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Interaction of microswimmers in viscoelastic
liquid crystals
Hai Chi1, Alexander Gavrikov 1, Leonid Berlyand1 & Igor S. Aranson 1,2,3✉

Swimming bacteria successfully colonize complex non-Newtonian environments exemplified

by viscoelastic media and liquid crystals. While there is a significant body of research on

microswimmer motility in viscoelastic liquids, the motion in anisotropic fluids still lacks

clarity. This paper studies how individual microswimmers (e.g., bacteria) interact in a mucus-

like environment modeled by a visco-elastic liquid crystal. We have found that an individual

swimmer moves faster along the same track after the direction reversal, in faithful agreement

with the experiment. This behavior is attributed to the formation of the transient tunnel due

to the visco-elastic medium memory. We observed that the aft swimmer has a higher

velocity for two swimmers traveling along the same track and catches up with the leading

swimmer. Swimmers moving in a parallel course attract each other and then travel at a close

distance. A pair of swimmers launched at different angles form a "train”: after some transient,

the following swimmers repeat the path of the "leader”. Our results shed light on bacteria

penetration in mucus and colonization of heterogeneous liquid environments.

https://doi.org/10.1038/s42005-022-01056-1 OPEN

1 Department of Mathematics, Pennsylvania State University, University Park 16802 PA, USA. 2Department of Biomedical Engineering, Pennsylvania State
University, University Park 16802 PA, USA. 3Department of Chemistry, Pennsylvania State University, University Park 16802 PA, USA. ✉email: isa12@psu.edu

COMMUNICATIONS PHYSICS |           (2022) 5:274 | https://doi.org/10.1038/s42005-022-01056-1 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-01056-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-01056-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-01056-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-01056-1&domain=pdf
http://orcid.org/0000-0001-7210-5395
http://orcid.org/0000-0001-7210-5395
http://orcid.org/0000-0001-7210-5395
http://orcid.org/0000-0001-7210-5395
http://orcid.org/0000-0001-7210-5395
http://orcid.org/0000-0002-4062-5393
http://orcid.org/0000-0002-4062-5393
http://orcid.org/0000-0002-4062-5393
http://orcid.org/0000-0002-4062-5393
http://orcid.org/0000-0002-4062-5393
mailto:isa12@psu.edu
www.nature.com/commsphys
www.nature.com/commsphys


Habitats of motile microorganisms are not limited by
Newtonian fluids. For example, many bacteria success-
fully colonize complex non-Newtonian environments

exemplified by viscoelastic media and liquid crystals. The med-
ium anisotropy and viscoelasticity may control the movement of
these swimmers in a non-trivial way1, 2. A suspension of swim-
ming bacteria in lyotropic (water-based) liquid crystal3–6 is one of
the examples. Furthermore, complex biological fluids like mucus,
DNA solutions7, suspensions of viruses8, or long polymers9 also
exhibit a certain degree of liquid-crystallinity as well as visco-
elastic response to deformation. From the human and animal
health perspective, interaction and invasion of mucus by bacteria
is relevant in the context of multiple bacteria-born infections10.

Bacterial collective behavior in visco-elastic media is an open
area of research. There is numerous literature on microswimmer
motility in a viscoelastic environment. However, it is still a matter
of controversy. Some studies11, 12 state that viscoelasticity hinders
self-propulsion and results in about a 35% reduction of the
swimming speed. Studies in ref. 13 have found that the micro-
swimmers are always slower in a shear-thinning fluid while in
weakly viscoelastic second-order fluid they may swim slower or
faster depending on their swimming gait. On the contrary, a
computational study in ref. 14 obtained an increase of the
swimming speed up to 60% in polymer solutions due to a non-
uniform distribution of polymer molecules around a bacterium. It
was shown that pullers slow down whereas pushers speed up in a
weakly viscoelastic fluid15 and in Newtonian fluids with spatial
gradients of viscosity16. Swimming sheets demonstrate increased
speed due to shear-thinning17 as nematodes do in concentrated
polymer solutions18.

The earlier experimental studies indicated the non-
monotonous viscosity dependence of the swimming speed: the
swimming speed increases with the viscosity increase then falls off
when the viscosity reaches 60 viscosities of water19, 20. However,
ref. 9 has found that the non-monotonous viscosity dependence is
due to low-molecular-weight impurities: after purification of the
polymer solution by dialysis, the swimming speed exhibits
essentially no dependence in the wide range of polymer con-
centrations. Also, the bacterial body and bacterial flagella may
experience different viscosity in polymer solutions. Bacterial
motility in a viscoelastic gel such as mucus also shows little effect
of the increased solution viscosity on the bacterial swimming
speed10. This finding can be explained by the heterogeneity of the
mucus polymer network: bacteria swim in "tunnels” formed by
the network and effectively experience the viscosity of water.

One may expect that viscoelasticity and associated memory in
polymer networks will have a non-trivial effect on bacterial
motility. For example, the direction change due to bacteria run-
and-tumble behavior requires unbundling of the bacterial
flagella21. However, in the polymer solution, the unbundling is
suppressed4, 10, 22: a bacterium reverses its direction and follows
the same track instead of picking a random orientation. More-
over, in mucus, the swimming speed of backward motion is
higher than the forward swimming10. This speed increase is due
to the memory in the mucus polymer network: bacteria burrow
transient tunnels in the polymer mesh and, after the reversal,
swim backward in an already existing tunnel. It is known that in
addition to visco-elasticity, mucus gel also exhibits some degree of
liquid crystallinity10, 23.

