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Abstract. It is well known that the Kéahler—Ricci flow on a Kéhler manifold X
admits a long-time solution if and only if X is a minimal model, i.e., the canonical
line bundle K x is nef. The abundance conjecture in algebraic geometry predicts that
Kx must be semi-ample when X is a projective minimal model. We prove that if
Kx is semi-ample, then the diameter is uniformly bounded for long-time solutions
of the normalized K&ahler—Ricci flow. Our diameter estimate combined with the
scalar curvature estimate in Song and Tian (Am J Math 138(3):683-695, 2016) for
long-time solutions of the Kéahler—Ricci flow are natural extensions of Perelman’s
diameter and scalar curvature estimates for short-time solutions on Fano manifolds.
As an application, the normalized Kéahler—Ricci flow on a minimal threefold X
always converges sequentially in Gromov—Hausdorff topology to a compact metric
space homeomorphic to its canonical model X ay,.

1 Introduction

The behavior of long-time solutions of the Kéhler—Ricci flow has been extensively
studied [Cao85, Tsu88, TZ06, ST12, Zha09, TWY18, Wanl8, GSW16, TZ16, TZ21,
FL, JS, FZ15, FZ20, STZ] after the fundamental work of Hamilton [Ham82], Perel-
man [Perel, Pere2] and the pioneering work of Song-Tian [ST07] in the framework
of the analytic minimal model program with Ricci flow [ST17]. In this paper, we
consider the normalized Kéahler—Ricci flow on an n-dimensional Kéhler manifold X
defined by

15) .
% = —RIC(g) -9,

(1.1)
g\tzo = Jo-

with the initial Kahler metric go. It is well-known [Tsu88, TZ06] that the K&hler—
Ricci flow (1.1) admits a long-time solution if and only if Ky is nef, i.e., for any
holomorphic curve C of X,

C
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where 7 is any smooth closed (1, 1)-form in the class of [Kx] = —¢1(X). The abun-
dance conjecture in birational geometry predicts that the canonical bundle Kx is
nef if and only it is semi-ample, i.e., mK x is globally generated for some sufficiently
large m € Z*. A Kihler manifold of nef canonical bundle is also called a minimal
model. The abundance conjecture always holds for Kahler manifolds of general type
or of complex dimension no greater than three [Kaw85, Miy98, Kaw92, CHP16]. The
deep and subtle relationship between these two notations of positivity in algebraic
geometry is also reflected in the canonical metric structures of the underlying Kéhler
manifolds.

We will assume the canonical bundle Kx is semi-ample for most parts of the
paper. When Kx is semi-ample, the pluricanonical system induces a unique holo-
morphic map

P : X — Xean

from X to its unique canonical model X, as a normal projective variety. The
Kodaira dimension of X, denoted by kod(X), is defined to be the complex dimension
of Xcan-

When X is of general type, i.e. dim Xcan = kod(X) = dim X = n, ® is a bira-
tional morphism. When K x is positive, it is proved in [Cao85] that the Kdhler—Ricci
flow (1.1) converges smoothly to the unique Kéahler-Einstein metric on X, as the al-
ternative proof of the celebrated theorem of Aubin [Aub78] and Yau [Yau78] for the
existence of Kéahler-Einstein metrics on Kéhler manifolds with negative first Chern
class. When Kx is not strictly positive, the flow must develop long-time singulari-
ties, exactly at Sx, the critical set of ®. Tsuji [Tsu88] proves that the flow in fact
converges smoothly on

X°=X\S8x

to the unique smooth Kéhler-Einstein metric gxr on X°, which can uniquely ex-
tend to a global Kéahler-Einstein current on X.,, with bounded local potentials
[TZ06] based on the L*-estimate of [Kol98, Zha06]. Furthermore, the scalar cur-
vature [Zha09] and diameter [Wanl8] are uniformly bounded along the flow. It is
proved in [Song2] that the metric completion of (X¢,,,9xE) is a compact metric
space homeomorphic to X, as a projective variety and so the limiting metric space
of the Kahler—Ricci flow must coincide with X¢a, as well [Wan18].

When 1 < kod(X) < n—1, ® gives an holomorphic fibration of X over X ,, and
the general fibres are smooth Kéahler manifolds with vanishing first Chern class. We
define Sx._ to be the critical values of ® and let

Xgan — <can \ SXC&H’ X° = (I)_I(X((:)an)’ Sx = q)_l(SXcan)'

