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Abstract

We give a short proof of the Torelli theorem for ALH* gravitational instantons using the authors’ previous
construction of mirror special Lagrangian fibrations in del Pezzo surfaces and rational elliptic surfaces together
with recent work of Sun-Zhang. In particular, this includes an identification of 10 diffeomorphism types of ALH}
gravitational instantons.
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1. Introduction

Gravitational instantons were introduced by Hawking [11] as certain solutions to the classical Einstein
equations. They are the building blocks of Euclidean quantum gravity and are analogous to self-dual
Yang-Mills instantons arising from Yang-Mills theory. Mathematically, gravitational instantons are
noncompact, complete hyperKihler manifolds with L?-integrable curvature tensor. Depending on the
volume growth of the geometry at infinity, there are a few known classes of gravitational instantons
discovered first: ALE, ALF, ALG, ALH. Here ALE is the abbreviation for asymptotically locally
Euclidean, ALF is for asymptotically locally flat, and the latter two were simply named by induction.
Later, Hein [12] constructed new gravitational instantons with different curvature decay and volume
growth on the complement of a fibre in a rational elliptic surface, named ALG* (corresponding to
Kodaira type 1, -fibre) and ALH" (corresponding to Kodaira type Ij,-fibre). The first class has the same
volume growth as ALG but with different curvature decay, while the latter has a volume growth of 7#/3,

Gravitational instantons also play an important role in differential geometry, as they arise as
the blow-up limits of hyperKihler metrics [14, 6]. Recently, Sun-Zhang [27] made use of the
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2 Collins Tristan et al.

Cheeger-Fukaya-Gromov theory of N/-structures to prove that any nonflat gravitational instanton has a
unique asymptotic cone and indeed falls into one of the families in the above list. Thus, it remains to
classify the gravitational instantons in each class.

The classification of the gravitational instantons has a long history. By work of Kronheimer [17],
ALE gravitational instantons always have the underlying geometry of a minimal resolution of the quo-
tient of C? by a finite subgroup of SU(2). Moreover, Kronheimer established a Torelli-type theorem
for ALE gravitational instantons. More recently, building on work of Minerbe [21], Chen-Chen [3]
studied gravitational instantons with curvature decay |Rm| < r~2=¢ for some & > 0. They proved
such gravitational instantons must be of the class ALE, ALF, ALG or ALH. Moreover, Chen-Chen
proved that up to hyperKéhler rotation, ALH (or ALG) gravitational instantons are isomorphic to the
complement of a fibre with zero (or finite) monodromy in a rational elliptic surface. Very recently,
Chen-Viaclovsky [6] studied the Hodge theory of ALG*-gravitational instantons, and then Chen-
Viaclovsky-Zhang [7] proved the Torelli-type theorem for the ALG, ALG" gravitational instantons.
So the remaining case is the classification of the gravitational instantons of type ALH™.

Examples of ALH™ gravitational instantons are constructed from del Pezzo surfaces by Tian-Yau
[28] and from rational elliptic surfaces by Hein [12]. Hein observed that these two examples have the
same curvature decay, injectivity radius and volume growth. The relation between the two examples was
made precise by the authors [4, 5] as a by-product of their work on the Strominger-Yau-Zaslow mirror
symmetry of log Calabi-Yau surfaces; in particular, it was shown that these two examples are related by
a global hyperKihler rotation.

The goal is this paper is to give a short proof of a Torelli theorem for ALH™ gravitational instantons
using the earlier results in [4, 5], together with the recent work of Sun-Zhang [27]. Below, we give an
informal statement of the main theorem and refer the reader to Theorem 3.9 for a precise version.

Theorem 1.1. ALH* gravitational instantons are classified by the cohomology classes of their
hyperKdhler triple.

