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Splitting formulas for the local real
Gromov-Witten invariants

PENKA GEORGIEVA AND ELENY-NICOLETA IONEL

Motivated by the real version of the Gopakumar-Vafa conjecture
for 3-folds, the authors introduced in [GI] the notion of local real
Gromov-Witten invariants associated to local 3-folds over Real
curves. This article is devoted to the proof of a splitting formula
for these invariants under target degenerations. It is used in [GI] to
show that the invariants give rise to a 2-dimensional Klein TQFT
and to prove the local version of the real Gopakumar-Vafa conjec-
ture.
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1. Introduction

A central problem in Gromov-Witten theory is understanding the struc-
ture and properties of the Gromov-Witten invariants. Motivated by the real
version of the Gopakumar-Vafa conjecture and the work of Bryan and Pand-
haripande [BP2], the authors introduced and studied in [GI] the notion of
local real Gromov-Witten invariants. In this article we prove the splitting
formula for these invariants, as outlined in [GI, §4] and used to establish the
structural results of [GI].

A symmetric (or Real') Riemann surface is a (possibly disconnected and
marked) Riemann surface ¥ together with an anti-holomorphic involution
c: Y — X (also referred to as a real structure). Throughout this paper we
restrict attention to the case in which none of the marked points are real,
and we denote by V the collection of marked points of . Consider the real

relative moduli space
—R

Mg, z2(8,V)

7X7I"'/

of degree d real maps f: C — X from (possibly disconnected) domains of
Fuler characteristic x and having ramification profile i over the divisor
V', reviewed in §3.3. Here [i is a collection of partitions of d, one for each
pair of conjugate points in V. These moduli spaces are orientable, but not a
priori canonically oriented; their orientation depends on a choice of (twisted)
orientation data o on X, cf. §8.

When L — ¥ is a holomorphic line bundle, the local RGW invariants are
defined as the pairing

1 _
1.1 RGWQO E, L); = e~ / C —ind 0
( ) d:X( )M \Aut(u)] [ﬂnj,x’ﬂ(zyv)}vimﬂ b/2< L)

between the appropriate Chern class of the index bundle Ind d;, (regarded
as an element in the usual complex K-theory) and the virtual fundamental
class of the real relative moduli space. Here b is the (virtual) dimension?
of the moduli space and the presence of the factor |Aut(ji)| is explained in
Remark 3.2. In particular, (1.1) are the coefficients of the generating series

[GI, (2.24)].

'We use Real with capital R for spaces or bundles with anti-holomorphic involu-
tions, following Atiyah.

2Unless otherwise noted, all dimensions appearing in this paper are real dimen-
sions rather than complex dimensions.
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The pairing (1.1) is invariant under smooth deformations of the target
Y (as a symmetric marked curve) together with L and o; in particular it
is independent of the holomorphic structure on L. By considering a family
UsXs of smooth symmetric marked curves degenerating to a symmetric nodal
curve ¥y (with a conjugate pair of nodes), the splitting formula proved in
this paper relates the local RGW invariants of a smooth fiber >, to those
of the normalization of the singular fiber ¥.

Throughout this paper, ¥y denotes a symmetric nodal curve with a
single pair of conjugate nodes and r pairs of conjugate marked points; in
particular, we assume that Yy has no real special points. We always denote
by

1.2 = s

( ) F/ A sgA

a (flat) family of deformations of ¥y parametrized by the unit disk A as
described in §3.1. The fibers over s # 0 are smooth (marked, symmetric)
curves X;. We also denote by

i—)EQ

the normalization (or resolution) of the singular fiber ¥y (as a symmetric
marked curve). We denote by ¢, ¢ and Vg, V' the corresponding real struc-
tures and markings.

If L — F is a complex line bundle over the family, we denote by Ls and L
its pullback to ¥4 and respectively 3. There is also a notion of twisted orien-
tation data ox on the family F, which pulls-back to give twisted orientation
data o5 on Xg and 0 on X, cf. §8.1.

With these preliminaries, the main result of this paper is the proof of
the following theorem.

Theorem 1.1 (RGW Splitting Theorem). Let F = UsX be a family
of deformations of Yo and X be its normalization as described above. Fix
L — F a complex line bundle and ox a twisted orientation on F. Then the
local RGW invariants (1.1) associated to the smoothing ¥ are related to
those associated to the normalization ¥ as follows:

(1.3) RGWG™ (S, Lo)g = 3 CVRGWS 4y (2, L)ian
Ad

for all s # 0 and all d, x, and fi. Here X is a partition of d, £(\) is its length
and the coefficient ((\) is given by (2.2).



564 P. Georgieva and E.-N. Ionel

Theorem 1.1 is an extension to the real setting of the splitting formula
of Bryan-Pandharipande [BP2, Theorem 3.2] proved in [BP1, Appendix A].
A direct consequence of Theorem 1.1 is [GI, Theorem 4.1] cf. Corollary 10.2
and the discussion after it. This is used in [GI] to show that the local RGW
invariants give rise to a 2-dimensional Klein TQFT and to prove the local
version of the real Gopakumar-Vafa conjecture.

The proof of Theorem 1.1 is a consequence of the splitting properties of
the total Chern class of the index bundle established by Bryan and Pand-
haripande, combined with a splitting formula for the virtual fundamental
class of the real relative moduli space. The proof of the latter — Theorem 1.2
below — occupies the majority of this paper. The basic idea is an adaptation
to the real setting of the classical proof of the splitting theorem [LR, Li, IP2].

