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1. Introduction

A central problem in Gromov-Witten theory is understanding the structure of the 
Gromov-Witten invariants. Of special interest is the case when the target manifold is 
a Calabi-Yau threefold. Often, studying local versions of these theories (i.e. for non-
compact targets) reveals much of the structure in the general case. The Gromov-Witten 
invariants come in several flavors: (a) closed (counting closed curves), (b) open (counting 
curves with boundary on a Lagrangian or SFT-type curves), and (c) real (counting closed 
curves invariant under an anti-symplectic involution).

In this paper we consider Real Gromov-Witten (RGW) invariants and we prove a 
structure result for the local RGW invariants of Real1 3-folds that are the total space 
of bundles over curves with an anti-symplectic involution (also referred to as a real 
structure). We show that the local RGW invariants give rise to a semi-simple 2d Klein 
TQFT which allows us to completely solve the theory. The motivation for considering 
3-folds of this type comes from the virtual contribution to the real GW invariants of a 
Real elementary curve in a compact Real Calabi-Yau 3-fold, sometimes referred to as 
multiple-covers contribution, and the real Gopakumar-Vafa conjecture. The Gopakumar-
Vafa conjecture [18] and its extension proved in [19] has an analogue in the setting of 
Real Calabi-Yau 3-folds, cf. [27]. The local version of the real GV conjecture is obtained 
in this paper as a consequence of the structure result. The case of compact 3-folds will 
be discussed in a subsequent paper.

A symmetric (or Real) Riemann surface is a Riemann surface Σ together with an 
anti-holomorphic involution c : Σ → Σ. If L → Σ is a holomorphic line bundle, then the 
total space of

L ⊕ c∗L → Σ (1.1)

is a Real manifold with an anti-holomorphic involution

ctw(z; u, v) = (c(z); v, u).

1 We use Real with capital R for spaces with anti-J-invariant involutions, following Atiyah.
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These are the Real 3-folds we consider in this paper, and we refer to them as local Real 
curves; note however that any rank 2 Real bundle (V, φ) → (Σ, c) whose fixed locus 
V φ is orientable is isomorphic to a Real bundle (1.1) for L a complex line bundle with 
c1(L) = 1

2c1(V ), cf. [3, §4.1]. Moreover, an U(1)-action on the line bundle L → Σ
induces an action on the 3-fold (1.1) compatible with the Real structure. In §2 we 
define local RGW invariants associated to the Real 3-fold (1.1) as pairings between the 
U(1)-equivariant Euler class of the index bundle Ind ∂L (regarded as an element in K-
theory) and the virtual fundamental class of the real moduli space Mc,•

d,χ(Σ) of degree 
d real maps f : C → Σ from (possibly disconnected) domains of Euler characteristic 
χ. The real moduli space Mc,•

d,χ(Σ) is orientable, but not a priori canonically oriented; 
the orientation depends on a choice of orientation data o discussed in §2 and in the 
Appendix. The (shifted) generating functions for the local RGW invariants

RGW c,o
d (Σ, L) ∈ Q(t)((u))

take values in the localized equivariant cohomology ring of U(1) generated by t; here u
keeps track of the Euler characteristic of the domain.

We also consider a relative version of the RGW invariants for a branching divisor 
on (Σ, c) consisting of pairs of conjugate points. For the purposes of this paper, we can 
restrict attention to the case when none of the marked points or special points are real. 
The splitting formula of [14] then allows us to relate the local RGW invariants of Σ to 
the local RGW invariants of a decomposition of Σ along pairs of conjugate circles; see 
§4.

A priori, the local RGW invariants depend on the choice of an orientation data o and 
the topological type of the real structure c on Σ. In §6, we show that there is a canonical 
choice of orientation for the local RGW invariants, and moreover these do not depend 
on the real structure c. We therefore use the notation

RGWd(Σ, L) ∈ Q(t)((u))

afterwards, when the canonical choice is assumed. Any other choice of a twisted orien-
tation data changes RGWd by (±1)d.

In §8 we show that the local RGW invariants determine an extension RGWd of a 2-
dimensional Klein TQFT. As we review in §7, a 2d Klein TQFT is a symmetric monoidal 
functor from the cobordism category 2KCob of unoriented surfaces to the category of 
R-modules for some ring R. Since 2KCob naturally contains the oriented cobordism 
category 2Cob, a Klein TQFT is an extension of a classical TQFT; it is equivalent to a 
Frobenius algebra with an involution Ω, which is the image of the orientation reversing 
tube, and a special element U , which is the image of the crosscap (Möbius band), cf. 
§7.

The connection with real Gromov-Witten theory is obtained by considering an equiv-
alent category 2SymCob whose objects are pairs of closed oriented 1-dimensional man-
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ifolds and the cobordisms are symmetric (Real) surfaces. It is obtained from 2KCob
by passing to the orientation double cover. Then the involution Ω is the image of the 
symmetric cobordism swapping the components of an object, while U is the image of 
a symmetric sphere with a pair of (disjoint) conjugate disks removed. This perspective 
allows us to define in §7.2 an extension 2SymCobL which has the same objects but 
where the cobordisms also carry a complex vector bundle trivialized along the boundary. 
As we prove in §8, the local RGW invariants give rise to a symmetric monoidal func-
tor RGWd on 2SymCobL; up to factors due to differing conventions, this extends the 
TQFT considered by Bryan and Pandharipande in [5] for the anti-diagonal action. In 
turn, the Bryan-Pandharipande construction similarly extends a classical construction 
studied by Dijkgraaf-Witten [7] and Freed-Quinn [12].

In §7.1 we discuss semi-simple KTQFTs, i.e. those for which the associated Frobenius 
algebra has an idempotent basis. Their restriction to the oriented cobordism category 
2Cob is determined by the eigenvalues {λρ} of the genus adding operator (which is 
diagonalized in the idempotent basis). To completely determine the KTQFT it then 
suffices to find the coefficients of Ω and U in the idempotent basis. We show that Ω
restricts to an involution vρ �→ vρ∗ on the idempotent basis and that each coefficient Uρ

of U is 0 when ρ �= ρ∗ and otherwise is equal to a squareroot ±
√

λρ of the eigenvalue 
λρ.

In §9 we prove that the KTQFT determined by the level 0 local RGW invariants 
is semisimple. It corresponds in fact to signed counts of degree d real Hurwitz covers. 
The idempotent basis is indexed by irreducible representations of the symmetric group 
Sd and Ω(vρ) = vρ′ where ρ′ is the conjugate representation. In order to calculate the 
coefficients of U in the idempotent basis, we introduce in §11 the signed Frobenius-Schur 
indicator (SFS). The SFS takes values 0, ±1 on irreducible real representations, unlike the 
standard FS indicator which is +1 on them. The SFS is 0 if and only if the representation 
is not self-conjugate and the sign of a self-conjugate representation is given as a function 
of its characters. While these considerations are valid for real representations of any 
finite group, in the case of the symmetric group we find a simpler expression for the 
latter function using the Weyl formula. In particular, for an irreducible self-conjugate 
representation ρ of Sd,

SFS(ρ) = (−1)(d−r(ρ))/2,

where r(ρ) is the rank of ρ, i.e. the length of the main diagonal of the Young diagram 
associated to ρ. This is precisely the sign that appears in the partition function of the 
SO/Sp Chern-Simons theory [4, (6.1)]; in the case of the resolved conifold, Theorems 1.1
and 1.2 below recover the partition function [4, (6.3)] and the free energy [4, (3.2)], 
respectively.

Combining these results we obtain in §9 a closed expression for the local RGW theory 
of the 3-fold (1.1) in terms of representation theoretic data, cf. Theorem 9.13. In the 
Calabi-Yau case it takes the following form:
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Theorem 1.1 (Local CY). Let Σ be a connected genus g symmetric surface and L → Σ a 
holomorphic line bundle with Chern number g − 1. Then the generating function of the 
degree d local RGW invariants is equal to

RGWd(Σ, L) =
∑
ρ=ρ′

(
(−1)

d−r(ρ)
2

∏
�∈ρ

2 sinh h(�)u
2

)g−1
.

Here the sum is over all self-conjugate partitions ρ of d, the product is over all boxes �
in the Young diagram of ρ, h(�) is the hooklength of �, and r(ρ) is the length of the 
main diagonal of the Young diagram of ρ.

The local RGW invariants correspond to possibly disconnected counts. As usual they 
can be expressed in terms of more basic invariants. In the real GW theory these basic 
counts come in two flavors, CRGWd(Σ, L) and DRGWd(Σ, L), corresponding to maps 
from connected Real domains and respectively from doublet domains i.e. domains con-
sisting of two copies of a connected surface with opposite complex structures and the 
real structure exchanging the two copies. In fact

1 +
∞∑

d=1

RGWd(Σ, L)qd = exp
( ∞∑

d=1

CRGWd(Σ, L)qd +
∞∑

d=1

DRGW2d(Σ, L)q2d

)
.

Furthermore, the doublet invariants are related to half of the complex GW invariants 
whenever the target Σ is connected:

DRGW2d(Σ, L)(u, t) = (−1)d(k+1−g) 1
2GW conn

d (g|k, k)(iu, it),

where g is the genus of Σ, k = c1(L)[Σ] is the degree of L, and GW conn
d (g|k, k) are the 

connected invariants defined in [5] for the anti-diagonal action; see Corollary 3.9.
As a consequence of the structure result provided by Theorem 1.1, in §10 we obtain 

the local real Gopakumar-Vafa formula; for a complete statement, see Theorem 10.1.

Theorem 1.2 (Local real GV formula). Let L ⊕ c∗L −→ Σ be a local Real Calabi-Yau 
3-fold with base a genus g symmetric surface (Σ, c). Then the generating function for the 
connected real Gromov-Witten invariants has the form:

∞∑
d=1

CRGWd(Σ|L)(u)qd =
∞∑

d=1

∞∑
h=0

nR
d,h(g)

∑
k odd

1
k (2 sinh(ku

2 ))h−1qkd,

where the coefficients nR
d,h(g), called the real BPS states, satisfy (i) (integrality) nR

d,h(g) ∈
Z, (ii) (finiteness) for each d, nR

d,h(g) = 0 for large h, and (iii) (parity) nR
d,h(g) has same 

parity as the complex BPS states nC
d,h(g).
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2. Local Real Gromov-Witten invariants

2.1. Real GW invariants

We start with a brief overview of the real Gromov-Witten invariants. Let (X, ω) be a 
symplectic manifold and φ an anti-symplectic involution on X. A symmetric Riemann 
surface (C, σ) is a closed, oriented, possibly nodal, possibly disconnected Riemann surface 
Σ with an anti-holomorphic involution σ. A real map

f : (C, σ) −→ (X, φ)

is a map f : C → X such that u ◦ σ = φ ◦ u. Let J φ
ω denote the space of ω-compatible 

almost complex structures J on X which satisfy φ∗J = −J . For χ ∈ Z and B ∈ H2(X, Z), 
denote by

Mφ,•
B,χ(X)

the moduli space of equivalence classes (up to reparametrization of the domain) of stable 
degree B J-holomorphic real maps from symmetric Riemann surfaces of Euler charac-
teristic χ, for J ∈ J φ

ω . We will consider only the case when the restriction of the maps 
to each connected component of the domain is nontrivial.

In this paper we restrict ourselves to target manifolds which are themselves symmetric 
Riemann surfaces. We will use (Σ, c) to denote the target curve and d for the degree of 
the map. The real moduli space is denoted

Mc,•
d,χ(Σ),

and consists of real maps f : (C, σ) → (Σ, c) whose domain may be disconnected. The 
involution on the domain decomposes the domain into real components and pairs of 
conjugate components. Following [16, (1.7)], an h-doublet is a real surface

(C, σ) = (C1 � C2, σ) = (S � S, σ), where σ|S = id : S −→ S, (2.1)

S is a genus h Riemann surface, and S denotes the curve S but with the opposite complex 
structure. Note that every real curve that has two components swapped by the involution 
is equivalent (up to reparametrization) to a doublet.
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When Σ is connected, it is therefore convenient to consider the following two moduli 
spaces:

Mc

d,h(Σ) and DMc

d,h(Σ), (2.2)

where the first one consists of maps with connected domains of genus h and the second 
one consists of maps whose domains are h-doublets. Let

M•
d,χ(Σ)

denote the classical moduli space of holomorphic maps from possibly nodal, possibly 
disconnected domains of Euler characteristic χ and degree d to Σ (whose restrictions to 
each connected component is nontrivial). Finally, denote by

RM•
χ,� (2.3)

the real Deligne-Mumford moduli space parametrizing (possibly disconnected) symmetric 
surfaces (C, σ) of Euler characteristic χ with 	 pairs of conjugate marked points

{(y+
1 , y−

1 ), . . . , (y+
� , y−

� )}, where y−
i = σ(y+

i ). (2.4)

The corresponding moduli spaces of connected real and doublet domains are denoted by 
RMg,� and DMg,� respectively.

2.2. Twisted real orientations

The real moduli spaces are not in general orientable. In [15, Definition 1.2] a notion 
of real orientation was introduced whose existence ensures the orientability of the real 
moduli spaces when the target has odd complex dimension, cf. [15, Theorem 1.3]. This 
notion can be extended to a twisted orientation as in Definition 2.1 below when the 
target is a surface; see Definition A.1 for a general target. In the appendix we show that 
[15, Theorem 1.3] extends to this setting: a choice of twisted real orientation on an odd 
dimensional target determines a canonical orientation of the moduli spaces of real maps 
to that target. While a real orientation in the sense of [15] does not exist on a symmetric 
surface of even genus and fixed-point free involution, a twisted orientation exists on every 
symmetric surface.

As in (1.1), when L → (Σ, c) is a complex bundle then

(L ⊕ c∗L, ctw) −→ (Σ, c), where ctw(z; u, v) = (c(z); v, u), (2.5)

is a Real bundle (i.e. a real bundle pair in the sense of [15, §1.1]). Note that the projection 
onto the first factor identifies the fixed locus of ctw with
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(L ⊕ c∗L)ctw ∼= L|Σc ,

where Σc is the fixed locus of c.

Definition 2.1. Assume (Σ, c) is a symmetric surface. A twisted (real) orientation data

o = (Θ, ψ, s) (2.6)

for (Σ, c) consists of

(i) a complex line bundle Θ over Σ such that c1(Θ ⊗ c∗Θ) = −χ(TΣ),
(ii) a homotopy class of isomorphisms

Λtop(TΣ ⊕ (Θ ⊕ c∗Θ), dc ⊕ ctw)
ψ∼= (Σ × C, c × cstd) (2.7)

where cstd : C → C is the standard complex conjugation.
(iii) a spin structure s on the fixed locus T Σc ⊕ Θ|Σc , compatible with the orientation 

induced by (2.7).

Up to deformation, rank r complex or holomorphic bundles on a Riemann surface are 
determined by their first Chern class. Similarly, rank r Real bundles (V, φ) −→ (Σ, c)
are classified by c1(V ) and w1(V φ), cf. [3]. In particular, condition (i) above ensures the 
existence of an isomorphism (2.7).

Example 2.2.

(a) When Σc is empty, there is no spin structure s involved. Thus a choice of twisted 
orientation in this case corresponds only to a choice (Θ, ψ).

(b) When (Σ, c) is a g-doublet, Θ restricts to a line bundle on each component Σi; let 
mi = c1(Θ)[Σi] denote the degrees. Since (c∗Θ)|Σ1 = c∗(Θ|Σ2), condition (i) restricts 
the total degree

m = m1 + m2 = 2g − 2. (2.8)

For any fixed complex line bundle Θ over the doublet satisfying (2.8), there is a 
unique isomorphism (2.7) up to homotopy (determined by the restriction to Σ1). 
Moreover, Σc is empty for a doublet. Thus a twisted orientation for a doublet consists 
of a choice of the degrees mi ∈ Z satisfying (2.8).

(c) When (Σ, c) is a connected genus g surface, the degrees of c∗Θ and Θ are equal. In 
this case, condition (i) implies that the degree of Θ is m = g −1; up to isomorphism, 
there is only one such complex line bundle.
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A twisted orientation o on (Σ, c) equips the real moduli spaces Mc,•
d,χ(Σ) with a canon-

ical orientation, cf. Appendix. In particular, it gives rise to a virtual fundamental class

[Mc,•
d,χ(Σ)]vir,o

in dimension b = dχ(Σ) − χ.

2.3. Absolute RGW invariants

Consider a holomorphic bundle E over a complex curve Σ. Then the operator ∂E

determines a family of complex operators over moduli spaces of maps to Σ; the fiber at 
a stable map f : C → Σ is the pullback operator ∂f∗E . Denote by Ind ∂E the index 
bundle associated to this family of operators, regarded as an element in K-theory.

Assume next L is a holomorphic line bundle over a symmetric surface (Σ, c), and let 
E = L ⊕ c∗L. It is a rank 2 holomorphic bundle over Σ which has a real structure ctw

given by (2.5). Let ∂̄(L⊕c∗L̄,ctw) denote the restriction of ∂̄L⊕c∗L̄ to the invariant part of 
its domain and target, cf. [15, §4.3]. Via the projection onto the first factor, the kernel 
and cokernel of ∂̄(L⊕c∗L̄,ctw) are canonically identified with the kernel and cokernel of ∂̄L.

Similarly ∂̄(L⊕c∗L̄,ctw) determines a family of pullback operators over the real moduli 
space of maps to (Σ, c), and the projection onto the first factor identifies

Ind ∂̄(L⊕c∗L̄,ctw)
π1∼= Ind ∂̄L. (2.9)

The right hand side carries a natural complex structure, which pulls back to one on the 
left hand side. An U(1)-action on L induces one on (L ⊕ c∗L̄, ctw), compatible with the 
real structure. In turn, these induce U(1)-actions on Ind ∂L and Ind ∂(L⊕c∗L̄,ctw) and the 
isomorphism (2.9) identifies their equivariant Euler classes.

Motivated by the Bryan-Pandharipande construction [5, §2.2], we consider the fol-
lowing real version, associated to a local Real 3-fold (L ⊕ c∗L, ctw) → (Σ, c) defined by 
(2.5).

Definition 2.3. Assume (Σ, c) is a symmetric surface, L a holomorphic line bundle over Σ
and o a twisted orientation data (2.6) for (Σ, c). The local Real GW invariants are defined 
by the equivariant pairings:

RZc,o
d,χ(Σ, L) =

∫
[Mc,•

d,χ(Σ)]vir,o

eU(1)(−Ind ∂(L⊕c∗L̄,ctw)) =
∫

[Mc,•
d,χ(Σ)]vir,o

eU(1)(−Ind ∂L).

(2.10)
Here eU(1) denotes the U(1)-equivariant Euler class.
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As in [5, §2.2], we will primarily consider the shifted partition function:

RGW c,o
d (Σ, L) =

∑
χ

ud( χ(Σ)
2 +c1(L)[Σ])− χ

2 RZc,o
d,χ(Σ, L). (2.11)

Intrinsically, (2.10) takes values in the equivariant cohomology of a point:

RZc,o
d,χ(Σ, L) ∈ H∗

U(1)(pt) = H∗(CP∞) = Q[t].