Then Sx is the set of all singular fibres of ® and X, is the Zariski open set of
Xcan that contains all the smooth points of X ,, over which the fibres of ® are
nonsingular. Obviously, X° is an open Zariski open set of X containing all the
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nonsingular fibres of ®. The Kéahler—Ricci flow (1.1) will naturally collapse all the
Calabi-Yau fibres in terms of volume or Kéhler classes. It is proved in a series
of papers [ST07, ST12, ST16] that the collapsing flow converges with uniformly
bounded scalar curvature to a unique smooth twisted Kéahler-Einstein metric gean
on X2 . satisfying

can
Ric(gcan) = —gcan + gwpP (1.2)

on the Zariski open set XZ,, where gy p is the Weil-Petersson metric for the vari-
ation of Calabi-Yau fibres. The canonical metric ge.n extends to a unique twisted
Kahler-Einstein current wgp with bounded local potentials and gy p also extends
to a closed positive current on Xy, [GS]. Furthermore, (X, gcan) has bounded
diameter [FGS20] and its metric completion is a compact metric space [STZ], which
is essential for the diameter estimate in [STZ] as well as in our work for the long
time solutions of the flow. In the special case when dim X = 2 or the general fibre
of X over Xcay, is a complex torus, it is proved in [STZ] the diameter is indeed uni-
formly bounded, after applying Tian-Zhang’s relative volume comparison of [TZ21].
To apply such a relative volume comparison, one needs to obtain a uniform bound
for the Ricci curvature in a neighborhood of a nonsingular fibre of X over Xcan.
In general, it is rather difficult to verify the Ricci curvature bound except for the
case when the general fibre is a complex torus because the curvature is uniformly
bounded along the flow near each nonsingular torus fibre. In this paper, we will ap-
ply recent results of [Bam] to obtain a relative volume comparison for the Ricci flow
by removing the assumption on Ricci curvature and to establish a uniform diameter
bound after combining the techniques developed in [STZ]. The following theorem is
the main result of the paper.

THEOREM 1.1. Suppose X is an n-dimensional Kdhler manifold with semi-ample
canonical line bundle Kx. Then for any initial Kdhler metric go, the normalized
Kdahler—Ricci flow (1.1) admits a long-time solution g(t) for t € [0,00) and there
exists C' = C(go) > 0 such that for all t > 0,

sup |R(t)| + diamg)(X) < C, (1.3)
X

where R(t) is the scalar curvature of g(t) and diamy, (X) is the diameter of (X, g(t)).

We remark that the scalar curvature bound is already proved in [ST16] ([Zha09]
for the case of general type). The first named author further proves in [Jia20] that
the scalar curvature in fact converges to —kod(X) on X°. The diameter bound is
proved for minimal models of general type in [Wan18]. The uniform scalar curvature
and diameter bound in Theorem 1.1 for the long-time solution of the Kéhler—Ricci
flow is a natural extension and analogue of Perelman’s scalar curvature and diameter
estimate [Pere2, Ses08] for the Kdhler—Ricci flow of finite time extinction, i.e. the
Kéhler—Ricci flow on Fano manifolds with initial Kéhler metric in the first Chern
class. Perelman’s scalar curvature estimate is essential for the convergence of the
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Fano Ricci flow [TZ07, TZZZ13, CW17, Baml18, DS10, HL, GPS] in relation to
the Hamilton-Tian conjecture. The remaining case for scalar curvature and distance
estimates is the non-extinct finite time solutions of the Kéahler—Ricci flow. This
corresponds to the analytic minimal model program proposed in [ST17] and is related
to geometric surgeries and local uniformization problem in [SW16, SW14, SY12,
Songl].

The following volume estimate follows from our relative volume comparison and
Theorem 1.1.

COROLLARY 1.1. Suppose X is an n-dimensional Kdhler manifold with semi-ample
canonical line bundle Kx. Let g(t) be the long-time solution of the normalized
Kahler—Ricci flow (1.1) with any initial Kdhler metric go for t € [0,00). Then there
exists ¢ = c(go) > 0 such that for any p € X, t >0 and 0 <1 < diamgy)(X),

_ Voly1y(Bg(s) (ps 7))

7n2n

¢ Voly)(X) < ¢ Wolypy (X)), (1.4)

where By (p, 7)) is the metric ball center at p with radius r with respect to g(t).

In fact, the estimate (1.4) can be made more explicit by applying the volume
estimate in [ST16]. There exists C' = C(go) such that for all ¢ > 0,

O~ te™ (=Mt < Vol (X) < Cem ()

where k = kod(X).
The following convergence result follows naturally by the uniform diameter bound
and Corollary 1.1.

COROLLARY 1.2. Suppose X is an n-dimensional Kdhler manifold with semi-ample
canonical line bundle Kx. Let g(t) be the long-time solution of the normalized
Kahler—Ricci flow (1.1) with any initial Kdhler metric go for t € [0,00). Then g(t)
converges to the twisted Kihler-Einstein gean in C°(X°) as t — oo, and for any
tj — 00, after possibly passing to a subsequence, (X,g(t;)) converges in Gromov—
Hausdorff topology to a compact metric space (Xoo,doo) satisfying the following con-
ditions.

(1) Let (Y,dy) be the metric completion of (X, gean)- Then the identity maps
from X2 C Xoo and X2, C Y to Xo, C Xean can extend uniquely to the

can can can
following two Lipschitz maps

v (Y7 dY) - (XOOadoo)a T: (Xoo,doo) - (XcamgFS)>

where grg 1s the restriction of the Fubini-Study metric to Xeqn from the pluri-
canonical map .
(2) If kod(X) =0,1,2,n, then both ¥ and Y are homeomorphic.
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Unfortunately, we are unable to identify Y (or X) topologicially with the pro-
jective variety Xc,n in general cases. We instead propose the following conjecture.

