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DIAMETER ESTIMATES FOR LONG-TIME SOLUTIONS OF

THE KÄHLER–RICCI FLOW

Wangjian Jian and Jian Song

Abstract. It is well known that the Kähler–Ricci flow on a Kähler manifold X
admits a long-time solution if and only if X is a minimal model, i.e., the canonical
line bundle KX is nef. The abundance conjecture in algebraic geometry predicts that
KX must be semi-ample when X is a projective minimal model. We prove that if
KX is semi-ample, then the diameter is uniformly bounded for long-time solutions
of the normalized Kähler–Ricci flow. Our diameter estimate combined with the
scalar curvature estimate in Song and Tian (Am J Math 138(3):683–695, 2016) for
long-time solutions of the Kähler–Ricci flow are natural extensions of Perelman’s
diameter and scalar curvature estimates for short-time solutions on Fano manifolds.
As an application, the normalized Kähler–Ricci flow on a minimal threefold X
always converges sequentially in Gromov–Hausdorff topology to a compact metric
space homeomorphic to its canonical model Xcan.

1 Introduction

The behavior of long-time solutions of the Kähler–Ricci flow has been extensively
studied [Cao85, Tsu88, TZ06, ST12, Zha09, TWY18, Wan18, GSW16, TZ16, TZ21,
FL, JS, FZ15, FZ20, STZ] after the fundamental work of Hamilton [Ham82], Perel-
man [Pere1, Pere2] and the pioneering work of Song-Tian [ST07] in the framework
of the analytic minimal model program with Ricci flow [ST17]. In this paper, we
consider the normalized Kähler–Ricci flow on an n-dimensional Kähler manifold X
defined by

⎧

⎪

⎨

⎪

⎩

∂g

∂t
= −Ric(g) − g,

g|t=0 = g0.

(1.1)

with the initial Kähler metric g0. It is well-known [Tsu88, TZ06] that the Kähler–
Ricci flow (1.1) admits a long-time solution if and only if KX is nef, i.e., for any
holomorphic curve C of X,

KX · C =

∫

C
η ≥ 0,
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where η is any smooth closed (1, 1)-form in the class of [KX ] = −c1(X). The abun-
dance conjecture in birational geometry predicts that the canonical bundle KX is
nef if and only it is semi-ample, i.e., mKX is globally generated for some sufficiently
large m ∈ Z+. A Kähler manifold of nef canonical bundle is also called a minimal
model. The abundance conjecture always holds for Kähler manifolds of general type
or of complex dimension no greater than three [Kaw85, Miy98, Kaw92, CHP16]. The
deep and subtle relationship between these two notations of positivity in algebraic
geometry is also reflected in the canonical metric structures of the underlying Kähler
manifolds.

We will assume the canonical bundle KX is semi-ample for most parts of the
paper. When KX is semi-ample, the pluricanonical system induces a unique holo-
morphic map

Φ : X → Xcan

from X to its unique canonical model Xcan as a normal projective variety. The
Kodaira dimension of X, denoted by kod(X), is defined to be the complex dimension
of Xcan.

When X is of general type, i.e. dimXcan = kod(X) = dimX = n, Φ is a bira-
tional morphism. When KX is positive, it is proved in [Cao85] that the Kähler–Ricci
flow (1.1) converges smoothly to the unique Kähler-Einstein metric on X, as the al-
ternative proof of the celebrated theorem of Aubin [Aub78] and Yau [Yau78] for the
existence of Kähler-Einstein metrics on Kähler manifolds with negative first Chern
class. When KX is not strictly positive, the flow must develop long-time singulari-
ties, exactly at SX , the critical set of Φ. Tsuji [Tsu88] proves that the flow in fact
converges smoothly on

X◦ = X \ SX

to the unique smooth Kähler-Einstein metric gKE on X◦, which can uniquely ex-
tend to a global Kähler-Einstein current on Xcan with bounded local potentials
[TZ06] based on the L∞-estimate of [Kol98, Zha06]. Furthermore, the scalar cur-
vature [Zha09] and diameter [Wan18] are uniformly bounded along the flow. It is
proved in [Song2] that the metric completion of (X◦

can, gKE) is a compact metric
space homeomorphic to Xcan as a projective variety and so the limiting metric space
of the Kähler–Ricci flow must coincide with Xcan as well [Wan18].

When 1 ≤ kod(X) ≤ n−1, Φ gives an holomorphic fibration of X over Xcan and
the general fibres are smooth Kähler manifolds with vanishing first Chern class. We
define SXcan

to be the critical values of Φ and let

X◦
can = Xcan \ SXcan

, X◦ = Φ−1(X◦
can), SX = Φ−1(SXcan

).

Then SX is the set of all singular fibres of Φ and X◦
can is the Zariski open set of

Xcan that contains all the smooth points of Xcan over which the fibres of Φ are
nonsingular. Obviously, X◦ is an open Zariski open set of X containing all the
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nonsingular fibres of Φ. The Kähler–Ricci flow (1.1) will naturally collapse all the
Calabi-Yau fibres in terms of volume or Kähler classes. It is proved in a series
of papers [ST07, ST12, ST16] that the collapsing flow converges with uniformly
bounded scalar curvature to a unique smooth twisted Kähler-Einstein metric gcan

on X◦
can satisfying

Ric(gcan) = −gcan + gWP (1.2)

on the Zariski open set X◦
can, where gWP is the Weil-Petersson metric for the vari-

ation of Calabi-Yau fibres. The canonical metric gcan extends to a unique twisted
Kähler-Einstein current ωKE with bounded local potentials and gWP also extends
to a closed positive current on Xcan [GS]. Furthermore, (X◦

