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Local noncollapsing for complex
Monge—Ampere equations

By Bin Guo at Newark and Jian Song at Piscataway

Abstract. We prove a local volume noncollapsing estimate for Kdhler metrics induced
from a family of complex Monge—Ampere equations, assuming a local Ricci curvature lower
bound. This local volume estimate can be applied to establish various diameter and gradient
estimate.

1. Introduction

The non-local collapsing of Ricci flow on Riemannian manifolds is a fundamental theo-
rem for the compactness of Ricci flows [20], which states that along the flow the volume of the
geodesic balls is uniformly bounded below by a positive constant, if the scalar curvature along
the flow is bounded. In Kéhler geometry, it has generated great interest to study degenerating
families of Kéhler metrics, satisfying certain complex Monge—Ampere (MA) equations [22].
Analogous to Ricci flow, it is tempting to study the non-local collapsing of Kéhler metrics
along a degenerating family.

Complex Monge—Ampere equations have been an important tool in the construction of
canonical Kéhler metrics, ever since Yau’s solution to the Calabi conjecture [26]. A priori
estimates on the Kéhler potentials are the keys to study the geometry of the Kihler metrics.
By using pluripotential theory, Kotodziej [15] first proved the sharp C? estimate for complex
MA equations, assuming the right side belongs to some Orlicz space. Kotodziej’s approach was
generalized to a family of complex MA equations, allowing the Kihler classes to degenerate in
[4-6,16,27]. Recently, a PDE-based method [9] was utilized to give a new and uniform proof
of CY estimates for a class of fully nonlinear partial differential equations, which include in
particular the complex MA and Hessian equations. In [7], X. Fu and the authors first revealed
the relationship between the C? estimate of the Kihler potentials with the global diameter
bound of the Kihler metrics, generalizing the distance estimate in [22]. The current paper aims
to study how the C? estimates of Kihler potentials affect the geometry locally.

Let (X, wy) be a compact Kihler manifold of complex dimension n. Suppose that y is
a smooth closed (1, 1)-form such that the class [y] is nef, which means the class [x] lies in the
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closure of the Kihler cone of X. For ¢ € (0, 1], we consider a family of smooth closed forms
C/(\)t = Y t+twyx.

Though @; may not be Kihler forms, each [@;] is a Kihler class. We consider the following
complex Monge—Ampere equation:

(1.1) (&7 4+ 100¢,)" = c,eFa))’}, supg; = 0,
X

where F is a smooth function normalized such that

Vi
/er)?:[w}:V, = — = 01", Vt=/@;’
b X 4 bs

and v € {0,...,n} is the numerical dimension of the class [x].
We denote w; = @ + i00¢; to be the Kihler metric satisfying (1.1) and write g; for the
associated Riemannian metric. The following is our main theorem.

Theorem 1.1. For any p > n and Ry € (0, 1], if ws solves (1.1) fort € (0, 1] and the
Ricci curvature Ric(gy,) satisfies

2
Ric(gt()) 2 _F on Bgto (ZO’ZRO)
0
for some K >0, tg € (0,1] and zo € X, then
Vol B 'R 2np.
(1‘2) Ogto( gtO(ZO 0)) > CRé,_n
Volg, (X)

for some constant C > 0 depending only on n, p, K, wx . y and ||e¥ || .1 (log L)7-

We remark that if p — oo, then the power exponent of R in (1.2) tends to 2n, which
is natural since the metrics w; are close to Euclidean ones when R is small. However, an
example on Riemann surfaces (i.e. n = 1) shows that this power exponent ;nTI; is sharp in
some sense (see Example 3.1). If ef e LI(X, wy) for some g > 1, the right side of (1.2) can
be made as C¢ Rg” *¢ for any ¢ > 0 with the constant C; > 0 depending additionally on &.