CONJECTURE 1.1. VU is an isometry and Y is an homeomorphism.

Indeed, the conjecture holds when kod(X) = 1 [TZ21, STZ], or more generally
when dim Sy, = 0. Finally, we can give a fairly complete description for limiting
behavior of the long-time solutions of the Kéhler—Ricci flow on minimal threefolds
by applying Theorem 1.1 and Corollary 1.2.

COROLLARY 1.3. Let X be a minimal threefold. Let g(t) be the long-time solution
of the Kdhler—Ricci flow (1.1) with any initial Kdhler metric go fort € [0,00). Then
there exists A = A(gog) > 0 such that for all t € [0, 00),

sup |R(t)| + diam(X, g(t)) < A,
X

and for any t; — oo, after passing to subsequence, (X, g(t;)) converges in Gromov-
Hausdorff topology to a compact metric space (X0, dso) homeomorphic to the canon-
ical model X o4y, of X.

We give a brief outline of the paper. In §2, we give the background for long-time
solutions of the Kahler—Ricci flow and some basic analytic and geometric estimates.
In §3, we apply the work of [Bam] to derive a relative volume comparison for the
Ricci flow. We establish the uniform diameter bound for long-time solutions of the
Kahler—Ricci flow in §4. In §5, we prove the geometric convergence.

2 Basic Estimates

Let X be an n-dimensional Ké&hler manifold. X is called a minimal model if the
canonical bundle Kx is nef. The abundance conjecture in birational geometry pre-
dicts that Kx must be semi-ample if Ky is nef.

From now on, we will assume that Kx is semi-ample. The canonical ring R(X, Kx)
is therefore finitely generated, and the pluricanonical system |mK x| induces a holo-
morphic map

®: X — Xean C PV (2.5)

for sufficiently large m € ZT, where X an is the canonical model of X. In fact, both
® and Xc,, are uniquely determined independent of the choice of m. The Kodaira
dimension of X is defined to be

kod(X) = dim Xcap- (2.6)
We always have
0 <kod(X) <dim X = n.

In particular,



1340 W. JIAN, J. SONG GAFA

(1) If kod(X) = n, X is birationally equivalent to its canonical model Xcay,, and
X is called a minimal model of general type.
(2) If 0 < kod(X) < n, X admits a Calabi-Yau fiberation

m: X — Xean

over X¢an and a general fibre is a smooth Calabi-Yau manifold of complex
dimension n — kod(X).
(3) Ifkod(X) = 0, Xcan is a point and X is a Calabi-Yau manifold with ¢; (X) = 0.

Now we will reduce the normalized Kéahler—Ricci flow to a parabolic Monge-
Ampere equation. Let Op~ (1) be the hyperplane bundle over PV in (2.5) and wrg €
[Op~ (1)] be a Fubini-Study metric on PV, Then there exists m > 0 such that

TI’LKX = F*OPN(l).
We define
1 *
X = —m'wrg € [Kx]
m

and x is a smooth nonnegative closed (1, 1)-form on X. There also exists a smooth
volume form 2 on X such that

Ric(Q) = —v/—1901log 2 = —¥.

Let wp be the initial Kdhler metric of the normalized Kéhler—Ricci flow (1.1) on
X. Then Kahler class evolving along the normalized Ké&hler—Ricci flow is given by

[w(®)] = (1 — e ") [Kx] + e wo]

and so [w(t)] is a Kéhler class for all ¢ € [0,00). Therefore the normalized Kéhler—
Ricci flow starting with wp on X has a smooth global solution on X x [0,00). We
define the reference metric

wr = (1 —e)x + e wp.

Then the Kahler—Ricci flow is equivalent to the following Monge-Ampere flow.

Op e =Rt (w, 4+ /=100p)"
where
wy = X+ e (wo — X)
and

k = kod(X) = dim Xcap.
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We define Sx . to be the critical values of ® and let

can

Xgan = Xcan \ SXuarn X° = (1)71( can) Sx = 71(SXcan)' (28)

When k = kod(X) = n, X is said to be a minimal model of general type. In this
case, ® : X — X is a birational map. Then Sy and Sx__ are subvarieties of X and

can

Xcan- Hence X° = X, is a Zariski open set of X or Xcu,. The following lemma is

a collection of results from [Tsu88, TZ06, Wan18].

LEMMA 2.1. Let g(t) be the long-time solution of the Kdhler—Ricci flow (1.1). Then
g(t) converges smoothly to a unique Kdahler-Einstein metric gxg on X&,,. Futher-
more, the scalar curvature and diameter of g(t) are uniformly bounded and gxg
extends to a unique Kdhler current wgp on X ., with bounded local potentials.