can, gcan) has bounded
diameter [FGS20] and its metric completion is a compact metric space [STZ], which
is essential for the diameter estimate in [STZ] as well as in our work for the long
time solutions of the flow. In the special case when dimX = 2 or the general fibre
of X over Xcan is a complex torus, it is proved in [STZ] the diameter is indeed uni-
formly bounded, after applying Tian-Zhang’s relative volume comparison of [TZ21].
To apply such a relative volume comparison, one needs to obtain a uniform bound
for the Ricci curvature in a neighborhood of a nonsingular fibre of X over Xcan.
In general, it is rather difficult to verify the Ricci curvature bound except for the
case when the general fibre is a complex torus because the curvature is uniformly
bounded along the flow near each nonsingular torus fibre. In this paper, we will ap-
ply recent results of [Bam] to obtain a relative volume comparison for the Ricci flow
by removing the assumption on Ricci curvature and to establish a uniform diameter
bound after combining the techniques developed in [STZ]. The following theorem is
the main result of the paper.

Theorem 1.1. Suppose X is an n-dimensional Kähler manifold with semi-ample
canonical line bundle KX . Then for any initial Kähler metric g0, the normalized
Kähler–Ricci flow (1.1) admits a long-time solution g(t) for t ∈ [0, ∞) and there
exists C = C(g0) > 0 such that for all t ≥ 0,

sup
X

|R(t)| + diamg(t)(X) ≤ C, (1.3)

where R(t) is the scalar curvature of g(t) and diamg(t)(X) is the diameter of (X, g(t)).

We remark that the scalar curvature bound is already proved in [ST16] ([Zha09]
for the case of general type). The first named author further proves in [Jia20] that
the scalar curvature in fact converges to −kod(X) on X◦. The diameter bound is
proved for minimal models of general type in [Wan18]. The uniform scalar curvature
and diameter bound in Theorem 1.1 for the long-time solution of the Kähler–Ricci
flow is a natural extension and analogue of Perelman’s scalar curvature and diameter
estimate [Pere2, Ses08] for the Kähler–Ricci flow of finite time extinction, i.e. the
Kähler–Ricci flow on Fano manifolds with initial Kähler metric in the first Chern
class. Perelman’s scalar curvature estimate is essential for the convergence of the
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Fano Ricci flow [TZ07, TZZZ13, CW17, Bam18, DS10, HL, GPS] in relation to
the Hamilton-Tian conjecture. The remaining case for scalar curvature and distance
estimates is the non-extinct finite time solutions of the Kähler–Ricci flow. This
corresponds to the analytic minimal model program proposed in [ST17] and is related
to geometric surgeries and local uniformization problem in [SW16, SW14, SY12,
Song1].

The following volume estimate follows from our relative volume comparison and
Theorem 1.1.

Corollary 1.1. Suppose X is an n-dimensional Kähler manifold with semi-ample
canonical line bundle KX . Let g(t) be the long-time solution of the normalized
Kähler–Ricci flow (1.1) with any initial Kähler metric g0 for t ∈ [0, ∞). Then there
exists c = c(g0) > 0 such that for any p ∈ X, t ≥ 0 and 0 < r < diamg(t)(X),

c Volg(t)(X) ≤
Volg(t)(Bg(t)(p, r))

r2n
≤ c−1Volg(t)(X), (1.4)

where Bg(t)(p, r)) is the metric ball center at p with radius r with respect to g(t).

In fact, the estimate (1.4) can be made more explicit by applying the volume
estimate in [ST16]. There exists C = C(g0) such that for all t ≥ 0,

C−1e−(n−κ)t ≤ Volg(t)(X) ≤ Ce−(n−κ)t,

where κ = kod(X).

The following convergence result follows naturally by the uniform diameter bound
and Corollary 1.1.

Corollary 1.2. Suppose X is an n-dimensional Kähler manifold with semi-ample
canonical line bundle KX . Let g(t) be the long-time solution of the normalized
Kähler–Ricci flow (1.1) with any initial Kähler metric g0 for t ∈ [0, ∞). Then g(t)
converges to the twisted Kähler-Einstein gcan in C0(X◦) as t → ∞, and for any
tj → ∞, after possibly passing to a subsequence, (X, g(tj)) converges in Gromov–
Hausdorff topology to a compact metric space (X∞, d∞) satisfying the following con-
ditions.

(1) Let (Y, dY ) be the metric completion of (X◦
can

, gcan). Then the identity maps
from X◦

can
⊂ X∞ and X◦

can
⊂ Y to X◦

can
⊂ Xcan can extend uniquely to the

following two Lipschitz maps

Ψ : (Y, dY ) → (X∞, d∞), Υ : (X∞, d∞) → (Xcan, gFS),

where gFS is the restriction of the Fubini-Study metric to Xcan from the pluri-
canonical map Φ.

(2) If kod(X) = 0, 1, 2, n, then both Ψ and Υ are homeomorphic.
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Unfortunately, we are unable to identify Y (or X∞) topologicially with the pro-
jective variety Xcan in general cases. We instead propose the following conjecture.

Conjecture 1.1. Ψ is an isometry and Υ is an homeomorphism.

Indeed, the conjecture holds when kod(X) = 1 [TZ21, STZ], or more generally
when dimSXcan

= 0. Finally, we can give a fairly complete description for limiting
behavior of the long-time solutions of the Kähler–Ricci flow on minimal threefolds
by applying Theorem 1.1 and Corollary 1.2.