Estimate (1.2) can be viewed as an analogue of Perelman’s k-noncollapsing theorem
[20] as the following. Let g(¢) be the smooth solution of the Ricci flow on a real n-dimensional
compact Riemannian M for ¢ € [0, T') with the initial metric gg. Let (xo,%9) € M x [0, T) and
ro € (0, (to)%). If the scalar curvature satisfies

R < ro_2 on Bg ) (X0, r0),

then
Volg ;) (B(x0. to, 70)) = KT
for some constant ¥ > 0 that only depends on n and v[gg, 2T], Perelman’s p-functional at the
initial time.
We define the radius of Ricci curvature lower bound at z for the metric g; by

_ . L.
rg,(2) = sup{r > 0 : Ric(gy) > — 3 in Bg, (z,r)}
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as an analogue of the curvature radius introduced in [1]. An equivalent way to state Theorem 1.1
is that under the same setup

VOlgt(Bg, (Z’ th (Z)))

2np
> Crg, (z)p—n foranyz € X
Volg, (X) 2 Crg,(2) Y

for some constant C > 0 depending only on 7, p, wy, x and |lef |1 (log L) -

The main idea of the proof of Theorem 1.1 is motivated by that in [9, 10], that is, we
compare the Kédhler metric w; to some auxiliary complex Monge—Ampere equation, with the
function on the right side being truncated squared distance function of g;. Additionally we also
need the Riemannian geometric tools like the Laplacian comparison and volume comparison
theorems.

Theorem 1.1 immediately implies the following diameter bound established in [7], by
choosing Rp = 1 in Theorem 1.1.

Corollary 1.1. For any p > n, if w; solves (1.1) for t € (0, 1] and the Ricci curvature
Ric(gy) is bounded below by
Ric(g;) > —K?

for some K > 0, then there exists C > 0 depending only onn, p, K, wx, x and || 21 (og L)»
such that
Diam(X, g;) < C

forallt € (0, 1].

We also establish a local gradient estimate as an application of Theorem 1.1. We consider
the following complex Monge—Ampere equation:

(1.3) (wx +1009)" = eF 0}, supp =0
X

on a compact Kéhler manifold (X, wx) of complex dimension n with F' € C*°(X) satisfying
the normalization condition [} ef o} = [y o™

Theorem 1.2. Let ¢ be the solution of equation (1.3) and let g be the Kiihler metric
corresponding to the Kdihler form w = wx + i00¢. Given p > n and Ry € (0, 1], if

K2
Ric(g) =~ on Bg(z0.2Ro)
R
for some K > 0 and zg € X, then

IVolz < C  on Bg(20, Ro)

for some constant C > 0 depending on n, p, wx, ||t 210 Ly7» K and Re.

We will prove Theorem 1.1 in Section 2. In Section 3, we construct an example and show
that the exponent in (1.2) is sharp. In Section 4, we will prove Theorem 1.2 and discuss some
other applications of Theorem 1.1 and Corollary 1.1 on the diameter bound of Kéhler metrics
satisfying certain complex Monge—Ampere equations.
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2. Proof of Theorem 1.1

Since @; may not be Kihler, we define the “envelope” associated to @ :
Vi =sup{v:v e PSH(X,w;), v <0}.

It is known that for each ¢t € (0,1], V; is a C! function. We recall the following uniform
L°°-estimates on ¢y, the solution to (1.1).

Lemma 2.1 ([7,11]). There is a constant Co > O depending only on n, p,wx, x and
lef L1 og Ly» Such that

sup |or — Vi| < Co  forallt € (0, 1].
X

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1.  'We break the proof into four steps.

Step 1. We fix a family of smooth positive functions 7z : R — R4 such that 7z (x)
converges uniformly and decreasingly to the function x - yg, (x) as k — oo. We solve the
auxiliary complex Monge—Ampere equations

n(Ry —d?) p
f———————¢

(2.1) (&¢ + 100y, )" = ¢
Ak,t

wy. supVY;r =0,
X

where
Ct
0< Ak,t = 7/ ﬂk(R(z) — dtz)er)’}
tJX

is the normalizing constant making equation (2.1) solvable by Yau’s theorem [26]. Here we
write d;(x) = dg,(x, zo) to be the geodesic distance of x to the fixed point z¢ under the varying
metric g;. We note that although the positive function on the right-hand side of (2.1) is only
Lipschitz but not necessarily smooth, the solution v, x is still in C 2:¢(X) for some o > 0,
which follows from the regularity theory of complex Monge—Ampere equations (see, e.g., [2,
19]). We observe that by the dominated convergence theorem