The proof of the above theorem is similar to the Torelli theorem for K3 surfaces, which is a
consequence of the results from [26, 2, 20] and the Calabi conjecture [29]. The proof goes as follows;
using the exponential decay result of ALH* gravitational instantons to the Calabi ansatz by Sun-Zhang
[27], an earlier argument of the authors from [4] implies that up to hyperKéhler rotation, any ALH*
gravitational instanton can be compactified to a rational elliptic surface. The complex structure of such
arational elliptic surface is determined by Gross-Hacking-Keel’s [9] Torelli theorem for log Calabi-Yau
surfaces. Theorem 3.9 then follows from a local model calculation in combination with the essentially
optimal uniqueness theorem for solutions of the complex Monge-Ampere equations established by the
authors in [5].

The paper is organised as follows. In Section 2, we review the earlier work of the authors. This includes
the construction of special Lagrangian tori via the mean curvature flow in the geometry asymptotic to
the Calabi ansatz and the hyperKéhler rotation of the Calabi ansatz, as well as a uniqueness theorem for
Ricci-flat metrics on the complement of an [,-fibre in a rational elliptic surface. In Section 3, we first
recall the result of Sun-Zhang [27] on ALH* gravitational instantons and provide a short proof of the
Torelli theorem based on the results reviewed in Section 2.

2. Previous results
2.1. Ansatz special Lagrangians and their hyperKdihler rotations

We begin by reviewing the Calabi ansatz. Let D = C/(Z®Zt) be an elliptic curve with Im7 > 0 and wp
a flat metric on D. For a fixed b € N, let L be a degree b line bundle over D, and denote by Y the total
space of L with projection ¢ : Yo — D. Let X be the complement of the zero section in Y. Choose h
to be the unique hermitian metric on L with curvature given by wp with fD wp =2nb. If we let z be
the coordinate on D and ¢ a local trivialisation of L, we get coordinates on L via (z, w) + (z, w¢). The
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Calabi ansatz is then given by

2
2 dw

2
we = «/—_mag( ~loglél?)?, Q¢ = —- ATeds,

for a given holomorphic function f(z) such that

] RespQ RespQ
i/ CID2C A | ZERZC) < onb,
2 Jp 2mi 2mi

It is straightforward to check that (w¢, Q¢) is a hyperKéhler triple: that is, Zw% = Q¢ AQc. The induced
Riemannian metric is complete but not of bounded geometry. Specifically, if » denotes the distance
function to a fixed point, then as one travels towards the zero section, the curvature and injectivity radius
have the following behaviour:

= R |
2 inj~r3.

|[Rm| ~r
Let L be a special Lagrangian in D with respect to (wp, 2p), where Qp is a holomorphic volume
form on D such that wp = —QD A Qp. A straightforward calculation shows that

Le = ng' (L) N {Iél;, = &}

is a special Lagrangian submanifold of (X¢, w¢,Qc¢). We call Le an ansatz special Lagrangian. In
particular, a special Lagrangian fibration in D induces a special Lagrangian fibration in X¢, and by

direct calculation, the monodromy of such fibration is conjugate to ((1) 11)) The middle homology

Hy(X¢,Z) = 77 is generated by [Lc], [L;], where L, L’ are any pair such that [L], [L’] generates
H, (D » Z)

Since in complex dimension two, all Ricci-flat Kihler metrics are hyperKéhler, one can perform a
hyperKihler rotation and arrive at X,,,4 with a Kihler form ¢ and holomorphic volume form Qc that
has the same underlying space as X¢. By choosing the hyperKéhler rotation appropriately, the special
Lagrangian fibration near infinity in Xc becomes an elliptic fibration X,,,,q — A* over a punctured disc
A*. The monodromy of the fibration implies that after a choice of section o : A* — Xonod, the space
Xmod is biholomorphic to

b
A* X C/A(u), where A(u) =Z @ Z% log u.
Here we will use u for the complex coordinate of the disc and v for the fibre. See [5, Appendix A]. There

is a natural partial compactification ¥,,,q — A by adding an I, fibre over the origin of A.
Before we identify w¢ and Q¢, we recall the standard semi-flat metric on X4, written down in [10]:

k|log |u|| du A di
wsy.e = V-1 |k(u)]? o
V-1 2ne

"2 k|loglu ||(dv+B(u ,v)du) A (dv + B(u,v)du),

Im(v)
V=1u|log |u||"

1. & is the size of the fibre with respect to wy .
2. wyy is flat along the fibres.

where B(u,v) = — A straightforward calculation shows that

3. (wsf,8 ) form a hyperKihler triple, where Q;; = %dv A du is the unique volume form such
that fc Q¢ =1, and C is the 2-cycle represented by {|u| = const, Im(v) = 0}.
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4 Collins Tristan et al.