Proof. The local smooth convergence is proved in [Tsu88]. The boundedness of local
potentials of wx g is proved in [TZ06] built on the work of [Kol98, Zha06, EGZ09].
The scalar curvature bound is derived in [Zha09]. The diameter bound is recently
proved in [Wanl18] by developing and applying the local entropy for the Ricci flow
with the Riemannian geometric structure of X, from [Song2]. O

When x = kod(X) = 0, X is a Calabi-Yau manifold. The exponential conver-
gence of the unnormalized Kéahler—Ricci flow to a unique Ricci-flat Kahler metric is
established in [Cao85]. In particular, the solution g(¢) of the normalized Kéhelr-Ricci
flow (1.1) will converge to a point with uniformly bounded Ricci curvature.

Therefore it suffices for us to study the case when 0 < k = kod(X) < n. In this
case, Sx is the set of all singular fibres of ® : X — X, and the Kéhler—Ricci flow
will collapse.

The following general testimates are established in [ST07, ST12, ST16].

LEMMA 2.2. Let g(t) be the long- time solution of the Kdhler—Ricci flow (1.1). There
exists C' > 0 such that on X x [0, 00)

Iy
ot

where R is the scalar curvature of g(t), V andA are the gradient and Laplace oper-
ators with respect to g(t).

lo| + tru(x ’ ‘ + 'A +|R| < C, (2.9)

The following lemma is proved in [ST07, ST12] for convergence of the collapsing
Kahler—Ricci flow and its limiting metric.

LEMMA 2.3. Suppose 0 < k = kod(X) < n. Then g(t) converges as a current to a
unique smooth twisted Kahler-Einstein metric gean on Xg,, satisfying the following.

(1) gean satisfies the twisted Kdhler-Einstein equation

Ric(gcan) = —0can T gWP

on X¢,,, where gwp is the Weil-Petersson metric for the variation of Calabi-

Yau fibres of X° over X,

can-
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(2) The Kdhler form associated to gean extends to a unique Kdhler current weq, on
X can with bounded local potentials.

A stronger convergence and fibrewise control are proved in [TWY18] in the fol-
lowing lemma.

LEMMA 2.4. Suppose 0 < k = kod(X) < n. Then g(t) converges to ®*gean in C°-
topology on X° as t — oo. Furthermore, for any K CC Xg,,, there exists C > 0
such that for any x € K and t > 0,

C_le_tw\¢_1(z) < u.)(t)’cb—l(x) < Ce_tw0’¢_1(x).

3 The Relative Volume Comparison for the Ricci Flow

In this section, we will use the recent work in [Bam] to prove a relative volume
comparison for the Ricci flow under suitable assumption on the scalar curvature
bound. We will follow the notations from [Bam] for the following quantities on a
Riemannian manifold or along the Ricci flow.

DEFINITION 3.1. Let (M, g) be a closed Riemannian manifold of dimension n > 2.
The Nash entropy is defined by

N(g, f.7) = (dmr) /2 /M fetav,

for f € C°°(M) and 7 > 0.

Let (M, g(t)) be a Ricci flow, i.e., g(t) satisfies the unnormalized Ricci flow equa-
tion
dg

5, = —2Ric, (3.10)

on an n-dimensional compact Riemannian manifold for ¢t € I, where I is an open or
closed interval. The heat operator is defined by

0

O=——A
ot
and the conjugate heat operator is defined by
0
OF=—-—-A+R
oo

where A is the Laplace operator associated to g(t) and R is the scalar curvature of
g(t). For fixed (y,s) € M x I, the heat kernel K(-,-;y,s) based at (y, s) is given by

DE(,y,s) =0, lim K(.ty,s) =0y,
t—s
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where §, is the Dirac measure at y. By duality, for fixed (x,t) € M x I, the function
K(x,t;-,-) is the conjugate heat kernel at the base point (z,t) satisfying
O'K(xz,t;-,-) =0, lim K(x,t;-,5) = ;.

s—t—

DEFINITION 3.2. Let (M, g(t)) be a solution of the Ricci flow for ¢ € I and
dvg, 1, = (47?7')_”/26_deg = K(xo, to; -, -)dV,

be a pointed conjugate heat kernel measure at the base point (zo, tg) with 7 =ty —¢.
Then the pointed Nash entropy at (zg,tg) € M x I is defined by

Nxo,to(T) :N(g(tO_T))f(tO_T)vT) (311)
with Ny, ¢,(0) = 0 and for s < ty, the space-time function N is defined by
N (o, t0) = Nag 1 (to — ).

DEFINITION 3.3. Let p1, o be two probability measures on a compact Riemannian
manifold (X, g). The Wasserstein Wi-distance between p1 and pe are defined by

Ay, (b1, p2) = sup (/ fdul—/ fdug).
feC=(M),|VfI<1 \JX X

LEMMA 3.1. For fized base point (zo,to), the pointed Nash entropy Ny, +,(T) is non-
mcreasing in T.