To date, there are only a few computational and experimental
studies of collective bacterial behavior in viscoelastic media24–26.
One of the conclusions is that viscoelasticity enhances the
attraction and orientational order among pusher-type
swimmers25. However, the overall understanding of the mis-
croswimmer individual dynamics and interactions in visco-elastic
media remains unclear.

In this paper, we study the dynamics of a single microswimmer
(e.g., a bacterium) or two interacting microswimmers in aniso-
tropic viscoelastic media. Specifically, we investigate a viscoelastic
liquid crystal (VELC) as a mucus model. For individual swim-
mers in the VELC, we have found that after the reversal, they
swim faster along the same track, in faithful agreement with the
experiment10. This behavior is attributed to the slow relaxation of
the nematic director in VELC and the formation of the transient
tunnel due to the memory effect. Similar behavior occurs for the
interaction of two swimmers following the same track: the aft
swimmer has a higher velocity and catches up with the leading
swimmer. Parallel swimmers tend to attract each other
approaching until they reach an equilibrium distance. Also, if the
swimmers are launched at different angles, the interactions
mediated by the VELC result in the formation of a "train”: after
some transient, the following swimmers repeat the path of the
"leader”. The train behavior also was observed experimentally27.
Our computational results shed light on bacteria penetration in
mucus and bacteria colonization of heterogeneous liquid
environments.

Results
Model formulation. A self-propelled microswimmer is modeled
by a rigid elliptical body with the principal axis p ¼
hcosðαÞ; sinðαÞi to capture the shape anisotropy, where α mea-
sures the angle between swimming direction and horizontal x-
axis (see Fig. 1). The microswimmer moves with translational
velocity V(t) and rotates with angular velocity ω(t). To model the
self-propulsion of the microswimmer in the direction of its
principal axis p, a slip velocity vsq is prescribed at the surface of
the microswimmer γ:

vðxÞ ¼ VðtÞ þ ωðtÞ ´ ðx � xcðtÞÞ þ vsq;

vsq ¼ B sinðθÞð1þ β cosðθÞÞτ: ð1Þ

Here xc(t) is the position of the center of mass of the micro-
swimmer, and θ is the counter-clockwise angle between p and
x− xc(t). Vector τ is tangential to the swimmer surface γ,
pointing towards the increasing direction of θ. The last term in
equation (1) models the self-propulsion with strength B.

Fig. 1 Schematics of a microswimmer exemplified by a flagellated
bacterium. The domain occupied by the microswimmer is modeled as an
ellipse, oriented parallel to the unit vector p. The VELC far-field director
orientation is shown by n∞. The angle between the horizontal axis and the
vector p is given by α. Small blue segments represent the nematic director
field. These segments are tangential to the microswimmer’s surface, thus
illustrating planar anchoring.
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The slip velocity vsq is commonly used for spherical swimmers
(squirmers) in the Stokes flow28, 29. Elliptical squirmers were
studied in Newtonian30–34 as well as viscoelastic fluids35, 36.
However, there is a lack of studies of their motion in liquid
crystals except for passive ellipsoidal/spheroidal particles37–39. We
use simplified Lighthill-Blake squirmer boundary condition30, 40

with only two modes on the elliptical surface of the squirmer
(c.f.35). We expect, based on experimental results4, 27, that the
most striking effects happen due to the anchoring of the nematic
director on the boundary and the generic type of the swimmer
(that is, pusher/puller). Influence of the highest stroking modes or
specific for elliptical squirmers boundary conditions (e.g., as
in13, 32–34, 36, 41) on the swimmer motion in liquid crystals is a
matter of future studies.

In the case when B= 0, equation (1) is reduced into the
classical boundary condition for passive rigid body motion.
Squirmer parameter β determines the type of the microswimmer.
When β > 0, boundary condition (1) models a puller-type
swimmer whose propulsion "motor" is at the front and body
mass is concentrated at the back (e.g., eukaryotic unicellular algae
Chlamydomonas reinhardtii), whereas for β < 0, the microswim-
mer is a pusher whose propulsion "motor" is at the back and body
mass is concentrated at the front (e.g., motile bacteria Escherichia
coli, Bacillus subtilis, etc.). If β= 0, the microswimmer is a
neutral one (e.g., ciliates Paramecium).

The viscoelastic fluid is described by the generic continuum
model proposed in42, 43, which is the Beris-Edwards model for the
liquid crystal nematic order parameter Q coupled with an
equation for the polymer conformation tensor C. Conventionally,
unit director field n(x) and scalar order parameter q(x) are used
to characterize the anisotropy of the nematics, as in the Eriksen-
Leslie model44–46. The director n(x) represents the local average
orientation of the nematic, whereas the scalar order parameter
q(x) describes the variation of the nematic orientation from the
average one. For the Beris-Edwards model, a symmetric and
traceless tensor order parameter Q(x) is used

QðxÞ ¼ qðxÞ nðxÞ � nðxÞ � I
d

� �
ð2Þ

to characterize the anisotropy of the media. Here I is d × d
identity matrix and d is the space dimension of the problem. We
consider the case d= 2 for simplicity. It is an approximation to
the quasi-2D experiments where two rigid walls (substrates) are
used to contain a thin layer of VELC with swimming bacteria.
External force Fexter aligns the director n with n∞= 〈1, 0〉, which
corresponds to the alignment of the media due to the substrates.
Surface anchoring (planar or homeotropic) is modeled at the
surface of the microswimmer via anchoring force Fanc with
strength W.