The cycle C is called a ‘bad cycle’ by Hein [12],! and this notion is refined by the authors in [5]. It is
easy to see that Hg(Xm,,d, Z) is freely generated by the fibre class and C; we therefore define

Definition 2.1. A cycle C’ C X,,,04 is called a quasi-bad cycle if the homology class [C’] € Ha(Xnod>Z)
can be written as m[C] + [F], where [ F] is the fibre class.

It was observed by Hein that the semi-flat metric has the same asymptotic behaviour for |Rm| and inj
as the Calabi ansatz [12]. This motivates the natural guess that the hyperKéhler rotation of the Calabi
ansatz would give the semi-flat metric. However, there is a certain subtle discrepancy, and one must
first introduce a class of nonstandard semi-flat metrics, as defined in [5]. For any bg € R, we define the
nonstandard semi-flat metric as

— \/—|K(u)| w-! du A dii
|u|?

Wsf by, & -

V=1 _ —
+ TWs(dv +T(v,u, bo)du) A (dv +I'(u,v, bo)du),

where W = W and T'(u, v, bo) = B(u,v) + 2% bo Hogulu‘l An appealing way to think of nonstandard
semi-flat metrics is that they are obtained from standard semi-flat metrics by pulling back along the
fibrewise translation map defined by a multi-valued (possibly uncountably valued) section o : A* —
Xonod; see [5]. A nonstandard semi- ﬂat metric has the same curvature and injectivity radius decay as a
standard semi-flat metric. However, 1f 0 ¢ Z, then the cohomology class of the nonstandard semi-flat

metric cannot be realised by a standard seml -flat metric. We now state the following result.

Theorem 2.2 [5, Appendix A]. Assume that D = C/Z @ Zt is an elliptic curve, with T in the upper
half-plane. Let Y¢ be the total space of a degree b line bundle L over D and X¢ the complement of the
zero section. Let we and Q¢ be the forms arising from the Calabi ansatz on X¢, as above. Consider
the hyperKihler rotation of X¢ with Kihler form ¢ and holomorphic volume form Qe such that the
ansatz special Lagrangian corresponding to 1 € Z ® Zt is of phase zero. Then with a suitable choice of
coordinates, one has

W¢ = AWsf py,er Q¢ = alsy,

where by = ——Re(‘r)b €= 12,;[(”) and a = \/brlm(7). In particular, there exists a bijection between

T & (by, €): that is, every (possibly nonstandard) semi-flat metric can be realised as some hyperKdhler
rotation of certain Calabi ansatz up to a scaling.

As a direct consequence, we get the following special Lagrangian fibrations in X,,,,¢ via hyperKihler
rotations from the Calabi ansatz:

Lemma 2.3. Fix an m-quasi bad cycle class [L] € Hy(Xmoa, Z) that is primitive. There exists a special
Lagrangian fibration in X,oq with respect to the semi-flat hyperKéhler triple (wy f.bo,s» Qs f) if and

only iff[L] Wsf by, e = 0.

2.2. A uniqueness theorem for Ricci-flat metrics on noncompact Calabi-Yau surfaces

Recall that a rational elliptic surface is a rational surface with an elliptic fibration structure. Using
the standard semi-flat metric as an asymptotic model, Hein [12] constructed many Ricci-flat metrics
on the complement of a fibre in a rational elliptic surface. In the case that the removed fibre is of Kodaira
type I, the authors established the uniqueness of these metrics as well as the existence of a parameter
space. We recall the setup here.