Corollary 1.3. Let X be a minimal threefold. Let g(t) be the long-time solution
of the Kähler–Ricci flow (1.1) with any initial Kähler metric g0 for t ∈ [0, ∞). Then
there exists A = A(g0) > 0 such that for all t ∈ [0, ∞),

sup
X

|R(t)| + diam(X, g(t)) ≤ A,

and for any tj → ∞, after passing to subsequence, (X, g(tj)) converges in Gromov–
Hausdorff topology to a compact metric space (X∞, d∞) homeomorphic to the canon-
ical model Xcan of X.

We give a brief outline of the paper. In §2, we give the background for long-time
solutions of the Kähler–Ricci flow and some basic analytic and geometric estimates.
In §3, we apply the work of [Bam] to derive a relative volume comparison for the
Ricci flow. We establish the uniform diameter bound for long-time solutions of the
Kähler–Ricci flow in §4. In §5, we prove the geometric convergence.

2 Basic Estimates

Let X be an n-dimensional Kähler manifold. X is called a minimal model if the
canonical bundle KX is nef. The abundance conjecture in birational geometry pre-
dicts that KX must be semi-ample if KX is nef.

From now on, we will assume that KX is semi-ample. The canonical ring R(X, KX)
is therefore finitely generated, and the pluricanonical system |mKX | induces a holo-
morphic map

Φ : X → Xcan ⊂ PN (2.5)

for sufficiently large m ∈ Z+, where Xcan is the canonical model of X. In fact, both
Φ and Xcan are uniquely determined independent of the choice of m. The Kodaira
dimension of X is defined to be

kod(X) = dimXcan. (2.6)

We always have

0 ≤ kod(X) ≤ dimX = n.

In particular,
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(1) If kod(X) = n, X is birationally equivalent to its canonical model Xcan, and
X is called a minimal model of general type.

(2) If 0 < kod(X) < n, X admits a Calabi-Yau fiberation

π : X → Xcan

over Xcan and a general fibre is a smooth Calabi-Yau manifold of complex
dimension n − kod(X).

(3) If kod(X) = 0, Xcan is a point and X is a Calabi-Yau manifold with c1(X) = 0.

Now we will reduce the normalized Kähler–Ricci flow to a parabolic Monge-
Ampère equation. Let OPN (1) be the hyperplane bundle over PN in (2.5) and ωFS ∈
[OPN (1)] be a Fubini-Study metric on PN . Then there exists m > 0 such that

mKX = π∗OPN (1).

We define

χ =
1

m
π∗ωFS ∈ [KX ]

and χ is a smooth nonnegative closed (1, 1)-form on X. There also exists a smooth
volume form Ω on X such that

Ric(Ω) = −
√

−1∂∂ log Ω = −χ.

Let ω0 be the initial Kähler metric of the normalized Kähler–Ricci flow (1.1) on
X. Then Kähler class evolving along the normalized Kähler–Ricci flow is given by

[ω(t)] = (1 − e−t)[KX ] + e−t[ω0]

and so [ω(t)] is a Kähler class for all t ∈ [0, ∞). Therefore the normalized Kähler–
Ricci flow starting with ω0 on X has a smooth global solution on X × [0, ∞). We
define the reference metric

ωt = (1 − e−t)χ + e−tω0.

Then the Kähler–Ricci flow is equivalent to the following Monge-Ampere flow.

∂ϕ

∂t
= log

e(n−κ)t(ωt +
√

−1∂∂ϕ)n

Ω
− ϕ, (2.7)

where

ωt = χ + e−t(ω0 − χ)

and

κ = kod(X) = dimXcan.
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We define SXcan
to be the critical values of Φ and let

X◦
can = Xcan \ SXcan

, X◦ = Φ−1(X◦
can), SX = Φ−1(SXcan

). (2.8)

When κ = kod(X) = n, X is said to be a minimal model of general type. In this
case, Φ : X → X is a birational map. Then SX and SXcan

are subvarieties of X and
Xcan. Hence X◦ = X◦

can is a Zariski open set of X or Xcan. The following lemma is
a collection of results from [Tsu88, TZ06, Wan18].

Lemma 2.1. Let g(t) be the long-time solution of the Kähler–Ricci flow (1.1). Then
g(t) converges smoothly to a unique Kähler-Einstein metric gKE on X◦

can
. Futher-

more, the scalar curvature and diameter of g(t) are uniformly bounded and gKE

extends to a unique Kähler current ωKE on Xcan with bounded local potentials.

Proof. The local smooth convergence is proved in [Tsu88]. The boundedness of local
potentials of ωKE is proved in [TZ06] built on the work of [Kol98, Zha06, EGZ09].
The scalar curvature bound is derived in [Zha09]. The diameter bound is recently
proved in [Wan18] by developing and applying the local entropy for the Ricci flow
with the Riemannian geometric structure of Xcan from [Song2]. ⊓⊔

When κ = kod(X) = 0, X is a Calabi-Yau manifold. The exponential conver-
gence of the unnormalized Kähler–Ricci flow to a unique Ricci-flat Kähler metric is
established in [Cao85]. In particular, the solution g(t) of the normalized Kähelr-Ricci
flow (1.1) will converge to a point with uniformly bounded Ricci curvature.

Therefore it suffices for us to study the case when 0 < κ = kod(X) < n. In this
case, SX is the set of all singular fibres of Φ : X → Xcan and the Kähler–Ricci flow
will collapse.

The following general testimates are established in [ST07, ST12, ST16].