Here t is the equivariant first Chern class of the standard representation of U(1). Then 
the local invariant (2.10) can be expressed in terms of the equivariant parameter t and 
an ordinary integral:

RZc,o
d,χ(Σ, L) = tι−b/2

∫
[Mc,•

d,χ(Σ)]vir,o

cb/2(−Ind ∂L). (2.12)

Here b is the dimension of Mc,•
d,χ(Σ) and ι the index (virtual complex rank) of −Ind ∂L, 

given by:

ι = rankC(− Ind ∂L) = −dc1(L)[Σ] − 1
2χ. (2.13)

Remark 2.4. The invariants RGW c,o
d (Σ, L) count maps from possibly disconnected real 

domains. The real structure σ acts on the components of the domain decomposing them 
into ‘real components’ (preserved by σ) and ‘doublets’ (pairs of conjugate components 
swapped by σ). When Σ is connected, we denote the connected domain invariants by

CRGW c,o
d (Σ, L) =

∞∑
h=0

ud( χ(Σ)
2 +c1(L)[Σ])+h−1

∫
[Mc

d,h(Σ)]vir,o

eU(1)(−Ind ∂L) (2.14)

and the doublet domain invariants (which appear only in even degree when Σ is con-
nected) by

DRGW c,o
d (Σ, L) =

∞∑
h=0

ud( χ(Σ)
2 +c1(L)[Σ])+2h−2

∫
[DMc

d,h(Σ)]vir,o

eU(1)(−Ind ∂L). (2.15)

Here Mc

d,h(Σ) and DMc

d,h(Σ) are the moduli spaces (2.2) of degree d maps with con-
nected genus h domain and h-doublet domain, respectively. Then

1 +
∞∑

d=1

RGW c,o
d (Σ, L)qd = exp

( ∞∑
d=1

CRGW c,o
d (Σ, L)qd +

∞∑
d=1

DRGW c,o
2d (Σ, L)q2d

)
.

(2.16)
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2.4. Notation for partitions

A partition λ is a finite sequence of positive integers λ = (λ1 ≥ · · · ≥ λ�). A partition 
of d, denoted λ � d, is a partition such that the sum of its parts, denoted |λ|, is equal 
to d. Its length (number of parts 	) is denoted 	(λ). We can also write a partition in the 
form λ = (1m12m2 . . . ) where mk is the number of parts of λ equal to k. Then

d = |λ| =
�∑

i=1
λi =

∞∑
k=1

kmk and 	(λ) = 	 =
∞∑

k=1

mk.

We will also consider the following combinatorial factor

ζ(λ) =
∏

mk!kmk . (2.17)

A partition λ is uniquely determined by its Young diagram and the conjugate partition 
λ′ is obtained by reflecting λ across the main diagonal. The rank

r(λ) (2.18)

of a partition is the length of the main diagonal of its Young diagram, cf. [13, §4.1].

2.5. Relative RGW invariants

Assume next that (Σ, c) is a marked symmetric surface, with r pairs of marked points

PΣ = {(x+
1 , x−

1 ), . . . , (x+
r , x−

r )}, where x−
i = c(x+

i ), (2.19)

cf. (2.4). So in particular we have a preferred marked point x+
i (the first element of a 

pair) in each pair of conjugate points.
We consider next the moduli spaces of real maps to (Σ, c) that have fixed ramification 

pattern over the marked points of Σ. This moduli space is a version of [5, Definition 3.1], 
adapted to the Real setting. The ramification pattern over each point is described by a 
partition λ.

Let 
λ = (λ1, . . . , λr) be a collection of r partitions of d.

Definition 2.5. Denote by

M•,c

d,χ(Σ)λ1,...,λr (2.20)

the relative real moduli space of degree d stable real maps f : (C, σ) → (Σ, c) such that

• f has ramification pattern λi over x+
i (and thus also over x−

i = c(x+
i )), for all 

i = 1, . . . , r;
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• the domain C is possibly disconnected and has total Euler characteristic χ;
• f is nontrivial on each connected component of C.

Here, as in [5, Definition 3.1], the inverse images of the marked points of the target 
are not ordered; in particular, an automorphism of f may permute domain components 
or points in the inverse image of the marked points of the target. It is straightforward 
to express these moduli spaces in terms of unions, products, and finite quotients of the 
relative moduli spaces where the points in the inverse images f−1(x±

i ) = {y±
ij}j=1,...,�(λi)

are all marked, the points y±
ij are conjugate, f(y+

ij) = x+
i , and the ramification order of 

f at y±
ij is λi

j , for j = 1, . . . , 	(λi) and i = 1, . . . , r. The moduli space M•,c

d,χ(Σ)λ1,...,λr

has virtual dimension b, where

b = dχ(Σ) − χ − 2δ(
λ) and δ(
λ) =
r∑

i=1
(d − 	(λi)). (2.21)

Here 	(λi) is the length of the partition λi, i.e. the cardinality of f−1(x+
i ).

The relative real moduli space is oriented using a twisted orientation o as in Def-
inition 2.1 but where T Σ is the relative tangent space to the marked curve Σ =
(S, j, x±

1 , . . . x±
r ), i.e.

T Σ = TS ⊗ O
(

−
∑
i

x+
i −

∑
i

x−
i

)
; (2.22)

see Appendix. Definition 2.3 then extends to the relative setting.

Definition 2.6. Assume (Σ, c) is a symmetric surface with r pairs of marked points. 
Let L → Σ be a holomorphic line bundle, o a twisted orientation data for (Σ, c), and 

λ = (λ1, . . . , λr) a collection of r partitions of d. The local real relative GW invariants
associated with the Real 3-fold (L ⊕ c∗L, ctw) → (Σ, c) and the orientation data o are 
the equivariant pairings:

RZc,o
d,χ(Σ, L)�λ =

∫
[Mc,•

d,χ(Σ)�λ
]vir,o

eU(1)(−Ind ∂(L⊕c∗L̄,ctw)) =
∫

[Mc,•
d,χ(Σ)�λ

]vir,o

eU(1)(−Ind ∂L).

(2.23)

The shifted partition function (2.11) extends to the relative setting as

RGW c,o
d (Σ, L)�λ =

∑
χ

ud( χ(Σ)
2 +c1(L)[Σ])− χ

2 −δ(�λ)RZc,o
d,χ(Σ, L)�λ, (2.24)

where δ(
λ) is as in (2.21). Note that the power of u is b/2 + dk, where b is the dimension 
(2.21) of Mc,•

d,χ(Σ)� and k = c1(L)[Σ].
λ
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The quantity (2.24) is invariant under (smooth) deformations, so it depends only on 
the topological type of (Σ, c, o), on c1(L), and on how the r partitions λ1, . . . , λr are 
distributed on the components of Σ. We use the notation

RGW c,o
d (g|k)�λ (2.25)

for the case Σ is a connected genus g surface and k = c1(L)[Σ], and

RGW c,o
d (g, g|k1, k2)�λ (2.26)

for the case Σ is a g-doublet, all the positive marked points are on the same component 
Σ1 of Σ, and ki = c1(L)[Σi] are the degrees of L on the two components.

As before, the local invariant (2.23) can be expressed in terms of the equivariant 
parameter t and an ordinary integral:

RZc,o
d,χ(Σ, L)λ1..λr = tι−b/2

∫
[Mc,•

d,χ(Σ)λ1..λr ]vir,o

cb/2(−Ind ∂L). (2.27)

Here b is the dimension (2.21) of Mc,•
d,χ(Σ)λ1..λr and ι the index (virtual complex rank) 

of −Ind ∂L, given respectively by (2.21) and (2.13), so the power of t in (2.27) is

ι − b/2 = −d(χ(Σ)/2 + c1(L)[Σ]) + δ(
λ). (2.28)

As in the absolute case, we use similar notions for the connected and doublet relative 
invariants and their moduli spaces, cf. Remark 2.4.

3. Doublet vs complex invariants

The doublet invariants (2.15) (and their extension to the relative setting) are real 
invariants associated with the moduli space of maps whose domain is a doublet (2.1). In 
this section we consider two situations: (a) when the target curve is a doublet and (b) 
when the target curve is connected. In both cases, we relate the doublet invariants to 
the residue invariants defined by Bryan and Pandharipande in [5] (for the anti-diagonal 
action). The latter are reviewed in §3.1.

Roughly speaking, the main idea is that a doublet can be identified with a complex 
curve by restricting to one of the components. This defines an identification P between 
the doublet moduli space and the usual (complex) moduli space, with matching deforma-
tion obstruction theories; moreover, a bundle on a doublet corresponds to two bundles, 
one for each component of the doublet.

The main results in this rather technical section are Corollaries 3.4 and 3.8, comparing 
the doublet invariants to the BP-invariants. They follow from the fact that in both cases 
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(i) the VFC of the doublet moduli space is equal up to a scalar multiple to that of the 
corresponding complex moduli space, cf. Lemmas 3.1 and 3.6 and (ii) the equivariant 
Euler classes of the index bundles are also equal up to sign, cf. Lemmas 3.3 and 3.7.

3.1. Complex GW invariants

We begin with a brief review of the complex moduli space and the residue GW-
invariants defined by Bryan and Pandharipande in [5]. Assume Σ is a complex curve 
with r marked points P = {x1, . . . xr}, and let 
λ = (λ1, . . . λr) be a collection of r

partitions λi of d. Let

M•
d,χ(Σ)�λ (3.1)

denote the usual (complex) relative moduli space [5, Definition 3.1] of degree d stable 
maps f : C → Σ from an Euler characteristic χ domain having ramification prescribed 
by 
λ over the points P (such that moreover the restriction of f to each connected 
component of the domain is nontrivial). Here the inverse images of the marked points 
of the target are unordered. The moduli space (3.1) is canonically oriented and carries a 
virtual fundamental class in dimension 2b, where

b = dχ(Σ) − χ − δ(
λ)

and δ(
λ) is as in (2.21).
If L1, L2 are two holomorphic bundles over Σ, the total space of

E = L1 ⊕ L2 → Σ (3.2)

is a local holomorphic 3-fold with a T = (C∗)2 action. In [5, §3.2] Bryan-Pandharipande 
consider residue invariants by integrating a T -equivariant Euler class. When restricted 
to the anti-diagonal U(1) action, the BP residue invariants are given by:

Zd,χ(Σ|L1, L2)�λ =
∫

[M•
d,χ(Σ)�λ

]vir

eU(1)(−Ind ∂L1⊕L2). (3.3)

Their (shifted) generating function (cf. [5, §3.2]) is

GWd(Σ|L1, L2)�λ =
∑

χ

ud(χ(Σ)+k1+k2)−χ−δ(�λ)Zd,χ(Σ|L1, L2)�λ, (3.4)

where ki = c1(Li)[Σ] and δ(
λ) is as in (2.21). We denote by GW conn the corresponding 
invariants associated to the moduli spaces of maps with connected domains.
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3.2. Doublets and halves

For any doublet (C = C1 � C2, σ), with r pairs of marked points PC as in (2.19)
the ‘half’ C1 is a complex curve with r marked points and each of these marked points 
inherits a decoration of a ± sign. This process defines a map

(C = C1 � C2, σ) �→ C1, (3.5)

that takes a doublet to a connected complex curve with signed marked points. Formally, 
a complex curve with signed marked points is a complex curve Σ with marked points 
PΣ = {x1, . . . , xr} together with a choice ε : PΣ → {±1} of a sign associated to each 
point.

Conversely, to every complex curve C we can associate a doublet (2.1) via

(DC, σ) , where DC = C � C = C1 � C2 and σ|C = id : C → C. (3.6)

Note that DC is the orientation double cover of C. When C has r signed marked points 
PC , the double DC is marked: it has r pairs of conjugate points, and the sign ε of a 
marked point in PC determines whether it is the first or second element of the corre-
sponding pair in DC, with + corresponding to first.

Therefore (3.5) is a correspondence.

3.3. Real maps to a doublet

Fix Σ a complex marked surface (with signed marked points) and let DΣ = (Σ �Σ, c) =
(Σ1 � Σ2, c) denote its double (3.6). We next relate the local RGW invariants (2.10) of 
the double DΣ to the BP-residue invariants (3.3) of Σ.

For any real map f : (C, σ) → DΣ = (Σ1 � Σ2, c), let

fi : Ci → Σi , i = 1, 2, (3.7)

denote its restriction to Ci = f−1(Σi), i = 1, 2. Conversely, any map f : C → Σ doubles 
to a real map

f̃ : DC → DΣ , with f̃1 = f.

The signs of the marked points on Σ determine signs on the marked points of the 
domain C which are compatible under the doubling procedure (3.6). This defines a 
morphism

D : M•
d,χ(Σ)λ1..λr −→ Mc,•

d,2χ(DΣ)λ1..λr , f �→ f̃ , (3.8)

between the moduli spaces, whose inverse is
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P(f) = f1 (3.9)

where f1 is given by (3.7).

Lemma 3.1. Fix an orientation data o as in (2.6) for the doublet DΣ = Σ1 � Σ2. With 
the notation above, the identification (3.9) has degree (−1)dm2+�2 , i.e.

[Mc,•
d,2χ(DΣ)λ1..λr ]vir,o = (−1)dm2+�2D∗[M•

d,χ(Σ)λ1..λr ]vir, (3.10)

where m2 is the degree of Θ|Σ2 and 	2 is the sum of the lengths of the partitions associated 
to the positive points on Σ2:

m2 = c1(Θ)[Σ2] and 	2 =
∑

x+
i ∈Σ2

	(λi). (3.11)

Proof. The map (3.8) and its inverse (3.9) define an identification between the two mod-
uli spaces, with matching deformation-obstruction theories. Thus it remains to compare 
the orientations. The argument is similar to that of [16, Theorem 1.3] taking into ac-
count the difference in the orientations induced by a twisted orientation data and a real 
orientation data in the sense of [15].

We first recall the procedures for orienting the complex and the real moduli spaces; 
the Appendix contains a more detailed discussion of the real case. The orientation sheaf 
of the real moduli space, (after stabilization of the domain if necessary), is canonically 
identified with

det TMc,•
d,χ(Σ)λ1..λr = det ∂(T Σ,dc) ⊗ f∗ det TRM•

χ,�. (3.12)

Here f is the map to the real Deligne-Mumford moduli space parametrizing real curves 
of Euler characteristic χ and 	 pairs of conjugate marked points, and 	 =

r∑
i=1

	(λi); see 

(A.13). Let

f : (C, σ) −→ (Σ, c)

be a point in the real moduli space. A choice of twisted orientation data o = (Θ, ψ, s)
determines a homotopy class of isomorphisms

f∗(TΣ ⊕ Θ ⊕ c∗Θ, dc ⊕ ctw) φo−→(C × C⊕3, σ ⊕ c⊕3
std). (3.13)

Here T Σ denotes the relative tangent bundle (2.22) of the marked curve. This induces 
an isomorphism

det ∂̄f∗(T Σ,dc) = det ∂̄(C,cstd) (3.14)
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by using the canonical orientation on twice a bundle and the canonical complex orien-
tation induced by the right-hand side of the identification

det ∂̄f∗(Θ⊕c∗Θ,ctw)
π1= det ∂̄f∗Θ

as in (2.9). By [15, Theorem 1.3], there is also a canonical isomorphism

det(TRMh,�) = det ∂̄(C,cstd), (3.15)

where the forgetful morphism of a pair of marked points is oriented via the first elements 
in the pairs. Then the orientation on the real moduli space is obtained by combining 
(3.14) and (3.15) within (3.12).

Similarly the complex moduli space at f : C → Σ is oriented via the complex orien-
tation of det ∂̄T Σ and the complex orientation on the corresponding Deligne-Mumford 
moduli space as in (3.12).

Since the map D is compatible with the forgetful morphism to the corresponding DM 
spaces, its sign is determined by the comparison on the level of DM spaces and on the 
level of the index bundles.

When (C, σ) = (C1 � C2, σ) is a doublet and (V, φ) = (V1 � V2, φ) → (C, σ) is a 
Real bundle, its index bundle Ind ∂̄(V,φ) has a natural complex structure induced by the 
isomorphism:

Ind ∂̄(V,φ)
p1∼= Ind ∂̄V1 . (3.16)

Here p1 takes an invariant section ξ = (ξ1, ξ2) of (V1 � V2, φ) to its restriction ξ1 to C1. 
In particular, det ∂̄(V,φ) has an induced orientation, which we refer to as the complex 
orientation, cf. [16, §3.1].

On the level of Deligne-Mumford spaces, the doubling map D from the complex moduli 
space (with signed marked points) to the real moduli induces an orientation on DMh,�

which we call the complex orientation, cf. [16, §3.1]. By [16, Lemma 3.2], the comparison 
between the orientation on

det(TDMh,�) ⊗ det ∂̄(C,cstd),

induced by (3.15) and by the complex orientations on the two factors is (−1)χ/2+s, where 
χ is the Euler characteristic of C1 and s is the number of negative marked points on the 
component C1. Because C is a doublet, s is also equal to the number of positive marked 
points on the component C2, i.e. the number 	2 of points in the inverse image of marked 
points x+

i that lie on Σ2.
We now turn to the comparison at the level of index bundles. The twisted orientation 

o determines an orientation on

det ∂̄f∗(T Σ,dc) ⊗ det ∂̄(C,cstd)
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via (3.13) and (3.14). In the case when the domain is a doublet, the two factors in this 
tensor product also have complex orientation as in (3.16). To understand the difference 
between the two orientations on the tensor product we consider the restriction of (3.13)
to C1. This restriction is a complex isomorphism of complex bundles and thus the in-
duced isomorphism on the corresponding determinant bundles is orientation preserving. 
Therefore the difference between the two orientations on the tensor product corresponds 
to the difference between the complex orientation on det ∂̄f∗(Θ⊕c∗Θ,ctw) induced by (3.16)
and the orientation (2.9) on

det ∂̄f∗(Θ⊕c∗Θ,ctw)
π1= det ∂̄f∗Θ|Σ1�Σ2

used in the transition from (3.13) to (3.14).
By Lemma 3.2 below, the difference between these orientations is (−1)ι2 , where

ι2 = c1(f∗Θ|Σ2) + χ/2 = dc1(Θ)[Σ2] + χ/2 = dm2 + χ/2

is the complex rank of the index bundle associated to Θ|Σ2 . Combined with the change 
(−1)χ/2+�2 at the level of the DM moduli spaces this completes the proof. �
Lemma 3.2. The index bundle of (L ⊕ c∗L, ctw) −→ (C1 � C2, c) has two natural orien-
tations:

(i) one induced by the isomorphism with Ind ∂̄L|C1�C2
via the projection (2.9) onto the 

first bundle.
(ii) another one induced by the isomorphism with Ind ∂̄(L⊕c∗L)|C1

via the restriction 
(3.16) to C1.

These orientations differ by a factor of (−1)ι2 , where

ι2 = rankC ∂̄L|C2
= c1(L)[C2] + χ/2, (3.17)

and χ is the Euler characteristic of C2.

Proof. Holomorphic sections of E = L ⊕c∗L −→ C1 �C2 invariant under the involutions 
c, ctw have the form (ξ, η) where ξi = ξ|Ci

are holomorphic sections of L|Ci
while ηi = η|Ci

are holomorphic sections of (c∗L)|Ci
, and

η1 = c∗ξ2 and η2 = c∗ξ1. (3.18)

Note that η1 is a section of (c∗L)|C1 = c∗(L|C2). In particular, there are two natural 
isomorphisms

ker ∂̄(E,ctw) −→ ker ∂̄L = ker ∂̄L|C
⊕ ker ∂̄L|C

, (ξ, η) �→ ξ = (ξ1, ξ2)

1 2
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and

ker ∂̄(E,ctw) −→ ker ∂̄E|C1
= ker ∂̄L|C1

⊕ ker ∂̄(c∗L)|C1
, (ξ, η) �→ (ξ, η)|C1 = (ξ1, η1).