1t is worth noting that the definition of the bad cycle actually implicitly depends on a choice of a section o : A* — X,,,4.
We refer the reader to [5] for more details on (quasi)-bad cycles.
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Let ¥ be a rational elliptic surface and D an I,-fibre. Fix a meromorphic form Q with a simple pole
along D. Denote X = ¥ \ D, and let K ar.x be the set of de Rham cohomology classes that can be
represented by Kihler forms on X. Then K 4R.x is acone in H?(X,R). With a slight modification of
the work of Hein [12], the authors generalised the existence theorem:

Theorem 2.4 [5, Theorem 2.16]. Given any [@] € K ;g %, there exists ay such that for @ > ), there

exists a Ricci-flat metric & € [&)] on X with a suitable choice of section and a semi-flat metric ws F bo, &
such that

1. &% = aQ A Q: that is, & solves the Monge-Ampére equation.

2. The curvature ¢ satisfies |VKRm|g < r27% for every k € N.

3. @ is asymptotic to the semi-flat metric in the following sense: there exists C > 0 such that for every
k € N, one has

ko _2/3
IVE(D = ws s by, &)l ~ O(e™CT

).

We refer the reader to [5, Remark 2.17] for a description of some (minor) differences between
Theorem 2.4 and the work of Hein. The authors then proved an essentially optimal uniqueness theorem
for Ricci-flat metrics with polynomial decay to a (possibly nonstandard) semiflat metrics on X.

Theorem 2.5 [5, Proposition 4.8]. Suppose &1, 2 are two complete Calabi-Yau metrics on X =Y \ D
with the following properties:

(i) @ =a?QAQ fori=1,2.
(i) [@1lar = [@2]ar € Hi5(X,R).
(iii) There are (possibly nonstandard) semi-flat metrics Ws g o; by ;,e; SUch that

. 1y
[Wsf 010010 18C = [Bilse € Hpo(Xar,R)

and

-74/3

|G =W p oy, | <O

where r; is the distance from a fixed point with respect to &;.

Then there is a fibre preserving holomorphic map ® € Auty(X, C) such that ®*w, = .

2.3. Perturbations of the model special Lagrangians

Let (X, w) be a Kéhler manifold such that the corresponding Riemannian metric is Ricci-flat. Given
a Lagrangian submanifold L € X, we can deform L via its mean curvature H, defining a family of
Lagrangians L, such that

0 -

r L,=H.
It is proved by Smoczyk [25] that the Maslov zero Lagrangian condition is preserved under the flow;
thus the name Lagrangian mean curvature flow (LMCF). If X admits a covariant holomorphic volume
form Q, then there exists a phase function 8 : L — § I defined by Q| = e'%Voly. If 6 is constant,
then L is a special Lagrangian. Since we are working on a Calabi-Yau manifold, the mean curvature of
L can be computed by H=V6.In particular, if the LMCF converges smoothly, it converges to a special
Lagrangian.

Now, in general, the LMCF may develop a finite time singularity [23], which is expected to be related

to the Harder-Narasimhan filtration of the Fukaya category [16]. However, using a quantitative version
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6 Collins Tristan et al.

of the machinery of Li [18], the authors proved a quantitative local regularity theorem for the LMCF in
the present setting; see [4, Theorem 4.23].

Theorem 2.6 (Theorem 4.23, [4]). Let X be a noncompact Calabi-Yau surface with Ricci-flat metric w
and holomorphic volume form Q. Fix a point in X, and let r denote the distance function to this fixed
point. Assume that there exists a diffeomorphism F from the end of C to X such that for all k € N, one has

2 2
| V. (F*w = we) llge< Cre™® || Vi, (F*Q = Qc) llg < Cre ",

for some constant Cy > 0. Then given an ansatz special Lagrangian (from Section 2.1) mapped to X
via F, if it is sufficiently close to infinity along the end of X, it can be deformed to a genuine special
Lagrangian with respect to (w, Q).