We consider a family of real moduli spaces
- —R
(1.4) Mayi(Fja) = U Maya(Es,Vs)

associated to the family F of targets, cf. (3.14). For every partition A of d,
we also consider the real relative moduli space

7[& ~ ~
My ian(EV)

associated to the normalization 3 of Yo; note that 3 has two additional
pairs of conjugate marked points (corresponding to the pair of conjugate
nodes of ¥y) and we restrict to the case when the ramification profile is A
over all these additional points. There is a natural map

—R <~  —R
(1.5) P |_| M yraen,ian (V) = Mg, (20, Vo)
A-d

which attaches pairs of marked points of both the domain and target to
produce nodes, cf. §3.5.

Theorem 1.2 (VFC Splitting Theorem). With the notation above, for
every d, x, and [i and all s € A\ 0 the equality

AR vir C(A AR S 1/)\]vir,o
(1.6) [Mg, z(3s, Vs)]["00% = Z mui())\)gq)*[Md,erM()\),ﬁ,)\,/\(za Ve
A-d

holds in the rational Cech homology of the family (1.4) of moduli spaces.
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We now outline the key steps involved in the proof of the splitting for-
mula (1.6). In this paper we use Ruan-Tian perturbations adapted to our
setting in combination with the thin compactification method of [IP5] as
summarized in §2.3. This approach allows us to use standard arguments
after adapting them to the real setting.

The notion of Ruan-Tian perturbations extends to the family F = Ug;
of targets in a way that is compatible with the real structures and the
divisors, cf. §4.1. In particular, every RT perturbation v on the family is
real and pulls back to a RT perturbation on ¥; and X, compatible with
their divisors. Denote by P the space of such RT perturbations v on the
family F.

As v varies over the parameter space P, we get various families of moduli
spaces over P, cf. §4.2. Denote by 1711(3;) and 171(X) the family (over P) of
real relative moduli spaces associated to the fiber X and respectively the
normalization ¥ of the nodal fiber ¥y. Fix a segment I = [0, sg] C A, where
s0 # 0. As in the usual proof of the splitting formula, we consider a family

of moduli spaces

The attaching map (1.5) extends to a proper map
meE) —2— mo).

These are all f@ilies over the parameter space P if RT perturbations v and
we denote by 171(—), the corresponding fiber of 177(—).

In section 5.2, we first show that

(1.7) m(ss,), (¥), and M(%)

are thinly compactified families over the parameter space P (in the sense of
[IP5]) and therefore carry a VFC, cf. Theorem 5.3. This involves proving that
for generic v all the strata of the moduli spaces 771(—),, are cut transversally.
There is one subtlety: when the real locus of the target is nonempty, it also
involves gluing across the codimension 1 strata to show that for generic v,
the corresponding subsets

M)y, M), and  M(So)w,
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(defined as the union of codimension at most 1 strata) are orientable topo-
logical manifolds (without boundary). As a consequence of transversality,
generically the union of the codimension at least 2 strata of 771(—), have ho-
mological codimension at least 2 and thus the thin compactification method
applies to define the VFC.

To establish the relation (1.6) it suffices to compare the fundamental
classes

[M(Zs0)ls @L[M(E),],  and  [M(Z0),]  in HL(N(F)); Q)

for generic v € P. These classes depend on the choice of orientation of the
moduli spaces, which in turn is determined by a choice of twisted orientation
data o on F, cf. §8. There are two natural perspectives on the moduli space
associated to the nodal target ¥y, one coming from the normalization and
the other from the deformation, cf. §6. Each perspective gives rise to a
natural orientation (after fixing or) and a key step is showing that these
two orientations agree, proved in §8.3.

We prove in §6 that for generic v € P the attaching map & restricts to
a proper, finite degree map between the two oriented topological manifolds
m(x), and M(%yp), and thus

(1.8) @, [M(E),] =deg®- [M(Z0),] in  H,(M(S0),; Q).

Lemma 6.1 expresses the degree of ® in terms of specific combinatorial
factors.

Theorem 1.2 would follow if m(F /v = UI T/IZV(ES)V was generically a
se

topological cobordism; however, as in the usual splitting formula, in general
it is branched along s = 0. After passing to a cover 11(3g) of M (%), we
construct in §7 an auxiliary space

—~ o~ —

T(F)r) = (o) U Y 7).

This space comes with a proper continuous projection to 171(F,;) which

o~

restricts to a map qo : M (3g) — M (3p). We prove in §7 that for generic
veP,

—

(i) qo restricts to a proper map between two oriented manifolds 177(X),
and M1(Xg),. Thus

— — - —

(QO)*[m(ZO)V] = (deg QO) ' [m(EO)V] in H*(m(20>ua @)7
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(ii) ﬁ?\(]-" /1)v is an oriented topological cobordism between 7/7’7(280),, and

—~

M(Xo),. Thus

o~ —

(o)) = M(S,,),]  in H((F)); Q).

This allows us to relate [777(250)1,] to [M(Xo),] up to specific combinato-
rial factors. Combined with (1.8), the precise formulas for the degrees of
® and gy, and the properties of thin compactifications, this implies (1.6),
completing the proof of Theorem 1.2, cf. §9.

Outline of paper. In Section 2 we review notation and background; a
summary of the thin compactification method is included in §2.3 and at the
beginning of §5. In Section 3 we review the construction of the real rela-
tive moduli space and extend it to a family of targets. In Sections 4 and
5 we construct the relevant VFCs by turning on Ruan-Tian perturbations
to obtain transversality strata-wise and applying the thin compactification
method. The moduli space of maps to a nodal target is analyzed in Sec-
tion 6, including several equivalent descriptions of the linearization and its
orientation sheaf. The auxiliary space 1M1(F / 1) is constructed and analyzed
in Section 7. The orientations of the various moduli spaces involved are dis-
cussed in Section 8. The main result of Section 8 is Proposition 8.3 which
compares the two natural orientations on the moduli space associated to the
nodal target. Theorems 1.2 and 1.1 are proved in Sections 9 and 10. The
appendices provide more details on the various linearizations considered and
the relations between them.
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2. Background and notation
2.1. Notations for partitions

Let d € Z. A partition X of d, denoted A F d, is a finite sequence of positive
integers A = (A1 > --- > \y) such that the sum of its parts, denoted |A|, is
equal to d. The number of its parts, called length of the partition, is denoted
£(X\). We can also write a partition in the form A\ = (17122 ...) where my
is the number of parts of A equal to k. Then

J4 [%S) [e'S)
d=\=> XN=> kmp and (A) == my.
i=1 k=1 k=1
Let Aut(A) be the automorphism group of \; its order is

(2.1) [Aut(A)| = [ [ma!