To model viscoelastic effects, the conformation tensor C(x) is
introduced as

C ¼ rðxÞ � rðxÞ; ð3Þ
where r(x) is an end-to-end vector representing the average
elongation of the nematic. Coupling parameter χ between Q and
C determines the alignment of elongation vector r with the
director parameter n and plays a major role in the model as it will
be seen from the results below. If the coupling χ < 0, r(x) prefers
to be parallel to the director n(x) whereas for χ > 0, r and n prefer
to be perpendicular to each other. That is to say, physically, when
χ < 0, the elongation is more likely to be along the long nematic
axis and perpendicular to the long nematic axis when χ > 0. The
larger the absolute value of χ, the stronger the coupling between
n(x) and r(x) is. We will mainly consider the case when
χ < 0 since it is more relevant to biological VELC (e.g., mucus).

Besides the tensor order parameter Q and conformation tensor
C, velocity field v(x), and pressure p(x) are used to model the
hydrodynamics of the viscoelastic nematics. They are determined
through solving the Stokes equation with additional stresses
depending on Q and C characterizing the viscoelastic properties.

Dynamics of a single microswimmer. We first perform
numerical experiments for a single microswimmer in the VELC
to study the stability of its swimming direction. It is found that
for an elongated puller (β > 0), there exists a critical planar
anchoring strength Wcrit which controls the stable swimming
direction of a puller. That is to say, a puller prefers to swim
perpendicular to n∞ when W <Wcrit and parallel to n∞ when
W >Wcrit, see Fig. 2a. As for a pusher, there exists a critical
homeotropic anchoring strength. If W <Wcrit, the pusher prefers
to swim parallel to n∞, see Fig. 2b. If W >Wcrit, the pusher prefers
to swim perpendicular to n∞. A pusher with planar anchoring
and a puller with homeotropic anchoring do not demonstrate
critical behavior and swim parallel and perpendicular to the
nematic director field, correspondingly, see Fig. 2b.

Similar results were obtained in47 for the stable swimming
direction of a single microswimmer in pure liquid crystals
described by the Beris-Edwards model without conformation
tensor C. Compared to the swimmer dynamics in non-
viscoelastic nematics, the new finding here is that viscoelasticity
affects the convergence rate of the swimmer’s orientation to its
stable swimming direction if χ < 0. In general, viscoelasticity
reduces the torque acting on the squirmer caused by elastic
stresses emerging due to distortion of the nematic order by
anchoring. Since the total torque is the sum of hydrodynamic and
elastic torques, the resulting effect depends on the interplay
between them, see47. A puller with weak planar anchoring whose
preferred swimming direction is perpendicular to n∞ rotates to its
preferred swimming direction faster (see Fig. 2c). The same
happens for a pusher with weak homeotropic anchoring; its
convergence to its preferred parallel direction is also "sped up”. In
contrast, a puller slows down its rotation to the parallel direction
when strong planar anchoring and to the perpendicular one when
weak homeotropic (see Fig. 2d) is applied. Correspondingly,
when strong homeotropic anchoring is applied, a pusher slows
down its rotation to the perpendicular direction.

That happens because there are two preferred orientations for a
swimmer in liquid crystals: (i) a swimming direction favored due
to the type of swimmer in which the torque caused by
hydrodynamic stresses tries to rotate the swimmer; (ii) a direction
favored due to the elongated shape of the swimmer together with
the anchoring type (in this direction the torque caused by elastic
stresses rotates the swimmer). When these two favored directions
are different, critical behavior is found47. In VELC, viscoelasticity
attenuates alignment towards the second favored direction due to
the elongated shape and the anchoring type. This favored
direction is parallel to n∞ for planar anchoring and perpendicular
to n∞ for homeotropic anchoring. That happens because the
elongation of the liquid crystal molecules along their principal
axes prevents the relaxation of the molecular orientation to n∞.
This relaxation is the main reason the elongated microswimmer
rotates parallel to n∞ when planar anchoring is present. These
results are summarized in Table 1. A more detailed explanation of
this phenomenon will be given in the Discussion; see also
Supplementary Fig. 1 showing contributions to the total torque
acting on the elongated squirmer.

We also performed numerical experiments for a single pusher’s
back-and-forth motion with the coupling parameter χ < 0. The
pusher with planar anchoring is launched with the initial
orientation α= 0 (along its stable swimming direction).
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It ensures that the swimmer will not rotate, and its trajectory will
be a straight line. After some transient, we flip the swimming
direction to α= π (also a stable swimming direction). Then the
swimmer moves along the same trajectory but in the opposite
direction. During the backward motion, the swimmers have the
same gait, which is represented by the coefficient B in (1). In
experiments, such back-and-forth motion is related to some
common swimming properties of bacteria, like tumbling.
However, since random reorientation with respect to an overall
nematic direction is not possible in liquid crystals, instead of run-
and-tumble behavior, bacteria execute back-and-forth motion3, 4.