Lemma 2.2. Let g(t) be the long-time solution of the Kähler–Ricci flow (1.1). There
exists C > 0 such that on X × [0, ∞),

|ϕ| + trω(χ) +

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

+

∣

∣

∣

∣

∇∂ϕ

∂t

∣

∣

∣

∣

+

∣

∣

∣

∣

∆
∂ϕ

∂t

∣

∣

∣

∣

+ |R| ≤ C, (2.9)

where R is the scalar curvature of g(t), ∇ and∆ are the gradient and Laplace oper-
ators with respect to g(t).

The following lemma is proved in [ST07, ST12] for convergence of the collapsing
Kähler–Ricci flow and its limiting metric.

Lemma 2.3. Suppose 0 < κ = kod(X) < n. Then g(t) converges as a current to a
unique smooth twisted Kähler-Einstein metric gcan on X◦

can
satisfying the following.

(1) gcan satisfies the twisted Kähler-Einstein equation

Ric(gcan) = −gcan + gWP

on X◦
can

, where gWP is the Weil-Petersson metric for the variation of Calabi-
Yau fibres of X◦ over X◦

can
.
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(2) The Kähler form associated to gcan extends to a unique Kähler current ωcan on
Xcan with bounded local potentials.

A stronger convergence and fibrewise control are proved in [TWY18] in the fol-
lowing lemma.

Lemma 2.4. Suppose 0 ≤ κ = kod(X) < n. Then g(t) converges to Φ∗gcan in C0-
topology on X◦ as t → ∞. Furthermore, for any K ⊂⊂ X◦

can
, there exists C > 0

such that for any x ∈ K and t ≥ 0,

C−1e−tω|Φ−1(x) ≤ ω(t)|Φ−1(x) ≤ Ce−tω0|Φ−1(x).

3 The Relative Volume Comparison for the Ricci Flow

In this section, we will use the recent work in [Bam] to prove a relative volume
comparison for the Ricci flow under suitable assumption on the scalar curvature
bound. We will follow the notations from [Bam] for the following quantities on a
Riemannian manifold or along the Ricci flow.

Definition 3.1. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2.
The Nash entropy is defined by

N (g, f, τ) = (4πτ)−n/2

∫

M
fe−fdVg

for f ∈ C∞(M) and τ > 0.

Let (M, g(t)) be a Ricci flow, i.e., g(t) satisfies the unnormalized Ricci flow equa-
tion

∂g

∂t
= −2Ric, (3.10)

on an n-dimensional compact Riemannian manifold for t ∈ I, where I is an open or
closed interval. The heat operator is defined by

✷ =
∂

∂t
− ∆

and the conjugate heat operator is defined by

✷
∗ = − ∂

∂t
− ∆ + R,

where ∆ is the Laplace operator associated to g(t) and R is the scalar curvature of
g(t). For fixed (y, s) ∈ M × I, the heat kernel K(·, ·; y, s) based at (y, s) is given by

✷K(·, ·; y, s) = 0, lim
t→s+

K(·, t; y, s) = δy,
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where δy is the Dirac measure at y. By duality, for fixed (x, t) ∈ M × I, the function
K(x, t; ·, ·) is the conjugate heat kernel at the base point (x, t) satisfying

✷
∗K(x, t; ·, ·) = 0, lim

s→t−

K(x, t; ·, s) = δx.

Definition 3.2. Let (M, g(t)) be a solution of the Ricci flow for t ∈ I and

dνx0,t0 = (4πτ)−n/2e−fdVg = K(x0, t0; ·, ·)dVg

be a pointed conjugate heat kernel measure at the base point (x0, t0) with τ = t0 −t.
Then the pointed Nash entropy at (x0, t0) ∈ M × I is defined by

Nx0,t0(τ) = N (g(t0 − τ), f(t0 − τ), τ) (3.11)

with Nx0,t0(0) = 0 and for s < t0, the space-time function N ∗
s is defined by

N ∗
s (x0, t0) = Nx0,t0(t0 − s).

Definition 3.3. Let μ1, μ2 be two probability measures on a compact Riemannian
manifold (X, g). The Wasserstein W1-distance between μ1 and μ2 are defined by

dg
W1

(μ1, μ2) = sup
f∈C∞(M),|∇f |≤1

(
∫

X
fdμ1 −

∫

X
fdμ2

)

.

Lemma 3.1. For fixed base point (x0, t0), the pointed Nash entropy Nx0,t0(τ) is non-
increasing in τ .

Equivalently, N ∗
s (x0, t0) is non-decreasing in s. The following estimates are proved

in [Bam] (Theorem 5.9 and Corollary 5.11).

Lemma 3.2. If R(·, s) ≥ Rmin for some s ∈ I and Rmin ∈ R, then on M ×
(I ∩ (s,∞)),

|∇N ∗
s | ≤

(

n

2(t − s)
+ |Rmin|

)
1

2

.

Furthermore, if s < t∗ ≤ min{t1, t2} and s, t1, t2 ∈ I, then for any x1, x2 ∈ M ,

N ∗
s (x1, t1) − N ∗

s (x2, t2) ≤
(

n

2(t∗ − s)
+ |Rmin|

)
1

2

d
g(t∗)
W1

(νx1,t1(t
∗), νx2,t2(t

∗))

+
n

2
log

(

t2 − s

t∗ − s

)

.

The pointed Nash entropy is roughly comparable to logarithmic of the volume
ratio of suitable scale and scalar curvature assumption. The following volume non-
inflation estimate is also proved in [Bam].
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Lemma 3.3. Let (M, g(t)) be a solution of the Ricci flow for t ∈ [−r2, 0]. If

R ≥ −nr−2

on M × [−r2, 0], then for any A ≥ 1, there exists C = C(n, A) > 0 such that

Volg(0)(x, Ar) ≤ CrneN ∗

−r2 (x,0).