We also consider the following combinatorial factor

(2.2) ¢ = [ matk™.
2.2. The local RGW invariants

A symmetric (or Real) curve (C,0) is a closed, oriented, possibly nodal,
possibly disconnected, possibly marked complex curve C' together with an
anti-holomorphic involution o, called the real structure. In this paper we
only consider the case when all marked points of C' come in conjugate pairs.

Let (X, w) be a symplectic manifold and ¢ an anti-symplectic involution
on X. A real map

(2.3) f:(Co) — (X,9)

is a map f:C — X such that foo =¢o f. In this paper we restrict to
almost complex structures J on X which are real i.e. satisfy ¢*J = —J and
are tamed by w. Denote by

—R
(24) Md,X7Z(X)
the (absolute) real moduli space consisting of equivalence classes (up to
reparametrization of the domain) of stable degree d J-holomorphic real maps
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(2.3) from symmetric curves of Euler characteristic x and ¢ pairs of conjugate
marked points.

Throughout this paper we restrict ourselves to target manifolds X which
are (families of) symmetric curves; in this case we denote the target curve
by (X, ¢) and the family of such by F, see §3.1.

Assume (X, ¢) is a (smooth) symmetric curve with r (ordered) pairs of
conjugate marked points

(2.5) V={(z],27),...,(x\,2,)}, where z; =c(z]),

)

and no other marked points. For a collection ji = (u!,...,u") of r partitions

of d, denote by
—R
(26) Md,x,ﬁ(27 V)

the real relative moduli space reviewed in §3.3. Note that when 3 has no
marked points V' = () and the real relative moduli space (2.6) becomes an
absolute real moduli space.

The virtual dimension of the moduli space (2.6) is equal to

T

27)  b=dy(D) - x—26(), where 8() =3 (d— E(u)),
=1

cf. (A.46).

In general, the (absolute) real moduli spaces (2.4) are not always ori-
entable, but there are some criteria that ensure orientability. In [GZ1, Def-
initions 1.2 and 5.1] a notion of real orientation was introduced. When the
target X is odd complex dimensional, the existence of a real orientation
on T'X ensures that the real moduli spaces ﬂ§7X75(X ) are orientable, and
a choice determines a canonical orientation of the moduli space cf. [GZ1,
Theorem 1.3]. This was extended in [GI, Definitions 2.1 and A.1] to the
notion of a twisted orientation, reviewed in Definition 8.1 below, and used
to orient the real relative moduli spaces. While a real orientation in the
sense of [GZ1, Definition 1.2] does not exist on a symmetric curve with even
genus and fixed-point free involution, a twisted orientation exists on every
symmetric marked curve (with no real special points), cf. §8.1.

For a smooth marked symmetric curve ¥ as in (2.5), its relative tangent
bundle 7y, is defined by

(2.8) EzTE@O(—ZmT—Zx;).
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It is a holomorphic line bundle over ¥ and has a canonical real structure ¢y
induced by ¢, see also (B.6).

As described after [GI, (A.13)] and reviewed in §8, the moduli space
MS{,X’Q(Z, V') is orientable, and can be canonically oriented by a choice of
twisted orientation data o on the relative tangent bundle Tx. This gives rise
to a virtual fundamental class denoted [ﬂls% (% V)]¥i'° which depends on
0. For any holomorphic line bundle L — 3, we can consider its index bundle
Ind d;, as an element in K-theory, see (10.1). Denote

C def ]- Y
(29) RGWd:;(Z7 L)/j == m / Cb/Q(—Ind 8L)

My (S V)]vie

Here b is the (virtual) dimension (2.7) of the moduli space and ci(E) denotes
the k’th Chern class of E. The local RGW invariant defined by [GI, (2.24)] is
then equal to

(2.10) RGWS® (S, L); = Z RGWi’;(Z, L); §X/2 (4 )b/ 2k
X

cf. Remark 3.2. Here k = ¢1(L)[X] is the degree of the line bundle.

While there may be different ways of defining the VFC, in this paper we
describe a specific construction of the VFC

R vir,o T AR
(2.11) (Mg zg(E VI € Hy(Mg, 2(2,V); Q)

as an element of rational Cech homology, using the thin compactification
method as introduced in [IP5, §2] and briefly reviewed in §2.3. This has the
advantage that it is very concrete and does not use sophisticated virtual tech-
niques. In the case when the target is a Riemann surface, turning on certain
geometric perturbations v of the J-holomorphic map equation as introduced
by Ruan-Tian [RT] suffices to obtain transversality strata-wise for the real
relative moduli space (after passing to a cover of the Deligne-Mumford mod-
uli space; see Remark 4.1). This ensures that the moduli space is generically
a thin compactification, and thus carries a VFC for all Ruan-Tian pertur-
bations, including for v = 0. We present the details of this construction in
§4 and §5.
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2.3. Thin compactifications

Here we briefly summarize the method of thin compactifications as intro-
duced in [IP5] and how it applies to construct the virtual fundamental class
(VFC) of the real relative moduli spaces considered in this paper; the details
of this construction are presented in §5.