Equivalently, NV (x¢, to) is non-decreasing in s. The following estimates are proved
in [Bam| (Theorem 5.9 and Corollary 5.11).

LEMMA 3.2. If R(-,s) > Ruin for some s € I and Ry € R, then on M x
(1N (s,00)),

1

2

IVN] < <2(t—s) + |Rmm|)

Furthermore, if s < t* < min{ty,to} and s,t1,to € I, then for any x1,x9 € M,

N (@1, t) = N (wa, t2) < ( + |Rmml> AN (W, 0, (8, Vi (£))

n to — s
—1 .
+2 Og(t*—s)

The pointed Nash entropy is roughly comparable to logarithmic of the volume
ratio of suitable scale and scalar curvature assumption. The following volume non-
inflation estimate is also proved in [Bam].

2t —5)
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LEMMA 3.3. Let (M, g(t)) be a solution of the Ricci flow for t € [—r2,0]. If
R> —nr2
on M x [—r%,0], then for any A > 1, there exists C = C(n, A) > 0 such that
Voly (o (z, Ar) < CrneN2 2 (@0),

The following volume non-collapsing estimate is proved in [Bam] as a generaliza-
tion of Perelman’s k-non-collapsing theorem.

LEMMA 3.4. Let (M, g(t)) be a solution of the Ricci flow for t € [—r2,0]. If
R<r72 on Byo)(w,7) x [—T2,0],

then there exists ¢ = c(n) > 0 such that
Volyo) (By(o) (@, 7)) = er"e= (=0,

The following is the main result of this section by comparing volume of balls with
same radius at the same time slice.

PROPOSITION 3.1. Let (M, g(t)) be a solution to the Ricci flow on a compact n-
dimensional Riemannian manifold M for t € [—r2,0], for some r > 0. If

|R| <772, on M x [—r%,0],
then for any x1,xo € M with
dg(oy(z1,22) < A,
we have for some c(n) >0
Voly(o) (By(o) (w1.7)) = e(n)e™V™ 4 Volyg) (Byqo (w2, 7).

Proof. By Lemma 3.3 and Lemma 3.4, we have

Voly(o)(By(o) (w:,7)) > er™eV=2(00)
and

n N* o (x;,

Volg(o)(Bg(O)(:Ei,r)) < Cr'e’-r (:,0)

By the gradient estimate for the pointed Nash entropy in Lemma 3.2, we have

Voly 0y (By(o) (72, 7))
Voly (o) (By(o) (71, 7))
< Cexp (NZ,2(22,0) = N o (21,0))

< C'exp SUp VN2 (-, 0)|dg(0) (m1,$2)>

<C'exp( n xl,x2)>
0.

for some uniform ¢’ = C’(n) >
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We will also take the opportunity to present a different proof of the relative
volume comparison of Tian-Zhang [TZ21] with an additional lower bound for the
scalar curvature using the work of [Bam].

The following parabolic region is introduced in [Bam].

DEFINITION 3.4. Suppose (zg,tp) € M x I, r, T~, Tt > 0 and to — T~ € I. The
P*-parabolic neighborhood P*(xg,to;r,T~,T") C M x I is defined by the set of
(x,t) € M x I satisfying

di{,ﬂf‘ (Vaoito (o t0 = T7 ), vap (- to =T 7)) <7, to—T <t <ty+T".

It is natural to compare the P*-parabolic neighborhood P*(xq,to;r,T~,T") to
the standard parabolic neighborhood

P(zg,to;r, T, TT) = Bty (wo,m) x [to =T, t0 + Tt].
It is shown in [Bam)] that along the Ricci flow, we have

N Wty (1 1), Vo (1)) < ey (1, 72)

and the following comparison is proved in [Bam] (Corollary 9.6).

LEMMA 3.5. Let (M, g(t)tcr) be a Ricci flow on an n-dimensional compact Rie-
mannian manifold. For any 0 < a < A < oo, K,3,8" > 0, there exists A =
Ao, A, K, 7, 8%) > 0 such for any B > A, if

| Ric| < Kr72, in P(xg, to; Ar, —ﬁ_rz,ﬂ+r2),
then
P(Sﬂo,to;AT, *ﬁ_’r2’5+7ﬁ2) C P*(l'o,t[);BT‘, *ﬁ_TZ,ﬂJFTz)-

The following relative volume comparison theorem for the Ricci flow is a slightly
weaker version of the one in [TZ21].

PROPOSITION 3.2. For anyn € Z and A > 1, there exists ¢(n, A) > 0 such that
the following holds. Let (M, g(t)) be a solution of the Ricci flow on a compact n-
dimensional manifold M for t € [—r3, 1] such that

|Ric| <ry?, R>—nry?, in By o)y(z0,70) % [0,72].
Then for any By (w, 1) C Byzy(wo, Arog) with v < ro satisfying
R‘t:rg < r~%in Bg(’rg)(xar)7

we have

VOlg(rg)(Bg(rg)(:E,’l”)) S ¢ VOlg(o)(Bg(o) (:L'(),To))

n - n
r o



1346 W. JIAN, J. SONG GAFA

Proof. By parabolic scaling, we can assume that rq = 1. The pointed Nash entropy
is comparable to volume of balls in principle.