The same is true at the level of cokernels. Therefore we have two natural isomorphisms, 
the first one

Ind ∂̄(L⊕c∗L,ctw) −→ Ind ∂̄L|C1�C2
= Ind ∂̄L|C1

⊕ Ind ∂̄L|C2
(3.19)

induced by the projection onto the first factor L of E = L ⊕ c∗L and the second one

Ind ∂̄(L⊕c∗L,ctw) −→ Ind ∂̄(L⊕c∗L)|C1
= Ind ∂̄L|C1

⊕ Ind ∂̄(c∗L)|C1
(3.20)

induced by the restriction to the first component C1 of the doublet C = C1 � C2. Both 
Ind ∂̄L and Ind ∂̄(L⊕c∗L)|C1

have natural complex structures and therefore induce two 

complex structures on Ind ∂̄(L⊕c∗L,ctw) which we want to compare.
Moreover, there is a natural complex linear isomorphism

Ind ∂̄L|C2
−→ Ind ∂̄c∗(L|C2 ), induced by ξ2 �→ c∗ξ2, (3.21)

and using the fact that ind ∂L2→C2 and ind ∂L2→C2
have opposite complex structures. 

This combined with (3.18) implies that the orientations induced by (3.19) and (3.20)
differ by (−1)ι2 , where ι2 is the complex rank of the index of L|C2 , given by (3.17). �

Next, given two complex line bundles L1, L2 → Σ over a complex curve, we obtain a 
complex line bundle L → DΣ over the double (DΣ, c) = (Σ �Σ, c) = (Σ1 �Σ2, c) defined 
by

L|Σ1 = L1 and L|Σ2 = c∗L2. (3.22)

We denote such L by

D(L1, L2) −→ DΣ.

Note that if L1, L2 → Σ have degrees k1, k2, then L|Σi
also has degree ki, i = 1, 2.

Lemma 3.3. With the notation above, the morphism (3.9) satisfies:

eU(1)(−Ind ∂D(L1,L2)) = (−1)dc1(L2)[Σ]+χ/2P∗eU(1)(−Ind ∂L1⊕L2), (3.23)

with the anti-diagonal action on L1 ⊕ L2 used for the equivariant Euler class in the last 
expression.
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Proof. When L → DΣ is a line bundle over a doublet DΣ = Σ1 � Σ2, the identification 
(3.19) induces an isomorphism

Ind ∂L −→ P∗
1 Ind ∂L|Σ1

⊕ P∗
2 Ind ∂L|Σ2

where Pi(f) = fi are the restrictions (3.7) to the i-th component of the domain; in 
particular P1 = P. Therefore

eU(1)(−Ind ∂L) =
ι∑

m=0
tmcι−m(−Ind ∂L) =

∑
m+k+l=ι

tmP∗
1 ck(−Ind ∂L|Σ1

)P∗
2 cl(−Ind ∂L|Σ2

).

where ι = rankC(−Ind ∂L) = dc1(L)[DΣ] − 2χ
2 on Mc,•

d,2χ(DΣ)λ1..λr .
On the other hand, for the anti-diagonal action on L1 ⊕ L2, we have

eU(1)(−Ind ∂L1⊕L2) =
( ι1∑

k=0

ck(−Ind ∂L1)tι1−k
)( ι2∑

l=0

cl(−Ind ∂L2)(−t)ι2−l
)

=

=
∑

k+l+m=ι1+ι2

tmck(−Ind ∂L1)cl(−Ind ∂L2)(−1)ι2−l.

Here ιi = rankC(−Ind ∂Li
) = −dc1(Li)[Σ] − χ

2 on M•
d,χ(Σ)λ1..λr for i = 1, 2. Note that 

ι = ι1 + ι2.
Since (3.22) implies that L2 = c∗(L|Σ2) −→ Σ1, then as in (3.21), we have

P∗
2 (−Ind ∂L|Σ2

) = P∗
1 (−Ind ∂L2).

Thus

P∗
2 cl(−Ind ∂L|Σ2

) = (−1)lP∗
1 cl(−Ind ∂L2),

and the claim follows. �
Since P and D are inverse morphisms, combining Lemmas 3.1 and 3.3 gives:

Corollary 3.4. With the notation above, the local RGW invariants of a doublet and the 
BP invariants (3.3) of its half are related by:

RZo
d,2χ(DΣ |D(L1, L2))λ1..λr = (−1)d(k2+m2)+χ/2+�2Zd,χ(Σ |L1, L2)λ1..λr , (3.24)

where m2, 	2 are as in (3.10), and k2 = c1(L2)[Σ] is the degree of L2.

Remark 3.5. For a doublet target, the invariants (2.24) and the equality (3.24) are inde-
pendent of the choice of first and second component of the target doublet. This can be 



P. Georgieva, E.-N. Ionel / Advances in Mathematics 391 (2021) 107972 21
seen as follows. The map P to the complex moduli space (3.9) is defined using the first 
component. Choosing the second component instead corresponds to switching the order 
of L1, L2 on the complex GW side. This switch results only in a change of the sign of 
the equivariant complex GW invariant by the parity of ι − b/2, where ι is the complex 
rank of −Ind ∂L1⊕L2 and b is the dimension of the moduli space, cf. (2.27). The quantity 
ι − b/2 mod 2 is also the parity of the sum of the powers of (−1) in (3.24) for the two 
choices.

3.4. The doublet moduli space to a connected target

Assume next (Σ, c) is a genus g connected symmetric Riemann surface with r pairs of 
conjugate marked points, and 
λ = (λ1, . . . , λr) is a collection of r partitions of 2d. Recall 
that a reparametrization of a doublet domain C may swap its two components. So it is 
convenient to consider the two fold cover of the doublet moduli space

q : ˜DM
c

2d,h(Σ)λ −→ DMc

2d,h(Σ)λ (3.25)

consisting of real maps whose domain is a doublet, up to reparametrizations preserving
the order of its components. In particular,

[DMc

2d,h(Σ)�λ]vir,o = 1
2q∗[˜DM

c

2d,h(Σ)�λ]vir,o. (3.26)

Every real map f : (C1 � C2, σ) → (Σ, c) from a doublet domain restricts to a pair of 
maps

fi = f |Ci
: Ci → Σ where f2 = c ◦ f1 ◦ σ|C2 . (3.27)

The ramification points of f get distributed on the two components of the domain: if 
f has ramification profile λi over x+

i (and therefore also over x−
i ), let λi

± denote the 
ramification profile of its restriction f1, cf. (3.27). Since f2 = c ◦ f1 ◦ σ then f2 has 
ramification λi

− over x+
i and ramification λi

+ over x−
i .

This decomposes λi into

λi = λi
+ � λi

−, where λi
± are partitions of d.

Note that if for example λi has parts 4, 3, 3, 2, 1 then λi
+, λi

− could have parts 4, 2, 1 and 
3, 3, 1 respectively. Denote such decompositions 
λ = 
λ+ � 
λ− where 
λ± = (λ1

±, . . . , λr
±)

and let

˜DM
c

2d,h(Σ)�λ+|�λ−
(3.28)

denote the corresponding relative moduli space of real maps from doublet domains, with 
ordered components, and so that the restriction to the first component has ramification 
λi

+ over x+
i and ramification λi

− over x−
i , for all i = 1, . . . r. Therefore
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˜DM
c

2d,h(Σ)�λ = �
�λ=�λ+��λ−

˜DM
c

2d,h(Σ)�λ+|�λ−
. (3.29)

Furthermore there is a morphism

P : ˜DM
c

2d,h(Σ)�λ+|�λ−
−→ Md,h(Σ)�λ+,�λ−

, f �→ f1 (3.30)

cf. (3.27), where Md,h(Σ)�λ+,�λ−
denotes the classical moduli space of maps from a con-

nected domain with ramification λi
+ over x+

i and ramification λi
− over x−

i , for i = 1, . . . r.
Conversely, every map f : C → Σ from a complex curve induces a real map

f̃ : (C � C, σ) → (Σ, c), where f̃ |C = f, f̃ |C = c ◦ f ◦ σ|C (3.31)

from the double of C to Σ. This defines the inverse D of (3.30).

Lemma 3.6. Assume (Σ, c) is a connected symmetric marked curve with r pairs of con-
jugate points and let o = (Θ, ψ, s) be twisted orientation data for it. Let λi

±, i = 1, . . . , r, 
be 2r partitions of d. Then, with the notation above,

[˜DM
c

2d,h(Σ)�λ+|�λ−
]vir,o = (−1)dm+�−D∗[Md,h(Σ)�λ+,�λ−

]vir, (3.32)

where m is the degree of Θ and 	− is the sum of the lengths of the partitions in 
λ−:

m = c1(Θ)[Σ] = g(Σ) − 1 + r and 	− =
r∑

i=1
	(λi

−). (3.33)

Proof. The proof is the same as that of Lemma 3.1. To compare orientations, it suffices 
to compare them on the level of DM spaces and on the level of index bundles. Let 
f : (C1 � C2, σ) → (Σ, c) denote an element of ˜DM

c

2d,h(Σ)�λ+|�λ−
. Since f ◦ σ = c ◦ f then

f∗(Θ ⊕ c∗Θ, ctw) = (f∗Θ ⊕ σ∗(f∗Θ), σtw)

where the involution σtw is given by (2.5) for the bundle L = f∗Θ → (C1 � C2, σ). 
Moreover, C1 has 	− negative points and Euler characteristic χ = 2 − 2h thus the 
difference in orientations on the level of the DM spaces is (−1)χ/2+�− as before. On 
the level of index bundles, it similarly comes from the difference between the complex 
orientation on

det ∂̄f∗(Θ⊕c∗Θ,ctw) = det ∂̄(f∗Θ⊕σ∗f∗Θ,σtw)
p1∼= det ∂̄(f∗Θ⊕σ∗f∗Θ)|C1

induced by (3.16) and the orientation (2.9) on

det ∂̄f∗(Θ⊕c∗Θ,c )
π1∼= det ∂̄(f∗Θ)|C �C

.

tw 1 2
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By Lemma 3.2, this difference is (−1)ι, where ι = c1(f∗Θ)[C2] + χ/2 = dc1(Θ)[Σ] +
χ/2. Finally, the fact that m = c1(Θ)[Σ] = −χ(TΣ) = g(Σ) − 1 + r is obtained as in 
Example 2.2(c), but for the relative tangent bundle T Σ, cf. (2.22). �
Lemma 3.7. Assume L → Σ is a holomorphic line bundle over a connected symmetric 
surface (Σ, c). Then the morphism (3.30) satisfies:

eU(1)(−Ind ∂L −→ ˜DM
c

2d,h(Σ)�λ+|�λ−
) = (−1)ιP∗eU(1)(−Ind ∂L⊕L −→ Md,h(Σ)�λ+,�λ−

),

(3.34)

where ι = dc1(L)[Σ] + 1 − h and the anti-diagonal action on L ⊕ L is used on the right 
hand side.

Proof. Denote ˜DM = ˜DM
c

2d,h(Σ)�λ+|�λ−
and M = Md,h(Σ)�λ+,�λ−

. Then ι =
−dc1(L)[Σ] + h − 1 is the complex rank of −Ind ∂L over M; the complex rank of 
−Ind ∂L over ˜DM is 2ι.

As in the proof of Lemma 3.3,

eU(1)(−Ind ∂L → ˜DM) =
2ι∑

m=0
tmc2ι−m(−Ind ∂L → ˜DM) =

=
∑

k+l+m=2ι

tmP∗
1 ck(−Ind ∂L → M)P∗

2 cl(−Ind ∂L → M)

where Pi(f) = fi is the restriction to the i-th component of the domain, cf. (3.27).
On the other hand, for the anti-diagonal action on L ⊕ L → Σ, for the index bundle 

over M,

eU(1)(−Ind ∂L⊕L) =
( ι∑

k=0

ck(−Ind ∂L)tι−k
)( ι∑

l=0

cl(−Ind ∂L)(−t)ι−l
)

=

=
∑

k+l+m=2ι

tmck(−Ind ∂L)cl(−Ind ∂L)(−1)ι−l.

But as in (3.21), we have a canonical isomorphism Ind ∂f∗
2 L

∼= Ind ∂σ∗f∗
2 L = Ind ∂f∗

1 c∗L

that varies continuously in f , and therefore

P∗
2 (−Ind ∂L) ∼= P∗

1 (−Ind ∂c∗L) ∼= P∗
1 (−Ind ∂L).

The last isomorphism follows because c∗L has the same degree as L on a connected sur-
face, thus can be deformed to L, and the Euler class is deformation invariant. Therefore

P∗
2 cl(−Ind ∂L) = (−1)lP∗

1 cl(−Ind ∂L).
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Substituting into the first displayed equation and comparing it with the second one gives 
(3.34) (recall that P = P1). �

Combining Lemmas 3.6 and 3.7 we obtain:

Corollary 3.8. Assume (Σ, c) is a connected symmetric genus g surface with r pairs of 
conjugate marked points, and L → Σ a complex line bundle. With the notation above,∫

[˜DMc

2d,h(Σ)�λ+|�λ−
]vir,o

eU(1)(−Ind ∂L) = (−1)s−
∫

[Md,h(Σ)�λ+,�λ−
]vir

eU(1)(−Ind ∂L⊕L),

(3.35)
where s− = dc1(L)[Σ] + h − 1 + dm + 	− and m, 	− are as in (3.33).

The right hand side of (3.35) corresponds to the connected GW invariants defined in 
[5], cf. §3.1. In particular, combining it with (3.26) we obtain the following corollary.

Corollary 3.9. When Σ is a connected genus g symmetric surface with r pairs of conjugate 
marked points and L → Σ is a complex line bundle with c1(L)[Σ] = k, the doublet 
invariants and the connected GW invariants of [5] are related via

DRGW c,o
2d (Σ, L)(u, t)�λ = 1

2 (−1)d(k+g−1+r)
∑

�λ+��λ−=�λ

(−1)�−
GW conn

d (g|k, k)(iu, it)�λ+,�λ−
,

with 	− as in (3.33).

Proof. In this case s− = d(k + m) + h − 1 + 	−, m = g − 1 + r, and the substitution 
(u, t) �→ (iu, it) in (3.4) changes the coefficient GWd,χ(g|k, k) by (−1)χ/2, where χ =
2 − 2h. �
4. Splitting formulas

To every symmetric surface (Σ, c) with r pairs of conjugate marked points, every 
complex line bundle L over Σ, and every choice of twisted orientation data o on (Σ, c), 
(2.24) associates a collection of invariants

RGW c,o
d (Σ, L)μ1...μr =

∑
χ

ub/2+kd

∫
[Mc,•

d,χ(Σ)μ1...μr ]vir,o

eU(1)(−Ind ∂L),

where μ1, . . . , μr are partitions of d. These are invariant not only under smooth defor-
mations of the data (Σ, c, L, o), but also under deformations as the symmetric curve Σ
pinches to acquire a pair of conjugate nodes as follows.
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Recall that if Σ0 is a nodal curve, then it has (a) a smooth resolution (normalization) 
Σ̃ that replaces each node by a pair of marked points and (b) a family of deformations 
smoothing out the nodes.

This extends to symmetric surfaces as in [16, §4.2]. More precisely, assume (Σ0, c0) is a 
nodal symmetric surface with a pair of conjugate nodes and r pairs of conjugate marked 
points. It has a normalization (Σ̃, ̃c) which has r + 2 pairs of conjugate marked points. 
Similarly, (Σ0, c0) has a family of smooth deformations, simultaneously smoothing out 
the conjugate nodes using complex conjugate gluing parameters. The generic fiber (Σ, c)
of the family is a symmetric surface with r pairs of conjugate marked points, and a pair 
of ‘splitting circles’ (disjoint vanishing cycles) swapped by the involution; as the gluing 
parameters converge to 0, these circles pinch to produce the two complex conjugate nodes 
of Σ0.

A complex line bundle over the nodal curve extends to a line bundle over the family 
of deformations and lifts to a line bundle on the normalization. The relative tangent 
bundle to the family of marked curves restricts to the tangent bundle (2.22) of each fiber 
and gives rise to the tangent bundle of the normalization (regarded as a marked curve). 
Finally, a choice of orientation data as in Definition 2.1 on the nodal curve extends to 
orientation data over the family and lifts to orientation data on the normalization.

γ−

γ+

c Σ

x−
1

x+
1

x−
2

x+
2

•

•

•

•

c̃ Σ̃

x−
1 = x−

2

x+
1 = x+

2

•

•

c0 Σ0

pinch

deform
resolve

attach

split

Furthermore, assume (Σ, c) is a marked symmetric surface with a pair of conjugate 
splitting circles, i.e. two embedded, disjoint circles γ± swapped by the involution and 
containing no marked points. Then (Σ, c) can be ‘split’ along these circles, i.e. it can be 
deformed to a nodal symmetric surface (Σ0, c0) which then has a smooth normalization 
(Σ̃, ̃c). Any complex line bundle L over Σ and choice o of twisted orientation data for 
(Σ, c) can be deformed to the nodal surface and then lifted to its normalization to give 
a line bundle L̃ over Σ̃ and a choice of orientation data õ on the normalization (Σ̃, ̃c), 
cf. [14, §7.1]. Lastly, every line bundle L̃ and orientation data õ on Σ̃ descend to Σ0 and 
can be deformed to a line bundle L and orientation data o on Σ.
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The splitting formula [5, Theorem 3.2] extends to the Real setting (cf. [14, Theorem 
0.1 and Remark 2.2]) as follows:

Theorem 4.1 ([14, Thm 0.1]). Assume (Σ, c) is a marked symmetric surface with r pairs 
of conjugate points, L is a complex line bundle over Σ, and o is an orientation data for 
(Σ, c). Let (Σ̃, ̃c) denote the symmetric surface obtained as described above from (Σ, c)
by splitting it along two conjugate splitting circles, and let L̃ and õ be the corresponding 
line bundle and orientation data on Σ̃.

Then for any collection 
μ = (μ1, . . . , μr) of r partitions of d, the RGW invariants 
(2.24) satisfy:

RGW c,o
d (Σ, L)�μ =

∑
λ	d

ζ(λ)t2�(λ)RGW c̃,õ
d (Σ̃, L̃)�μ,λ,λ, (4.1)

where ζ(λ) is given by (2.17), t is the equivariant parameter, and 	(λ) is the length of 
the partition λ.

The basic idea of the proof comes from considering the family of moduli spaces of 
maps with values in Σ, as Σ deforms to become a nodal curve, cf. [6, Appendix A]. 
When regarded as maps into the total space of the family of deformations of Σ, maps 
with values in Σ limit to maps f0 with values in Σ0 that lift to maps with values in Σ̃
having matching ramification pattern λ over the nodes of Σ0. Since we are splitting along 
a pair of conjugate nodes, the local analysis of this deformation is the same as in the 
complex case, and the only difference is that the gluing at one of the nodes determines 
the gluing at the conjugate node. As in the proof of [5, Theorem 3.2], the multiplicity 
ζ(λ) comes from the number of ways such a map f0 deforms to a map with values in Σ, 
and t2�(λ) comes from the difference in the Euler class of the index bundles (the index 
bundles differ by a trivial rank 2	(λ) bundle obtained by pulling back over the nodes 
of the domain the restriction of L to the nodes of the target). The comparison of the 
orientations is similar to that of [16, Theorem 1.2], except it uses the twisted orientation 
instead of the real orientation of [15].