Specifically, in [4], the authors argue that an ansatz special Lagrangian can be deformed via Moser’s
trick to a Lagrangian with respect to the Ricci flat metric w. After proving this deformation preserves
several geometric bounds (including exponential decay of the mean curvature vector along the end of X),
the authors show that the mean curvature flow converges exponentially fast to a special Lagrangian. We
direct the reader to [4] for further details.

3. The Torelli theorem
First we recall the definition of ALH* gravitational instantons following Sun-Zhang [27]:
Definition 3.1.

1. Given b € N, an ALH; model end is the hyperKihler triple from the Gibbons-Hawking ansatz on
T? x [0, o) with the harmonic function bp, where T2 is the flat two-torus and p is the coordinate on
[0, o)

2. A gravitational instanton (X, g) is of type ALH* if there exists a diffeomorphism F from C to X such
that for all £ € N, one has

I Voo (F*g = gc) llg= 0(*%)

for some € > 0.

Remark 3.2. It is explained in [14, Section 2.2] that the Calabi ansatz is actually an ALH, model end
for some b.

Let (X, g) be an ALH; gravitational instanton, and fix a choice of hyperKihler triple (w, Q) such
that w is the Kéhler form with respect to the complex structure determined by . Sun-Zhang proved
that the geometry at infinity has exponential decay to the model end.

Theorem 3.3 [27, Theorem 6.19]. There exist 6 > 0 and a diffeomorphism F from the end of C to X
such that for all k € N, one has F*w = w¢ + do for some 1-form o and

2 2
IV (F*w = we) llge< Cre™® 1| VE(F*Q = Q) llge < Cre™",

Jfor some constant Cy. > 0.

Consider L¢ € X¢ for any primitive class [L¢] € Hy(Xe,Z) with & small enough. Then as above,
one can use Moser’s trick to modify F(L¢) to a Lagrangian L C X. The LMCEF starting at L will then
converge smoothly to a special Lagrangian tori by Theorem 3.3 and Theorem 2.6. Notice that from
[4, Proposition 5.24], the LMCF flows the ansatz special Lagrangian fibration near infinity to a genuine
special Lagrangian fibration on X \ K for some compact set K.
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Now consider the hyperKihler rotation X equipped with Kihler form ¢ and holomorphic volume
form Q such that

@ =ReQ, Q=w-ilmQ. 3.1)

Then X \ K admits an elliptic fibration to a noncompact Riemann surface B, which is diffeomorphic
to an annuli. From the uniformisation theorem, B is either biholomorphic to a punctured disc or a
holomorphic annulus. Notice that the j-invariants of the elliptic fibres converge to infinity at the end
from Theorem 2.2 and Theorem 3.3. Since the j-invariant is a holomorphic function on B, one has B
must be biholomorphic to a punctured disc.

Again from [4, Proposition 5.24], the monodromy of the fibration X \ K — B near infinity is the
same as the explicit model special Lagrangian fibration. There are two consequences. Firstly, there is no

sequence of multiple fibres converging to infinity. Secondly, the monodromy is conjugate to ((1) Ii) from

direct calculation. Then one can compactify X to a compact complex surface X by adding an I;,-fibre D
at infinity by [4, Corollary 6.3]. Now we can use to the classification of surfaces to deduce the following:

Proposition 3.4. Y is a rational elliptic surface.”

Proof. From Appendix [5, Appendix A], the form Q is meromorphic with a simple pole along D.
Therefore, we have Ky = Oy (=D). From the elliptic fibration on ¥ \ K, we have ¢ (¥)? = 0. There
are no (—1) curves in the fibre by the adjunction formula. Since b (X) = 0 by [27, Corollary 7.6],> we
also have b1(Y) = 0 from the Mayer-Vietoris sequence. Assume that ¥ is minimal. Since ¢;(Y)? = 0
and b (Y ) = 0, by the Enriques-Kodaira classification (see, for example, [1, Chapter VI, Table 10]),
it follows that ¥ can only be an Enriques surface, a K3 surface or a minimal properly elliptic surface.
Ky =0y (=D) obviously excludes the first two possibilities. Furthermore, recall that a properly elliptic
surface has Kodaira dimension 1. This is again impossible because Ky = Oy (=D). To sum up, it must
be the case that ¥ is not minimal.