First we will compare the pointed Nash entropy at the same time slice ¢t = 1. By
assumption, x € By (x,7) C By)(zo, A), hence

dg(l)(x(), x) < A.
By Lemma 3.2, after choosing Ryin = —n, we have
IVNZ (5 Dgay < 2n
on M. Therefore,

* (@0, 1) = N* (2, 1)| < 2n dyry (0, 2) < 2nA. (3.12)

Next, we will compare the pointed Nash entropy at different time slices. We apply

Lemma 3.2 at two different base points (zg,0) and (x¢, 1) after choosing s = —1 and
t* = 0. Then

‘N :1:07 ) le(.’lf(),l)’

n Y2 0 n 1-(=1)
< (goocmy +n) a0 im0+ 1o (7 )
<n dyg/y(/?)(%o,o(o)a Vo,1(0)) + 7.
By Lemma 3.5,
P(x0,0;1,0,1) C P*(x0,0;7,0,1)

by the Ricci curvature assumption. Therefore, by the fact that (zg, 1) € P*(zo,0;7,0,
1) and definition, we have

0 0
a5 (V2005 0), Vg 1 (- 0)) = dffy (8, V1 (-, 0)) < -
Immediately, we have
N (20,0) = N* (w0, 1)| < ey + 1. (3.13)

Finally, we are ready to proof the lemma. Combining estimates (3.12), (3.13)
with Lemma 3.1, Lemma 3.3 and Lemma 3.4, we have

VOlg(l)( g(1 )(.’E 7'))
Voly (o) (By (o) (o, ))

> cr”exp (./\/‘*,. - NZ 1(xo ))
> cr” exp (J\/ ./\/ 1(20,0))
> cr” exp (N* N (wo,1) + ny + n)

< cr'exp (2nA+n’y+ n).

This completes the proof of the theorem. O
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4 Diameter Estimate

We now return to the Kéahler-Ricci flow (1.1) discussed in §2. Let X be an n-
dimensional Kahler manifold with semi-ample Kx. Recall that

d: X — Xean

is the unique holomorphic map from X to its canonical model X.,, induced by the
pluricanonical system. We assume that

1<dmXen=r<n-—1.

The goal of this section is to establish a uniform diameter bound for long-time
solutions of the Kéhler—Ricci flow using the techniques developed in [FGS20, STZ].

We keep the same notations as before by letting S, be the set of critical values
of ® on Xean and Sy = @7 H(Sean), X2, = Xean \ Sx,.. and X° = X \ Sx. We can
pick an effective Q-Cartier divisor D on X, ., satisfying the following.

(1) D = K.
(2) Sx.,, is contained in the support of D.

We let o be the defining section of D and for conveniences we use o for ®*o.
Now we consider a log resolution of Xc,, defined by

U:W — Xean

such that

(1) W is smooth and the exceptional locus of ¥ is a union of smooth divisors of
simple normal crossings.

(2) The pullback of D by W, is a union of smooth divisors of simple normal
crossings.

The Kéahler form y associated to the Fubini-Study metric x restricted to Xcan also
lies in [D]. For conveniences, we use o for U*o on W. Let Z be the blow-up of
X induced by ¥ : W — Xcan. Then we can define the induced holomorphic maps
V' :Z — X and @' : Z — W satisfying the following diagram.

7 Y . x
. o (4.14)
'\
W Xcan

We also pick the hermitian metric i for the Q-line bundle associated to D on
Xcan such that

Ric(h) = x.
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For conveniences, we still use h for ®*h on X, U*h on W and (Vo ®')*h on Z. Away
from zeros of o, Z can be identified as X by assuming the blow-ups take place at
the support of o.

For simplicity, we assume that

o7 <1

on Xcan. Let F' be the standard increasing smooth cut-off function defined on [0, c0)
satisfying

(1) F(z) =0, if z € [0,1/2],
(2) F(z) =1, if z € [1,00),

with uniformly bounded derivatives. Let
ne = max {log |o|7,loge}

for some sufficiently small € > 0 to be determined later. By the construction of o
and h, we have

V—=1901log o[ + x >0
as a current, therefore
n. € PSH(X, x) N C°(X).

In particular, for sufficiently small € > 0, we have

loge <n. <0.
We define p. by
pe = F (11227?) (4.15)
and
Se = {lo]™ <&} . (4.16)

For sufficiently large k > 0, we have
2%k
sup)8|a|h ‘ < 00 (4.17)
X X

due to Lemma 2.2 from the parabolic Schwarz lemma in [ST07, ST12]. Without loss
of generality, we can assume k& = 100 for simplicity. The following lemma also shows
that the open set S: has very small volume.
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LEMMA 4.1. Let g(t) be the long-time solution of the Kdhler—Ricci flow (1.1) on X
and let w(t) be the corresponding Kdhler forms. Then for any 6 > 0, there exists
€ > 0 such that for allt > 0,

/ w(t)n < 56—(n—m)t’
Ss

or equivalently,
Volg(t) (Se) < fe (=Rt

Proof. 1t is straightforward to verify that

lim Q0 =0.