Agy —> Ar = ;—l (R — dtz)eFa)}’} as k — oo.
t JBg,(z0,R0)

Step 2. We aim to compare ¥ x with the solution ¢;. As in [9, 10], we look at the test
function

® = —e(— Yy i + @1 + C1)TH + (RS —d?),

where C; = Cp + 1 and Co > 0 is the constant in Lemma 2.1, and &€ > 0 is chosen as

3 Ea 1
vy en (T NROVE

+n __. 1
AL = Ay

n
n2 t

where we fix the constant C> > 0 which depends on n and K. As an initial observation we note
that on X

Ykt +Cr=~Wrk—Ve)+ (@ —Ve)+Co+1>1,
by Lemma 2.1 and the fact ¥, x < V; for each k. Thus the function ® < 0 on X\ Bg, (29, Ro).
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We claim that ® < 0 on X. To prove this, let xp,x € X be a maximum point of . If
Xmax & Bg,(z0, Ro), we are done. So we may assume Xmax € Bg, (Zo, Ro). Applying Calabi’s
trick if necessary [21], we may assume d,,2 is smooth at x;,x. Then at x,x we have (write
A - Aa)t)

0> Awtq)(xmax)
ne 1
= n 1(—Wtk + @ + Cr) T (AY k — Agyr)

n
Yk o+ C) TV (Yk — oil5, — Ad7?

ne

(n + 1)?
1

(=Yt x + @t + C1) T4 (try, Wy, , — ey, ©r) —2d Ady —

v

n+l

2, 1 2
n n-e _
> T(Vek + o+ COTT "’;" - (=Vix + @+ Cp) T
n+ w n—+1

t
m—1 K
—2d — ] -2
t( d; JrRo)

. e (Y o+ ™+ (”k(Rz dfz))'i PE oK
n p— J— n_
= t.k T Pt 1 Aty P
n2e R2 —d?\7" n2e
> C 0"t ) — —4n — 2K,
= ( Vik + ¢ +C1) 1 ( ey ) mor it

where we write wg = @; + i 00¢ for a function ¢ € PSH(X, @;), in the fifth line we apply
the arithmetic-geometric inequality and the fact try,, w; = n, in the sixth line we apply the
Laplace comparison theorem [21] of the distance function which holds under our assumption
that Ric(w;) > —K ZR(j 2 on the geodesic ball By, (zo,2Ry), in the seventh line we use the
equations satisfied by ¥; x and ¢; and in the last line we apply the choice of n; which satisfies
Nk (s) > s for s > 0. Hence at x,x wWe have

—d} < Apy (” + ( );28 )) (=Vik +¢r + C)nt

<e(—Yrk + ¢ + Cl)”nﬁa
by the choice the ¢ in (2.2). This finishes the proof of the claim that ® < 0 on X.

Step 3. From ® < 0 we infer that on Bg, (29, Ro)
n+1

(R2 d2) n+1

——— =G, (Y + ot + Cr).
Al/n
k.t

We can view ¥, ; as a C3wy-PSH function for some C3 > 0 depending only on y and wy.
So the Hérmander—Tian estimate [14,24] holds for each v/, ;. We thus have a small constant
o = a(wy, x, K) > 0 such that the following Trudinger-type inequality holds:

n+l
(RE—d?) m

oO—— n+1
(2.3) / e Allc{zn w}’} 5/ e(xC2 n (—Wz,k+(ﬂt+Cl)w}l} < C
Bgt(ZOaRO) X

n+1
for some uniform constant C > 0, where we have chosen o > 0 small so thataC, " is smaller

than the «-invariant of (X, Czwy).
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Step 4. It then follows from a generalized Young’s inequality that

vPef < ef (1 4+ |F|P) + Cpe®

(R2_d2)”ﬂ{l
which applied to v = a% yields by (2.3) that
K.t
n P
(2.4) / (R} —dp) " ref wfy < cA,
Bg,(z0,R0)

for some constant C > 0 depending on 7, p, wy, y, K and |lef 21 (og y»- Letting k — oo,
inequality (2.4) implies that

n+1 L
[ ®-apreoy < cal
Bg,(z0,R0)