The following volume non-collapsing estimate is proved in [Bam] as a generaliza-
tion of Perelman’s κ-non-collapsing theorem.

Lemma 3.4. Let (M, g(t)) be a solution of the Ricci flow for t ∈ [−r2, 0]. If

R ≤ r−2, on Bg(0)(x, r) × [−r2, 0],

then there exists c = c(n) > 0 such that

Volg(0)(Bg(0)(x, r)) ≥ crneN ∗

−r2 (x,0).

The following is the main result of this section by comparing volume of balls with
same radius at the same time slice.

Proposition 3.1. Let (M, g(t)) be a solution to the Ricci flow on a compact n-
dimensional Riemannian manifold M for t ∈ [−r2, 0], for some r > 0. If

|R| ≤ r−2, on M × [−r2, 0],

then for any x1, x2 ∈ M with

dg(0)(x1, x2) ≤ A,

we have for some c(n) > 0

Volg(0)(Bg(0)(x1, r)) ≥ c(n)e−√
nr−1A Volg(0)(Bg(0)(x2, r)).

Proof. By Lemma 3.3 and Lemma 3.4, we have

Volg(0)(Bg(0)(xi, r)) ≥ crneN ∗

−r2(xi,0)

and

Volg(0)(Bg(0)(xi, r)) ≤ CrneN ∗

−r2(xi,0).

By the gradient estimate for the pointed Nash entropy in Lemma 3.2, we have

Volg(0)(Bg(0)(x2, r))

Volg(0)(Bg(0)(x1, r))

≤ C ′ exp
(

N ∗
−r2(x2, 0) − N ∗

−r2(x1, 0)
)

≤ C ′ exp

(

sup
M

|∇N ∗
−r2(·, 0)|dg(0)(x1, x2)

)

≤ C ′ exp

(√
n

dg(0)(x1, x2)

r

)

for some uniform C ′ = C ′(n) > 0. ⊓⊔
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We will also take the opportunity to present a different proof of the relative
volume comparison of Tian-Zhang [TZ21] with an additional lower bound for the
scalar curvature using the work of [Bam].

The following parabolic region is introduced in [Bam].

Definition 3.4. Suppose (x0, t0) ∈ M × I, r, T−, T+ ≥ 0 and t0 − T− ∈ I. The
P ∗-parabolic neighborhood P ∗(x0, t0; r, T

−, T+) ⊂ M × I is defined by the set of
(x, t) ∈ M × I satisfying

d
gt0−T −

W1

(

νx0,t0(·, t0 − T−), νx,t(·, t0 − T−)
)

< r, t0 − T− ≤ t ≤ t0 + T+.

It is natural to compare the P ∗-parabolic neighborhood P ∗(x0, t0; r, T
−, T+) to

the standard parabolic neighborhood

P (x0, t0; r, T
−, T+) = Bg(t0)(x0, r) × [t0 − T−, t0 + T+].

It is shown in [Bam] that along the Ricci flow, we have

d
g(t)
W1

(νx1,t0(·, t), νx2,t0(·, t)) ≤ dg(t0)(x1, x2)

and the following comparison is proved in [Bam] (Corollary 9.6).

Lemma 3.5. Let (M, g(t)t∈I) be a Ricci flow on an n-dimensional compact Rie-
mannian manifold. For any 0 < α ≤ A < ∞, K, β−, β+ ≥ 0, there exists A =
A(α,A, K, β−, β+) ≥ 0 such for any B ≥ A, if

|Ric| ≤ Kr−2, in P (x0, t0; Ar, −β−r2, β+r2),

then

P (x0, t0; Ar, −β−r2, β+r2) ⊂ P ∗(x0, t0; Br, −β−r2, β+r2).

The following relative volume comparison theorem for the Ricci flow is a slightly
weaker version of the one in [TZ21].

Proposition 3.2. For any n ∈ Z+ and A ≥ 1, there exists c(n, A) > 0 such that
the following holds. Let (M, g(t)) be a solution of the Ricci flow on a compact n-
dimensional manifold M for t ∈ [−r2

0, r
2
0] such that

|Ric| ≤ r−2
0 , R ≥ −nr−2

0 , in Bg(0)(x0, r0) × [0, r2
0].

Then for any Bg(r2
0)(x, r) ⊂ Bg(r2

0)(x0, Ar0) with r ≤ r0 satisfying

R|t=r2
0

≤ r−2 in Bg(r2
0)(x, r),

we have

Volg(r2
0)(Bg(r2

0)(x, r))

rn
≥ c

Volg(0)(Bg(0)(x0, r0))

rn
0

.
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Proof. By parabolic scaling, we can assume that r0 = 1. The pointed Nash entropy
is comparable to volume of balls in principle.

First we will compare the pointed Nash entropy at the same time slice t = 1. By
assumption, x ∈ Bg(1)(x, r) ⊂ Bg(1)(x0, A), hence

dg(1)(x0, x) ≤ A.

By Lemma 3.2, after choosing Rmin = −n, we have

|∇N ∗
−1(·, 1)|g(1) ≤ 2n

on M . Therefore,
∣

∣N ∗
−1(x0, 1) − N ∗

−1(x, 1)
∣

∣ ≤ 2n dg(1)(x0, x) ≤ 2nA. (3.12)

Next, we will compare the pointed Nash entropy at different time slices. We apply
Lemma 3.2 at two different base points (x0, 0) and (x0, 1) after choosing s = −1 and
t∗ = 0. Then

∣

∣N ∗
−1(x0, 0) − N ∗

−1(x0, 1)
∣

∣

≤
(

n

2(0 − (−1))
+ n

)1/2

d
g(0)
W1

(νx0,0(0), νx0,1(0)) +
n

2
log

(

1 − (−1)

0 − (−1)

)

≤ n d
g(0)
W1

(νx0,0(0), νx0,1(0)) + n.