We found in these computational experiments that the pusher
has a larger speed swimming backward (α= π) than forward
(α= 0). This observation agrees with experimental observation
on motion of bacteria Bacillus subtilis in mucus10, where a 20%
increase in the speed traveling backward on the same trajectory
was observed, see Fig. 3. Compared to our numerical results, it
corresponds to the case when χ=− 0.04. In addition, we
observed numerically that the speed difference depends on the

absolute value of coupling parameter χ, and it increases when ∣χ∣
grows, see Fig. 3a. That is because a transient "tunnel” is created
at the back of the pusher when it is swimming forward, see
Fig. 4a–d where the walls of the "tunnel” were determined as
curves with values of scalar order parameter q= 0.4. When it
swims backward, the pusher goes back into the "tunnel”, which
facilitates swimming. After traveling backward for about twice its
body length, the pusher’s swimming speed begins to relax
towards its original value during the forward motion (see Fig. 3b).
See details of this "tunnel” effect in the Discussion. The increase
in velocity is relatively small if the coupling between Q and C
tensors is turned off and VELC becomes ordered viscoelastic
fluid, that is χ= 0. In this case, the speed of motion is close to the
speed in the pure liquid crystal without viscoelasticity, see Fig. 3a.

Two microswimmers. To further investigate this observed back-
and-forth motion, we also performed numerical studies for two
pusher-type swimmers, one pursuing the other. We have found
that the following swimmer has a larger speed than the leader at
the beginning of its motion. This speed difference is larger when
the viscoelastic effects are stronger (that is, χ is more negative).
After the distance between two swimmers reaches a critical value,
the speed difference decreases to zero, and both swimmers travel
at the same speed. That happens for the same reason as the speed
difference observed in back-and-forth motion. In this numerical
study, the leading swimmer creates a tunnel that makes moving
easier for the following swimmer. This tunnel, attracting two
swimmers to each other, competes with the hydrodynamic
repulsion of two pushers. That leads to the existence of a critical
distance where attraction and repulsion are balanced. Similar
results were observed if two swimmers initially follow a parallel
course, see Fig. 5a, b. If the coupling between Q and C tensors is
turned off, that is χ= 0, then the viscoelastic effects are relatively
weak, and the swimmers are slightly repulsive due to elastic

(a) (b)

(d)(c)

Fig. 2 Orientation dynamic of a single swimmer. a Orientation angle of a puller with strong (blue) and weak planar anchoring (red). b Orientation angle of
a pusher with strong (red) and weak homeotropic anchoring (blue). c, d Relaxation time τrl vs. β for different values of coupling parameter χ when planar
anchoring strength W= 0.1. Positive β corresponds to pullers and β < 0 to pushers.

Table 1 The swimming stable direction of an elongated
swimmer depending on its type (puller/pusher) and
anchoring condition.

Weak

Strong puller pusher

planar ⊥n∞,↗ ∥n∞,↘
∥n∞,↘ ∥n∞,↘

homeotropic ⊥n∞,↘ ∥n∞,↗
⊥n∞,↘ ⊥n∞,↘

The direction parallel to n∞ is denoted by ∥n∞, and perpendicular — by ⊥n∞. The effects due to
viscoelasticity are marked by↘ (slowing down) and↗ (speeding up).
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interactions (see Fig. 5b, black solid and dashed curves, where the
distance grows from 8 to about 11 swimmer widths). However, if
the coupling is present, the swimmers attract each other: first
traveling in intersecting courses and then resuming parallel
motion. Likewise for swimmers in pursuit, the critical distance
also exists in this case, see Fig. 5a, having a similar behavior, that
is, the stronger the coupling is, the closer the swimmers approach.

We are also interested when two swimmers are launched with
different initial direction angles α, see Figs. 6, 7. The scalar
order parameter and the nematic fields for two swimmers with

the same initial orientations are shown in Fig. 6a, b.
Correspondingly, the same fields for two swimmers with
different initial orientations are shown in Fig. 6c, d. That
shows how the tunnel formation affects the trajectory of the
following swimmer. A numerical study is performed with two
pushers whose centers of mass are both located on the x-axis.
The initial direction for the first swimmer is α(t= 0)= 0 and
the initial direction for the second swimmer is α(t= 0)= π/6.
We fix the swimming direction of the first swimmer so that it
plays the role of the "leader”. We found that the second

(a)                                                  (b)

Fig. 3 Swimming speed for motion reversal on the same track. A pusher (β=− 2) with planar anchoring (W= 0.5) swims horizontally (parallel to n∞)
towards the bouncing point (forth motion) and switches to the opposite direction after reaching the bouncing point (back motion) a Average speed of the
microswimmer within one body length from the bouncing point. The case “no VE” corresponds to the motion in the pure liquid crystal when viscoelasticity
is turned off. b Swimming speed vs position of the swimmer for χ=− 0.03. Point A corresponds to the starting point for the forward motion and point B to
the final point. Points C and D correspond to the starting and final point of the backward motion.

(a)                                        (b)

(c)                                        (d)

Fig. 4 Single swimmer in VELC. A single pusher (β=− 2) with planar anchoring (W= 0.5) in VELC. Coupling parameter χ=− 0.01. Topological defects
generated by the swimmer are encircled. Red and green circles are correspondingly “+ 1/2” and “− 1/2” defects. The dashed lines shows a transient
tunnel formed by the swimmer. a Scalar order parameter q(x) around the swimmer. b Director field n(x) around the swimmer. c Largest eigenvalue of
conformation tensor C. d The eigenvector corresponding to the largest eigenvalue of C.
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swimmer first tries to rotate so that it will move back to the x-
axis, which is the trajectory of the leader. Once it returns to the
x-axis, it overshoots and swims below the x-axis. Eventually it
swims back to the x-axis and then follows the leader (see
Fig. 7a). We denote the distance traveled in x-direction by the
second swimmer before it returns back to the x-axis for the first
time as the first half period. This value can be used to quantify
how strong the oscillations are. The dependence of the first half
period on the coupling parameter χ is shown in Fig. 7b.