Throughout this paper, by a d-dimensional manifold we mean a Haus-
dorff space M locally modeled on R?. If M is also oriented (but not nec-
essarily compact), it has a fundamental class in Steenrod homology and we
denote by [M] € Hy(M; Q) its image in rational Cech homology. There are
some subtleties involved when working with these homology theories; in
particular, to pushforward such classes one needs a proper continuous map
(between locally compact Hausdorff spaces), cf. [IP5, §1]. However, ratio-
nal Cech homology satisfies a continuity axiom, a relative homeomorphism
axiom and is also exact; in particular, there is a natural long exact sequence

(212) ... > H,(4;Q) - H(X;Q) B H, (X \4,Q) — ...

associated to a closed pair (X, A), where p is the "restriction” to an open
set, cf. [M] and [IP5, §1].

If M is an oriented d-dimensional manifold, a thin compactification of
M (in the sense of [IP5, §2]) is a compact Hausdorff space M containing
M such that S = M \ M is closed and (homologically) codimension 2, i.e.
H.(S;Q) =0 for all *+ >d —2. Then p: H,(M;Q) — H,(M;Q) is an iso-
morphism for * = d, cf. (2.12), thus the fundamental class [M] € H,(M;Q)
uniquely lifts to a class on M denoted [M] € H,(M; Q). Thinly compactified
cobordisms are defined similarly, cf. [IP5, §2.3].

Roughly speaking, the thin compactifications method of [IP5] applies to
a moduli problem whenever (i) for generic perturbation the moduli space is
a thinly compactified manifold, i.e. is an oriented manifold away from (ho-
mologically) codimension 2 strata and (ii) the moduli space over a generic
1-parameter family of perturbations is a thinly compactified cobordism, i.e.
is an oriented cobordism away from (homologically) codimension 2 strata.
Since the fundamental class (in rational Cech homology) of a manifold
uniquely extends to any thin compactification, the first condition defines
the fundamental class of the moduli space for generic parameter. For non-
generic parameter, the virtual fundamental class is obtained as the limit (in
rational Cech homology) of nearby classes, which is well defined by condition
(ii). For more details, see [IP5, Theorem 4.2].
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The ideal situation in which the thin compactification method applies
is when all the strata of the moduli space are cut transversally, and the
boundary strata have (virtual) codimension at least 2, cf. [IP5, Lemmas 2.2
and 5.3]. More generally, it suffices to cover the boundary by images of
codimension 2 manifolds, as in [IP6, Lemma 2.2].

Because the targets considered in this paper are holomorphic curves,
we are in a very special situation where geometric Ruan-Tian perturbations
work particularly well, and are sufficient to obtain transversality strata-
wise on all strata of the real relative moduli spaces, with one exception.
When the target is a sphere without any marked points, the (absolute)
moduli space of maps from a genus 1 domain with no marked points has a
few strata which are not cut transversally, cf. Remark 4.7. In all the other
cases, the RT perturbations suffice to ensure that all the strata are cut
transversally, as we outline below. For this reason, we work under the mild
technical assumption that the target > has a marked point on each spherical
component, which suffices for our considerations, cf. Remark 9.2; for precise
details, see Lemma 4.5.

Classically, it is known that one can use Ruan-Tian perturbations v to
get transversality on all stable components of the domain (after first passing
to a cover of the Deligne-Mumford moduli space as in Remark 4.1). However,
Ruan-Tian perturbations identically vanish on unstable domain components,
so these components must be handled by other methods. When the domain
is a genus g curve with at least 3 — 2g marked points, these are the spherical
components collapsed to points under the map to the Deligne-Mumford
moduli space. Otherwise, the entire domain is unstable (when it has genus
1 and no marked points or genus 0 with fewer than 3 marked points).

However, when the target is aspherical (e.g. a smooth higher genus curve)
unstable spherical domain components cannot occur for maps in the moduli
space. When the target is a sphere, there could be unstable spherical domain
components, but these are well understood classically, and in particular are
cut transversally (even though they are multiple covers!). This is also true
for all the strata of the moduli space of (holomorphic) maps from a genus 1
curve without marked points, as long as the target has genus one (or higher).

For the relative moduli spaces, there are also rubber components in-
volved, but in our case these project to constant maps into the divisor
which satisfy an additional condition that depends on Vv, cf. (4.16). This
condition is automatically satisfied on genus 0 components and is again
cut transversally on the other rubber components because we can use Vv
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to get transversality. Moreover, any stratum with rubber components has
codimension at least 2. For more details, see §4.2.

The moduli spaces of real maps considered in this paper may have codi-
mension 1 strata. In this case, we first argue that for generic parameter v
the union of the codimension at most one strata is an oriented topologi-
cal manifold (without boundary), and thus carries a fundamental class (in
rational Cech homology); this involves only standard gluing techniques at
an ordinary real node of the domain (and no rubber components). All the
other boundary strata have codimension at least two, thus the method of
thin compactifications applies. For details, see §5.

3. Family moduli spaces

A key step in proving the splitting formula for the RGW invariants is to con-
sider a family of moduli spaces associated to a family of symmetric marked
curves degenerating to a nodal symmetric curve (with a conjugate pair of
nodes). This family moduli space, denoted M (F / A), serves as the ambient
space where we can compare the VFCs and integrands used in defining the
RGW invariants. In this and the following two sections we set up the nec-
essary notation, review the constructions and show that the moduli spaces
involved in defining the RGW invariants (2.10) extend over families of sym-
metric marked curves, including across the singular fibers.

3.1. Families of symmetric curves

Recall that if ¥y is a complex nodal marked curve, then we can consider

(a) a smooth normalization Y of ¥y that replaces each node by a pair of
marked points;

(b) a (flat) family F of deformations 5 of ¥y smoothing out the nodes.