On the other hand, by the Holder inequality we have

A =2 (R3 — d?)ef
Vi Bg,(z0,R0)

n
n+1 p(n+1) q
Bg, (z0,R0) Bg, (z0,R0)

< CA}/("H)(/ eFa)}’}) ’
- Bg, (z0,R0)

p(n+1)
p(n+1)—n

—_

A

where g = is the conjugate of p. We thus conclude that

n+1 P—

nq 1+ npn
2.5) A < c(/ er;;) = c(/ er;;) :
Bg,(z0,R0) Bg,(z0,R0)

Note that CVI, is uniformly bounded, so (2.5) shows that there exists a uniform constant C > 0

such that
1+
/ (R — dtz)eFa))’} < C(/ eFa))’})
Bgt (zo,R0) Bgt (z0,R0)

In particular, we obtain

p—n
np

14+ 528
(2.6) R%/ efoll <C (/ eFa);;)
Bg,(z0,R0/2) Bg, (z0,R0)
Multiplying c; on both sides of (2.6), we get
Ro C p—n
2.7 R% VOlgt (Bg; (ZO, 7)) < E(Volg, (Bgt (Zo, Ro)))1+ np
np

_K
By volume comparison [21], the function (0,2Rg) 3 r > r "¢ Ro’ Volg, (Bg,(z0,7)) is
non-increasing, which implies

Ry

Volg, (Bg,(z0, Ro)) < C(n, K) Volg, (Bgz (zo, 7))
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Combined with (2.7), this implies that

2np

Ry~ Vi = C Volg, (Bg, (20, Ro)),

where as usual V; = [y o} and C > 0 is a uniform constant. This finishes the proof of Theo-
rem 1.1. H

3. An example
In this section, we will construct an example and demonstrate that the exponen

sharp in the estimate of Theorem 1.1. In other words, the estimate in Theorem 1.1 may fa11 w1th
the exponent replaced by - 2n 2P — ¢ for any ¢ > 0.

Example 3.1. Let D c C ¢ CP! be the disk with radius % Consider the function
¢(z) = (—log|z|?)™* for some a > 0. We calculate the “metric” defined by i 90¢:

= idzNdz F. _

®w =1i00¢ =a(a+1) P log|z|2)a+2 =e"idz NdZ.
Straightforward calculations show that ||ef | L(log L) (D) 18 bounded for any 1 < p <a + 1
and is unbounded when p > a + 1. Fix a point zg € D\{0} close to 0, and a point w € D with

arg zo = arg w. By the rotational symmetry of w, we see that

de(zo,w) = ala+ 1)

max{]zo|, w/} dr

min{|zol,lwl} 7 (—logr2)1*5

B a+1( 1 1 )
2%a \ (~logmax{|zo|, |w[})2  (—logmin{|zo|, |w[})2 /)

In particular, letting w — 0, we see that

1 1
do(z0.0) = /5 _ —.6Ry > 0.
2’ (“log|z0])?

Take zgt € D with the same arguments as zy and

2 _ 2,4
25| = |20*" < |z0| and |zg| = |20|3)7 > |z

so that

—\a 2 a
(—log |z )*/? = 2(~log|zo])? and (~log|z5])? = (~Tlog|zo])*.

I Ja+1 1
do(20, 25 :_F o
(20,25 2V 2% (—log|zo|)? ’

On the other hand, the length of the circles around 0 in the annulus {lZO | < |z] <|zy}is given
by (again by the rotational symmetry of w these circles are w-geodesics)

2r [ L 1)
Ly (circle) = yJa(a + 1) / _ 2ryaa+l) < Ro

<log|z|2>1+z ~ (—log|z|)!ts 10

Then it follows that
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if |zg| > 0 small enough. This implies that
B(20.2R0) C{lzd | < |z| < |zg |} C Bw(zo.4Ro) C D\{0}.
By straightforward calculations, we have

Ric(w) = i90log(|z|*(—log |z]*)41?)

