rotational symmetry of !, we see that

d!.z0; w/ D
p
a.aC 1/

Z max¹jz0j;jwjº

min¹jz0j;jwjº

dr

r.� log r2/1C
a
2

D

r
aC 1

2aa

�
1

.� log max¹jz0j; jwjº/
a
2

�
1

.� log min¹jz0j; jwjº/
a
2

�
:

In particular, letting w ! 0, we see that

d!.z0; 0/ D

r
aC 1

2aa

1

.� log jz0j/
a
2

DW 6R0 > 0:

Take z˙0 2 D with the same arguments as z0 and

jzC0 j D jz0j
2

2
a
< jz0j and jz�0 j D jz0j

. 2
3
/

a
2
> jz0j

so that

.� log jzC0 j/
a=2
D 2.� log jz0j/

a
2 and .� log jz�0 j/

a
2 D

2

3
.� log jz0j/

a
2 :

Then it follows that

d!.z0; z
˙
0 / D

1

2

r
aC 1

2aa

1

.� log jz0j/
a
2

D 3R0:

On the other hand, the length of the circles around 0 in the annulus ¹jzC0 j � jzj � jz
�
0 jº is given

by (again by the rotational symmetry of ! these circles are !-geodesics)

L!.circle/ D
p
a.aC 1/

Z 2�

0

d�

.� log jzj2/1C
a
2

D
2�
p
a.aC 1/

.� log jzj2/1C
a
2

<
R0

10
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if jz0j > 0 small enough. This implies that

B!.z0; 2R0/ � ¹jz
C
0 j � jzj � jz

�
0 jº � B!.z0; 4R0/ � Dn¹0º:

By straightforward calculations, we have

Ric.!/ D iàNà log.jzj2.� log jzj2/aC2/

D �
aC 2

jzj2.� log jzj2/2
idz ^ d Nz

D �
aC 2

a.aC 1/
.� log jzj2/a � !

� �
K2

R20
! in the annulus ¹jzC0 j � jzj � jz

�
0 jº DW A;

whereK > 0 is a constant depending only on a > 0. Finally, we calculate the !-volume of the
above annulus as

Vol!.A/ D
Z jz�0 j
jz
C

0 j

2�rdr

r2.� log r2/aC2
D

Ca

.� log jz0j/aC1
D C 0aR

2.aC1/
a

0 :

Note that eF 2 L1.logL/p for any 1 < p < aC 1 and Vol!.A/ � Vol!.B!.z0; 2R0//. We
see that the exponent 2np

p�n
ofR0 in Theorem 1.1 is sharp. Moreover, the Ricci curvature Ric.!/

is not bounded below on the whole D since it decays to �1 near 0.

Though ! in this example is a “singular” Kähler metric on a local domain, we can reg-
ularize it near 0 to make it a genuine Kähler metric, and glue it to CP1 to get an example on
compact Kähler manifolds (cf., e.g., [23]). One can naturally generalize the above example to
higher dimensions and indeed the exponent 2np

p�n
is sharp.

4. Applications of Theorem 1.1

We discuss some geometric applications of the noncollapsing result in Theorem 1.1. We
will show a local gradient estimate of the Kähler potential, if the Ricci curvature is bounded
below locally. Under certain assumption on the Ricci curvature lower bound, we will prove
the diameter bound and a local noncollapsing result for Kähler metrics along the normalized
Kähler–Ricci flow on minimal Kähler manifolds.

4.1. MA equations with a fixed background Kähler metric. As the first application
of Theorem 1.1, we prove Theorem 1.2 as generalization and a new proof of the global gradient
estimate in [7].

Let .X; !X / be a given compact Kähler manifold. We consider the following complex
Monge–Ampère equation:

(4.1) .!X C iàNà'/n D eF !nX ; sup
X

' D 0:

Under the assumption of locally Ricci curvature lower bound, we prove the following local
gradient estimate on '. We write ! D !X C iàNà', which satisfies (4.1) and denote g the
associated Riemannian metric of !. We recall the statement of Theorem 1.2 below.
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Theorem 4.1. Given p > n and R0 2 .0; 1�, suppose Ric.g/ � �K
2

R2
0

on the geodesic
ball Bg.z0; 2R0/. Then

jr'j2g � C on Bg.z0; R0/

for some constant C > 0 depending on n; p; !X ; keF kL1.logL/p , K and R0.

We first recall the L1 estimate on ' in [9, 15]:

(4.2) k'kL1 � C.n; p; !X ; ke
F
kL1.logL/p /:

To prove Theorem 4.1, we need the following mean value inequality [21].

Lemma 4.1. Let .M; g/ be a Riemannian manifold such that Bg.p; 2R0/ is relatively
compact in M with R0 2 .0; 1�. Suppose that u � 0 is a nonnegative function on Bg.p; 2R0/
satisfying

�gu � �
A2

R20
and Ric.g/ � �

K2

R20
on Bg.p; 2R0/.

Then the following mean value inequality holds:

sup
Bg.p;�R0/

u2 �
C

Volg.Bg.p; 2R0//

Z
Bg.p;2R0/

.u2 C 1/ dVg

for some C > 0 depending on � 2 Œ1; 4
3
�, K and A.