Let (X0, co) be a nodal symmetric curve with r pairs of conjugate marked
points Vy and a single pair of conjugate nodes z*. Let

(3.1) 7w (F,cr) — (Az,cA),

denote a (flat) family of deformations of (g, cp) smoothing the nodes as
defined in [GZ2, §4.2], cf. §B.1. Here A C C is the unit disk and A% = A x A.
The total space F is a smooth Kéahler manifold with complex structure J and
the projection is holomorphic. Moreover, cr is a real structure on F which
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is anti-holomorphic and restricts to the real structure cy on the central fiber
Yo, while ca : A2 — A? is defined by (s1,s2) > (32,51). Finally, marked
points give rise to sections of F — A?; their images define a smooth divisor
V CcF.

The fiber of (3.1) over (s,3) is a symmetric marked curve denoted Xg;
its real structure cg is the restriction of cr to Xg while its marked points
correspond to the restriction Vs of V' to 3. This determines a family

(3.2) Fia = U 5

of symmetric marked curves over A (the pullback of (3.1) via the map
A — A?) s+ (s,5) for all s € A). We will later consider restrictions of this
family (3.2) to a line, path, etc.

Consider also
(3.3) (2,2) — (S0, co)

the normalization of the singular fiber ¥y (as a marked symmetric curve).
Here ¢ denotes the real structure of > and we denote by V' the collection of
marked points of 3 consisting of one point over each marked point of ¥,
and a pair of points over each node of ¥g. The curves X and ¥ come with
natural maps

(34) i (B 0s) = (Foerp) and  ¢: (2,8) = (F,cr).

into the total space F of the family; the second map factors through the
nodal fiber.
Finally, let

(3.5) (T,er) — (F,cr)

denote the relative tangent bundle to the family (3.1); here T is a holomor-
phic line bundle (locally free sheaf) over F which comes with an induced
real structure cr, cf. [GZ2, Lemma 4.8] and (B.6). The pullback of (7, c¢7) to
both X5 and ¥ under (3.4) gives their corresponding relative tangent bundle
(2.8). The relative tangent bundle 7s;, to the nodal curve X is defined as the
restriction of T to Xp, and it fits in the normalization short exact sequence
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of holomorphic sheaves
(36) 0— 7-20 — 7% — 7\—nodes — 0

compatible with the real structures.

3.2. Family moduli space

The real relative moduli spaces of maps into the smooth fibers 3¢ naturally
form a family which can be compactified by adding a fiber over s = 0. In
parallel with the proof of the usual splitting formula e.g [BP1, (14)], we
consider the family

-— —R
Md,x,ﬁ(]:/A) = sgA Md,x,ﬁ(E& V;) — A

of moduli spaces whose fiber at s € A\ 0 is the real relative moduli space
MR(ZS, Vs), while the fiber ﬂR(EO, Vo) over s = 0 includes maps with rub-
ber components over both the nodes and the marked points of 3y. We de-
scribe these spaces in more detail below.

3.3. Relative real moduli spaces

Even in the complex category, there are several versions of the relative mod-
uli space of holomorphic maps to a complex curve ¥ relative to a divisor V.
The version used by Bryan-Pandharipande in [BP2, Definition 3.1] is more
convenient for computational purposes, and is a finite quotient of the stan-
dard one defined by Jun Li in [Li]. The latter has the property that all the
contact points are ordered, and is more convenient for analytical considera-
tions, including for constructing the VFC and describing its behavior under
target degenerations. Of course, the virtual fundamental classes of these two
versions of the moduli space are essentially the same up to a combinatorial
factor.

In this section we outline the construction of the relative moduli space,
in which all the contact points are ordered, adapted to the real setting;
see also Remark 3.2. We include some of the standard arguments for ease
of reference when we extend these arguments to families of degenerating
targets.

Let (X, ¢) be a (smooth) symmetric marked curve with r pairs of conju-
gate marked points V as in (2.5). Fix d, x and a collection ji = (u*, ..., u")
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of r partitions of d. Consider first the "top stratum”

(3.7) My q(Z,V)
consisting of equivalence classes (up to reparametrizations of the domain)
of J-holomorphic real maps f : (C,0) — (3, ¢) such that

(i) the domain C' is a smooth, marked, possibly disconnected symmetric
Riemann surface of Euler characteristic x;

+

(ii) f has ramification pattern p' over x;

x; ), foralli=1,...,n;

(and thus also over its conjugate

(iii) f is nontrivial on each connected component of C;
(iv) f is a degree d map, i.e. the image of f represents d[X] in Ho(X;7Z);

The points in f~1(V) are called contact points of f to V, and here all the
contact points are marked points of the domain (and the domain has no
other marked points); see also Remark 3.2 below. Specifically, condition (ii)
means that

° ffl(x;t) = {yz?';}jzl’wgw) for every i = 1,...,r; thus f(y;;) = xf

e the ramification order of f at yz?';- is ,ué» and yfs are conjugate points;
. {yi |j=1,...,(u"), i=1,...,7r} are marked points of the domain.

A map f which satisfies these conditions is said to have its contact to V
prescribed by [i.

The moduli space (3.7) has a compactification M]ix,ﬁ(z’ V) in which
both the domain and target of the maps is allowed to degenerate. We start
by briefly describing the targets, denoted ¥[m], and called buildings obtained
by rescaling X around to V; for the general rescaling construction normal to
a divisor see for example [I, §4]. In our case X[m] is a nodal symmetric
marked curve, obtained from ¥ by attaching chains of spheres at its marked
points in the following manner. Let Ny be the normal bundle of V in 3,
and consider the projectivization Py = P(Ny @ C). Then

(3.8) Py =P! x V = ,ﬂl P! x {zF} = ‘lill P
= i= i

is a P! bundle over V = {2F,... 2} with

(i) a zero and infinity section Vj and V.,
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_l’_

(ii) a real structure induced by the one on Ny, thus covering c(z;

in the base, and

)= a;

(ili) a C* action on each P =+, fixing (i) pointwise and compatible with (ii)
i.e. satisfying c(A - 2) = X - ¢(2).