=0 J{lol3o0<e}

From Lemma 2.2, we have
w(t)" = e5s To—(n=r)iq) < Ce’(”’“)tQ,

for some constant C' = C'(X, gg) < co. Hence we have
[ ety <cetmor [ o <gen
SE SE
if we choose € > 0 small enough. This completes the proof. O
The following lemma is proved by Song-Tian-Zhang (Lemma 2.7 [STZ]) based

on the distance estimate in [FGS20] for the diameter bound and almost geodesic
convexity for (Xg,,, gcan). We let

(V,dy) = (X&un» Gean) (4.18)

be the metric completion of (X, gean)-

LEMMA 4.2. For any 6 > 0 and € > 0, there exists 0 < & < & such that for any two
points y1,y2 € Xean \ P(S:), there exists a smooth path v C Xean \ ®(Ser) joining y1
and yo satisfying

Ly...(v) < dy(y1,y2) + 9,

where Ly, () is the arc length of v with respect to the metric gean. In particular,

ca

(V,dy) is a compact metric space and
diamgmn(Xgan) < 0.

We remark that Lemma 4.2 is proved in [ZZ19, Zhal9] for the special case of
dim X, = 1.

Immediately, we can control the distance for the Kéhler—Ricci flow away from
singular fibres as shown in the following lemma.



1350 W. JIAN, J. SONG GAFA

COROLLARY 4.1. For any 6 > 0 and e > 0, there exists T > 0 such that for any two
points x1,x9 € X \ S¢ > 0 and t > T, we have

dg(t) (.%'1, .%'2) < diamdy (y) + 4.

Proof. Since g(t) converges to ®*gean uniformly in C°(X\S.), for any z1, 22 € X \S-
and t > T, we have

dg() (71, 72) < dy,,, (P(71), P(22)) + 0
< diamg,, () + 9,

where the first inequality follows from Lemma 2.4 and the last inequality follows
from Lemma 4.2. O

We now choose a fixed base point zg € X° and yp = ®(zg) € X2,
regular point of X .y, there exists 0 < « < 1 such that

Since yo is a
Byeun(P0,27) CC Xéan-
LEMMA 4.3. For any 0 < rg < 7y, there exists T > 0 such that for any t > T,
(B, (p0:27'10)) C By(y)(x0,70) C @7 (By,, (po, 2r0))- (4.19)
Furthermore, there exist C' = C(rg,zo) > 0 such that for allt > T,
Cle~ (=Rt < Voly1y(Bg() (%0, 70)) < Ce~(n=rt, (4.20)

Proof. Since g(t) converges ®*gean on X°, the containment (4.19) follows immedi-
ately for sufficiently large ¢ > 1 due to the fact that g(t) restricted to each fibre of ®
converges to 0 exponentially fast. The volume estimate (4.20) follows from the fact
that

e(nfn)tw (t>n
Q

is uniformly bounded for all ¢ > 0 by Lemma 2.2. O

LEMMA 4.4. For any A,rg > 0, there exists ¢ = (A,r9,z9) > 0 such that for any
(x,t) € M x [0,00) with

dg(t) (1‘,%0) < A,
we have

Voly)(By(t)(z,70)) > ce—(n—r)t.
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Proof. By Lemma 2.2, the scalar curvature of ¢(t) is uniformly bounded for all ¢ > 0.
Proposition 3.1 implies that there exists ¢ = ¢(A, ro, xyg) > 0 such that for any ¢t > 0,

Voly ) (Bg() (w,70)) = cVolg) (Byry (0, 70))-

The lemma then immediately follows by combining the above estimate and
(4.20). 0

ProproSITION 4.1. For any € > 0, there exists T' > 0 such that for all t > T and
re X,

dg()(w,20) < diamg, (V) + ¢.

Proof. We will prove by contradiction. Let D = diamg,())). Suppose there exist
€>0,t; — oo and x; € X such that

D+e< dg(tj)(l'j,fro) <D + 2e.

By Lemma 4.4, there exists ¢ > 0 such that for all j,

9 —(n—k)t;
Voly(,) (Byc,) (25:5) ) = 207000,
and by Lemma 4.1, there exists an open X CC X° such that for all t > 0,
Vol (X \ K) < ce” (R,
By Corollary 4.1, there exist K € K’ cC X° and T > 0 such that

. 9
dlamg(t) (IC/) <D+ 5

fort>1T.
Therefore for sufficiently large j, we have

YIS X \ K
and
e
Bg(tj) (xj, 5) cX \ K.