2

____af idz Ad?

|z|?(=log |z]?)?

a+?2 2

= - _1 a .

a(a+1)( og|z|)* -

K* - N =
> —R—(z)a) in the annulus {|z) | < [z] < [zg |} =: A,

where K > 0 is a constant depending only on a > 0. Finally, we calculate the w-volume of the
above annulus as

|z | 2wrdr C 2(a+1)
Vol (A):[ = - =C/R, © .
¢ iz r2(=logr?)at2 — (—log|zoe+t — 40

Note that ef € LY(log L)? for any 1 < p < a + 1 and Voly, (#4) > Vol, (Bw (20, 2R0)). We

see that the exponent 2 Z of Ry in Theorem 1.1 is sharp. Moreover, the Ricci curvature Ric(w)

is not bounded below on the whole D since it decays to —oco near 0.

Though w in this example is a “singular” K#hler metric on a local domain, we can reg-
ularize it near O to make it a genuine Kihler metric, and glue it to CP! to get an example on
compact Kihler manifolds (cf., e.g., [23]). One can naturally generalize the above example to
higher dimensions and indeed the exponent IZJ"TZ is sharp.

4. Applications of Theorem 1.1

We discuss some geometric applications of the noncollapsing result in Theorem 1.1. We
will show a local gradient estimate of the Kihler potential, if the Ricci curvature is bounded
below locally. Under certain assumption on the Ricci curvature lower bound, we will prove
the diameter bound and a local noncollapsing result for Kéhler metrics along the normalized
Kihler—Ricci flow on minimal Kéhler manifolds.

4.1. MA equations with a fixed background Kihler metric. As the first application
of Theorem 1.1, we prove Theorem 1.2 as generalization and a new proof of the global gradient
estimate in [7].

Let (X, wy) be a given compact Kihler manifold. We consider the following complex
Monge—Ampere equation:

4.1) (wx + i00p)" = eFa)}’}, supp = 0.
X
Under the assumption of locally Ricci curvature lower bound, we prove the following local

gradient estimate on ¢. We write w = wy + i 63(,0, which satisfies (4.1) and denote g the
associated Riemannian metric of w. We recall the statement of Theorem 1.2 below.
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Theorem 4.1. Given p > n and Ry € (0, 1], suppose Ric(g) > _I;_; on the geodesic
ball Bg(zo,2Ro). Then 0
IVo|z < C  on Bg(zo. Ro)

for some constant C > 0 depending onn, p, wy., |lef 210 y7» K and Ro.
We first recall the L °° estimate on ¢ in [9, 15]:
4.2) lelzoe < Cln. pox. e I gogyr)-
To prove Theorem 4.1, we need the following mean value inequality [21].
Lemma 4.1. Let (M, g) be a Riemannian manifold such that Bg(p,2Ro) is relatively

compact in M with Rg € (0, 1]. Suppose that u > 0 is a nonnegative function on Bg(p,2Ry)
satisfying

A2 ) 2
Agu > %2 and Ric(g) > 2 on Bg(p,2Ry).
0 0
Then the following mean value inequality holds:
C
2

sup  u w? +1) dVg

<
Be(p.tRo)  Yolg(Bg(p,2R0)) JB, (p,2R0)
for some C > 0 depending on t € [1, %], K and A.

Proof. We consider v = u + 1 > 1, and v satisfies
A2
Agv > ——v.
= 2
Ry
We look at the product manifold B¢ (p,2Rp) x R with the metric § = g + ds?, where s € R
is the natural coordinate. Define "
D=-cRoy
to be function on Bg (p,2Ro) x R, and it satisfies Agﬁ > 0. Clearly
2

K
Ric(g) > ——
Rj

and we can then apply the standard mean value inequality (cf. [21, Chapter 2, Theorem 6.2])
to conclude that

C 2Rgo
sup 7% < / 02 d Vg ds
B (p,TR0)x(—TR0,7R0) Ro Volg (Bg(p,2R0)) J-2Ry JB.(p.2R0)
C 2
< vodVyds
Volg (Bg(p.2R0)) JB,(p,2R0) £
from which the lemma follows. O

Lemma 4.2. Under the same assumptions as in Theorem 4.1, we have

np 3R
try wy < exp(CRO p_") on Bg (Zo, TO)

for some C > 0 depending onn, p, wy, ||eF||Ll(lOgL)p and K > 0.
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Proof. It follows from the Schwarz-lemma-type inequality that on Bg (zo,2R0)

K2 Vit 2
43 Ap trp 0x > —— 1ty wx — Co(try wx)? + Vit oxfy wX"",
RO try, wyx

where Cp > 0 is an upper bound of the bisectional curvature of wy on Bg(z¢,2Rp). Straight-
forward calculations show that
KZ

Ay logtr, wxy > _F — Cy try, wx .