Assume first for simplicity that V' consists of a single pair of marked points,
i.e. r = 1. Starting with ¥ and inductively rescaling it m times around V
gives rise to the building

Sml=% U Py

oo 0

U ... U Py—3,
=V Vo=Vi

with a divisor V[m| C ¥[m] corresponding to the zero divisor of the last
copy of Py. For the general case, we allow X to be independently rescaled
m; times around each pair {xfc} of conjugate points in V = {x{c, o)
This similarly gives rise to a building X[m] with a divisor V[m] = {z}7_,.
The C* action on each P+ induces a (C*)I™l action on the building %[m],
called the rescaling action, ‘and denoted

t— Ry € Aut(X[m]);
here m = (m1,...,m;) and |m| =mj + - - - + m,. Finally, let
(3.9) p:X[m] — X

denote the projection induced by collapsing all the m; copies of P_+ for
i=1,...,7 down to V.

Then the compactification ﬂ]ix,ﬁ(z:’ V) of the top stratum (3.7) is de-

fined as follows.

Definition 3.1. An element of the moduli space ME,X,;I(E» V) is an equiv-
alence class, up to reparametrizations of the domain and rescaling the target,
of real J-holomorphic maps

(3.10) f:C = Sm

from some possibly nodal, possibly disconnected symmetric Riemann surface
C' to some symmetric building X[m] such that

(i) f has prescribed contact to the marked points of the target, i.e. the
preimage of{xf} consists only of marked points of the domain, denoted
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{yz?';}, and f has order of contact ,ué» at yf? to x;t; thus f(y;;) =z and

1
y;; are conjugate marked points.

(ii) f satisfies the following matching condition: the preimage of the nodes
of the target consists only of nodes of the domain with the same order
of contact on the two local branches.

(iii) the restriction of f to every connected component of the domain is
nontrivial.

(iv) f has degree d and its domain has (virtual) Euler characteristic x.

(v) f is relatively stable, i.e. Autf is finite; here an automorphism of f :
C — X[m] is a pair (p,t) € Aut(C) x (C)™ such that Ry o fop = f.

The real relative moduli space
—R
(3.11) M ,q(3,V)

comes with natural maps induced by forgetting some of the data such as the
real structures, the order of the contact points, the divisor V', etc. Forgetting
the real structure defines a map to the (usual) relative moduli space of
holomorphic maps to ¥ relative the divisor V.

Remark 3.2. Unlike in [GI, Definition 2.5] (or [BP2, Definition 3.1]),
throughout this paper we are using the standard definition of the relative
moduli space (cf. [Li] or [IP1]) in which all the contact points are marked.
The moduli space (3.11) comes with a group action permuting the contact
points with same image and multiplicity; the quotient by this Aut(f) action
is the moduli space in [GI, Definition 2.5]. In particular, the former moduli
space is the degree |Aut(i7)| = []; |Aut(u?)| cover of the latter moduli space,
obtained by ordering the contact points.

3.4. Rubber components and stratification

There is an equivalent description of the elements of the relative moduli
space that is more convenient for transversality purposes. Decompose any
real map (3.10) satisfying conditions (i)-(v) of Definition 3.1 into compo-
nents, obtained by restricting f to the irreducible components of its domain.
These components can be grouped according to their image in X[m]; those
that are mapped to ¥ are called level zero components and the rest are called
rubber components. In turn, the rubber components can be grouped accord-
ing to which copy of ]P)mii in YX[m] their image lands in, and the vertices of
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the dual graph of f: C — X[m] are decorated by this discrete data (along
with the genus and the homology class represented by each irreducible com-
ponent).

By Definition 3.1(ii), each node g of the domain has an associated order
of contact A\(q), where A\(¢) = 0 if ¢ is an ordinary node i.e. mapped away
from the nodes of X[m|. Each marked point of the domain also comes with an
associated order of contact cf. Definition 3.1(i). Altogether, this associates
to every special point g of the domain a multiplicity A(q), and the dual graph
of f is decorated by this data as well.

Remark 3.3. Note that every rubber component f, of f, regarded as a
map fi : Cr — Py either represents 0 in homology (and its image is disjoint
from the 0 and oo divisors) or else its domain has at least two special points
(the inverse image of 0 and o0), cf. Definition 3.1(i)-(ii).

For each decorated dual graph 7, let M, denote the corresponding stra-
tum of the real relative moduli space. Elements of this stratum can also
be described in terms of their projection under the collapsing map (3.9),
and the lifts of this projection to meromorphic sections of a line bundle as
follows.

Since V is 0 dimensional, each rubber component projects to a constant
map to V under (3.9), and is a holomorphic map to one of the Py’s, with
prescribed contact to 0 and oo (determined by 7), cf. Definition 3.1(i)-(ii).
Equivalently, it is a meromorphic section £ # 0 of the pullback normal bundle
of V' with zeros and poles at the special points of prescribed order (and no
other zeros/poles). Note that any two such sections, if they exist, must be
constant multiples of each other. For more details, see §A.8.

Some rubber components may be multiple covers P! — P! totally ram-
ified over 0 and oo; these are called trivial components, and their domain is
a sphere with precisely two special points. All the other (nontrivial) rubber
components project to a stable map to V' cf. Remark 3.3.

In particular, the projection (3.9) induces a forgetful map
—R —R
(3.12) M (Z,V) = M (%,0)
to the (absolute) real moduli space; it takes f : C'— X[m] to the map ob-

tained from po f: C' — X after collapsing all the chains of trivial compo-
nents in the domain to obtain a stable map to X.
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Remark 3.4. (Stability vs relative stability) Let f: C' — X[m] be a real
map which satisfies conditions (i)-(iii) of Definition 3.1. Then f is relatively
stable if and only if (a) f is stable as a map to X[m] and (b) every copy of
P+ in Y[m] contains at least one nontrivial rubber component of f.