This implies that

—(n—r)t; € —(n—r)t;
2ce ( ) < Volg(tj) <Bg(tj) <:Uj, 5)) < Volg(tj)(X \ ’C/) <ce ( )tJ,
which gives contradiction. O

Theorem 1.1 immediately from Proposition 4.1. Corollary 1.1 is proved by com-
bining Theorem 1.1, Proposition 3.1 and Lemma 4.3.
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5 Global Convergence

In this section, we will study the convergence of the Kéhler—Ricci flow (1.1) on an
n-dimensional Kéhler manifold X with semi-ample K.

LEMMA 5.1. Let g(t) be the solution of the Kdihler—Ricci flow on the n-dimensional
Kahler manifold X with semi-ample canonical bundle. Then for any t; — oo, after
possibly passing to a subsequence, (X,g(t;)) converges to a compact metric space

(Xoosdoo)-

Proof. For any t > 0 and any € > 0, we let B = {By(7,€)}zex be an open covering
of X with balls of radius € > 0. By Vitali covering lemma, we can find a countable
sub-collection By = {By)(7;(t),€)}jes of B such that

Bg(t) ($j1 (t)7 6) N Bg(t) (ij (t)v 5) =9
for any j; # j2 € J and
X C UjEJBg(t) (l‘j(t), 5e).

Let |J| be the cardinal number of the set J. Also by Lemma 2.2, there exists
C > 0 such that for any ¢ > 0, By Corollary 1.1, there exists ¢ > 0 such that for any
t >0 and any x € X,

Voly ) (Bg (w,€)) > ce”(nR)E,
This implies that

el Tle™ "9 <Y Voly(ry (By(r) (25(t), €) < Voly (X) < Ce™ !
jeJ
and so

|7 < ¢ te.

Therefere for any € > 0, there exists C' > 0 such that for any ¢ > 0, there exists a
finite 5e-net {x;(t)},cr (s of (X, g(t)) such that

|T=t] < C.

Then we can apply Gromov’s precompactness theorem [Gro99] and any sequence
(X, g(t;)) with t; — oo, (X, g(t;)) converges to a compact metric space (Xoo, doo)
after passing to subsequence. O

We let (Y,dy) be the metric completion of (XS, gecan) and (Xcan, grs) be the
canonical model equipped with the Fubini-Study metric. Since the solution of the
Kihler—Ricci flow g(t) converges in C? to the twisted Kéhler-Einstein metric on Xg,,,.
XS, can be naturally embedded in X, and Y, i.e., there exist identity maps from
open sets of X, and Y to Xg,,. We then identify X, as Y° C Y and X3 C X.
Naturally, one would ask if these identity maps extend to unique homeomorphisms.

The following lemma gives the relation among (Xoo, dwo), (Y, dy) and (Xcan, 9rs)-



GAFA DIAMETER ESTIMATES FOR LONG-TIME SOLUTIONS 1353

LEMMA 5.2. The identity maps from Y° and X3, to Xg,
following Lipschitz maps

n extend uniquely to the

v (K dY) - (Xowdoo); T: (Xomdoo) - (XcamgFS)

In particular, T"r—l(Xg(m) and \Il’(TO\I/)—l(Xé)an) are identity maps from X3, and Y° to
Xgan'
Proof. T is well-defined because by Lemma 2.2, there exists ¢ > 0 such that for any
t >0,

g(t) > c ®*gps

on X. Therefore the extension of the identity map from X3 to X2, coincides with
the limit of ® and it is Lipschitz from X, to Xcan.

Since g(t) converges to gean on X<, in local C%-topology, and by the result of
[STZ], (X&n, gean) is almost geodesic convex, then for any two points y1,y2 € X3,
and any z1 € X, and 22 € X,,

lig(i)gf dg(y (1, w2) < dg o (Y1,92) = dy (y1,92)-

Now pick any two points p,q € X. There exist p;j,q; € X° with p; — p and ¢; — ¢
in Gromov-Hausdorff distance with respect to g(t;) as t; — co. On the other hand,
O (pj), P(gj) € Xgan converge to some y; and yo € Y with respect to dy after passing
to a subsequence. Then we have

deo(p;q) = }gglo dgt,) (s, 45) < dy (y1,Y2)-

This implies that ¥ is well-defined and Lipschitz. O
LEMMA 5.3. If kod(X) =n or kod(X) < 2, then both U and Y are homeomorphic.

Proof. If kod(X) = n, by the result of [Song2], (Y,dy) is homeomorphic to the
projective variety Xcan. This forces (Xoo, doo) to be homeomorphic to Xcap.

If kod(X) = 2, then the canonical model X, is an orbifold Kéhler surfaces since
Xcan is KLT. By the result of Song-Tian-Zhang (Proposition 2.3 in [STZ]), (Y,dy)
is homeomorphic to X,y and by Lemma 5.2 (Xo, doy) must be homeomorphic to
Xcan- The same argument extends to the case kod(X) < 1 since Xcay is either a
point or a smooth Riemann surface. O

We now have completed the proof of Corollary 1.2 by combining Lemma 5.2 and
Lemma 5.3.
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