Define the raising of the indices by the formula

RGW c,o
d (Σ, L)ν1...νs

μ1...μr = RGW c,o
d (Σ, L)μ1...μr,ν1...νs

(
s∏

i=1
ζ(νi)t2�(νi)

)
. (4.2)

With this convention, (4.1) implies that for any splitting (Σ̃, ̃c, L̃, ̃o) of (Σ, c, L, o) along 
a pair of conjugate splitting circles,

RGW c,o
d (Σ, L)ν1...νs

μ1...μr =
∑
λ	d

RGW c̃,õ
d (Σ̃, L̃)ν1...νs,λ

μ1...μr,λ. (4.3)

In particular, for a splitting (Σ̃, ̃c) of (Σ, c) along a pair of non-separating conjugated 
circles,
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RGW c,o
d (Σ, L)μ1...μr =

∑
λ	d

RGW c̃,õ
d (Σ̃, L)λ

μ1...μrλ, (4.4)

while for a splitting along a pair of separating conjugated circles into (Σ′, c′) and (Σ′′, c′′)
we have

RGW c,o
d (Σ, L)ν1...νs

μ1...μr =
∑
λ	d

RGW c′,o′

d (Σ′, L′)λ
μ1...μr RGW c′′,o′′

d (Σ′′, L′′)ν1...νs

λ (4.5)

where L′, L′′ and o′, o′′ denote the restrictions of L̃ and õ to Σ′ and Σ′′ respectively.
This will allow us to construct a Klein TQFT associated to these invariants in §8.

5. The level 0 theory

The main result in this section is a calculation of the level 0 theory for a symmetric 
sphere relative a pair of conjugate points, cf. Proposition 5.2. We start with the following 
preliminary result, for the level 0 theory, i.e. corresponding to the case when the line 
bundle L in (2.5) is trivial.

Lemma 5.1. The level 0 RGW series (2.24) have no nonzero terms of positive degree in 
u.

Proof. The level 0 RGW series are built from the following integrals:

RZc,o
d,χ(Σ, O)λ1...λr = tι−b/2

∫
[Mc,•

d,χ(Σ)λ1...λr ]vir,o

cb/2(−Ind ∂O)

= tι−b/2
∫

[Mc,•
d,χ(Σ)λ1...λr ]vir,o

cb/2(E∨),

where E∨ denotes the dual of the Hodge bundle, and b is the dimension of the moduli 
space (2.21). Since the power of u in the level 0 RGW invariants (2.24) is b/2, it suffices to 
show that the only nonzero contribution to RZc,o

d,χ(Σ, O)λ1..λr comes from 0-dimensional 
moduli spaces. It suffices to show this is the case for the doublet and connected invariants 
of (Σ, c), when Σ is itself either a doublet or connected.

By Corollaries 3.4, 3.9, the doublet invariants for a connected or a doublet target are 
equal up to a scalar to the connected BP invariants. By the proof of [5, Lemma 7.5], for 
the antidiagonal action and level (0, 0), the connected BP invariants vanish unless the 
dimension of the moduli space is 0.

So it remains to consider the case when both the domain and target are connected. 
Let RMg,� and Mg,2� denote the real and the complex Deligne-Mumford moduli spaces 
of connected genus g Riemann surfaces with 	 pairs of conjugate and 2	 marked points, 
correspondingly. Consider the map
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RMg,� −→ Mg,2� (5.1)

forgetting the real structure on the curve. The image of this map falls into the fixed 
locus of the involution on Mg,2� given by

[S, j, y1, . . . , y2�] �→ [S, −j, y2, y1, . . . y2�, y2�−1].

In general, the map (5.1) is neither injective nor surjective onto the fixed locus. However, 
the Hodge bundle E over the real Deligne-Mumford space is the pull-back via (5.1) of the 
Hodge bundle over the complex space. Over the real Deligne-Mumford space, the real 
structure σ on a Riemann surface representing a point in the space induces a complex 
conjugation on the fiber of the Hodge bundle over it. Therefore the Hodge bundle splits 
into invariant and anti-invariant parts of equal dimensions i.e.

E ∼= ER ⊗R C −→ RMg,�.

This implies that

c2k+1(E) = 0 ∈ H4k+2(RMg,�,Q).

By Mumford’s relations

0 = ci(E ⊗R C) =
i∑

j=0
(−1)jci−j(E)cj(E).

In particular, for even index, 2c2k(E) +
2k−1∑
j=1

(−1)jc2k−j(E)cj(E) = 0. By induction on k, 

using the vanishing of the odd classes over the real moduli space we get

ci(E) = 0 ∈ H2i(RMg,�,Q) for all i �= 0.

Thus the only nonzero contributions to RZc,o
d,χ(Σ, O)λ1..λr can come from integrating 1

over a 0-dimensional moduli space. �
5.1. Level 0 theory for a sphere relative two points

Consider next (Σ, c) a real sphere with a pair of conjugate points x±. Up to 
reparametrization, there are only two real structures on Σ = (P 1, x±):

c−(w) = −1/w and c+(w) = 1/w.

The real locus Σc is empty for the first one and non-empty for the second one.
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For the remainder of this section, we regard P 1 as C ∪ ∞ with coordinate w, such 
that the preferred point x+ corresponds to w = 0 and x− to w = ∞. Let S1 be the unit 
circle |w| = 1, which separates P 1, and is oriented as the boundary of the component 
containing x+ = 0. Then S1 is the fixed locus when c = c+ and is a cross-cap when 
c = c− (i.e. c−(w) = −w for all w ∈ S1).

The relative tangent bundle T Σ, given by (2.22), is trivial for Σ = (P 1, x±). Therefore 
a twisted orientation data o = (Θ, ψ, s) for (P 1, x±, c) consists of a trivial complex line 
bundle Θ = Σ ×C over Σ = (P 1, x±), a choice of a homotopy class of Real isomorphisms 
(2.7), i.e.

ψ : Λtop(TΣ ⊕ Θ ⊕ c∗Θ, dc ⊕ ctw)
∼=−→(Σ × C, c × cstd), (5.2)

and a spin structure s on T Σc ⊕ C|Σc over the real part of the target, compatible with 
the orientation induced by the isomorphism (5.2).

Note also that, up to homotopy, there is a unique trivialization

φ : (T Σ, dc) ∼= (Σ × C, c × cstd) such that it restricts to (5.3)

(TΣ, dc)|S1 = (TS1 ⊕ JTS1, dc) = (S1 × (R ⊕ jR), c × cstd). (5.4)

This is because there are two classes of trivializations (5.3) and they are distinguished 
by their restriction to S1, cf. [11, Lemma 2.4]; we choose the one that satisfies (5.4).

Finally, to each partition λ = (1m12m23m3 . . . ), associate the monomial

pλ =
∞∏

k=1

pmk

k . (5.5)

With this notation, our main result in this section is:

Proposition 5.2. Consider a Real sphere Σ = (P 1, x±) with a pair of marked points and 
real structure c. Let o be an orientation data for (Σ, c). Then for any partition λ of d,

RGW c,o
d (0|0)λ = exp

(
εo

∞∑
k=0

p2k+1

(2k + 1)t −
∞∑

m=1

p2
m

2mt2

)
[pλ]

, (5.6)

where εo = ±1 is independent of d. Here (P )[pλ] denotes the coefficient of the monomial 
pλ in the formal power series P .

Moreover, for each ε = ±1 there exists a choice of a twisted orientation data o such 
that εo = ε.

Proof. It suffices to calculate the connected and doublet invariants, since (2.16) extends 
to give
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1+
∑
d≥1
λ	d

RGW c,o
d (Σ, L)λpλ =exp

⎛⎜⎝∑
d≥1
λ	d

CRGW c,o
d (Σ, L)λpλ+

∑
d≥1
λ	d

DRGW c,o
2d (Σ, L)λ,λp2

λ

⎞⎟⎠ .

By Corollary 3.9, the doublet invariants DRGW are related to the BP invariants GW conn

counting connected curves. The latter were computed in [5, Lemma 6.1] giving:

DRGW c
2d(0|0)λ(u, t) = −1

2GW conn
d (0|0, 0)λ+,λ−(iu, it) = −1

2d(−t)2 , for λ+ = λ− = (d)

and vanish otherwise.
By Lemma 5.1, the only contribution to the connected real invariant CRGW comes 

from 0 dimensional moduli spaces. The dimension of Mc

d,h(P 1)λ is

b = 2d + 2h − 2 − 2d + 2	(λ) = 2h − 2 + 2	(λ).

It vanishes only when h = 0 and 	(λ) = 1 i.e. λ = (d). It suffices to show that in this 
case

∫
[Mc,o

d,0(P1)λ]vir

1 =
{

εo
1
d , if d is odd,

0, if d is even.
(5.7)

Elements of Mc

d,0(P 1)λ for λ = (d) are real covers of a sphere by a sphere, fully 
ramified at the two points x±, and equivariant with respect to a real structure σ on the 
domain and c on the target.

Case 1. Assume first that c(w) = −1/w, so it has no fixed locus. Then σ cannot 
have fixed locus, and d must be odd (else the moduli space is empty). When d is odd, 
the moduli space consists of one solution f(z) = zd, σ(z) = −1/z, but which has d

automorphisms φ(z) = ζz where ζd = 1. It remains to calculate its sign and show it does 
not depend on d. We will first prove that there are two classes of twisted orientation data, 
giving rise to opposite invariants, and then we calculate the invariants for a canonical 
choice o = ocan that corresponds to εo = 1.

A twisted orientation data o = (Θ, ψ, s) in this case consists of a choice of an isomor-
phism (5.2) up to homotopy; the bundle Θ = Σ × C is trivial and the real locus of c is 
empty so the spin structure s is irrelevant.

There are two real homotopy classes of isomorphisms (5.2) distinguished by the real 
homotopy class of ψ over the unit circle |w| = 1 in P 1 = C∪∞. One can switch between 
them by ψ �→ −ψ. The effect of this change on the orientation of the moduli space is via 
the change of the orientation on the bundle Ind ∂̄(C,cstd), which is (−1)χ/2 = −1 since 
the domains are spheres. In particular, if o1 and o2 denote the two choices of twisted 
orientation, then the level 0 connected invariants satisfy

CRGW c,o1
d (0|0)λ = −CRGW c,o2

d (0|0)λ. (5.8)
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We next determine the sign of the invariants in each degree by looking at the moduli 
space in more detail. The orientation on the moduli space is induced from the deter-
minant bundle det ∂(T Σ,dc) and the Deligne-Mumford moduli space, cf. (A.13), after 
stabilization when necessary. So we add an extra pair of conjugate marked points y±

2 on 
the domain. The moduli space is now 2 dimensional and it suffices to calculate the sign 
of the evaluation map at y+

2 , cf. [15, (2.2)]. For this we first exhibit an orientation on 
the moduli space for which the sign of the evaluation map is clear and then we compare 
it with orientation induced by the twisted orientation data.

The real DM moduli space RM0,2 is 1-dimensional and consists of 3 intervals that 
compactify to a circle; one of the intervals corresponds to the case the involution on the 
domain is fixed-point free and the other two to the case the involution has fixed locus. 
We can assume that σ(z) = ±1/z, y±

1 are z = 0, ∞, and y+
2 = b ∈ R+. The orientation 

on RM0,2 agrees with the one induced by b ∈ R+ when σ has fixed locus, and is the 
opposite in the case σ is fixed-point free; see [16, §1.4].

When the domain is fixed, the moduli space of degree d real relative maps is

fτ : (P 1, σ) −→ (P 1, c) z �→ eiτ zd, τ ∈ R/2πZ;

here σ(z) = −1/z. Thus the relative moduli space with the extra pair y±
2 of marked 

points is described by (τ, b) ∈ R × R+, where b corresponds to the position of y+
2 and 

τ gives the map fτ . For the orientation induced by this identification, the evaluation 
map at y+

2 is orientation reversing. The tangent space to the first factor corresponds 
naturally to Ind ∂̄(T Σ,dc) and the tangent space to the second factor to TRM0,2. Recall 
that the canonical orientation on the latter is opposite that of b ∈ R+ when the domain 
involution is fixed-point free. Thus the evaluation map at y+

2 would have positive sign 
if the orientation induced by a twisted orientation on Ind ∂̄(T Σ,dc) coincides with that 
induced by τ ∈ R. We next construct such twisted orientation data.

Let ocan be the twisted orientation data for which (5.2) has the form ψ = φ ⊗Λtopθtw, 
where φ is given by (5.3) and

θtw : (Σ × C ⊕ c∗(Σ × C), ctw) ∼= (Σ × C⊕2, c × cstd)

is orientation preserving at the level of index bundles when the first term has the complex 
orientation induced via (2.9) and the second term is oriented as twice a bundle. By 
Lemma 5.3 below, we can obtain such θtw as the composition of (5.9) and (5.10). For this 
choice, the twisted orientation data ψ = φ ⊗ Λtopθtw induces precisely the isomorphism 
(5.4), as explained above (3.14). On the other hand, the isomorphism (5.4) induces an 
orientation on Ind ∂̄(T Σ,dc) that coincides with that of τ ∈ R. Therefore, for this choice of 
twisted orientation data, the evaluation map has positive degree for all odd d, completing 
the proof of (5.7).

Case 2. Assume c(w) = 1/w, so the involution on the target has fixed locus. The 
argument in this case follows along the same lines. The fixed locus Σc is now the unit circle 
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S1 and a twisted orientation data requires a choice s of a spin structure on T Σc⊕C|Σc over 
the real part of the target, compatible with the orientation induced by the isomorphism 
(5.2). There is still one solution for d odd (with σ(z) = 1/z on the domain), but when d
is even, there are now two solutions, with different real structures.

We next construct a twisted orientation data o = ocan for which εo = +1. Let ψ =
φ ⊗ Λtopθ, where φ is as in (5.3) and θ is the isomorphism (5.9). The isomorphism θ, 
along with the orientation of TS1, induces a spin structure s, compatible with ψ. Denote 
these choices by ocan.

We repeat the same argument as in Case 1, taking into account that the orientation 
on the real DM moduli space is given by b ∈ R+ when σ has real locus, and by −b when σ
does not have real locus. Recall that in odd degree σ must have real locus, while in even 
degree there are two solutions, one with real locus and one without. By Lemma 5.3 below, 
at the level of index bundles, the isomorphism θ has sign (−1)ind ∂C = (−1)χ/2 = −1 and 
thus the orientation induced on Ind ∂̄(T Σ,dc) is opposite of that induced by τ ∈ R. So all 
maps whose domain involution has fixed locus contribute positively and all maps with 
fixed-point free domain involution contribute negatively. This implies that the maps in 
even degree cancel each other. In odd degree, the domains can only have real structure 
with fixed locus and thus contribute positively. This implies (5.7) for o = ocan (with 
εo = 1).

It remains to calculate how the invariants depend on the orientation data o = (Σ ⊗
C, ψ, s). Up to homotopy, there are 4 choices, two for ψ and two for the spin structure 
s. As before, a change in the homotopy class of ψ changes the orientation on all maps 
thus giving (5.8). A change in the spin structure results in a change of (−1)d on the 
orientation of a degree d map as it changes the pullback spin structure on the domain 
only if the degree is odd, cf. [15, Corollary 5.7] and Lemma A.3. Since the even degree 
invariants vanish, changing the spin structure s also gives (5.8), completing the proof of 
(5.7). �

When (L, φ) → (Σ, c) is a Real bundle over a symmetric surface, then

θ : (L ⊕ c∗L, ctw) ∼= (L ⊕ L, φ ⊕ φ), (z; x, y) �→ (z; x + φ(y), −Jx + Jφ(y)) (5.9)

is a Real isomorphism. The index of the LHS has a natural complex orientation while 
that of the RHS can be oriented as twice of a bundle. The next lemma compares these 
two orientations.

Lemma 5.3. Assume (L, φ) → (Σ, c) is a Real bundle. Then the index bundle
Ind ∂(L⊕c∗L,ctw) has two natural orientations:

(i) one induced by the isomorphism (2.9) with Ind ∂L via the projection onto the first 
bundle.

(ii) the second one induced by (5.9) and the natural orientation on twice a bundle.
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The difference between these orientations is (−1)ι where ι is the complex rank of Ind ∂L. 
Moreover,

Id ⊕ −Id : Ind ∂(L⊕L,φ⊕φ) → Ind ∂(L⊕L,φ⊕φ), (5.10)

when both sides are oriented as twice a bundle, also has sign (−1)ι.

Proof. The isomorphism (2.9) with Ind ∂L induces a complex structure and therefore a 
complex orientation on the index bundle associated to the left hand side of (5.9). The 
isomorphism induced by θ at the level of index bundles would be orientation preserving 
if the complex orientation on twice of a bundle was used instead on the right hand side; 
the two choices differ by (−1)ι. The second statement is immediate. �

The proof of Proposition 5.2 constructs choices of orientation data o = ocan that have 
the property that εo = 1; in particular, the sign of the degree 1 cover is +1. For such 
choices, (5.6) is equal to

RGWd(0|0)λ = exp
(∑

k=0

p2k+1

(2k + 1)t −
∑
m=1

p2
m

2mt2

)
[pλ]

, (5.11)

while for any other choice of orientation data

RGW c,o
d (0|0)λ = (εo)dRGWd(0|0)λ

where εo = ±1 is the sign of the degree 1 cover. This follows because substituting 
pm �→ εopm for all m = 1, 2, . . . converts the sum in the exponential of (5.11) to the one 
in (5.6), but also changes pλ �→ (εo)dpλ when λ is a partition of d.

6. Canonical orientation and independence of the target real structure

In this section we study how the RGW invariants depend on the choice of orientation 
data and on the real structure on the target. We show that a change in the orientation 
data or in the real structure results in a global change by a factor of (±1)d. We then 
use this information to define canonical RGW invariants which are compatible with the 
splitting formulas.

6.1. Dependence on the orientation data and real structure

Assume (Σ, c) is a symmetric Riemann surface with r pairs of conjugate marked 
points. We first describe how the RGW invariants depend on the choice of orientation 
data.
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Lemma 6.1. For any two orientation data o1, o2 for (Σ, c), there exists m ∈ Z such that

RGW c,o1
d (Σ|L)λ1...λr = (−1)dmRGW c,o2

d (Σ|L)λ1...λr (6.1)

for all d and all collections of r partitions λ1, . . . , λr of d.
For every (Σ, c) there exist two orientation data for which the sign difference is (−1)d.

Proof. It suffices to prove this when Σ is either connected or a doublet. Assume oi =
(Θi, ψi, si) are two orientation data for (Σ, c), cf. Definition 2.1.

Case 1. When Σ is a doublet, Lemma 3.1 implies that the RGW invariants for the 
two orientations differ by a factor of (−1)dm2 , where m2 is the difference between the 
degrees of the restrictions to the second component of Σ of the bundles Θi. Changing 
the degree of Θ1 by 1 on the first component and by -1 on the second gives rise to a sign 
difference of (−1)d.