Now, any (—1) curve E in ¥ has intersection one with D, so (D + E)? > 0. Therefore, Y is projective
by [1, Chapter IV, Theorem 5.2]. Then h! (Y, Oy) = 0 from Hodge theory and hO(IV/, Klz?) = 0O since —Ky
is effective. Finally, Castelnuovo’s rationality criterion implies that ¥ is rational. Thus the local elliptic
fibration near D in ¥ actually extends to an elliptic fibration. Indeed, one has Pic(Y) = H>(Y,Z) since
H\(Y, Oy) = H*(Y, Oy) = 0. Thus, Y is a rational elliptic surface. o

To sum up, we proved the following uniformisation theorem:

Theorem 3.5. Any ALH, gravitational instanton (up to hyperKdhler rotation) can be compactified to
a rational elliptic surface.

Remark 3.6. An analogue result of Hein-Sun-Viaclovsky-Zhang [15] proves that up to hyperKéhler
rotation, any ALH,, gravitational instanton can be compactified to a weak del Pezzo surface.

The possible singular fibres of a rational elliptic surface are classified by Persson [24]. The rational
elliptic surface ¥ can only admit an I,-fibre for b < 9, which gives a constraint on b. From the work
of Persson [24] (see also [13, Section 3.3], or Proposition 9.15, Proposition 9.16 of [8]), there exists
a single deformation family of pairs of rational elliptic surfaces with an [, fibre for b # 8, and there
are two deformation families for b = 8. Different families have different Betti numbers. In particular,
there exist ALH, gravitational instantons for every 1 < b < 9 from the work of Hein [12]. Thus, we
have the following consequence:

Corollary 3.7.

1. There are only ALH; gravitational instantons for b < 9.
2. There are only 10 diffeomorphism types of ALH, gravitation instantons.

2This is a slight modification of [4, Theorem 1.6] taking advantage of Theorem 2.2.
30ne may also see that from [15, Theorem 1.1].
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8 Collins Tristan et al.

Before we prove the Torelli theorem of ALH, -gravitational instantons, we first recall the Torelli
theorem of log Calabi-Yau surfaces [9]. Let (Y, D) be a Looijenga pair: that is, Y is a rational surface,
and D € | — Ky| is an anti-canonical cycle. Consider the homology long exact sequence of pairs (Y, D)
with coefficients in Z:

0= Hy(Y) = Hy(Y,Y \ D) 25 Hy(Y \ D)5 Hy(Y) — Hy(Y,Y \ D). (3.2)

Here we identify Hy (Y,Y \ D) with H*¥(D) by Poincare duality. Let ¢ € H' (D) denote a generator,
which determines its orientation. There exists a unique meromorphic volume form Qy with a simple
pole along D and normalisation fa (5) Qy = 1. Denote by C}* the subcone of Pic(Y) that consists of

element 3 satisfying

1. 82 > 0: that is, 8 is in the positive cone.
2. B.[E] = O for any (—1)-curve E in Y.

By [9, Lemma 2.13], C{* is invariant under parallel transport. We denote by Ay the set of nodal classes
of Y: that is,

Ay = {a € Pic(Y)|a can be represented by a (=2)-curve inY \ D}.
For each element @ € Ay, there is an associate reflection as an automorphism on Pic(Y) given by

Sq i B B+{a,B).

The Weyl group Wy is then the group generated by s,, @ € Ay.
With the above notations, the Gross-Hacking-Keel weak Torelli theorem for Looijenga pairs is stated
as follows:

Theorem 3.8 (Theorem 1.8, [9]). Let (Yy, D), (Y2, D) be two Looijenga pairs and u : Pic(Yy) — Pic(Y>)
be an isomorphism of lattices. Assume that

1. u([D;]) = ([D;]) foralli.

2. ﬂ(C++) — C++

3. u([le]) = [Qyz] where Q; is the meromorphic form on Y; with a simple pole along D; and the
normalisation described above. *

Then there exists a unique g € Wy, such that p o g = f* for an isomorphism of pairs f : (Y2, D) —
(Y1, D).
We are now ready to prove our Torelli theorem.