By Lemma 3.5,

P (x0, 0; 1, 0, 1) ⊂ P ∗(x0, 0; γ, 0, 1)

by the Ricci curvature assumption. Therefore, by the fact that (x0, 1) ∈ P ∗(x0, 0; γ, 0,
1) and definition, we have

d
g(0)
W1

(νx0,0(·, 0), νx0,1(·, 0)) = d
g(0)
W1

(δx0
, νx0,1(·, 0)) ≤ γ.

Immediately, we have
∣

∣N ∗
−1(x0, 0) − N ∗

−1(x0, 1)
∣

∣ ≤ nγ + n. (3.13)

Finally, we are ready to proof the lemma. Combining estimates (3.12), (3.13)
with Lemma 3.1, Lemma 3.3 and Lemma 3.4, we have

Volg(1)(Bg(1)(x, r))

Volg(0)(Bg(0)(x0, 1))

≥ crn exp
(

N ∗
−r2(x, 1) − N ∗

−1(x0, 0)
)

≥ crn exp
(

N ∗
−1(x, 1) − N ∗

−1(x0, 0)
)

≥ crn exp
(

N ∗
−1(x, 1) − N ∗

−1(x0, 1) + nγ + n
)

≤ crn exp (2nA + nγ + n) .

This completes the proof of the theorem. ⊓⊔
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4 Diameter Estimate

We now return to the Kähler–Ricci flow (1.1) discussed in §2. Let X be an n-
dimensional Kähler manifold with semi-ample KX . Recall that

Φ : X → Xcan

is the unique holomorphic map from X to its canonical model Xcan induced by the
pluricanonical system. We assume that

1 ≤ dimXcan = κ ≤ n − 1.

The goal of this section is to establish a uniform diameter bound for long-time
solutions of the Kähler–Ricci flow using the techniques developed in [FGS20, STZ].

We keep the same notations as before by letting SXcan
be the set of critical values

of Φ on Xcan and SX = Φ−1(Scan), X◦
can = Xcan \ SXcan

and X◦ = X \ SX . We can
pick an effective Q-Cartier divisor D on Xcan satisfying the following.

(1) Φ∗D = KX .
(2) SXcan

is contained in the support of D.

We let σ be the defining section of D and for conveniences we use σ for Φ∗σ.
Now we consider a log resolution of Xcan defined by

Ψ : W → Xcan

such that

(1) W is smooth and the exceptional locus of Ψ is a union of smooth divisors of
simple normal crossings.

(2) The pullback of D by Ψ, is a union of smooth divisors of simple normal
crossings.

The Kähler form χ associated to the Fubini-Study metric χ restricted to Xcan also
lies in [D]. For conveniences, we use σ for Ψ∗σ on W . Let Z be the blow-up of
X induced by Ψ : W → Xcan. Then we can define the induced holomorphic maps
Ψ′ : Z → X and Φ′ : Z → W satisfying the following diagram.

Z X

W Xcan

❄

Φ′

✲
Ψ′

❄

Φ

✲
Ψ

(4.14)

We also pick the hermitian metric h for the Q-line bundle associated to D on
Xcan such that

Ric(h) = χ.
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For conveniences, we still use h for Φ∗h on X, Ψ∗h on W and (Ψ◦Φ′)∗h on Z. Away
from zeros of σ, Z can be identified as X by assuming the blow-ups take place at
the support of σ.

For simplicity, we assume that

|σ|2h ≤ 1

on Xcan. Let F be the standard increasing smooth cut-off function defined on [0, ∞)
satisfying

(1) F (x) = 0, if x ∈ [0, 1/2],
(2) F (x) = 1, if x ∈ [1, ∞),

with uniformly bounded derivatives. Let

ηε = max
{

log |σ|2h, log ε
}

for some sufficiently small ε > 0 to be determined later. By the construction of σ
and h, we have

√
−1∂∂ log |σ|2h + χ ≥ 0

as a current, therefore

ηε ∈ PSH(X, χ) ∩ C0(X).

In particular, for sufficiently small ε > 0, we have

log ε ≤ ηε ≤ 0.

We define ρε by

ρε = F

(

100ηε

log ε

)

(4.15)

and

Sε =
{

|σ|200
h < ε

}

. (4.16)

For sufficiently large k > 0, we have

sup
X

∣

∣

∣
∂|σ|2k

h

∣

∣

∣

χ
< ∞ (4.17)

due to Lemma 2.2 from the parabolic Schwarz lemma in [ST07, ST12]. Without loss
of generality, we can assume k = 100 for simplicity. The following lemma also shows
that the open set Sε has very small volume.
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Lemma 4.1. Let g(t) be the long-time solution of the Kähler–Ricci flow (1.1) on X
and let ω(t) be the corresponding Kähler forms. Then for any δ > 0, there exists
ε > 0 such that for all t ≥ 0,

∫

Sε

ω(t)n ≤ δe−(n−κ)t,

or equivalently,

Volg(t)(Sε) ≤ δe−(n−κ)t.

Proof. It is straightforward to verify that

lim
ε→0

∫

{|σ|200h ≤ε}
Ω = 0.