It is worth noticing that all these numerical results are
discovered in a physically reasonable parameter regime. Swim-
mer’s length is taken to be l= 5 ⋅ 10−6m and its speed is
approximately twice its body length per second. Erickson number
Er ¼ ηVl

K ¼ 2:5 with viscosity η= 0.5kg ⋅m−1 ⋅ s−1 and elastic
constant K= 10pN.

Discussion
Our study shows that the viscoelastic effects, represented by the
coupling between the tensor order parameter Q and the con-
formation tensor C, significantly affect the behavior of a single
microswimmer and multiple microswimmers in VELC. As we
observe, the primary source of the obtained results is not the
viscolasticity itself but rather the coupling between the nematic
director n and the end-to-end elongation vector r. The strength of
this conjunction is represented in the model by the value of the
coupling parameter χ. For χ < 0, n and r tend to have the same
direction. Being perturbed by the swimmer’s motion, both n and
r relax into a minimal energy state: n relaxes towards the direc-
tion prescribed by aligning force Fexter and r follows. However,
the coupling between them slows down the relaxation of n,
keeping the orientation of VELC molecules n with their

(a)                                              (b)

Fig. 5 Two parallel swimmers. Two pushers (β=− 2) with planar anchoring (W= 0.5) swim with parallel initial velocities. The initial distance from the
side to side is 8 times larger than their widths. a Critical distance (measured from side to side) between two swimmers when they resume traveling in
parallel. b Trajectories of the centers of mass of swimmers for different values of χ. The solid curves correspond to the top swimmer, and the dashed curves
represent the trajectory of the bottom swimmer.

Fig. 6 Two swimmers in VELC. Two pushers (β=− 2) with planar anchoring (W= 0.5) swim in VELC. Coupling parameter χ=− 0.03. Topological
defects generated by the swimmer are encircled. Red and green circles are correspondingly “+ 1/2” and “− 1/2” defects. a Scalar order parameter q(x)
around the swimmer when two swimmers are launched with same initial orientation α= 0. b Corresponding director field n(x) of (a). c Scalar order
parameter q(x) around the swimmer when two swimmers are launched with different initial orientation, α= 0 for the leading one and α ¼ π

6 for the
following one. d Corresponding director field n(x) of (c).
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elongation direction r. Thus, reducing the aligning torque Tela
exerted on the swimmer due to substrate aligning force Fexter and
the surface anchoring force Fanc. As discussed in47, the con-
vergence rate of swimming direction α to the stable direction for
an elongated swimmer is a competition between the torque Thydro
due to hydrodynamic interactions and the torque Tela due to
elastic interactions induced by Fexter and Fanc. This reduction of
the aligning torque Tela makes the convergence of swimming
direction α to the direction favored by the aligning force and
surface anchoring less pronounced. In this connection, see Sup-
plementary Fig. 1, where contributions to the total torque acting
on a puller with homeotropic anchoring are given. For the weak
anchoring, viscoelasticity works together with Thydro and Tela
against additional torque due to anisotropy L and speeds up the
rotation. On the contrary, viscolasticity for the strong anchoring
works with Tela against Thydro and additional torque L, thus,
slowing down rotation.

Compared to liquid crystals modeled by Beris-Edwards
equations47, in the VELC with an active microswimmer, the
detachment of defects happens at a much lower Erickson
number (Er ≈ 1). However, the boojum defects attached to the
swimmer’s surface appear at the same Erickson number. In
VELC, defects detach from the interface of the swimmer and
turn into a "− 1/2” defect in its front (green circle in Fig. 4) and
a "+ 1/2” defect at the back (red circle in Fig. 4). When the
microswimmer turns around and swims backward, the new
"− 1/2” defect is attracted to the original "+ 1/2” defect and
accelerates the swimmer. In our computational study, the
"turning around” happened by manually changing the propul-
sion direction α. The defects were observed numerically as

points xd, where the scalar order parameter q(xd) < 0.1. The type
of defects ("+ 1/2” or "− 1/2”) was determined by examining
the local orientation of the director field. Note that due to
coupling between Q and C tensors, planar/homeotropic
anchoring of the director induces the respective direction of the
principal axes of the conformation tensor. On the contrary, the
hydrodynamic effects define the orientation of the conforma-
tion tensor in viscoelastic fluids48. In this relation, see Supple-
mentary Figs. 2, 3, where pushers with planar and pullers with
homeotropic boundary conditions are presented, the orienta-
tion of the conformation tensor due to hydrodynamic effects
coincides with orientation due to anchoring.