Case 2. Assume next that Σ is connected. Choose a separating collection {γi} of 
circles, each one of which is either fixed or a crosscap. Trivialize the complex line bundle 
L in a neighborhood of the γi, and split off a level 0-sphere containing no marked points, 
one for each γi. The complement of these spheres is then a doublet.

c Σc Σ c0 Σ0

pinch

Any orientation data on Σ can similarly be split to induce an orientation data on the 
split surface Σ0. For two different orientation data on the split surface, the invariants 
of the i’th sphere differ by a factor of εd

i , where εi = ±1 (by Proposition 5.2), and the 
invariants on the doublet by (−1)dm (as above). The splitting formula (4.5) then implies 
the same is true for the invariants of the original surface. �
Lemma 6.2. Assume Σ is a connected surface with 2r pairs of marked points, and c1, c2
are two real structures on Σ. Then for every orientation data oc1 on (Σ, c1) there exists 
an orientation data oc2 on (Σ, c2) so that

RGW c1,o1
d (Σ|L)λ1...λr = RGW c2,o2

d (Σ|L)λ1...λr . (6.2)

Proof. Real structures on Σ are classified topologically by the number of fixed circles of 
Σ and the orientability of Σ/c, see e.g. [21, §2.3]. We can transform (Σ, c1) into (Σ, c2)
via a sequence of splittings of a sphere around either a crosscap or a fixed circle as above 
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and replacing that sphere by a sphere with the other real structure. By Proposition 5.2
we can choose the orientation data on the new sphere so that its invariants match those 
of the old sphere. The claim follows from the splitting formula (4.3). �
Remark 6.3. When the target is connected, Lemma 3.6 implies that the orientation of 
the doublet moduli space depends neither on the choice of orientation data, nor on the 
real structure of the target.

When the target is a doublet, then up to deformation different choices of orientation 
data are distinguished by the degree of Θ|Σ2 , cf. Example 2.2(b). As in the proof above, 
the local RGW invariants then differ by a factor of (−1)dm2 , where m2 is the difference 
between these degrees.

6.2. Canonical RGW invariants

Assume (Σ, c) is a symmetric surface with r pairs of conjugate points. The discussion 
above partitions the choices of orientation data o on (Σ, c) into two nonempty classes, 
distinguished by the sign εo = ±1 of the d = 1 cover of (Σ, c).

Definition 6.4. A canonical twisted orientation for (Σ, c) corresponds to a choice of twisted 
orientation data ocan = o for which the degree 1 cover of Σ has sign εo = +1.

Corollary 6.5. With the notation above,

RGWd(Σ|L)λ1...λr = (εo)dRGW c,o
d (Σ|L)λ1...λr (6.3)

is well defined, independent of the orientation data o and of the real structure c on Σ; 
in particular,

RGWd(Σ|L)λ1...λr = RGW c,ocan

d (Σ|L)λ1...λr .

It is also compatible with the splitting formula (4.3), in the sense that

RGWd(Σ, L)ν1...νs

μ1...μr =
∑
λ	d

RGWd(Σ̃, L̃)λ,ν1...νs

λ,μ1...μr . (6.4)

Proof. The fact that (6.3) is independent of the orientation data o on (Σ, c) follows from 
Lemma 6.1. Next, (6.3) is also independent of the real structure c on Σ by Lemma 6.2
since (6.2) for d = 1 implies that the sign of the degree 1 cover is the same for both o1
and o2. Finally, under the splitting (4.3) degree 1 covers split as degree 1 covers, giving 
(6.4). �

We end this section with a few consequences of this discussion.
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Corollary 6.6. The degree d, connected genus h real invariants of a connected genus g

target vanish unless d(g − 1) + h − 1 ≡ 0 mod 2.

Proof. By Corollary 6.5 the RGW invariants (6.3) are independent of the choice of real 
structure and of orientation data on the target. For a connected target, the same is true 
for the doublet invariants DRGW by Remark 6.3. Since the RGW invariants are equal 
to exp(CRGW + DRGW ) as in (2.16) it follows that the connected RGW invariants 
of a connected target Σ are also independent of these choices. Finally, when the real 
structure on the connected genus g target has no fixed locus, there are no real degree d
maps from a connected genus h surface to Σ unless d(g − 1) + h − 1 ≡ 0 mod 2 cf. [17, 
Example 5.1]. Therefore the connected invariants vanish for any choice of real structure 
and orientation data unless this condition is satisfied. �
Lemma 6.7. Exchanging the order within the i-th pair of conjugate marked points of Σ
changes RGWd(Σ|L)λ1...λr by a factor of (−1)d−�(λi). Exchanging two pairs of conjugate 
points does not change the invariant.

Proof. Exchanging x+
i ↔ x−

i in the target exchanges their 	(λi) preimages, contributing 
the (−1)�(λi) factor. For a degree 1 map, 	(λi) = 1 and thus this changes the sign of 
the degree 1 cover by a factor of -1. This forces a change in the twisted orientation data 
to compensate for the − sign on the degree 1 cover as in Lemma 6.1. The effect of this 
change on a degree d map is (−1)d. Altogether, this implies the first claim. The second 
claim follows immediately since permuting pairs of conjugate points in the domain is 
relatively orientation preserving at the level of the DM moduli spaces. �
Corollary 6.8. The degree d RGW invariants (6.3) of a connected target vanish unless 
d − 	(λi) ≡ 0 mod 2 for all i.

Proof. This follows by Lemma 6.7 since on a connected target we can find a path con-
necting x+ to x− and therefore continuously deform the pair of conjugate marked points 
(x+, x−) into (x−, x+). �
Corollary 6.9. For a g-doublet target with all the positive marked points on the first 
component, we have

RGWd(g, g|k1, k2)λ1...λr (u, t) = (−1)dk2GWd(g|k1, k2)λ1...λr (iu, it). (6.5)

Proof. Since the degree d = 1 cover of a complex curve counts positively, Lemma 3.1
implies that, for a doublet target Σ = Σ1 � Σ2, ocan corresponds to a choice (Θ, ψ, s)
such that

c1(Θ)[Σ2] ≡ 0 mod 2.
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(Note that 	2 = 0 because by assumption all the + points are on the first component.) By 
Corollary 3.4, the real and complex invariants differ by a factor of (−1)dk2+χ/2. Since the 
correspondence (u, t) �→ (iu, it) changes the coefficient GWd,χ(g|k1, k2)λ1...λr by (−1)χ/2, 
we obtain (6.5). �
7. TQFT and Klein TQFT

We will use the local RGW invariants to define an extension of a semi-simple Klein 
TQFT in §8, which we completely solve in §9, obtaining explicit closed formulas for 
the local RGW invariants. This section contains a brief overview of TQFTs and Klein 
TQFTs, following [5, §4] and [2, §1] (up to some change in notation), and a discussion 
of semi-simple ones.

Let 2Cob be the usual (oriented, closed) 2-dimensional cobordism category. It is the 
symmetric monoidal category with objects given by compact oriented 1-manifolds (with-
out boundary) and morphisms given by (diffeomorphism classes of) oriented cobordisms. 
A 2-dimensional topological quantum field theory (2d TQFT) with values in a commutative 
ring R is a symmetric monoidal functor

F : 2Cob → Rmod,

where Rmod is the category of R-modules. This is equivalent to a commutative Frobenius 
algebra over R; the product and co-product correspond to the pair of pants while the 
unit and co-unit to the cap and cup respectively, see Fig. 2.

In [5, §4.2], Bryan and Pandharipande enlarge the category 2Cob to a category 
2CobL1,L2 with the same objects, but with extra morphisms. The morphisms are now 
equivalence classes of oriented cobordisms W decorated by a pair of complex line bundles 
L1, L2 → W trivialized over the boundary. The equivalence is up to bundle isomorphisms 
covering diffeomorphisms between the cobordisms (and compatible with the trivializa-
tions over the boundary). The composition is given by concatenation of the cobordisms 
and gluing the bundles using the trivializations over the boundary.

For example, a morphism in 2CobL1,L2 corresponding to a connected cobordisms W is 
completely determined by the genus g of W together with a pair of integers (k1, k2), called 
the level, recording the Euler classes e(Li) ∈ H2(W, ∂W ). Restricting the morphisms to 
k1 = k2 = 0 defines an embedding

2Cob ⊂ 2CobL1,L2 .

In [5, §4.4] Bryan-Pandharipande use the local GW invariants to define a symmetric 
monoidal functor

GW : 2CobL1,L2 → Rmod. (7.1)



38 P. Georgieva, E.-N. Ionel / Advances in Mathematics 391 (2021) 107972
on this larger category. The functor (7.1) extends the classical 2d TQFT that appeared 
in the work of Dijkgraaf-Witten [7] and Freed-Quinn [12], and whose Frobenius algebra 
is the center Q[Sd]Sd of the group algebra of the symmetric group Sd. It is used to 
completely solve the local Gromov-Witten theory.

A different extension of 2Cob is obtained by allowing unoriented and possibly un-
orientable surfaces as cobordisms; see [1,2]. We refer to this category as 2KCob, where 
K stands for Klein (surface). The objects are closed unoriented 1-manifolds and the 
morphisms are diffeomorphism classes of unoriented (and possibly unorientable) cobor-
disms. An equivalent point of view is to consider the orientation double covers of both 
the objects and the morphisms: (i) the objects are then closed oriented 1-manifolds 
with an orientation-reversing involution (deck transformation) exchanging the sheets of 
the cover and (ii) the morphisms are compact oriented 2-dimensional manifolds with a 
fixed-point free orientation-reversing involution extending the one on the boundary. Such 
2-dimensional manifolds are called symmetric surfaces and we denote this category by 
2SymCob. Moreover

2KCob ≡ 2SymCob

where the identification is obtained by passing to the orientation double cover in one 
direction and taking the quotient by the involution in the other direction. Working from 
the perspective of 2SymCob allows us to construct an extension of this category related 
to that of [5] and completely solve the local real Gromov-Witten theory. For this reason 
we describe 2KCob and 2SymCob in parallel below.

Remark 7.1. As mentioned after [2, Definition 1.7], it is convenient to identify 2KCob
(and respectively 2Cob) with its skeleton, which is the full subcategory whose objects 
are disjoint unions of copies of a fixed oriented circle S1. For 2SymCob we take the 
full subcategory whose objects are disjoint unions of two circles S = (S1 � S1, ε), where 
S1 denotes the circle with opposite orientation and ε|S1 = id : S1 −→ S1. This way, 
2Cob can be regarded as a subcategory of 2KCob with the same objects, but fewer 
morphisms:

2Cob ⊂ 2KCob.

Note that even if a cobordism in 2KCob is orientable, there may not be way to orient 
it in a way compatible with the boundary identifications. For example, Fig. 1 shows 
two different cobordisms, the first one being the tube (which induces the identity). The 
second one reverses the orientation of the S1 and we refer to it as the involution Ω. It is 
a morphism in 2KCob but not in 2Cob. The difference is even more visible from the 
perspective of 2SymCob, cf. second cobordism in (7.3).
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id Ω

Fig. 1. The tube (identity) and the involution Ω in 2KCob.

Fig. 2. The elementary cobordisms: cap, cup, tube, twist and the pairs of pants in 2Cob ⊂ 2KCob.

c

Fig. 3. The elementary cobordisms: cap, cup, tube, twist and the pairs of pants in 2SymCob.

When 2Cob is regarded as a subcategory of 2KCob as described in Remark 7.1, 
its generators are given in Fig. 2 (cf. [2, Figure 1.1]). The corresponding elements of 
2SymCob are their orientation double covers, cf. Fig. 3.

The category 2KCob has two extra generators, the cross-cap (a Möbius band) and 
the involution

Ω (7.2)

respectively. In 2SymCob these correspond to their orientation double covers:

c (7.3)

Note that in 2SymCob the involution swaps the two outgoing circles.
The extra generators satisfy certain relations in 2KCob (see p 1840-1841 of [2]). For 

example, moving a puncture once around the Möbius band changes the orientation of 
the puncture, cf. Fig. 4; equivalently, the involution acts trivially on the product of the 
cross-cap with another element, cf. (7.6).See Fig. 5

Another relation comes from decomposing the product of two cross-caps as in Fig. 6, 
cf. (7.7).
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= =

Fig. 4. The cobordism K and relations in 2KCob.

= =c

Fig. 5. The cobordism K and relations in 2SymCob.

=
Ω

id

Fig. 6. Relation in 2KCob: decomposing the punctured Klein bottle.

7.1. Semi-simple Klein TQFT

Definition 7.2. A (closed) 2d Klein TQFT is a symmetric monoidal functor

F : 2KCob → Rmod. (7.4)

In fact, cf. [2, Prop 1.11], a (closed) 2d Klein TQFT is equivalent to a commutative 
Frobenius algebra H = F (S1) together with two extra structures:

(a) an involutive (anti)-automorphism Ω of the Frobenius algebra H, denoted x �→ x∗. 
This means

(x∗)∗ = x, (xy)∗ = y∗x∗ and 〈x∗, y∗〉 = 〈x, y〉 for all x, y ∈ H. (7.5)

(b) an element U ∈ H such that

(aU)∗ = aU for all a ∈ H and (7.6)

U2 = m(id ⊗ Ω)(Δ(1)) =
∑

αiβ
∗
i , where the co-product Δ(1) =

∑
αi ⊗ βi. (7.7)

The involution Ω and the element U correspond to the cobordisms (7.2). For an inter-
pretation of the relations (b), see Fig. 4 and 6.



P. Georgieva, E.-N. Ionel / Advances in Mathematics 391 (2021) 107972 41
There are several elements of 2KCob that play a special role; their images under (7.4)
are denoted:

F
( )

= 1, F

( )
= G, and F

( )
= C, (7.8)

F
( )

= Ω, F
( )

= U, and F
( )

= K. (7.9)

When (7.4) is regarded as a morphism on 2SymCob ≡ 2KCob via the orientation 
double cover construction, we denote it

F̃ : 2SymCob → Rmod. (7.10)

In particular,

F̃

( )
= Ω, F̃

⎛⎜⎝
⎞⎟⎠ = U, and F̃

( )
= K. (7.11)

Definition 7.3. A semi-simple Klein TQFT is a Klein TQFT whose associated Frobenius 
algebra is semi-simple.

A semi-simple TQFT is determined by the structure constants {λρ}, i.e. the coeffi-
cients of the co-multiplication Δ(vρ) = λρvρ ⊗vρ in the idempotent basis {vρ}. Moreover,

Proposition 7.4. Assume (7.4) is a semisimple KTQFT with idempotent basis {vρ}, and 
assume that the ground ring R has no zero divisors. Then

(i) G(vρ) = λρvρ and C(vρ) = λ−1
ρ .

(ii) Ω defines an involution on the idempotent basis Ω(vρ) = vρ∗ .
(iii) If U =

∑
ρ Uρvρ then U2

ρ = λρ if ρ = ρ∗, and Uρ = 0 if ρ �= ρ∗.
(iv) K(vρ) = Uρvρ.

Proof. Property (i) holds for any semi-simple TQFT. To prove (ii), note that the second 
relation in (7.5) implies

Ω(vρ)Ω(vμ) = Ω(vμvρ)

for all ρ and μ. If Ω(vρ) =
∑

ν Ων
ρvν , then since {vρ} is an idempotent basis (i.e. vρvμ =

δρμvρ for all ρ, μ) this implies∑
Ων

ρΩν
μvν = δμρ

∑
Ων

ρvν .

ν ν
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Therefore

Ων
ρΩν

μ = 0 for all ρ �= μ and all ν, while (7.12)

(Ων
ρ)2 = Ων

ρ so Ων
ρ = 0 or 1 for all ρ, ν (7.13)

(because R has no zero divisors). Equation (7.12) implies that there is at most one non 
zero element in each row of the matrix associated to Ω in this basis. But since Ω is 
invertible, there must be exactly one non-zero element in each row, which by (7.13) must 
be equal to 1. The invertibility of Ω also implies that there is precisely one non-zero 
element in every column. This proves (ii).

Next, (7.7) (cf. Fig. 6) implies

U2
ρ = Ωρ

ρλρ, (7.14)

since Δ(1) =
∑

ρ λρvρ ⊗ vρ. This gives (iii).
Finally, property (iv) follows since K(x) = U · x, i.e. K decomposes as

K = F

( )
= F

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

cf. Fig. 4. �
Assume Σ is a closed symmetric surface, considered as a morphism in 2SymCob from 

the ground ring to the ground ring.

Corollary 7.5. With the notation of Proposition 7.4, the morphism (7.10) is given by:

F̃ (Σ) =
∑

ρ=ρ∗

Ug−1
ρ , when Σ is a connected genus g surface and

F̃ (Σ � Σ) =
∑

ρ

λg−1
ρ , when Σ � Σ is a g-doublet.

Proof. This follows from Proposition 7.4 by decomposing the surface Σ into elementary 
cobordisms, and the fact that connected symmetric surfaces (without real locus) are 
classified by their genus, cf. eg. [21, §2.3]. When Σ = P 1,

F̃ (P 1) = CU =
∑

ρ

λ−1
ρ Uρ =

∑
ρ=ρ∗

λ−1
ρ Uρ =

∑
ρ=ρ∗

U−1
ρ .

Similarly,
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F̃ (T 2) = F̃

⎛⎜⎝
⎞⎟⎠ = CKU (7.15)

More generally, for a genus g ≥ 1 symmetric surface Σ,

F̃ (Σ) = CKgU =
∑

ρ

λ−1
ρ Ug

ρ Uρ =
∑

ρ=ρ∗

Ug−1
ρ .

Finally, on a g-doublet, the morphisms is

F̃ (Σ � Σ) = CGg(1) =
∑

ρ

λg−1
ρ ,

recovering the classical theory. �
7.2. The category 2SymCobL

We next construct a simultaneous extension of the categories 2CobL1,L2 and 
2KCob ≡ 2SymCob. Consider the category 2SymCobL whose

• objects are disjoint unions of copies of S = (S1 � S1, ε), where ε swaps the two 
components, and

• morphisms correspond to isomorphism classes relative boundary of decorated cobor-
disms

W = (Σ, c, L),

where Σ is an oriented cobordism with a fixed-point free orientation-reversing invo-
lution c, extending ε, and L is a complex line bundle over Σ, trivialized along the 
boundary of Σ.

The level zero theory corresponds to a trivial bundle L, and defines an embedding:

2Cob ⊂ 2KCob ≡ 2SymCob ⊂ 2SymCobL. (7.16)

The doubling procedure defines an embedding

2CobL1,L2 ⊂ 2SymCobL, (Σ, L1, L2) �→ (Σ � Σ, c|Σ = id : Σ → Σ, L1 � L2). (7.17)

The category 2CobL1,L2 has 4 extra generators, the level (±1, 0), (0, ±1)-caps, besides 
those of 2Cob, cf. [5, §4.3]. Similarly, the generators of the category 2SymCobL are 
those of 2SymCob together with the images of the (±1, 0), (0, ±1)-caps under (7.17). It 
is also useful to consider the tubes
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(−1, 0) and (0, −1) (7.18)

in 2CobL1,L2 , and their images

0

−1
and

−1

0
(7.19)

in 2SymCobL under (7.17).
As in [5, Theorem 4.1], we obtain the following result.

Proposition 7.6. A symmetric monoidal functor

F : 2SymCobL −→ Rmod (7.20)

is uniquely determined by the level 0 theory and the images η and η of the level (−1, 0)
and (0, −1)-caps.

The images

A = F

⎛⎜⎜⎜⎝
0

−1

⎞⎟⎟⎟⎠ and Ā = F

⎛⎜⎜⎜⎝
−1

0

⎞⎟⎟⎟⎠ (7.21)

of (7.19) are called the level-decreasing operators, and moreover

A(x) = η · x, A(x) = η · x.