From Lemma 2.2, we have

ω(t)n = e
∂ϕ

∂t
+ϕ−(n−κ)tΩ ≤ Ce−(n−κ)tΩ,

for some constant C = C(X, g0) < ∞. Hence we have
∫

Sε

ω(t)n ≤ Ce−(n−κ)t

∫

Sε

Ω ≤ δe−(n−κ)t,

if we choose ε > 0 small enough. This completes the proof. ⊓⊔

The following lemma is proved by Song-Tian-Zhang (Lemma 2.7 [STZ]) based
on the distance estimate in [FGS20] for the diameter bound and almost geodesic
convexity for (X◦

can, gcan). We let

(Y, dY) = (X◦
can, gcan) (4.18)

be the metric completion of (X◦
can, gcan).

Lemma 4.2. For any δ > 0 and ε > 0, there exists 0 < ε′ < ε such that for any two
points y1, y2 ∈ Xcan \ Φ(Sε), there exists a smooth path γ ⊂ Xcan \ Φ(Sε′) joining y1

and y2 satisfying

Lgcan
(γ) ≤ dY(y1, y2) + δ,

where Lgcan
(γ) is the arc length of γ with respect to the metric gcan. In particular,

(Y, dY) is a compact metric space and

diamgcan
(X◦

can
) < ∞.

We remark that Lemma 4.2 is proved in [ZZ19, Zha19] for the special case of
dimXcan = 1.

Immediately, we can control the distance for the Kähler–Ricci flow away from
singular fibres as shown in the following lemma.
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Corollary 4.1. For any δ > 0 and ε > 0, there exists T > 0 such that for any two
points x1, x2 ∈ X \ Sǫ > 0 and t ≥ T , we have

dg(t)(x1, x2) ≤ diamdY
(Y) + δ.

Proof. Since g(t) converges to Φ∗gcan uniformly in C0(X \Sε), for any x1, x2 ∈ X \Sε

and t > T , we have

dg(t)(x1, x2) ≤ dgcan
(Φ(x1), Φ(x2)) + δ

≤ diamdY
(Y) + δ,

where the first inequality follows from Lemma 2.4 and the last inequality follows
from Lemma 4.2. ⊓⊔

We now choose a fixed base point x0 ∈ X◦ and y0 = Φ(x0) ∈ X◦
can. Since y0 is a

regular point of Xcan, there exists 0 < γ < 1 such that

Bgcan
(p0, 2γ) ⊂⊂ X◦

can.

Lemma 4.3. For any 0 < r0 < γ, there exists T > 0 such that for any t > T ,

Φ−1(Bgcan
(p0, 2

−1r0)) ⊂ Bg(t)(x0, r0) ⊂ Φ−1(Bgcan
(p0, 2r0)). (4.19)

Furthermore, there exist C = C(r0, x0) > 0 such that for all t > T ,

C−1e−(n−κ)t ≤ Volg(t)(Bg(t)(x0, r0)) ≤ Ce−(n−κ)t. (4.20)

Proof. Since g(t) converges Φ∗gcan on X◦, the containment (4.19) follows immedi-
ately for sufficiently large t > 1 due to the fact that g(t) restricted to each fibre of Φ
converges to 0 exponentially fast. The volume estimate (4.20) follows from the fact
that

e(n−κ)tω(t)n

Ω

is uniformly bounded for all t ≥ 0 by Lemma 2.2. ⊓⊔

Lemma 4.4. For any A, r0 > 0, there exists c = (A, r0, x0) > 0 such that for any
(x, t) ∈ M × [0, ∞) with

dg(t)(x, x0) ≤ A,

we have

Volg(t)(Bg(t)(x, r0)) ≥ ce−(n−κ)t.
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Proof. By Lemma 2.2, the scalar curvature of g(t) is uniformly bounded for all t ≥ 0.
Proposition 3.1 implies that there exists c = c(A, r0, x0) > 0 such that for any t ≥ 0,

Volg(t)(Bg(t)(x, r0)) ≥ cVolg(t)(Bg(t)(x0, r0)).

The lemma then immediately follows by combining the above estimate and
(4.20). ⊓⊔

Proposition 4.1. For any ε > 0, there exists T > 0 such that for all t ≥ T and
x ∈ X,

dg(t)(x, x0) < diamdY
(Y) + ε.

Proof. We will prove by contradiction. Let D = diamdY
(Y). Suppose there exist

ǫ > 0, tj → ∞ and xj ∈ X such that

D + ǫ ≤ dg(tj)(xj , x0) ≤ D + 2ǫ.

By Lemma 4.4, there exists c > 0 such that for all j,

Volg(tj)

(

Bg(tj)

(

xj ,
ε

2

))

≥ 2ce−(n−κ)tj ,

and by Lemma 4.1, there exists an open K ⊂⊂ X◦ such that for all t ≥ 0,

Volg(t)(X \ K) ≤ ce−(n−κ)t.

By Corollary 4.1, there exist K ⊂ K′ ⊂⊂ X◦ and T > 0 such that

diamg(t)(K′) < D +
ε

2

for t ≥ T .
Therefore for sufficiently large j, we have

xj ∈ X \ K′

and

Bg(tj)

(

xj ,
ε

2

)

⊂ X \ K′.

This implies that

2ce−(n−κ)tj ≤ Volg(tj)

(

Bg(tj)

(

xj ,
ε

2

))

≤ Volg(tj)(X \ K′) ≤ ce−(n−κ)tj ,

which gives contradiction. ⊓⊔

Theorem 1.1 immediately from Proposition 4.1. Corollary 1.1 is proved by com-
bining Theorem 1.1, Proposition 3.1 and Lemma 4.3.
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5 Global Convergence

In this section, we will study the convergence of the Kähler–Ricci flow (1.1) on an
n-dimensional Kähler manifold X with semi-ample KX .