For two microswimmers, topological defects may explain the
fact that the following swimmer has a higher swimming speed
compared to the leading one (see Fig. 6). Those two "+ 1/2”
defects at the back of the leading swimmer attract two "− 1/2”
defects at the front of the pursuing swimmer due to relaxation
of the elastic energy in the nematic field between them. That
accelerates the following swimmer and decelerates the leading
one. However, the flow field around the pushers repulses them
from each other, (see Fig. 8a, b). The competition between the
hydrodynamic repulsion and the elastic attraction (topological
defects) leads to the origin of the critical distance between two
swimmers (see Fig. 9a, b). A larger magnitude of the coupling
parameter χ increases the deformations and, therefore, energy
stored in the nematic field between swimmers, accelerating the
following swimmer. Hence attraction due to the elasticity
(topological defects) grows, which leads to a smaller critical
distance. Turning off coupling between conformations and
nematic order but keeping viscoelasticity (χ= 0) reduces the

(a)                                                      (b)

Fig. 7 Two swimmers with different initial direction. Two pushers (β=− 2) with planar anchoring (W= 0.5) swim one after the other with different
initial direction: the leading swimmer with α(t= 0)= 0 and the following swimmer with α(t= 0)= π/6. It is imposed that the leading swimmer does not
change its direction. The second swimmer follows the trajectory of the first swimmer. a Trajectory of the center of mass of both swimmers when
χ=− 0.03. b First half period (strength of oscillation) vs coupling parameter χ.

Fig. 8 Two swimmers in VELC, launching with the same initial orientation α= 0. Two pushers (β=− 2) with planar anchoring (W= 0.5) swim in VELC.
Both of their initial orientation is α= 0. Coupling parameter χ=− 0.03. a Fluid velocity field v(x) around the swimmers. b Sketch of the velocity field
showing that two pushers are repulsive when one follows the other.
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medium to an ordered viscoelastic fluid. Here we do not
obtain an increase in speed for the following swimmer; see Fig.
9a. It shows the importance of the memory effects and of the
conjunction between director and elongations. In some
viscoelastic fluids the speed increases17 and particles attract
each other49 due to shear-thinning and local decrease of
viscosity. In our case, the primary source is the slow relaxation
of the director in the tunnel region caused by viscoelastic
coupling.

Since defect interaction strength is inverse proportional to
the distance between them, the tunnel effect may be accounted
for by the acceleration of the aft swimmer on large distances
comparable to several swimmers’ sizes. As it is seen from Fig. 4,
a single swimmer creates (burrows) a tunnel: a zone where
nematic order is distorted and the level of anisotropy is sup-
pressed. Correspondingly, the scalar order parameter q is rela-
tively small. In the meantime, the largest eigenvalue of the
conformation tensor C is relatively small (less than 1) in this
tunnel region, which means larger viscoelastic deformations,
specifically compressive deformations. Both effects lead to an
increase in elastic and viscoelastic energy stored in the tunnel
region. The tunnel effect allows the swimmer in the tunnel to
achieve higher velocity with the same propulsion strength, see
Figs. 3 and 9.

When two swimmers with their centers of mass xc located on
the x-axis are launched with different initial orientations α as it is
shown in Fig. 6, the attraction between the topological defects
that swimmers generate tries to "pull” the following swimmer
onto the trajectory of the leading one. Therefore, after the aft
swimmer travels upward for a while due to its initial orientation
(see this trajectory in Fig. 7a), it comes back to the trajectory of
the leading particle, and they form a "train”, see Fig. 6. Such
phenomenon was also found experimentally in27 where more
than two bacteria were observed forming a train and swimming
together along the same trajectory in liquid crystals with home-
otropic surface anchoring on the substrate and planar anchoring
on the bacteria surface.

For parallel swimmers, see Fig. 5, we suggest the following
explanation. The zone of suppressed anisotropy between swim-
mers facilitates their motion and, therefore, they attract each
other. However, the closer they get, the stronger the elastic
repulsion is. At the critical distance where these two effects bal-
ance each other, the swimmers resume parallel motion. Similar
effects are observed in pure viscoelastic fluids49. However, the
connection between nematic and viscoelastic properties is more
subtle in our case. Indeed, when the coupling is turned off (χ= 0),

the viscoelastic effects are not strong enough to cause attraction of
swimmers, see Fig. 5.

Conclusion
In conclusion, we developed a computational method to inves-
tigate the dynamics of self-propelled rigid particles in a viscoe-
lastic nematic environment. Our study demonstrated that
viscoelasticity is responsible for a variety of phenomena not
observed in traditional liquid crystals: transient tunnels and
memory effects. For example, we observed a speed difference in
back-and-forth motion after the direction reversal, the appear-
ance of trains, etc., in faithful agreement with the experiments on
bacterial motility in mucus10. Based on our results, we expect that
enhancing viscoelasticity in bacterial liquid crystalline suspen-
sions will facilitate the formation of bacterial trains and enhance
their stability, thus, paving the way to the onset of collective
motion while allowing for the reduced critical distance between
bacteria.

Further study of the model may provide new insights into the
collective behavior of many swimmers in VELC. However, the
existing computational algorithm is relatively slow and is not
well-suited for this problem. A main computational bottleneck is
calculating the hydrodynamic flow around the swimmer and
satisfying the corresponding boundary condition. We expect that
replacing a rigid swimmer with a self-propelled object with
simplified boundary conditions, e.g. based on a dipole force50,
may significantly speed up computations.