Proof. We consider v D uC 1 � 1, and v satisfies

�gv � �
A2

R20
v:

We look at the product manifold Bg.p; 2R0/ �R with the metric yg D g C ds2, where s 2 R
is the natural coordinate. Define

yv D e
As
R0 v

to be function on Bg.p; 2R0/ �R, and it satisfies �ygyv � 0. Clearly

Ric.yg/ � �
K2

R20

and we can then apply the standard mean value inequality (cf. [21, Chapter 2, Theorem 6.2])
to conclude that

sup
Bg.p;�R0/�.��R0;�R0/

yv2 �
C

R0 Volg.Bg.p; 2R0//

Z 2R0

�2R0

Z
Bg.p;2R0/

yv2 dVg ds

�
C

Volg.Bg.p; 2R0//

Z
Bg.p;2R0/

v2 dVg ds

from which the lemma follows.

Lemma 4.2. Under the same assumptions as in Theorem 4.1, we have

tr! !X � exp
�
CR
�

np
p�n

0

�
on Bg

�
z0;

3R0

2

�
for some C > 0 depending on n; p; !X ; keF kL1.logL/p and K � 0.
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Proof. It follows from the Schwarz-lemma-type inequality that on Bg.z0; 2R0/

(4.3) �! tr! !X � �
K2

R20
tr! !X � C0.tr! !X /2 C

jr tr! !X j2!
tr! !X

;

where C0 > 0 is an upper bound of the bisectional curvature of !X on Bg.z0; 2R0/. Straight-
forward calculations show that

�! log tr! !X � �
K2

R20
� C0 tr! !X :

Hence the function u WD .log tr! !X /C � C0' satisfies

�u � �
K2

R20
� C0n D �

A2

R20
with A2 D K2 C C0nR20:

We apply Lemma 4.1 to conclude that (we denote BR D Bg.z0; R/ for simplicity)

sup
B3R0=2

Œ.log tr! !X /C�2 � 2 sup
B3R0=2

u2 C 2.C0C/
2

�
C

Volg.B2R0
/

Z
B2R0

Œ.log tr! !X /C�2 dVg C C

�
C

R
2np=.p�m/
0

Z
X

tr! !X !n C C �
C

R
2np=.p�n/
0

;

where in the third line we use the calculus inequality Œ.log x/C�2 � x for any x > 0 and
Theorem 1.1. Hence we have

sup
B3R0=2

tr! !X � exp
�
CR
�

np
p�n

0

�
:

Proof of Theorem 4.1. By the Bochner formula, we have on Bg.z0; 2R0/

�! jr'j
2
! D jrr'j

2
! C jr

Nr'j2! C Ricg.r'; Nr'/ � 2Rehr'; Nr tr! !X i!
� jrr'j2! C jr

Nr'j2! �K
2R�20 jr'j

2
! � 2jr'jjr tr! !X j! ;

which by Kato’s inequality1) implies that

�! jr'j! � �K
2R�20 jr'j! � jr tr! !X j! :

1) Kato’s inequality states that 2jrjr'jj2! � jrr'j
2
! C jr

Nr'j2! , which can be verified by the Cauchy–
Schwarz inequality. It suffices to verify this inequality when jr'j > 0. In normal coordinates of !, we calculate

4jr'j2jrjr'jj2 D jrjr'j2j2

D .'i'Ni / Nj .'k' Nk/j

D 'i Nj 'Ni'kj ' Nk C 'i Nj 'Ni'k' Nkj C 'i'Ni Nj 'kj ' Nk C 'i'Ni Nj 'k' Nkj

� 2jr'j2jrr'jjr Nr'j C jr'j2jr Nr'j2 C jr'j2jrr'j2

D jr'j2.jrr'j C jr Nr'j/2 � 2jr'j2.jrr'j2 C jr Nr'j2/:

Cancelling 2jr'j2 on both sides gives the desired Kato’s inequality.
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Define u D jr'j! C '2 C .tr! !X /2. We calculate using (4.3)

�!u � �K
2R�20 jr'j! � jr tr! !X j C 2jr'j2! C 2n' � 2' tr! !X

C 2jr tr! !X j2! � 2
K2

R20
.tr! !X /2 � 2C0.tr! !X /3

� �C.R0/ in Bg

�
z0;

3R0

2

�
;

where in the last inequality the Schwarz inequality, (4.2) and Lemma 4.2. It then follows from
Lemma 4.1 that

sup
BR0

u2 �
C.R0/

Volg.Bg.z0; 3R0

2
//

Z
B3R0=2

.1C u2/!n

�
C.R0/

R
2np=.p�n/
0

Z
X

jr'j2!!
n
C C.R0/:

The proof is complete by observing thatZ
X

jr'j2!!
n
D

Z
X

.�'/.! � !X / ^ !
n�1
�

Z
X

.�'/!n

and the latter integral is bounded due to (4.2).