Remark 3.5. By definition, the image of the forgetful map (3.12) consists
of stable, real holomorphic maps f:C — X that have a real holomorphic
lift f:C — X[m| which satisfies the matching conditions over the singular
locus of X[m| and has prescribed contact with V[m], cf. Definition 3.1. In
particular, the components of f that are mapped to V must have a lift to a
rubber component.

3.5. Nodal targets

Definition 3.1 extends verbatim to nodal targets, as long as we include maps
with rubber components over both the marked points and the nodes of the
target. Assume > is a nodal symmetric marked curve with one ordered
pair {xi} of conjugate nodes, r pairs of conjugate marked points V{, and
no other special points. Then the real relative moduli space

—“—R
M, i(Z0, Vo)

is defined as in Definition 3.1 except that X[m] is replaced by a building
Yo[m] obtained by rescaling ¥y at both the marked points and the nodes; in
particular, chains of spheres are also inserted at the nodes of ¥y, in addition
to those inserted at the marked points. Therefore an element of this moduli
space is an equivalence class of real J-holomorphic maps

f : C() — Eg[m]

satisfying conditions (i)-(v) of Definition 3.1. Now the domain Cp must be
nodal and the top stratum M® (32, Vp) is the subset consisting of maps to
>0 whose domain has no other nodes besides those in the inverse image of
the nodes of Y. B

Recall that (3.3) attaches pairs of marked points of ¥ to produce the
nodes of ¥g; it extends to a map between any building associated to ¥ and
the corresponding building associated to ¥g. The attaching map

—R <~ & ——R
(3.13) )\|F|de,X+4Z(,\),ﬁ,,\,,\(Ea V) —— Mgy, (30, Vo)
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is then induced by attaching pairs of marked points of both the domain and
target to produce nodes (then forgetting the order of these nodes). Note that
in the domain of (3.13) the contact points are ordered; however ® factors
through the quotient by the diagonal Aut(\) action to produce unordered
nodes in its image.

3.6. Maps to the family
Consider the family

— —R
(3.14) Maxi(Fra) = U Mayi(Bs,Vs) — A

moduli spaces associated to the family (3.2) of targets; its fiber over s € A
is the real relative moduli space associated to the fiber of F over s defined
above. In particular, the fiber HR(EO, Vo) over s =0 includes maps with
rubber components over both the nodes and the marked points of .

The inclusion of ¥4 into F is holomorphic, and induces a proper map

7R J—
(3.15) M i(Bs, V) —— Mayi(Fya)

for every s € A. The map (3.3) is also holomorphic and induces the proper
map (3.13) at the level of moduli spaces; the composition of the latter with
the map (3.15) for s = 0 is a proper map

7R ~ ~ PR
(3.16) A|:|d/\/lcz,><+zu(,\),ﬁ,/\,A(Za V) —— Mayq(F/a)-

Remark 3.6. The topology of these real relative moduli spaces is a refine-
ment of the usual Gromov topology, defined by a process of rescaling the
target normal to the divisors cf. [[P1] and [IP2]; in particular, the topology
on the subset (3.7) consisting of maps without rubber components is the
usual Gromov topology.

4. Perturbations and transversality

In this section we introduce spaces of Ruan-Tian perturbations adapted
to our setting and show that the strata of the real relative moduli spaces
described above are cut transversally over such parameter spaces.
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4.1. Ruan-Tian perturbations

To obtain transversality stata-wise, we fix the (integrable) complex structure
J on the target, but turn on Ruan-Tian perturbations v adapted to the
situation. In particular, for the real relative moduli space M (X,V), we
restrict to the space JV¥(X, V) of RT-perturbations on ¥ compatible with
both the real structure and the divisor V', as described in this section.

In general, recall that if J is an (almost) complex structure on X and v
is a Ruan-Tian perturbation [RT], then a (J,v)-holomorphic map to X is a
solution f : C'— X of the equation

(4.1) asf=vly

or equivalently the graph F' of f is J,-holomorphic, as reviewed for example
in [IP4, §3.1]. If the domain C has trivial automorphism group, one can
use the variation in v to show that the linearization is cut transversally,
essentially because the graph of f is an embedding. This extends to the
case the domain C' is stable after passing to a regular cover of the Deligne-
Mumford moduli space as in Remark 4.1 below.

Remark 4.1. In general, for higher genus domains, passing to covers of
the moduli spaces is needed to kill the automorphism groups and turn on
Ruan-Tian perturbations, as reviewed for example in [[P4, §3.1]. This is
classically achieved by working on a regular cover of the Deligne-Mumford
moduli space, defined by considering curves with extra decorations such as
level structures or twisted bundles eg. as constructed by Abramovich-Corti-
Vistoli in [ACV], cf. [ACG, Chapter XVI, Theorem 7.1]; see also Chapter
XVI, §10 of [ACG]. Such regular cover comes with an universal curve U
whose fiber at a (decorated stable) curve C'is C.

When (X, c¢) is a manifold with a real structure ¢, denote by JV*(X)
the space of real Ruan-Tian perturbations on X, as defined for example in
[Z, §2 and §3.1]. These are constructed as follows. Using the forgetful map
from the real Deligne-Mumford moduli space ME’E to the complex one, and
a regular cover of the latter, one constructs a cover of Mﬂiﬁ and a universal
curve (U, cyy). The fiber of (U, cyy) at a (decorated stable) symmetric curve
(C,o) is (C,0).