Methods
Computational model. The dynamics of the tensor order parameter Q, con-
formation tensor C, the flow velocity v, as well as hydrodynamic pressure p are
described by the system:

ð∂t þ v � ∇ÞQ ¼ SQðQ;∇vÞ þ ΓQHQ þ Fexter þ Fanc; ð4Þ

ð∂t þ v � ∇ÞC ¼ SCðC;∇vÞ þ ΓCHC þ KC∇
2C; ð5Þ

∇ � ð�pIþ 2ηDþ σQ þ σCÞ ¼ μv; ð6Þ

∇ � v ¼ 0: ð7Þ
In the framework of the Beris-Edwards model51, equation (4) represents the evo-
lution of the tensor order parameter Q due to the molecular field HQ and rotation
as well as stretching by the flow, which is expressed by the tensor:

SQðQ;∇vÞ ¼ QΩ�ΩQþ 2ξ
d
Dþ 2ξ½QD�ST � 2ξQTr½QD�; ð8Þ

In (8), D and Ω are symmetric and antisymmetric parts of the gradient tensor∇
v, correspondingly, the constant ξ is the shape parameter of the VELC molecules,
which determines its rotational response to a shear flow. Superscripts S, T denote

(a)                                                      (b)

Fig. 9 Swimming speed for two swimmers, one following the other. Two pushers (β=− 2) with planar anchoring (W= 0.5) swim one after the other.
The initial distance from the tail of the leading swimmer to the head of the following swimmer is twice their body length. a The average speed of each
pusher swimming its first body length b Critical distance (measured from the tail of the leading swimmer to the head of the following swimmer) between
two swimmers when their speeds become equal.
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symmetric and traceless parts of a tensor, respectively. The molecular field HQ

multiplied by the relaxation constant ΓQ in (4) is the variation of the free energy
density f with respect to Q:

HQ ¼ � ∂f
∂Q

� ∇
∂f

∂∇Q

� �ST

: ð9Þ

The free energy density f consists of three parts:

f ¼ f Q þ f C þ f QC ; ð10Þ
namely, the Landau–de Gennes energy density

f Q ¼ � aL
2
trQ2 � bL

3
trQ3 þ cL

4
ðtrQ2Þ2

� �
þ K

2
j∇Qj2; ð11Þ

the energy density of dumbbell polymers

f C ¼ GC

2
ðtrC� ln detCÞ ð12Þ

and the coupling term

f QC ¼ κtrðC� IÞðtrQ2Þ þ 2χtrCQ: ð13Þ
In (11)–(13), K is the elastic constant, aL, bL, and cL are the Landau-de Gennes
coefficients, GC is the polymer elastic modulus, ϰ controls the shift of the nematic
transition, and the sign of coupling parameter χ defines the respective alignment of
tensors Q and C as explained in the Results section. In what follows, we assume
that the polymer network does not affect the nematic transition and therefore ϰ= 0
in our computational model.

The force Fexter in (4), exerted by the substrate that aligns the nematic director
along vector n∞, is expressed as

Fexter ¼ 4ξextQRπ=2tr Q n1 � n1 � 1
2
I

� �
Rπ=2

� �
; ð14Þ

where Rπ/2 is the π
2-rotation matrix.

The tensor SC in (5) is similar to SQ and describes the interactions of the
conformation tensor C with the flow:

SC ¼ CΩ� ΩCþ 2aC ½CD�S; ð15Þ
where aC is the alignment constant. The term HC in (5) is defined via molecular
field B:

HC ¼ 2½BC�S; B ¼ � δf
δC

� �
¼ �GC

2
ðI� C�1Þ � κItrQ2 � 2χQ; ð16Þ

and ΓC ¼ ðτCGCÞ�1 is the respective relaxation constant where τC is the relaxation
time of the polymer network.

The momentum balance equation (6) together with (7) model the
incompressible flow of the VELC for small Reynolds numbers. Here, σQ and σC are
additions to viscous stresses due to elastic and viscoelastic deformations properties

σQ ¼ �Kð∇QÞ : ð∇QÞ þ 2½QH�A � 2ξ
d
H� 2ξ½QH�ST þ 2ξQtr½QH�; ð17Þ

σC ¼ �2aC ½CB�S þ 2½CB�A: ð18Þ
Furthermore, we model the substrate friction of the flow by adding the linear term
μv in the Stokes equation (5), where μ is the friction coefficient4.

The microswimmer is modeled as a rigid elliptical particle. We assume that its
interior is filled with artificial VELC so that equations (4)–(5) are satisfied in the
entire domain. The surface anchoring is modeled by introducing in (4) the forcing
function:

Fanc ¼ 4ξancQRπ=2tr½Qðnancnanc �
1
2
IÞRπ=2�

∇ϕ
j∇ϕj

� �2

; ð19Þ

which aligns the nematic director with the vector nanc near the particle’s boundary.
The preferred direction of the nematic director given by vector nanc is tangential to
swimmer’s surface γ if the planar anchoring is applied and normal to γ if the
homeotropic anchoring is used. The smooth function ϕ (a phase field function) is
equal to 1 inside the microswimmer, 0 outside and has a smooth transition from 0
to 1 near the boundary of the swimmer. At each time-step of numerical
implementation, the function ϕ(x, t) is updated based on the changed position of
the center of mass xc and orientation α of the microswimmer. It is supposed that
natural boundary conditions ∂C

∂ν ¼ 0 are satisfied for the conformation tensor C on
γ and do not require the introduction of a forcing term in (5). Outward normal
vector ν is perpendicular to the swimmer’s boundary. The no-slip velocity
boundary condition (1) involves the translational velocity of the microswimmer
V ¼ _xc and its angular velocity ω ¼ _α that satisfy force and torque balances
considered in the small inertia limit:

F ¼ 0; M ¼ 0; ð20Þ

where

F ¼
Z

γ
FνdPx ; M ¼

Z
γ
ðx � xcÞ ´Fν þ Lν
� �

dPx ;

Fν ¼ ð�pIþ 2ηDþ σQ þ σCÞ � ν;
ð21Þ

in which γ is the boundary of the particle. A more detailed explanation of how to
compute V and ω is given in Supplementary Notes 1 and 2. The additional torque
L arises due to anisotropy of the VELC and, therefore, asymmetry of the stress
tensor σQ. Due to the balance of angular momentum45, the following relation is
satisfied

div L ¼ ~τ; ð22Þ
where ~τ is the skew symmetric part of σ

~τi ¼ εijkσ jk; ð23Þ
where εijk is the Levi-Civita symbol. Therefore, we can expressZ

γ
LνdPx ¼

Z
Ω
div LdΩ ¼

Z
Ω
~τdΩ: ð24Þ

The described model recovers the motion of microswimmers in liquid crystals
taking the parameters κ, χ, and ac zero with the initial value C= I. Setting K, ξ, ξanc,
ξext to zeros and the coefficient aL positive in the Landau–de Gennes free energy
with the initial value of the scalar order parameter q= 0, we obtain isotropic pure
viscoelastic behavior. By combining these conditions, the motion in the Stokes flow
is recovered.

Numerical implementation. For numerical implementation, the equations (4)–(7)
are scaled by characteristic length 2.5 × 10−6 m and time 10−3 s. After rescaling, the
dimensionless length of the swimmer l= 1 and the dimensionless swimmer velo-
city B1 ≈ 5 ⋅ 10−3. Mass is scaled by 10−9 kg so that the dimensionless shear visc-
osity η= 0.5 and elastic constant K= 5 ⋅ 10−3.

For tensors

Q ¼ q1 q2
q2 �q1

� �
;C ¼ c11 c12

c12 c22

� �
; ð25Þ

auxiliary complex variables

q ¼ q1 þ iq2; p1 ¼
c11 � c22

2
þ ic12; p2 ¼ c11 þ c22; ð26Þ

are introduced. Then (4), (5) are reduced into three scalar PDEs

_q ¼ ΓQK∇
2qþ f q;v ; _pj ¼ KC∇

2pj þ f pj ;v ; j ¼ 1; 2; ð27Þ
where f q; f pj are nonlinear functions depending on q, pj, their spatial derivatives

and velocity field v.
Equations (27) are considered in a periodic domain. By applying the Fast

Fourier transform F ðgÞ ¼ ĝ of (27), we obtain ordinary differential equations in
the frequency domain

_̂q ¼ �ΓQKðk2x þ k2yÞq̂þ f̂ q;v ;

_̂pj ¼ �KCðk2x þ k2yÞp̂j þ f̂ pj ;v ; j ¼ 1; 2:
ð28Þ

For each equation in (27), the solution is found semi-analytically, and the functions
q, p1, p2 are computed at the time instant t+ Δt as

qðt þ ΔtÞ ¼ F�1 e�ΓQKðk2xþk2y ÞF ðqðtÞÞ þ ΔtF ð f q;vðtÞÞ
� 	

;

pjðt þ ΔtÞ ¼ F�1 e�KC ðk2xþk2y ÞF ðpjðtÞÞ þ ΔtF ð f pj ;vðtÞÞ
� 	

; j ¼ 1; 2:
ð29Þ

Given functions q, pj at the time instant t+ Δt, the velocity field v(t+ Δt) is found
by solving the momentum balance equation (6) with boundary condition (1) via
the Boundary Integral Method (BIM)52. We introduce an artificial fluid velocity
field w inside the swimmer for which the squirmer boundary conditions are
satisfied. Next, we compute by means of FFT two Green’s functions of the Stokes
equation with periodic boundary conditions in the entire periodic cell (with no
particles) corresponding to two Dirac forces acting along coordinate directions.
Similar to the Lorenz reciprocal theorem, we derive integral equations on the
boundary γ with unknown ψ= v−w. Discretizing the boundary, we solve a linear
system on ψ and then restore v in the bulk; see details in Supplementary Notes 1
and 2. Then, the position, angular velocity, and phase-field are updated due to the
force and torque balances (20).

A spatial grid of 1024 × 1024 points is used in a periodic domain of
dimensionless size 8π × 8π. Compared to the length of the swimmer, which has a
length 1, a relatively large size of the domain is chosen to reduce the boundary
effects and the perturbations caused by the swimmers in the adjacent periodic cells.
When applying BIM to solve momentum equation (6), an auxiliary function
defined on γ is solved on a mesh with equally distributed 2048 points on the
boundary of each particle. Then velocity field v is recovered by the auxiliary
function on the main mesh. More details are given in the Supplementary Note 2.
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The numerical scheme was implemented in CUDA C++ and run on GPUs.
The standard built-in FFT library53 was utilized to perform the Fourier transform,
whereas the authors wrote the BIM code with the linear GMRES solver accelerated
by parallelization via CUDA on GPUs.

Data availability
The data that support the findings are available from the corresponding author upon a
request.

Code availability
The code to carry out the simulations is available from the corresponding author on a
request.
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