We remark that if the Ricci curvature Ric.!/ is bounded below onX , then Proposition 4.1
implies a global gradient estimate of ', which was proved in [7] using maximum principle.
Note that in [7], the assumption iàNàF � A!X was made to ensure the Ricci curvature being
bounded below. With this extra assumption, the bound on keF kL1.logL/p with p > n together
with Corollary 1.1 imply the diameter bound of .X; !/, where ! D !' satisfies (4.1).

Finally, we mention that when the function eF on the right side of (4.1) belongs toLq for
some q > 1, the diameter bound of !' has been proved in [18], using the Hölder continuity of
the solution ' established in [3, 17] (see [12]). When keF kL1.logL/p � A for some A > 0 and
p > 3n, the diameter bound of !' has been obtained in [12] after they establish the modulus
of continuity of the Kähler potentials.

4.2. Normalized Kähler–Ricci flow. As in the previous subsection, we assume that X
is a minimal Kähler manifold (i.e. KX is nef, and we do not assume KX is semi-ample) with
!X a given Kähler metric. Let � be a smooth volume form such that � D iàNà log� 2 jKX j is
a representative of the canonical class of X . Multiplying a constant to !X if necessary we may
assume that � � !X . We consider the following normalized Kähler–Ricci flow:

(4.4)
à!t
àt
D �Ric.!t / � !t ; !t jtD0 D !X :

It is well known [25] that (4.4) exists for all t 2 Œ0;1/ and (4.4) is equivalent to the following
parabolic complex Monge–Ampère equation:

(4.5)
à't
àt
D log

.�C e�t .!X � �/C iàNà't /n

e�.n��/t�
� 't ; 't jtD0 D 0

with !t D �C e�t .!X � �/C iàNà't > 0.
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Lemma 4.3. There is a uniform constant C > 0 such that

sup
X

P't D sup
X

à't
àt
� C and sup

X

't � C:

Proof. Taking ààt on both sides of (4.5), we get

à P't
àt
D �!t

P't � e
�t tr!t

.!X � �/ � P't C .n � �/; P't jtD0 D 0;

so by maximum principle and !X � � � 0 it follows that for 't;max D maxX P't

d

dt
P't;max � � P't;max C .n � �/

multiplying both sides by et and integrating over t it yields that

P't;max � .n � �/.1 � e
�t / � n � �;

which gives the upper bound of P't . To see the upper bound of 't , we calculate (set V D
R
X �)

d

dt

1

V

Z
X

't� D
1

V

Z
X

log
!nt

e�.n��/t�
� �

1

V

Z
X

't�

D .n � �/t C
1

V

Z
X

log
!nt
�
� �

1

V

Z
X

't�

� .n � �/t C log
�
1

V

Z
X

!nt

�
�
1

V

Z
X

't�

� .n � �/t C log
�
C

V
e�.n��/t

�
�
1

V

Z
X

't�

� C �
1

V

Z
X

't�;

where in the third line above we applied Jensen’s inequality. Integrating both sides of the
inequality above it follows that 1

V

R
X 't� � C for some uniform C > 0. The desired upper

bound of 't follows from the mean value theorem.

We re-write equation (4.5) as

(4.6)
�
�C e�t .!X � �/C iàNà't

�n
D e�t.n��/e'tC P't�:

Integrating both sides of (4.6) and applying Lemma 4.1, we get
R
X e

't� � c > 0 for some
uniform c > 0, which implies that supX 't � �C , where C > 0 is independent of t . We can
now apply the L1-estimate of 't as the solution to the “elliptic” complex MA equation (4.6)
with

eF WD e'tC P't � C

from Lemma 4.3, and it follows that

(4.7) sup
X

j.'t � sup
X

't / � Vt j � C H) sup
X

j't � Vt j � C;

in which we use jsupX 't j � C and Vt is the envelope associated to �Ce�t .!X��/. With (4.7)
we are ready to state the local noncollapsing along the normalized Kähler–Ricci flow (4.4).
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Proposition 4.1. Let X be a minimal Kähler manifold and let !t be the solution to the
Kähler–Ricci flow (4.4). Let the assumptions be as above. Then the following holds. For any
" > 0, t 2 Œ0;1/, z0 2 X , and R0 2 .0; 1�, if Ric.!t / � �K

2

R2
0

on B!t
.z0; 2R0/, then there

exists a constant c" D c".n; �; !X ; K;�; "/ > 0 such that

Vol!t
.B!t

.z0; R0//

Vt
� c"R

2nC"
0 :

The proof of this proposition is almost the same as that of Theorem 1.1, given the
L1-estimate (4.7) of 't . In fact, the proof is even simpler since the function eF D e'tC P't

is bounded in L1-norm. We leave the details to interested readers.
If the Ricci curvature !t is uniformly bounded below for t 2 Œ0;1/, the local noncol-

lapsing in Proposition 4.1 will imply the uniform diameter bound of .X; !t /, thus provid-
ing a new proof of one of the results in [8], which studied the Kähler–Ricci flow on mini-
mal manifolds with numerical dimension � D n. By volume comparison, it will follow that
Vol!t

.B!t
.z0; r// � cVtr

2n for any r 2 .0; 1�. This volume decay property appears in the
assumptions of the main theorems in [13]. It suggests that this extra assumption may be super-
fluous for Kähler–Ricci flow.
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