0
Hence the function u := (logtry, wy )+ — Coe satisfies

K? A?

—— —Con = —— with 42 = K? + ConR?.
R TR onro

Au >

We apply Lemma 4.1 to conclude that (we denote Bg = By (zo, R) for simplicity)

sup [(logtrey wx)+]?> <2 sup u? +2(CoC)?

B3ry/2 B3Ry /2
C
S .
VOlg(BZR()) BZRO
C
S -
RS"”/ (p—m)

[(log tre, wx)+]? dVe +C

n -

where in the third line we use the calculus inequality [(log x)+]?> < x for any x > 0 and
Theorem 1.1. Hence we have

_np
sup trp wy <exp(CRy”7"). o
B3ry/2

Proof of Theorem 4.1. By the Bochner formula, we have on Bg (2o, 2Ro)

AolVol2, = VVeZ + |VVe|Z + Ricg (Vo Vo) — 2Re(Ve, V try, 0x ) o
> [VVo[s + VY@l — K2Ry ? Vol = 2|Vl |V i 0x o,

which by Kato’s inequality! implies that

Aw|Vole > _K2R62|V(/)|w — |Vir, ox|e.

D Kato’s inequality states that 2|V|V(p||§) < |VV<p|£) + |V?<p|3), which can be verified by the Cauchy—
Schwarz inequality. It suffices to verify this inequality when |Vg| > 0. In normal coordinates of w, we calculate
4V P IVIVel? = V|Vl
= (@i97) 7 (Pk v
=9 jOiPkj P T O kPR T iV Pk P T i P Pk
< 2[Vel?|VV||[VVg| + [Ve[VVg|? + Vo |* [V Ve |?
= Ve P(IVVe| + [VVg])? < 2[Ve?(IVVe|* + [VVe]?).

Cancelling 2|V¢|? on both sides gives the desired Kato’s inequality.



Guo and Song, Local noncollapsing for complex Monge—Ampere equations 235

Define u = |Vo|e, + @2 + (tr, wx)?. We calculate using (4.3)

Aptt > —K2Ry%|Voly — |V ity x| +2|Ve|2 + 2ng — 2¢ try, wy

K2
+ 2|V try, wx |2 — ZF(trw wx)? — 2Cy(try, wx)*
0
3R
> C(Ry) in B (zO, TO)’

where in the last inequality the Schwarz inequality, (4.2) and Lemma 4.2. It then follows from
Lemma 4.1 that

C(R
sup u? < (Ro) IR / (1 +u?)o"
Br, VOlg(Bg(Zo,TO)) B3gry/2
C(Ro)

2 n
= Rgnp/(p_n)/XW(mww + C(Ro).

The proof is complete by observing that

[ 1vezo" = [ cow-onno < [ oo
X X X
and the latter integral is bounded due to (4.2). O

We remark that if the Ricci curvature Ric(w) is bounded below on X, then Proposition 4.1
implies a global gradient estimate of ¢, which was proved in [7] using maximum principle.
Note that in [7], the assumption i00F < Awyx was made to ensure the Ricci curvature being
bounded below. With this extra assumption, the bound on |[ef || 1 (log L) With p > n together
with Corollary 1.1 imply the diameter bound of (X, w), where w = w,, satisfies (4.1).

Finally, we mention that when the function e on the right side of (4.1) belongs to L for
some g > 1, the diameter bound of w, has been proved in [18], using the Holder continuity of
the solution ¢ established in [3, 17] (see [12]). When ||ef ||L1(1Og ry» < A forsome A > 0 and
p > 3n, the diameter bound of wy, has been obtained in [12] after they establish the modulus
of continuity of the Kéhler potentials.