If the restriction of (7.20) to the level 0 theory defines a semi-simple KTQFT with 
idempotent basis {vρ} then

A(vρ) = ηρvρ and Ā(vρ) = ηρvρ, where η =
∑

ρ

ηρvρ and η̄ =
∑

ρ

ηρvρ. (7.22)

As in Corollary 7.5, then the value of F on a closed connected genus g symmetric surface 
Σ at level k = c1(L)[Σ] is equal to

F (Σ|L) = CA−kKg(U) =
∑

ρ=ρ∗

Ug−1
ρ η−k

ρ . (7.23)

The value of F on a g-doublet Σ � Σ with a line bundle L1 � L2 is similarly equal to
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F (Σ � Σ |L1, L2) = C(A−k1Ā−k2Gg(1)) =
∑

ρ

λg−1
ρ η−k1

ρ η̄−k2
ρ ,

where k1 = c1(L1)[Σ] and k2 = c1(L2)[Σ].

8. The Klein TQFT induced by the RGW invariants

In this section we use the local RGW invariants (6.3) to define an extension of a 
Klein TQFT, i.e. a functor RGW from the category 2SymCobL described in §7.2. This 
extends the Bryan-Pandharipande TQFT constructed from the GW theory for the anti-
diagonal action; see §3.1.

Let R = C(t)((u)) be the ring of Laurent series in u whose coefficients are rational 
functions of t and d be a positive integer. Denote by S = (S1 � S1, ε) the disjoint union 
of two copies of a circle with opposite orientations and with the involution ε swapping 
them. To the object S we associate

RGWd(S) = H =
⊕
α	d

Reα, (8.1)

the free module with basis {eα}α	d indexed by partitions α of d. Let

RGWd(S � · · · � S) = H ⊗ · · · ⊗ H.

To each cobordism W = (Σ, c, L) in 2SymCobL from n copies of S to m copies of S, 
associate the R-module homomorphism

RGWd(W ) : H⊗n → H⊗m (8.2)

defined by

eλ1 ⊗ · · · ⊗ eλn �→
∑
μi	d

RGWd(ΣW |LW )μ1..μm

λ1..λn eμ1 ⊗ · · · ⊗ eμm .

Here (i) ΣW is a closed marked symmetric Riemann surface whose topological type is 
that of Σ after removing small disks around the pairs of marked points, (ii) the first 
element in each pair of marked points of ΣW corresponds to the first copy of S1 in 
S = (S1 � S1), and (iii) LW → ΣW is a holomorphic line bundle whose first Chern class 
corresponds to the Euler class of L → Σ. Finally, RGWd(ΣW |LW )�λ are the local RGW 
invariants defined by (6.3) and (2.24), and the indices are raised by (4.2). The coefficients 
are invariant under smooth deformation, thus the assignment (8.2) is well-defined.

Theorem 8.1. The assignment (8.2) defines a symmetric monoidal functor

RGWd : 2SymCobL → Rmod. (8.3)
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Its restriction to 2KCob under (7.16) is a Klein TQFT, while its restriction to 
2CobL1,L2 under (7.17) is

RGWd(Σ � Σ|L1 � L2)(u, t) = (−1)dk2GWd(Σ|L1, L2)(iu, it). (8.4)

Here ki is the total degree of Li and GWd is the TQFT (7.1) considered by Bryan-
Pandharipande (for the anti-diagonal action).

Proof. By Lemma 6.7, coefficients of the assignment (8.2) are invariant under permuting 
two pairs of conjugate points of ΣW , thus (8.3) is symmetric. It is monoidal i.e.

RGWd(W1 � W2) = RGWd(W1) ⊗ RGWd(W2)

because the real moduli space over a disjoint union of Real curves is the product of the 
real moduli spaces on each piece, and the index bundle naturally decomposes as the 
direct sum of the two index bundles. The composition law

RGWd(W1 ◦ W2) = RGWd(W1) ◦ RGWd(W2)

holds by (6.4), cf. (4.5) and (4.4).
When W is a doublet, Corollary 6.9 implies that the restriction of (7.1) to 2CobL1,L2

is the Bryan-Pandharipande TQFT (7.1) modified as stated. In particular (8.3) takes 
the identity in 2Cob to the identity morphism, and therefore (8.3) is a functor. �
9. Solving the theory

In this section we show that the functor RGWd defined by (8.3) restricts at level 
0 to a semi-simple Klein TQFT. We also provide an explicit expression in terms of 
representation theoretic data of its value on a closed symmetric surface with a line 
bundle over it, thus solving the local RGW theory.

Conjugacy classes of the symmetric group Sd are indexed by partitions α of d. If ρ
is an irreducible representation of Sd, let χρ(α) denote the trace of ρ on the conjugacy 
class α.

Recall that the level 0 part of 2SymCobL is naturally identified with 2SymCob =
2KCob. Then

Lemma 9.1. The restriction of the functor RGWd to 2KCob ⊂ 2SymCobL determines 
a semi-simple Klein TQFT with idempotent basis (9.1).

Proof. This is a direct consequence of [5] with small modifications as follows. Let eα be 
as in (8.1). Define a new basis

vρ = dim ρ

d!
∑

(−t)�(α)−dχρ(α)eα, (9.1)

α
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indexed by the irreducible representations ρ of Sd. Note that

eα = (−t)d−�(α)
∑

ρ

d!
dim ρ

χρ(α)
ζ(α) vρ. (9.2)

The pair of pants product is determined by

RGWd((0, 0)|(0, 0))γ
α,β

and by Corollary 6.9 and the last display on p. 113 of [5]

RGWd((0, 0)|(0, 0))γ
α,β(t) = GWd(0|0, 0)γ

α,β(it)

= td−�(α)−�(β)+�(γ)
∑

ρ

(
d!

dim ρ

)
χρ(α)χρ(β)

ζ(α)ζ(β) χρ(γ).

As in [5] this implies that {vρ} is an idempotent basis and therefore RGWd is semi-
simple. �

Note that the relation between vρ, defined in (9.1), and vBP
ρ , defined in [5, Equation 

(20)], is

vρ(t) = vBP
ρ (it). (9.3)

As discussed in §7, the theory is determined by the genus-adding operator G, the 
level-decreasing operators A, Ā, the cross-cap U , and the involution Ω. Moreover,

Lemma 9.2. In the idempotent basis {vρ}, the genus-adding operator G, the (−1, 0)-tube 
A, and the (0, −1)-tube Ā have eigenvalues respectively

λρ = t2d

(
d!

dim ρ

)2

, ηρ = tdQcρ/2
(

dimhQρ

dim ρ

)
, ηρ = tdQ−cρ/2

(
dimhQρ

dim ρ

)
. (9.4)

Here Q = eu, cρ is the total content of the Young diagram associated to ρ, and

dimhQρ = d!
∏
�∈ρ

(
2 sinh h(�)u

2

)−1
= d!

∏
�∈ρ

(
Q

h(�)
2 − Q− h(�)

2

)−1

, (9.5)

where h(�) denotes the hooklength of the square � in the Young diagram associated to 
ρ.

Proof. By (8.4) and (9.3), the relation between the RGWd and GWd is obtained by 
the change of variables (u, t) �→ (iu, it) and multiplication by (−1)dc1(L2) in both the 



48 P. Georgieva, E.-N. Ionel / Advances in Mathematics 391 (2021) 107972
standard and the idempotent bases. The result then follows from [5, §7.3]. In particular, 
(9.5) is related to the quantum dimension defined in [5] via

dimhQρ(u) = (−i)d dimQBP
ρ(iu), where

dimQBP
ρ

d! =
∏
�∈ρ

(
2 sin h(�)u

2

)−1
=
∏
�∈ρ

i

(
QBP

h(�)
2 − QBP

− h(�)
2

)−1

and QBP = eiu. �
It remains to determine U and Ω in the idempotent basis.

Proposition 9.3. The involution Ω is given by

Ω(eα) = (−1)d−�(α)eα and Ω(vρ) = vρ′ (9.6)

in the standard basis {eα} and in the idempotent basis {vρ}, respectively. Here ρ′ denotes 
the conjugate representation.

Proof. Consider the moduli space of real maps into the doublet corresponding to Ω. It is 
the same as the moduli space of real maps into the doublet associated to the level 0 tube 
(the identity), except for the change x+

2 ↔ x−
2 of the order within the pair of marked 

points in the target corresponding to the outgoing boundary. Lemma 6.7 then implies 
the first equality. In the idempotent basis (9.1)

Ω(vρ) = dim ρ

d!
∑

α

(−t)�(α)−dχρ(α)Ω(eα) = dim ρ

d!
∑

α

(−t)�(α)−dχρ′(α)eα = vρ′ ,

where the second equality holds since χρ′(α) = (−1)d−l(α)χρ(α), cf. [22, page 42]. �
Note that (7.14) and (9.6) imply that the coefficients Uρ vanish unless ρ = ρ′. If ρ = ρ′

then (7.14) and (9.4) imply that Uρ = ±td d!
dim ρ determining it up to a sign. Proposi-

tion 9.5 below calculates U directly, independent of these considerations, including the 
signs. The signed Frobenius-Schur indicator, defined in §11, plays a crucial role in this 
calculation.

9.1. The level 0 cross-cap U

Consider next the level 0 cross-cap U corresponding to (7.3). Its coefficients in the 
standard basis are obtained from the RGW invariants of a sphere with 2 marked points, 
real structure c(z) = −1/z, and a trivial line bundle.

Before we proceed, it is convenient to make the following definition. For a partition λ
of d, let
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sq(λ) (9.7)

denote the partition of d obtained from λ by splitting all of the even parts of λ into two 
equal parts e.g. sq(4, 3, 3, 2, 1) = (2, 2, 3, 3, 1, 1, 1). This is motivated by the fact that if 
g ∈ Sd has cycle type λ, then g2 has cycle type sq(λ). Recall that the sign morphism on 
Sd descends to the conjugacy class

sign (g) = (−1)s(g) = (−1)d−�(λ) = sign (λ), (9.8)

where s(g) is the parity of the permutation g ∈ Sd and λ is its cycle type. This is also 
the parity of the number of even parts of λ and in particular, sign (sq(λ)) = +1.

We start with the following combinatorial identity, which uses the notation (5.5); see 
also (5.6).

Lemma 9.4. For any partition α � d, the coefficient rα of the monomial pα in the expan-
sion below is given by

rα =
[

exp
(∑

d odd

1
d

pd − 1
2

∞∑
d=1

1
d

(pd)2

)]
pα

=
∑
λ	d

sq(λ)=α

(−1)d−�(λ)

ζ(λ) . (9.9)

In particular, rα vanishes unless α has an even number of even parts.

Proof. The coefficient rα on the LHS of (9.9) is the sum over all possible ways of de-
composing α into a partition a containing only odd elements and 2 copies of a partition 
b:

∑
α

rαpα =
∑
a,b

∏
k odd

pak

k

ak!kak

∏
k

(−1)bk p2bk

k

2bk bk!kbk
, (9.10)

where ak, bk denote the multiplicities of k in the partitions a and b respectively. Every 
such decomposition α = a � b � b corresponds to a partition λ = a � (2b), where (2b)
denotes the partition obtained from b by multiplying by 2 each of its parts; in particular, 
sq(λ) = α and 

∑
k bk ≡ d − 	(λ) mod 2. Therefore (9.10) becomes

∑
α

rαpα =
∑

α

( ∑
λ	d

sq(λ)=α

(−1)d−�(λ)

ζ(λ)

)
pα. �

Combined with Proposition 5.2, Lemma 9.4 implies that the invariant RGW (0|0)α is 
equal to

RGW (0|0)α = rα

t�(α) = 1
t�(α)

∑
λ	d

(−1)d−�(λ)

ζ(λ) . (9.11)
sq(λ)=α
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The coefficients RGW (0|0)α of U in the standard basis {eα} are obtained by raising the 
indices in (9.11) via (4.2). Combinatorial considerations then allow us to determine the 
coefficients of

U =
∑

α

RGW (0|0)αeα =
∑

ρ

Uρvρ (9.12)

in the idempotent basis {vρ}.
Decompose the set of partitions λ of d into even and odd according to the parity of 

d − 	(λ), cf. (9.8).

Proposition 9.5. The level 0 cross-cap (9.12) is equal to the sum over self-conjugate ir-
reducible representations of Sd

U =
∑
ρ=ρ′

ερtd d!
dim ρ

vρ, where (9.13)

ερ = (−1)o(ρ) and o(ρ) =
∑
β	d

β odd

χρ(sq(β))
ζ(β) . (9.14)

The expression o(ρ) takes values 0 or 1 on a self-conjugate irreducible representation ρ.

Proof. By (9.12), (9.11) and (9.2)

U =
∑

α

RGW (0|0)αeα =
∑

α

( ∑
sq(λ)=α

(−1)d−�(λ)

ζ(λ)t�(α)

)
ζ(α)t2l(α)eα =

=
∑

α

( ∑
sq(λ)=α

(−1)d−�(λ)

ζ(λ)

)
ζ(α)t�(α)

(
(−t)d−�(α)

∑
ρ

d!
dim ρ

χρ(α)
ζ(α) vρ

)
=

=
∑

ρ

(∑
α

∑
sq(λ)=α

(−1)d−�(λ) χρ(α)
ζ(λ)

) d!td

dim ρ
vρ

In the last equality we used the fact that for α = sq(λ) the parity of d and 	(α) is the 
same. It remains to show that the expression in the parenthesis is given by (9.14). For 
this we use the following combinatorial identity

∑
λ	d

sq(λ)=α

(−1)d−�(λ) ζ(α)
ζ(λ) =

∑
ρ=ρ′

ερχρ(α) (9.15)

cf. Lemma 11.3, which is of independent interest and whose proof is deferred to §11. 
Then
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∑
α

∑
sq(λ)=α

(−1)d−�(λ) χρ(α)
ζ(λ) =

∑
α

∑
μ=μ′

εμχμ(α)χρ(α)
ζ(α)

=
∑

μ=μ′

εμ

∑
α

χμ(α)χρ(α)
ζ(α) =

{
ερ if ρ = ρ′,

0 otherwise.

The result follows. �
The next lemma provides a simpler expression for the sign ερ appearing in (9.13).

Lemma 9.6. Let ρ be an irreducible representation of Sd, r(ρ) the length of the main 
diagonal of its Young diagram, and ερ be as (9.14). Then

ερ = (−1)
d−r(ρ)

2 . (9.16)

Proof. Let x = (x1, . . . , xn). The power sum functions pk(x) and the Schur functions 
sρ(x) are related by

sρ(x) =
∑

λ

χρ(λ)
ζ(λ) pλ(x) and pλ(x) =

∑
ρ

χρ(λ)sρ(x)

and form basis for the space of symmetric polynomials on n variables whenever n > d. 
By [22, 9c, p79], we have∑

ρ=ρ′

(−1)(d+r(ρ))/2sρ(x1, . . . , xn) =
∏

i

(1 − xi)
∏
i<j

(1 − xixj),

where ρ′ denotes the conjugate representation. This equality follows from Weyl’s identity 
for Bn.

By Lemma 9.4,

∑
α

∑
λ

sq(λ)=α

(−1)d−�(λ)

ζ(λ) pα = exp
( ∑

d odd

1
dpd − 1

2

∞∑
d=1

1
d (pd)2

)
. (9.17)

Substitute pd = pd(x), and consider first the LHS of (9.17):

∑
α

∑
λ

sq(λ)=α

(−1)d−�(λ)

ζ(λ) pα(x) =
∑

α

∑
λ

sq(λ)=α

(−1)d−�(λ)

ζ(λ)
∑

ρ

χρ(α)sρ(x) =

=
∑

ρ

(∑
α

∑
λ

sq(λ)=α

(−1)d−�(λ)

ζ(λ) χρ(α)
)

sρ(x) =
∑
ρ=ρ′

ερsρ(x).
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For the last equality we used the displayed equation after (9.15). For the RHS of (9.17), 
we start with

∑
d odd

1
dpd(x) =

∑
d odd

1
d

∑
i

xd
i =

∑
i

log
(

1 + xi

1 − xi

)1/2

and

−1
2

∞∑
d=1

1
d (pd(x))2 = −1

2

∞∑
d=1

1
d

(∑
i

xd
i

)2
= −1

2

∞∑
d=1

1
d

∑
i,j

xd
i xd

j =
∑
i,j

log(1 − xixj)1/2.

Therefore,

exp
(∑

d odd

1
dpd(x) − 1

2

∞∑
d=1

1
dpd(x)2

)
=
∏

i

(1 + xi

1 − xi

)1/2 ∏
i,j

(1 − xixj)1/2 =

∏
i

(
1 + xi

1 − xi

)1/2 ∏
i<j

(1 − xixj)
∏

xi=xj

(1 − xixj)1/2 =
∏

i

(1 + xi)
∏
i<j

(1 − xixj).

Since sρ(−x) = (−1)dsρ(x) then∑
ρ=ρ′

(−1)dερsρ(x) =
∑
ρ=ρ′

ερsρ(−x) =
∏

i

(1 − xi)
∏
i<j

(1 − xixj) =
∑
ρ=ρ′

(−1)(d+r(ρ))/2sρ(x).

But sρ(x) is a basis so (9.16) holds. �
Lemma 9.6 and Proposition 9.5 then imply:

Corollary 9.7. In the idempotent basis, the level 0 cross-cap U is given by

U =
∑
ρ	d
ρ=ρ′

(−1)(d−r(ρ))/2 td d!
dim ρ

vρ, (9.18)

where r(ρ) is the length of the main diagonal of the Young diagram of ρ.

9.2. Local Calabi-Yau over a sphere

Consider next the local RGW invariants associated to the Real Calabi-Yau 3-fold Y
defined by (2.5) for Σ = P 1 and L = O(−1). Note that Y is biholomorphic to the total 
space of O(−1) ⊕ O(−1) → P 1, thus contains no holomorphic curves besides multiple 
covers of the zero section. In particular, the only real curves in Y are the multiple covers 
of the zero section Σ ⊂ Y . Moreover, the discussion in the paragraph above (2.9) implies 
that the zero section in L ⊕ c∗L with L = O(−1) is super-rigid and therefore (2.10) is 
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precisely the contribution of its multiple covers to the real Gromov-Witten invariants of 
Y .

Theorem 9.8. The generating function for the RGW invariants is

1 +
∞∑

d=1

RGWd(0| − 1)qd = 1 +
∑
ρ=ρ′

(−1) 1
2 (|ρ|−r(ρ))

∏
�∈ρ

(
2 sinh h(�)u

2

)−1
q|ρ| (9.19)

= exp
(∑

k odd

1
k

(
2 sinh ku

2
)−1

qk − 1
2

∑
k

1
k

(
2 sinh ku

2
)−2

q2k

)
.

(9.20)

In particular, the generating function for the connected real invariants is

∞∑
d=1

CRGWd(0| − 1)qd =
∑

k odd

1
k

(
2 sinh ku

2
)−1

qk. (9.21)

Proof. Recall that RGW (0| − 1) = CAU cf. (7.23) and the coefficients of C, A and U
in the idempotent basis {vρ} are given by (9.4) and (9.18). Since the content cρ of a 
self-conjugate partition vanishes, this gives (9.19).

Next, the invariants RGW are related to the connected and doublet invariants by

1 +
∞∑

d=1

RGWd(0| − 1)qd = exp
(∑

d

CRGWd(0| − 1)qd +
∑

d

DRGW2d(0| − 1)q2d

)

cf. (2.16). Corollary 3.9 relates the doublet invariants to the connected GW invariants 
and along with the classical calculation of [10] we obtain∑

d

DRGW2d(0|−1)(u)q2d = 1
2

∑
d

GW conn
d (0|−1, −1)(iu)q2d =−1

2

∑
k

1
k

(
2 sinh ku

2
)−2

q2k.