Theorem 3.9. Let (X;, w;, ;) be ALH; gravitational instantons such that there exists a diffeomorphism
F X, = X, with

F*lwi] = [w2] € H*(X2,R), F*[Q] = [Q] € H*(X,C).

Then there exists a diffeomorphism f : X, — X such that f*w| = wy and f*Q| = Q

Proof. Assume that (Y, D) are the pair of a rational elliptic surface and an I}, fibre such that X, = ¥>\D»
is a hyperKihler rotation of (X, wj, Q;) with elliptic fibration and fibre class [L] € H, (X3, Z). Thanks
to the assumption F*[Q;] = [€;], there exists a special Lagrangian fibration on (X, w1, Q) with fibre
class F,[L]. Let (Y1, D) be the pair of rational elliptic surface and I, fibre such that X, =Y\ D
is a hyperKihler rotation of X; with elliptic fibration with fibre class F,[L]. Denote (c;,<€2;) for the
hyperKahler triple on X;. From Theorem 2.2 and Theorem 3.3, the resulting holomorphic volume form
Q; on X; is meromorphic on ¥; and has a simple pole along D;.

“Here we use a different period interpretation, which is stronger. See [8, Proposition 3.12].
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We will first use the weak Torelli theorem of Looijenga pairs (Theorem 3.8) to show that there exists
a biholomorphism Y, — ¥; such that the induced map on H 2()?2, Z) is the same as F*. To achieve that,
we will construct an isomorphism of lattices F* : H>(Y|,Z) — H?*(Y,,Z) from the diffeomorphism F
such that F*([D1;]) = [Da.i].

Lemma 3.10. There exists a diffeomorphism F’ : X, — X such that

1. F’ is homotopic to F and

2. if C C Y, is a2-cycle that is a local section of the fibration Y, — P! near infinity and intersects Dvi,g
transversally for some i, then the closure of F'(C N X,) intersects lﬁi,l transversally and is again a
local section of Y1 — P' near infinity.

Proof. There existcompactsets K; C X; suchthatg; : X;\K; = X¢.Recall that F sends a neighbourhood
of infinity of X, to a neighbourhood of infinity of Xj; and for each i = 1,2, there exists a special
Lagrangian fibration on X; \ K; — A*, where A* is the punctured disc. We may choose K, K, such that
F(X2\ K»2) € X1 \ K; and 9K; is the preimage of a loop in A* under the special Lagrangian fibration;
that is, there exists v; : K; — S'. Since both 4K, F (0K>) are the boundary of a neighbourhood of
infinity of X; and X \ K| = X¢ = Xmoa = 0K1 % (0, 1), there exists a vector field on X; \ K; such that
the induced flow takes K| to F(9K>). We will denote such a diffeomorphism by v : dK| = F(JK>).
Since S' is the Eilenberg-MacLane space K(Z,1), we have [0K;,S'] = H'(0K,,Z) = Z°.
Restricting the model special Lagrangian fibrations in gl_l(Xc) and possibly composing with multi-
ple cover S! — S gives Z* nonhomotopic maps from 9K to S'. Notice that they all have different fibre
homology classes. Therefore, two maps from dK; to S' are homotopic if and only if the corresponding
fibre classes are homologous. Therefore, we have v ~ vpoF ~loy, and we can modify v such that v sends
fibres of v, to fibres of v, 0 F~!, which are 2-tori. Let 72 be a fibre of v; (0K1);then ¢ = vy oF lovo vl_l
induces an element in the mapping class group MCG(T?) = SL(2,Z). The monodromy M of 3K — S!
and commutes with ¢. Thus, ¢ is also of the form + (1) rf for some m € Z. There-

1
01
fore, we may modify F such that fibrewise, it is given by ¢ on X; \ K] for large enough compact set K.
In terms of the coordinates in Section 2.1, F’ (after the identification X¢ = Xmod) is given by

is conjugate to

Im(v)