4.2. Normalized Kéhler-Ricci flow. As in the previous subsection, we assume that X
is a minimal K&hler manifold (i.e. Kx is nef, and we do not assume Ky is §emi—ample) with
wx a given Kihler metric. Let €2 be a smooth volume form such that y = iddlog 2 € |Kx| is
a representative of the canonical class of X . Multiplying a constant to wy if necessary we may
assume that y < wy. We consider the following normalized Kéhler—Ricci flow:

ow )

4.4) a_[t = —RIC(C!)[) — Wy, (l)tlt=0 = wyx.

It is well known [25] that (4.4) exists for all 7 € [0, c0) and (4.4) is equivalent to the following
parabolic complex Monge—Ampere equation:

dpr _ O+ e (x = p) +id0p,)"
_ = Og —

*3) ot e ig

®t, Ptlt=0 =0

with w; = y 4+ e (wx — x) + i00¢; > 0.
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Lemma 4.3. There is a uniform constant C > 0 such that

0
sup @y = sup % <C and supg; <C.
X x ot X

Proof. Taking a% on both sides of (4.5), we get

0¢ ) _ ) )
g = Ay, @1 —e ttrw,(wx—)()—(p,-l—(n—v), @tli=0 =0,
so by maximum principle and wy — y > 0 it follows that for ¢; max = maxy ¢;

d
dtwtmax = (ptmax+(n_v)

multiplying both sides by e’ and integrating over 7 it yields that
(/)tmax = (n_v)(l_e t) =n-—v,

which gives the upper bound of ¢;. To see the upper bound of ¢;, we calculate (set V = fX Q)

d 1 1
Q=— 1 lo Q— 19
av i ? / ge@”m V/
1
— (n—v)t log Lo — —
w-vi+y [oera-g [ a0

1
<(n—v)t+1 ) — | g0
(n—v)t+ Og(V/le) V/Xgot
C 1
<(n—v)+1 —-—m—”’-——:f Q
= (=it og(Ve |4 th

1
<C-— Q
= V/X“’t

where in the third line above we applied Jensen’s inequality. Integrating both sides of the
inequality above it follows that % [x 9+ < C for some uniform C > 0. The desired upper
bound of ¢; follows from the mean value theorem. O

We re-write equation (4.5) as
(46) (X + e_t (a)X - X) + laé(pt)n = e_t(n_v)e(pt‘f‘(btgz'

Integrating both sides of (4.6) and applying Lemma 4.1, we get fX e?'Q > ¢ > 0 for some
uniform ¢ > 0, which implies that supy ¢; > —C, where C > 0 is independent of 7. We can
now apply the L°°-estimate of ¢; as the solution to the “elliptic” complex MA equation (4.6)
with

eF - e¢’t+¢t <C

from Lemma 4.3, and it follows that
4.7) sup [(pr —supgs) —Vi| < C = suplo; —Vi| < C,
X X X

in which we use [supy ¢;| < C and 'V, is the envelope associated to y+e " (wx —y). With (4.7)
we are ready to state the local noncollapsing along the normalized Kéhler—Ricci flow (4.4).
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Proposition 4.1. Let X be a minimal Kihler manifold and let w; be the solution to the
Kdhler—Ricci flow (4.4). Let the assumptions be as above. Then the following holds. For any
£>0,1€(0,00), zg € X, and Ry € (0, 1], if Ric(w;) > _I;_; on By, (20.2Ro), then there
exists a constant cg = ce(n, y,wyx, K, 2, &) > 0 such that 0

VOlw[ (Ba)[ (Z()s RO)) >

2n+e¢
> ceR .
|7 £ro

The proof of this proposition is almost the same as that of Theorem 1.1, given the
L>-estimate (4.7) of ¢;. In fact, the proof is even simpler since the function ef = e to
is bounded in L*°-norm. We leave the details to interested readers.

If the Ricci curvature w; is uniformly bounded below for ¢ € [0, 00), the local noncol-
lapsing in Proposition 4.1 will imply the uniform diameter bound of (X, w;), thus provid-
ing a new proof of one of the results in [8], which studied the K&hler—Ricci flow on mini-
mal manifolds with numerical dimension v = n. By volume comparison, it will follow that
Voly, (Bw, (z0,7)) = cVyr?" for any r € (0,1]. This volume decay property appears in the
assumptions of the main theorems in [13]. It suggests that this extra assumption may be super-
fluous for Kihler—Ricci flow.
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