It thus remains to prove (9.20). Substituting pd = (2 sinh du
2 )−1qd in (9.9) we obtain

exp
( ∑

k odd

1
k

(
2 sinh ku

2
)−1

qk − 1
2

∑
k

1
k

(
2 sinh ku

2
)−2

q2k
)

=
∑

α

( ∑
λ

sq(λ)=α

(−1)d−l(λ)

ζ(λ)

) q|α|∏
i

2 sinh αiu
2

Using (9.15) the coefficient of qd is equal to

∑
α	d

∑
ρ=ρ′

ερ
χρ(α)
ζ(α)

1∏
2 sinh αiu

2
=
∑
ρ=ρ′

ερQd/2
∑

α

χρ(α)
ζ(α)

(−1)�(α)∏
(1 − Qαi) ,
i i



54 P. Georgieva, E.-N. Ionel / Advances in Mathematics 391 (2021) 107972
with Q = eu. But ερ = (−1)
d−r(ρ)

2 by Lemma 9.6, and the sum over α in the above 
expression equals the Schur function sρ′ for the conjugate representation ρ′ times (−1)d. 
Since

sρ′ = Qcρ′ −d/2(−1)d 1∏
�∈ρ′

(Qh(�)/2 − Q−h(�)/2)

cf. [22, page 45] and ρ = ρ′, cρ = 0, we obtain (9.20). �
Remark 9.9. Note the similarity between (9.21) and the equivariant localization compu-
tation of the open GW invariants considered in [20, Theorem 7.2] for the weight a = 0
(see also [26, §6]). In this case the contributions of the graphs computing the invariants 
in the real and open case match in odd degree; for the real invariants in even degree, the 
graphs come in pairs depending on the type of the real structure, and there is a cance-
lation between open and crosscap contributions cf. [27, §3.3]. The sin vs sinh difference 
comes from the difference in orientation conventions, cf. [16, §3.1].

Remark 9.10. The right hand side of (9.20) has another expansion besides (9.19). By [25, 
(4.5)] with t1 = −t−1

2 = eu

exp
( ∑

k odd

1
k

(
2 sinh ku

2
)−1

qk − 1
2

∑
k

1
k

(
2 sinh ku

2
)−2

q2k
)

=
∑

ρ

(−1)a(ρ)q|ρ|∏
�∈ρ

2 sinh h(�)u
2

,

where a(ρ) is the sum of the arm lengths of � ∈ ρ. Note that this sum is over all 
representations, not only self-conjugate ones, and the signs (−1)a(ρ) and ερ = (−1)

d−r(ρ)
2

are different in general. Nevertheless, the two sums are equal.

9.3. Local Calabi-Yau over a torus

Consider next the local RGW invariants associated to the Real CY 3-fold Y given 
by (2.5) for Σ a torus (elliptic curve) and L a degree 0 holomorphic line bundle. When 
L is not a torsion element in the Picard group, its total space contains no holomorphic 
curves other than the multiple covers of the zero section. Therefore as in §9.2, the zero 
section of Y is super-rigid and (2.10) is the contribution of its multiple covers to the real 
Gromov-Witten invariants of the 3-fold Y .

Theorem 9.11. The generating function for the RGW invariants is

∑
d

RGWd(1|0)qd =
∑
ρ=ρ′

q|ρ| = exp

⎛⎝∑
d

(−1)d−1
∑

k odd

1
k qdk + 1

2

∑
d,k

1
k q2dk

⎞⎠ . (9.22)

Moreover, the generating function for the connected RGW invariants is
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∑
d

CRGWd(1|0)qd =
∑

d

(−1)d−1
∑

k odd

1
k qdk. (9.23)

Proof. By (7.15),

RGWd(1|0) = CKU =
∑
ρ	d
ρ=ρ′

1

giving the first equality in (9.22). Note that the generating function of the self-conjugate 
partitions is

∑
ρ=ρ′

q|ρ| =
∏

d

1
1 + (−q)d

.

As in the proof of Theorem 9.8, relation (2.16) and Corollary 3.9 imply

∑
d

RGWd(1|0)qd = exp
(∑

d

CRGWd(1|0)qd +
∑

d

DRGW2d(1|0)q2d

)
and

∑
d

DRGW2d(1|0)q2d = 1
2

∑
d

GW conn
d (1|0, 0)q2d = 1

2

∑
d,k

1
k q2dk.

In the last equality we used the classical calculation

exp
(∑

d

GW conn
d (1|0, 0)qd

)
=
∑

d

GWd(1|0, 0)qd =
∑

ρ

q|ρ| =
∏

d

1
1 − qd

,

cf. [5, Corollary 7.3]. Since

exp

⎛⎝∑
d

(−1)d−1
∑

k odd

1
k qdk + 1

2

∑
d,k

1
k q2dk

⎞⎠ =
∏

d

(
1 − (−q)d

1 + (−q)d

)1/2 ( 1
1 − q2d

)1/2

,

we obtain the second equality in (9.22) and therefore (9.23). �
Remark 9.12. The connected invariants (9.23) can also be computed directly. By 
Lemma 5.1 and §6.1, it suffices to consider only real (unramified) covers of a torus 
without fixed locus by a torus; passing to the universal cover reduces this to a signed
count of sub-lattices that are invariant under a lift of the complex conjugation. In fact, 
if we fix two separating crosscaps in the target, their inverse image consists of d + d

circles, each winding around the crosscap k times. One can show that exactly two of 
the circles are preserved by the involution in the domain (thus are crosscaps) and in 
particular k must be odd; d could be either even or odd. If d is odd, the two crosscaps 
in the domain map to the two crosscaps in the target; otherwise they map to a single 
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crosscap in the target. Such a cover has degree dk, k automorphisms, and its sign is de-
termined by whether or not the induced orientation on the crosscaps on the domain from 
the orientation on the crosscaps on the target coincides with the boundary orientation 
when we cut along the domain crosscaps (since the canonical orientation corresponds to 
having the crosscaps oriented in this manner). In particular, when d is odd we have +1 
and when d is even -1, therefore contributing (−1)d−1 1

k qdk to (9.23).

9.4. The general case

Consider next a local Real 3-fold (L ⊕ c∗L, ctw) → Σ over a connected surface.

Theorem 9.13. Assume Σ is a connected genus g symmetric surface and L → Σ a holo-
morphic line bundle with c1(L) = k. Then the degree d local RGW invariants are equal 
to

RGWd(g|k) =
∑
ρ=ρ′

(
(−1)

d−r(ρ)
2 td d!

dim ρ

)g−1 (
td dimhQρ

dim ρ

)−k

. (9.24)

Here the sum is over self-conjugate partitions ρ of d, r(ρ) is the rank (2.18), and dimhQρ

is (9.5).

Proof. The result follows as before from RGW (g|k) = CKgA−kU , cf. (7.23). Note that 
when g > 1, RGW (g|k) can also be obtained as the trace of the composition of the 
diagonal operators Kg−1A−k. �
Corollary 9.14. In the (Real) Calabi-Yau case, the contribution becomes

RGWd(g|g − 1) =
∑
ρ=ρ′

(
(−1)

d−r(ρ)
2

∏
�∈ρ

2 sinh h(�)u
2

)g−1
. (9.25)

In the equivariant Calabi-Yau case, the (complex) GW invariants defined in [5] are 
equal to

GWd(g|g − 1, g − 1) =
∑
ρ	d

( ∏
�∈ρ

2 sin h(�)u
2

)2g−2
(9.26)

cf. [5, Corollary 7.3]. Note that here the sum is over all partitions of d, not just self-
conjugate ones. Moreover, the generating function GW conn(g|g−1, g−1) of the connected 
GW invariants of [5] is

∞∑
d=1

∑
h

GW conn
d,h (g|g − 1, g − 1)u2h−2qd = log

⎛⎝1 +
∞∑

d=1

∑
ρ	d

( ∏
�∈ρ

2 sin h(�)u
2

)2g−2
qd

⎞⎠ .

(9.27)
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On the other hand, by (2.16), the local RGW invariants (9.25) involve both the connected 
invariants CRGW (g|g − 1) and the doublet invariants DRGW (g|g − 1).

Remark 9.15. In the level 0 case, the proof of Lemma 5.1 implies that RGWd(g|0) is a 
signed count of degree d unramified real covers of a genus g Riemann surface (i.e. a real 
Hurwitz number), and (9.24) becomes:

RGWd(g|0) =
∑
ρ=ρ′

(
(−1)

d−r(ρ)
2 td d!

dim ρ

)g−1

. (9.28)

In contrast, the combinatorial count of real Hurwitz covers gives rise to a different 
KTQFT, cf. [1,24]; in this case, all covers count positively and the number of unramified 
real covers of a symmetric genus g surface (Σ, c) with empty real locus is equal to

HR
(Σ,c) =

∑
ρ	d

(
d!

dim ρ

)g−1

,

where the sum is over all partitions ρ of d. For this combinatorial KTQFT, the involution 
Ω is trivial and the coefficients Uρ of the crosscap are equal to the positive square roots 
of the structure constants. However, unlike RGW, HR

(Σ,c) depends on the real structure 
c.

10. The local real Gopakumar-Vafa formula

We are now ready to prove the real Gopakumar-Vafa formula (cf. [27, §5]) for the local 
RGW invariants defined in this paper. Let Σ be a connected genus g symmetric surface 
and L → Σ a holomorphic line bundle with c1(L) = g − 1. Consider the corresponding 
connected (complex) GW invariants GW conn

d,h (g|g − 1, g − 1) defined by [5], and the 
connected RGW invariants CRGWd,h(g|g − 1) associated to (Σ, L), cf. (9.25)-(9.27).

The local GV conjecture in the classical setting, proved in [19, Proposition 3.4], states 
that the connected GW invariants of [5] have the following structure:

∞∑
d=1

∑
h

GW conn
d,h (g|g − 1, g − 1)u2h−2qd =

∞∑
d=1

∑
h

nC
d,h(g)

∞∑
k=1

1
k (2 sin(ku

2 ))2h−2qkd,

(10.1)

where the coefficients nC
d,h(g), called the local BPS states, satisfy (i) nC

d,h(g) ∈ Z and (ii) 
for each d, nC

d,h(g) = 0 for large h.
In the real setting, the local real GV formula takes the following form.

Theorem 10.1 (Local real GV formula). Fix a genus g symmetric surface Σ and consider 
the local real Calabi-Yau 3-fold (L ⊕ c∗L, ctw) → Σ. Then the generating function for the 
connected local RGW invariants has the following structure:
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∞∑
d=1

∞∑
h=0

CRGWd,h(g|g − 1)uh−1qd =
∞∑

d=1

∞∑
h=0

nR
d,h(g)

∑
k odd
k>0

1
k (2 sinh(ku

2 ))h−1qkd, (10.2)

where the coefficients nR
d,h(g) satisfy (i) (integrality) nR

d,h(g) ∈ Z, (ii) (finiteness) for 
each d, nR

d,h(g) = 0 for large h, and (iii) (parity) nR
d,h(g) = nC

d,h(g) mod 2. Moreover,

(a) for g = 0, nR
d,h(0) = 1 when d = 1 and h = 0 and vanish otherwise.

(b) for g = 1, nR
d,h(1) = (−1)d−1 when h = 1 and vanish otherwise.

(c) for any g ≥ 0, nR
1,h(g) = 1 when h = g and vanish otherwise.

Proof. The results for the genus g ≤ 1 cases are obtained in (9.21) and (9.23). So it 
suffices to assume g ≥ 2. For every integer n ≥ 0, let

Hn(u, q) =
∑

k odd

1
k (2 sinh(ku

2 ))nqk = unq(1 + . . . ). (10.3)

Then {q−1Hn(u, qd)}n≥0,d≥1 is a basis of the power series in u and q. In particular, for 
g ≥ 2, there exists an expansion of the connected invariant in the form (10.2), for some 
coefficients nR

d,h(g) ∈ Q, with h ≥ g (because there are no covers of a genus g curve by 
a lower genus curve).

Denote for simplicity by Zg = Zg(u, q) the generating function of the RGW invariants 
(9.25) and by Cg = Cg(u, q) and Dg = Dg(u, q) the generating functions of the connected 
and the doublet invariants, respectively; then Zg = exp(Cg + Dg) cf. (2.16).

Corollary 3.9, relating the doublet and the connected GW invariants of [5], and (10.1)
imply

Dg = 1
2

∑
d

GW conn
d (iu)q2d =

= 1
2

∞∑
d=1

∑
h>0

nC
d,h(g)(−1)h−1

∞∑
k=1

1
k (2 sinh(ku

2 ))2h−2q2kd,

where nC
d,h(g) are integers and have the finiteness property. But Zg = exp(Cg + Dg), so 

combined with (10.2) this gives:

Zg = exp
( ∑

d,h>0

nR
d,h(g)

∑
k odd

1
k f(Qk)h−1qkd + 1

2

∑
d,h>0

nC
d,h(g)

∑
k>0

1
k F (Q2k)h−1q2kd

)
,

(10.4)

where

f(Q) = Q − Q−1 , F (Q) = 2 − Q − Q−1, and Q = eu/2.

Note that for all s ≥ 0,
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f(Q)s =
s∑

l=−s

φs
l Ql φs

l ∈ Z, F (Q)s =
s∑

l=−s

ψs
l Ql ψs

l ∈ Z (10.5)

are Laurent polynomials in Q with integer coefficients and with leading coefficients φs
±s

and ψs
±s equal to ±1. Moreover,

f(Q) = F (Q) mod 2 and therefore φs
l = ψs

l mod 2 (10.6)

for all −s ≤ l ≤ s and s ≥ 0.
On the other hand, with this notation, (9.25) becomes

Zg = 1 +
∞∑

d=1

∑
ρ	d
ρ=ρ′

(
ερ

∏
�∈ρ

f(Qh(�))
)g−1

qd (10.7)

and therefore the coefficient of qd is also a Laurent polynomial in Q with integer coeffi-
cients.

Comparing the coefficient of q1 in (10.4) and (10.7) gives

[Zg]q1 =
∑
h>0

nR
1,h(g)f(Q)h−1 = f(Q)g−1.

As before, {f(Q)n}n≥0 are linearly independent, therefore nR
1,h(g) = 1 for h = g and 

vanish otherwise, proving (c). In particular, nR
1,h(g) ∈ Z. Recall also that nC

1,h(g) = 1 for 
h = g and vanish otherwise, and therefore nR

1,h(g) = nC
1,h(g) for all h.

We next proceed by induction on the degree, with initial step for d = 1 just proved. 
So we fix a degree p ≥ 2 and assume by induction that

nR
d,h(g) ∈ Z and nR

d,h ≡ nC
d,h(g) mod 2, (10.8)

for all d < p. We also assume that for all d < p, nR
d,h(g) = 0 for h large.

Note that the coefficient of qp in (10.4) has the form

∑
h>0

nR
p,h(g)f(Q)h−1+

⎡⎢⎢⎣exp

⎛⎜⎜⎝∑
d,h>0
d�=p

nR
d,h(g)

∑
k odd
k>0

1
k f(Qk)h−1qkd+ 1

2

∑
d,h>0

nC
d,h(g)

∞∑
k=1

1
k F (Q2k)h−1q2kd

⎞⎟⎟⎠
⎤⎥⎥⎦

qp

where the second term involves only nR
d,h(g) with d < p.

Next, using the expansions (10.5), note that

∑
1
k f(Qk)h−1qkd =

∑
1
k

h−1∑
φh−1

l Qklqkd =
h−1∑

φh−1
l log

(
1+Qlqd

1−Qlqd

)1/2
k odd k odd l=1−h l=1−h
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and

∞∑
k=1

1
k F (Q2k)h−1q2kd =

∞∑
k=1

1
k

h−1∑
l=1−h

ψh−1
l Q2klq2kd =

h−1∑
l=1−h

ψh−1
l log 1

1−Q2lq2d .

Combining the last three displayed equations gives

[Zg]qp =
∑
h>0

nR
p,h(g)f(Q)h−1 +

⎡⎣∏
d�=p

∏
h>0

h−1∏
l=1−h

(1 + Qlqd)
1
2 (nR

d,h(g)φh−1
l −nC

d,h(g)ψh−1
l )

(1 − Qlqd)
1
2 (nR

d,h(g)φh−1
l +nC

d,h(g)ψh−1
l )

⎤⎦
qp

,

(10.9)
where the second summand is a Laurent polynomial in Q with integer coefficients by the 
induction hypothesis (10.8) and the fact that ψs

l = φs
l mod 2, cf. (10.6). Since [Zg]qp is 

a Laurent polynomial in Q with integer coefficients by (10.7), therefore so is∑
h>0

nR
p,h(g)f(Q)h−1.

Since the coefficients of its expansion and nR
p,h(g) are related by an integral triangular 

transformation with 1’s along the diagonal this implies nR
p,h(g) ∈ Z for all h > 0. This 

also shows the finiteness property of nR
p,h(g) i.e. that for fixed g, p and large enough h

these numbers vanish.
It remains to show that nR

p,h(g) ≡ nC
p,h(g) mod 2 for all h. Similar considerations for 

the complex GW invariants

exp(GW conn(iu)) = GW (iu)

using (10.1) and (9.26) imply

∑
h>0

nC
p,h(g)F (Q)h−1+

⎡⎣∏
d�=p

∏
h>0

h−1∏
l=1−h

1
(1 − Qlqd)nC

d,h(g)ψh−1
l

⎤⎦
qp

=
∑

ρ

⎛⎝∏
�∈ρ

F (Qh(�))

⎞⎠g−1

q|ρ|.

Using again (10.6), we see that, mod 2, the Laurent series with integer coefficients

1 +
∑
ρ=ρ′

⎛⎝ε(ρ)
∏
�∈ρ

f(Qh(�))

⎞⎠g−1

q|ρ| ≡ 1 +
∑

ρ

⎛⎝∏
�∈ρ

F (Qh(�))

⎞⎠g−1

q|ρ| mod 2

are equal, keeping in mind that the terms corresponding to ρ and ρ′ on the RHS are 
equal, thus their contribution vanishes mod 2 unless ρ is self-conjugate.

The second inductive hypothesis (10.8) implies that, mod 2, the second summand in 
(10.9) equals
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⎡⎣∏
d�=p

∏
h>0

h−1∏
l=1−h

1
(1 − Qlqd)nC

d,h(g)ψh−1
l

⎤⎦
qp

mod 2.

Together these imply that∑
h>0

nR
p,h(g)f(Q)h−1 ≡

∑
h>0

nC
p,h(g)F (Q)h−1 mod 2,

which in turn implies nR
p,h(g) ≡ nC

p,h(g) mod 2, completing the proof of the induction 
step. �
Corollary 10.2. The coefficients nR

d,h(g) vanish unless d(g − 1) + h − 1 ≡ 0 mod 2. In 
particular, nC

d,h(g) are even whenever d(g − 1) + h − 1 �≡ 0 mod 2.