P U v tv+m——.
e Tm (7 ()

(3.3)

Now every continuous section of Xonoa that extends to ¥y, is of the form
a
h(u) + — logu,
2mi

where h(u) is a continuous function over A and a € Z. A straightforward calculation shows that
equation (3.3) maps sections of Y,,,4 to sections Y;,,,4; this finishes the proof of the lemma. ]

From now on, we will replace F by F’ in Lemma 3.10 and still denote it by F. Recall that the second
homology group of a rational elliptic surface is generated by the components of fibres and sections. The
lemma implies that there exists a map F* : H2(Y,,Z) — H?(Y»,Z) such that the following diagram
commutes

H2(V1,Z) —— H2(15,2)

| |

H2(X),Z) —— H2(X,,2)

and the intersection pairing is preserved. Here the vertical maps are the natural ones induced from the
restriction. From Poincare duality, F* must be an isometry of lattices.
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From [9, Construction 5.7], there exists a universal family ()/, D) over Hom(Pic(Y}), C*) such that
(Y1,D) = (Y1, D) is the reference fibre and there exists an isomorphism of pairs p : (Y2, D2) =
(Y2, D,) with some fibre ()s, D,). Now F* can be decomposed as

. . Par o "
F*: H*(V1,2) = H*(O,Z) = H*(OhZ) = H* (1, Z),

where Par denotes a choice of the parallel transport via the universal family. Since p : ¥» = )» is a

biholomorphism, it preserves the set of exceptional curves and positive cones. Together with the fact

that C** is preserved under the parallel transport, we have F' *(C;;J’) = C;;J’. Now, from Theorem 3.8,
1 2

there exists an isomorphism of pairs & : (Y2, D) — (Y1, D) such that F* o g = h* for some g € Wy .

Next, we will show that g is the identity. From [9, Theorem 3.2], the hyperplanes a*, @ € Wy, - Ay,
divide CL" into chambers, and the Weyl group Wy, simply acts transitively on the chambers. Moreover,
there exists a unique chamber containing the nef cone and thus the ample cone. Chambers divided
by a* in H*(¥;) have disjoint image under the restriction map ¢* : H>(Y;) — H?(X;). Indeed, if
01,02 € HZ(IVG) and (*0; = ("97, then from the dual of the long exact sequence of equation (3.2), we
have

82 =61+ ) a[Dil.
i

Thus 61, 6, fall in the same chamber because a - [D;] = 0 for all a € Wy, - Ay,. Again from the long
exact sequence in equation (3.2), the image of ¢* is a hyperplane in H(X;). For each & € A y,» there is

a corresponding (—2)-curve C,, of ¥; that completely falls in X;. Given a compact 2-cycle C of X, we
can associate a hyperplane [C]™*1 of H2(X;) given by

m%=HMe#@mLMFm.

Then ¢*(e*) is the intersection of the hyperplanes [C,] % and [d.(g)]**1. Again, the hyperplanes
[Col™1,a € Wy, - Ay, divide H?(X;) into chambers. There exists a unique one that contains the image
of the Kihler cone of ¥}, which consists of 2-forms integrating positively on C,, for all a € Ay, . Since
F* sends [w] to [wy] and h* preserves the Kihler classes of ¥}, one must have that g is the identity
and F* = h*.

When restricting to X;, we have h* = F* = F*. Since F*[Q;] = [€] from the assumption and
h*f)l = cég for some constant ¢ € C*, we then have h*Ql = QQ. From Theorem 2.2 and Theorem 3.3,
the resulting Kéhler form «; is exponentially decaying to a possibly nonstandard semi-flat metric. Then
Theorem 2.5 implies that T, h* @ = @y, where T, is a translation by a global section of X,, which doesn’t
alter the (2, 0)-forms. We may take f = h o T,, and this finishes the proof of the Torelli theorem. O

Remark 3.11. Ongoing work by Mazzeo and Zhu [22] studies the Fredholm mapping properties of the
Laplace operator on ALH* space with applications to Hodge theory and perturbation theory.
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