Lemma 5.1. Let g(t) be the solution of the Kähler–Ricci flow on the n-dimensional
Kähler manifold X with semi-ample canonical bundle. Then for any tj → ∞, after
possibly passing to a subsequence, (X, g(tj)) converges to a compact metric space
(X∞, d∞).

Proof. For any t ≥ 0 and any ε > 0, we let B = {Bg(t)(x, ε)}x∈X be an open covering
of X with balls of radius ε > 0. By Vitali covering lemma, we can find a countable
sub-collection BJ = {Bg(t)(xj(t), ε)}j∈J of B such that

Bg(t)(xj1(t), ε) ∩ Bg(t)(xj2(t), ε) = φ

for any j1 �= j2 ∈ J and

X ⊂ ∪j∈J Bg(t)(xj(t), 5ε).

Let |J | be the cardinal number of the set J . Also by Lemma 2.2, there exists
C > 0 such that for any t ≥ 0, By Corollary 1.1, there exists c > 0 such that for any
t ≥ 0 and any x ∈ X,

Volg(t)(Bg(t)(x, ε)) ≥ ce−(n−κ)t.

This implies that

c|J |e−(n−κ)t ≤
∑

j∈J
Volg(t)(Bg(t)(xj(t), ε) ≤ Volg(t)(X) ≤ Ce−(n−κ)t

and so

|J | ≤ c−1C.

Therefere for any ε > 0, there exists C > 0 such that for any t ≥ 0, there exists a
finite 5ε-net {xj(t)}j∈J (ε,t) of (X, g(t)) such that

|Jε,t| ≤ C.

Then we can apply Gromov’s precompactness theorem [Gro99] and any sequence
(X, g(tj)) with tj → ∞, (X, g(tj)) converges to a compact metric space (X∞, d∞)
after passing to subsequence. ⊓⊔

We let (Y, dY ) be the metric completion of (X◦
can, gcan) and (Xcan, gFS) be the

canonical model equipped with the Fubini-Study metric. Since the solution of the
Kähler–Ricci flow g(t) converges in C0 to the twisted Kähler-Einstein metric on X◦

can.
X◦

can can be naturally embedded in X∞ and Y , i.e., there exist identity maps from
open sets of X∞ and Y to X◦

can. We then identify X◦
can as Y ◦ ⊂ Y and X◦

∞ ⊂ X∞.
Naturally, one would ask if these identity maps extend to unique homeomorphisms.
The following lemma gives the relation among (X∞, d∞), (Y, dY ) and (Xcan, gFS).
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Lemma 5.2. The identity maps from Y ◦ and X◦
∞ to X◦

can
extend uniquely to the

following Lipschitz maps

Ψ : (Y, dY ) → (X∞, d∞), Υ : (X∞, d∞) → (Xcan, gFS)

In particular, Υ|Υ−1(X◦
can

) and Ψ|(Υ◦Ψ)−1(X◦
can

) are identity maps from X◦
∞ and Y ◦ to

X◦
can

.

Proof. Υ is well-defined because by Lemma 2.2, there exists c > 0 such that for any
t ≥ 0,

g(t) ≥ c Φ∗gFS

on X. Therefore the extension of the identity map from X◦
∞ to X◦

can coincides with
the limit of Φ and it is Lipschitz from X∞ to Xcan.

Since g(t) converges to gcan on X◦
can in local C0-topology, and by the result of

[STZ], (X◦
can, gcan) is almost geodesic convex, then for any two points y1, y2 ∈ X◦

can

and any x1 ∈ Xy1
and x2 ∈ Xy2

,

lim inf
t→∞

dg(t)(x1, x2) ≤ dgcan|X◦
can

(y1, y2) = dY (y1, y2).

Now pick any two points p, q ∈ X∞. There exist pj , qj ∈ X◦ with pj → p and qj → q
in Gromov–Hausdorff distance with respect to g(tj) as tj → ∞. On the other hand,
Φ(pj), Φ(qj) ∈ X◦

can converge to some y1 and y2 ∈ Y with respect to dY after passing
to a subsequence. Then we have

d∞(p, q) = lim
j→∞

dg(tj)(pj , qj) ≤ dY (y1, y2).

This implies that Ψ is well-defined and Lipschitz. ⊓⊔

Lemma 5.3. If kod(X) = n or kod(X) ≤ 2, then both Ψ and Υ are homeomorphic.

Proof. If kod(X) = n, by the result of [Song2], (Y, dY ) is homeomorphic to the
projective variety Xcan. This forces (X∞, d∞) to be homeomorphic to Xcan.

If kod(X) = 2, then the canonical model Xcan is an orbifold Kähler surfaces since
Xcan is KLT. By the result of Song-Tian-Zhang (Proposition 2.3 in [STZ]), (Y, dY )
is homeomorphic to Xcan and by Lemma 5.2 (X∞, d∞) must be homeomorphic to
Xcan. The same argument extends to the case kod(X) ≤ 1 since Xcan is either a
point or a smooth Riemann surface. ⊓⊔

We now have completed the proof of Corollary 1.2 by combining Lemma 5.2 and
Lemma 5.3.
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pactes,Bull. Sci. Math. (2) 102, 1 (1978), 63–95

[Bam18] R. Bamler. Convergence of Ricci flows with bounded scalar curvature, Ann.
Math. (2) 188, 3 (2018), 753–831

[Bam] R. Bamler. Entropy and heat kernel bounds on a Ricci flow background,
arXiv:2008.07093
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