Proof. By Corollary 6.6, the connected real invariants CRGWd,h(g|g − 1) vanish unless 
d(g − 1) + h − 1 ≡ 0 mod 2. Therefore the left hand side of (10.2) is invariant under 
the change of variables (u, q) → (−u, (−1)g−1q). Making this change of variables on 
the right hand side of (10.2) and using the fact that the functions {Hn(u, qd)} are 
linearly independent (cf. (10.3)), implies that nd,h(g) = (−1)h−1+d(g−1)nd,h(g). The 
result follows. �
11. Signed Frobenius-Schur indicator

In this final section, which is of independent interest, we introduce the notion of a 
signed Frobenius-Schur indicator and show that it takes values 0, ±1 on any irreducible 
real representation of a finite group (unlike the classical FS indicator, which is +1). This 
was used in §9 to determine the signs ερ in the expression of the RGW-invariants.

The classical Frobenius-Schur indicator of a representation of a finite group is the 
character evaluated at the sum of squares of the group elements divided by the order 
of the group; its possible values for an irreducible representation are 1, 0, and -1, cor-
responding to the partition of the irreducible representations into real, complex, and 
quaternionic representations.

Below we construct a signed FS indicator for the symmetric group Sd, but these 
considerations remain valid for any real representation of a finite group G with a sign 
homomorphism G → Z2.

Definition 11.1. The signed Frobenius-Schur indicator is defined by

SFS(ρ) def= 1
d!
∑

g∈Sd

χρ(g2)(−1)s(g), (11.1)

where s(g) is the parity of the permutation g ∈ Sd.
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The sign morphism on Sd descends to conjugacy classes, which are indexed by parti-
tions of d, decomposing them into even and odd ones. If α is a conjugacy class, let sq(α)
denote the conjugacy class of g2, where g is a representative of α, cf. (9.7).

Lemma 11.2. On irreducible representations, the signed Frobenius-Schur indicator takes 
values 0, ±1. Specifically,

SFS(ρ) =
{

0, if ρ is not self-conjugate,

±1, if ρ is self-conjugate.
(11.2)

Furthermore, when ρ is self-conjugate, SFS(ρ) is given by

ερ = (−1)o(ρ), with o(ρ) = 1
d!

∑
g∈Sd
g odd

χρ(g2) =
∑
α	d

α odd

χρ(sq(α))
ζ(α) . (11.3)

The expression o(ρ) takes values 0 or 1 on a self-conjugate representation ρ.

Proof. The proof is similar to that for the standard Frobenius-Schur indicator; see for 
example [8, §3.2.3] or [9, §5.1]. The space B = B(V ) of bilinear forms on a vector space 
V can be identified with Hom(V, V ∗) and V ∗ ⊗ V ∗ and the latter splits as a direct sum 
of symmetric and alternating forms

B ∼= Hom(V, V ∗) ∼= V ∗ ⊗ V ∗ = Sym2 ⊕ Alt2. (11.4)

Let ρ : Sd → End(V ) be an irreducible representation. Recall that all representations of 
Sd are real, so in particular ρ∗ ∼= ρ, where ρ∗ : Sd → End(V ∗) is the dual representation. 
Let ρ′ : Sd → End(V ) be the conjugate representation, given by

ρ′(g) = (−1)s(g)ρ(g),

where s(g) is the parity of g, cf. (9.8); the Young diagram of ρ′ is obtained from that of 
ρ by reflecting across the main diagonal.

On B, consider the following representation T 2′ = T 2′(ρ) given by

T 2′
: Sd −→ End(B) , T 2′

(g) = (ρ′ ⊗ ρ)∗(g) = (−1)s(g)ρ∗(g) ⊗ ρ∗(g),

and denote by Sym2′ and Alt2′ the corresponding representations on symmetric and 
alternating forms. Note that with respect to the Sd action on B induced by (ρ′ ⊗ ρ)∗, its 
fixed loci can be identified with

BSd = (Sym2)Sd ⊕ (Alt2)Sd and BSd ∼= HomSd
(V, V ∗), (11.5)
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where HomSd
(V, V ∗) denotes the space of (ρ′, ρ∗)-equivariant morphisms. But ρ is irre-

ducible, therefore the second part of (11.5) implies

dim BSd ≤ 1 (11.6)

with equality iff ρ′ ∼= ρ∗ i.e. ρ is self-conjugate (since ρ∗ ∼= ρ). So in (11.5) the only 
possible pairs of dimensions

(dim(Sym2)Sd , dim(Alt2)Sd) (11.7)

are (0, 0), (1, 0), and (0, 1), with the latter two cases appearing only for self-conjugate 
representations.

Next, let

π = 1
d!
∑

g∈Sd

g thus h.π = π for all h ∈ Sd.

Then for every b ∈ B, T 2′(π)(b) ∈ BSd and for every b ∈ BSd , T 2′(b) = b. Taking trace 
we obtain

1
d!
∑

g∈Sd

χT 2′ (g) = dim BSd = δρρ′

cf. (11.6); note that χT 2′ (g) = (−1)s(g)χ2
ρ(g). Similarly, for the decomposition (11.5), we 

get

1
d!
∑

g∈Sd

χSym2′ (g) = dim(Sym2)Sd and 1
d!
∑

g∈Sd

χAlt2′ (g) = dim(Alt2)Sd . (11.8)

On the other hand, for the standard Sym2ρ and Alt2ρ representations,

χρ(g2) = χSym2ρ(g) − χAlt2ρ(g) (11.9)

cf. the proof of [9, Lemma 5.1.5] or [8, Lemma 3.2.17]. Moreover,

χSym2′ (g) = (−1)s(g)χSym2ρ(g) and χAlt2′ (g) = (−1)s(g)χAlt2ρ(g). (11.10)

Therefore

SFS(ρ) =
(11.1)

1
d!
∑

g∈Sd

χρ(g2)(−1)s(g) =
(11.9)

1
d!
∑

g∈Sd

(−1)s(g)χSym2ρ(g) − (−1)s(g)χAlt2ρ(g)

=
(11.10)

1
d!
∑

χSym2′ (g) − χAlt2′ (g) =
(11.8)

dim(Sym2)Sd − dim(Alt2)Sd .

g∈Sd
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Combined with (11.7), this gives (11.2).
It remains to determine when is the SFS indicator +1 and when -1. The standard FS 

indicator for Sd is always +1 therefore

1 = 1
d!
∑

g∈Sd

χSym2ρ(g) = 1
2d!

∑
g∈Sd

χ2
ρ(g) + χρ(g2) (11.11)

0 = 1
d!
∑

g∈Sd

χAlt2ρ(g) = 1
2d!

∑
g∈Sd

χ2
ρ(g) − χρ(g2). (11.12)

Fix a self-conjugate representation ρ and let

e = 1
d!

∑
g∈Sd
g even

χρ(g2) and o = 1
d!

∑
g∈Sd
g odd

χρ(g2).

Subtracting the two equalities (11.12) and (11.11) gives e + o = 1. Since SFS(ρ) =
e − o = ±1 for the self conjugate representation ρ, then 2o = 1 − SFS(ρ) is either 0 or 
2; in either case SFS(ρ) = (−1)o completing the proof. �

The following lemma played a key role in §9.

Lemma 11.3. Let α be a partition of d. With the notations above

∑
β	d

sq(β)=α

(−1)s(β) ζ(α)
ζ(β) =

∑
ρ

SFS(ρ)χρ(α) =
∑
ρ=ρ′

ερχρ(α) (11.13)

where ερ is given by (11.3), and s(β) denotes the parity of β.

Proof. The partition α corresponds to conjugacy class of Sd and let a ∈ Sd denote a 
representative of it. Then

∑
β	d

sq(β)=α

(−1)s(β)ζ(α)
ζ(β) =

∑
g∈Sd

g2=a

(−1)s(g).

Consider the class function

θ(a) =
∑

g∈Sd

g2=a

(−1)s(g).

It has an expansion in the basis of irreducible characters {χρ}

θ =
∑

〈θ, χρ〉χρ,

ρ
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where 〈 , 〉 is the inner product on the class functions. We have

〈θ, χρ〉 = 1
d!
∑

h∈Sd

θ(h)χρ(h) = 1
d!
∑

h∈Sd

∑
g∈Sd

g2=h

(−1)s(g)χρ(h) = 1
d!
∑

g∈Sd

(−1)s(g)χρ(g2).

Therefore ∑
g∈Sd

g2=a

(−1)s(g) = θ(a) =
∑

ρ

1
d!
∑

g∈Sd

(−1)s(g)χρ(g2)χρ(a)

=
∑

ρ

χρ(α) 1
d!
∑

g∈Sd

(−1)s(g)χρ(g2). �

Appendix A. Real orientation and twisted orientation data

In this appendix we review the key ideas of [15] that provided a criterion for orienting 
the real moduli space. We then describe a small variant that covers additional cases.

Let (X, ω, φ) be a Real symplectic manifold and consider the real moduli space 

Mφ

B,g,�(X) of pseudo-holomorphic real maps f : (C, σ) → (X, φ) from a genus g surface 
with 	 pairs of conjugate marked points and representing the class B ∈ H2(X).

We will use the setup of [15, §4.3]. For every real map f : (C, σ) → (X, φ) and Real 
vector bundle (V, Φ) −→ (X, φ) with a Φ-compatible connection ∇, let

D(V,Φ),f : Γ(f∗V )Φ → Λ0,1(f∗V )Φ

be the restriction of the real Cauchy-Riemann operator DV,f = ∂̄f∗∇ to the space of 
invariant sections. Denote by det D(V,Φ) the determinant line bundle of the family of 
operators over the real moduli space; see [15, §4.3] for more details.

Unlike the classical line bundle det DV , which is always canonically oriented (cf. proof 
of [23, Theorem 3.1.5(i)]), the line bundle det D(V,Φ) is not always orientable.

The considerations of [15] imply that, after stabilization of the domain if necessary, 
the orientation sheaf of the real moduli space is canonically identified with

det TMφ

B,g,�(X) = det D(T X,dφ) ⊗ f∗ det TRMg,� (A.1)

cf. [15, (3.3)]. Here f is the map to the real Deligne-Mumford moduli space RMg,�

parametrizing genus g real curves with 	 pairs of conjugate marked points.
A notion of real orientation on a Real bundle (V, Φ) → (X, φ) was introduced in 

[15]. For the tangent bundle (TX, dφ), a real orientation consists of a Real line bundle 
(L, φ̃) → (X, φ) such that

ψ : (L, φ̃)⊗2 ∼= Λtop(TX, dφ), (A.2)
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along with a choice of a homotopy class of such isomorphism and a spin structure on 
TXφ ⊕ 2(L∗)φ̃∗ ; see [15, Definition 1.2]. When the complex dimension of X is odd, such 

structure induces an orientation on all real moduli spaces Mφ

B,g,l(X), cf. [15, Theorem 
1.3]. The main ingredients in the proof are as follows.

One of the key results of [15] is Proposition 5.2 which states that a real orientation 
on a rank n Real bundle (V, Φ) → (Σ, σ) determines a canonical class of isomorphisms

Ψ : (V ⊕ 2L∗, Φ ⊕ 2φ̃∗) ∼= (Σ × Cn+2, σ × cstd). (A.3)

Here (L∗, φ̃∗) denotes the dual of the Real bundle (L, φ̃). In turn, (A.3) induces a canon-
ical isomorphism

det D(V,Φ) ∼= (det ∂̄(C,cstd))⊗n, (A.4)

using the fact that

det D(2L∗,2φ̃∗) = (det(D(L∗,φ̃∗))
⊗2

is canonically oriented as twice a bundle. In [15, §5 and §6] family versions of this result 
are proved for families of (possibly nodal) surfaces. In particular, if f : (C, σ) → (X, φ)
is a point in the real moduli space, by [15, Proposition 5.2] the real orientation on the 
target determines by pullback a homotopy class of isomorphisms

f∗(TX ⊕ 2L∗, dφ ⊕ 2φ̃∗) ∼= (Σ × Cn+2, σ × cstd) (A.5)

which varies continuously with f . By the proof of [15, Theorem 1.3] this induces canonical 
isomorphisms

det D(T X,dφ) ∼= det D(T X,dφ) ⊗ (det D(L∗,φ̃∗))
⊗2 ∼= (det ∂̄(C,cstd))⊗(n+2), (A.6)

over the real moduli spaces Mφ

B,g,l(X). Here the first isomorphism is induced by the 
canonical orientation on twice a bundle, while the second one is induced by the isomor-
phism (A.5).

Moreover by [15, Theorem 1.3], there is also a canonical isomorphism

det(TRMh,�) = det ∂̄(C,cstd), (A.7)

where the forgetful morphism of a pair of marked points is oriented via the first element 
in the pair. Therefore (A.1), (A.6) and (A.7) combine to give a canonical isomorphism

det Mφ

d,g,l(X) ∼= (det ∂̄(C,cstd))⊗(n+1), (A.8)

cf. [15, Theorem 1.3], and therefore an orientation on all the real moduli spaces 
Mφ

B,g,�(X) when the complex dimension n of X is odd.
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The canonical isomorphism (A.3) constructed in [15, Proposition 5.2] only requires

(a) a homotopy class of isomorphisms Λtop(V ⊕ 2L∗, φ ⊕ 2φ̃∗) ∼= (Σ × C, σ × cstd) and
(b) a spin structure on V φ ⊕ 2(L∗)φ̃∗

and it does not depend on whether or not E = 2L∗ is twice of a bundle, cf. [15, Corollary 
5.5]. The fact that E is twice of a bundle is only used in the proof of [15, Theorem 1.3]
to argue that det ∂̄(2L∗,2φ̃∗) is canonically oriented; cf. (A.6). Thus (2L∗, 2φ̃∗) can be 

replaced by any real bundle pair (E, φ̃) for which we know that the determinant line is 
canonically oriented.

Such a choice (E, φ̃) can also be obtained as follows. Let L → X be a complex line 
bundle and let E = L ⊕ φ∗L with the real structure φ̃ = φtw defined as in (2.5). Then 
the projection onto the first factor induces a canonical isomorphism

det D(E,φ̃) = det D(L⊕φ∗L,φtw)
π1∼= det DL (A.9)

over the real moduli space, as in (2.9). The right hand side is the determinant line of a 
real Cauchy-Riemann operator and is thus canonically oriented (cf. proof of [23, Theorem 
3.1.5(i)]). Therefore it induces a canonical orientation on the left-hand side.

This motivates the following variant of [15, Definition 1.2].

Definition A.1. Assume (X, φ) is a Real symplectic manifold. A twisted orientation o =
(L, ψ, s) for it consists of

(i) a complex line bundle L → X such that the bundle pair (E, φ̃) = (L ⊕ φ∗L, φtw)
satisfies:

w2(TXφ) = w2(Eφ̃) and Λtop(TXφ, dφ) ∼= Λtop(E, φ̃) (A.10)

(ii) a homotopy class [ψ] of isomorphisms satisfying (A.10).
(iii) a spin structure s on the real vector bundle TXφ ⊕ (E∗)φ̃∗ over the real locus, 

compatible with the orientation induced by ψ.

Then [15, Theorem 1.3] extends to give:

Lemma A.2. A twisted orientation on (X, φ) induces a canonical orientation on the real 
moduli spaces Mφ

B,g,�(X) when the target X is odd complex dimensional.

Proof. As in [15, Proposition 5.2], a twisted orientation determines by pullback a canon-
ical homotopy class of isomorphisms

f∗(TX ⊕ E∗, dφ ⊕ φ̃∗) ∼= (Σ × C, σ × cstd)⊕(n+2) (A.11)
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varying continuously with f ∈ Mφ

B,g,�(X). The rest of the proof is the same as that of 
[15, Theorem 1.3] except now (A.6) is replaced by

det D(T X,dφ) ∼= det D(T X,dφ) ⊗ det D(E∗,φ̃∗)
∼= (det ∂̄(C,cstd))⊗(n+2) (A.12)

over the real moduli space Mφ

B,g,�(X). Here the first isomorphism is induced by (A.9)
and the complex orientation on det ∂̄L∗ and the second isomorphism is induced by (A.11). 
Combined with (A.7) and (A.1) this determines a canonical homotopy class of isomor-
phisms (A.8) as in [15, Theorem 1.3]. �

These considerations similarly extend to the relative real moduli spaces considered 
in this paper, with the following modification. Assume the target (Σ, c) is a symmetric 
Riemann surface with r pairs of conjugate points, and consider the relative real moduli 
space

M = M•,c

d,χ(Σ)λ1,...,λr

of Definition 2.5. The deformation-obstruction theory (with fixed domain) at a point 
f ∈ M is determined by the linearization ∂f∗(T Σ,dc) where T Σ is the relative tangent 
bundle (2.22) to the marked curve Σ = (S, j, {x±

i }i=1,...,r). This is analogous with the 
situation for the complex moduli space and can be seen as follows. A point f in the 
moduli space is a real map f : (C, σ) → (Σ, c) which is ramified of order λi

j at the points 
y±

ij , where f−1(x±
i ) = {y±

ij}j=1,...,�(λi), and i = 1, . . . r. Variations in f with fixed domain 
must vanish to order λi

j at y±
ij , i.e. correspond to sections of

(f∗TS) ⊗ O
(

−
∑
i,j

λi
jy+

ij −
∑
i,j

λi
jy−

ij

)
= f∗

(
TS ⊗ O

(
−
∑
i

x+
i −

∑
i

x−
i

))
= f∗T Σ

which are invariant under the involutions on the domain and target. Therefore the ori-
entation sheaf of the relative real moduli space is canonically identified with

det TMc,•
d,χ(Σ)�λ = det ∂(T Σ,dc) ⊗ f∗ det TRM•

χ,�, (A.13)

where 	 =
∑

i 	(λi) is the total number of pairs of marked points on the domain, cf. (A.1). 
A twisted orientation on the marked curve (Σ, c) determines an orientation on these 
moduli spaces via the same procedure as in the absolute case. (Note that Definition A.1
and Definition 2.1 are equivalent, with L∗ = Θ.)

When (Σ, c) is a connected Real curve, a real orientation in the sense of [15] exists 
on it except in the case when c is fixed-point free and the genus of Σ is even. A twisted 
orientation exists on any Real curve, cf. [14, §7.1].

We end this appendix with the following observation. Assume (X, φ) is a Real sym-
plectic manifold. For any Real line bundle (L, φ̃) → (X, φ) there is an isomorphism
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θ : (L ⊕ φ∗L, φtw) → (L ⊕ L, φ̃ ⊕ φ̃), (A.14)

as in (5.9); it induces an isomorphism

θR : L|Xφ
∼= 2Lφ̃

along the fixed locus Xφ. In particular, if a real orientation (L, φ̃) exists, we can use either 
the real orientation or the twisted orientation (L ⊕φ∗L, φtw) to induce an orientation on 
the moduli space. The difference between the two orientation procedures is determined 
by Lemma 5.3 as follows.

Lemma A.3. Let o = ((L, φ̃), ψ, s) be a real orientation for (X, φ). Let o′ = (L ⊕c∗L, ψ′, s′)
denote the associated twisted orientation obtained from o via the isomorphism (A.14), 
where s′ = (id ⊕ θR)∗s and ψ′ = ψ ◦ θ. The difference between the orientation on the 

real moduli spaces Mφ(X) induced by o and that induced by o′ is (−1)ι, where ι is the 
complex rank of Ind ∂̄L∗ .

Proof. As explained at the beginning of the appendix, the two orienting procedures differ 
only in the way the auxiliary index bundle is oriented i.e. it is the difference in how the 
index bundles of L∗ ⊕ φ∗L

∗ and 2L∗ are oriented: in the first case via the projection 
onto the first factor and in the second case as twice a bundle. This difference is given by 
Lemma 5.3. �
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