A real RT perturbation on X is an element v € Hom® (7, TX) defined
on U x X, such that

y4L2yeal and is supported away from the special points of the domain.
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Here T;y — U is the relative tangent bundle to the fibers of U, cf. (B.6), and
Hom! denotes the space of anti-complex linear homomorphisms i.e. such
that Jv + vj = 0, where J is the (almost) complex structure on (X, ¢), and
j is the family of complex structures on the fibers of &/. Such a homomor-
phism v can be regarded as section of the bundle (7)Y W¢ TX which has
an induced real structure; v is called real if this section is invariant with
respect to the real structures. For details, see [Z, §2 and §3.1].

When X =3 is a symmetric curve with conjugate marked points V,
consider the subset

(4.3) JVE(E, V) C JVE(D)

of real RT perturbations (J, v) which are compatible with V' in the sense of
[IP1, Definition 3.2]. Since here J is integrable and V' is 0 dimensional, these
conditions reduce to the requirement that v vanishes along & x V and Vv
is complex linear along U x V. Specifically, the conditions are

(4.4)

Viuxy =0 and (Vuv)(v) = J(Vyr)(v) for all w € TX|y and v € Ty.

Note that the last condition is equivalent to
(4.5) Vwr =ay @ w for all w e Ny

where ay € Hom®!(Ty; C) is defined on U x V.
Thus, as in [IP1, §3], the compatibility condition with the divisor V'
ensures that

(a) vrestricts to a RT perturbation on V' (i.e. v takes values in 7'V along V');

(b) for maps with image in V', the normal operator L = 9 — Vv is complex
linear;

(c) the 1-jet of v determines a RT perturbation on Py and on (the normal-
ization of) the building X [m] obtained by rescaling X normal to V.

Property (c) follows using the fact that
(4.6) Py =P(Ny ®C) =P(C® (Ny)Y)

has a C* action and an involution swapping the zero and infinity divisors (in-
duced by z — 2z71). Let ¢ denote the canonical C*-equivariant vector field on
Py,. This vanishes along the zero and infinity divisors Vy U Vo, while its re-
striction to Ny C Py under the inclusion w — [w, 1] is ¢, = (w; w) € T, Ny
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for all w € Ny. Then the restriction (4.5) of Vv induces a RT perturbation
on Ny C Py, defined as the tensor product of the pullbacks of ay and (.
This tensor product ay X ¢ can be regarded as a C*-equivariant RT per-
turbation on Py, compatible with its zero and infinity divisors as in (4.4).
Thus v induces a RT perturbation on X[m], whose restriction to X C X[m)]
is equal to v, and the restriction to each copy Py of X [m] is equal to ay X .

Remark 4.2. Note that a map f:C — X[m| to the building is (J,v)-
holomorphic (with respect to this lift of v to X[m]) if and only if

(i) the projection p := p(f): C — X is (J, v)-holomorphic

(ii) each rubber part f, := f|c, : Cr — Py of f, regarded as a section £ of
the pullback normal bundle p} Ny, satisfies 9§ = Vv i.e. LN¢ = 0; for
details, see §A.8.

In fact, since LY is complex linear, then ¢ is a meromorphic section; thus up
to scale is determined by its zero and infinity divisor. Note that if £ # 0 then
¢ = ¢! is a section of the dual bundle p%(Ny)Y which solves ¢ = -V v;
the poles of ( correspond to the zeros of £ and viceversa.

This perspective neatly encodes the conditions describing the relative
stable map compactitication constructed in [IP1], cf. [IP1, Remark 7.7 and
Definition 7.2].

The space of RT perturbations (4.3) easily extends to the family of
targets. As before, we start with the space of real Ruan-Tian perturbations
v on the total space (F, cr) of the family (3.1). These satisfy condition (4.2)
for X equal to the total space of the family F. Then we restrict to the
subspace

(4.7) IVE(F)a)
of such perturbations which additionally satisfy the following conditions:

(a) v is compatible with the fibration i.e. m,v = 0;

(b) v is compatible with the divisor V' of F i.e. the 1-jet condition (4.4)
holds for X equal to the total space of the family F and V C X the
union of the marked points of the family.

(c) v is compatible with the nodal locus i.e. the pullback v = ¢*v to the
normalization 3 takes values in TS C ¢*TF and satisfies the 1-jet con-
dition (4.4) for X equal to 5 and V equal to the preimage of the nodes
of EO-
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Condition (a) implies that any (J,~) holomorphic map to F projects to
a holomorphic, thus (locally) constant map to A, and therefore its image is
contained in a fiber of F (if the domain is connected). Moreover, conditions
(a)-(b) imply that the pullback v, of v to ¥, is a real RT perturbation on 3,
which is compatible with the divisor Vs = V' N ¥. Similarly, the pullback v
of v to the normalization Y is a real RT perturbation on ¥ compatible with
the divisor V (the inverse image of the special points of ¥g). This means
that the maps ¢s and ¢ in (3.4) induce maps

(48)  JVHF) = IVHEG V) TVRFa) - TVREY)

Vi Uy ViU

at the level of parameter spaces.

Note that the family F has a specific local model (B.4) in a neighborhood
of the nodes of ¥, and is a product away from a smaller neighborhood.
Thus in (4.7), condition (a) implies (c) away from U x {nodes}. A standard
calculation shows that (a) and (c) imply that for every node ¢ of ¥,

(4.9) Vluxg =0 and a4 + ag =0.

Here ¢; are the lifts of ¢ to i, and oy, € Hom"!(7;; C) over U x q is deter-
mined by v via (4.5).

Remark 4.3. Property (4.9) implies that the lift of v to the building
Yo[m] is well defined, i.e. its value on P, is independent of the choice of
lift ¢; € 3 of the node q of Y. Note that for each node ¢ of ¥y we get
two copies Py, and Py, in Py; and there is an identification Py, = Py, swap-
ping the zero and infinity divisors, induced by (g1, z) — (g2, z~1). For a map
p: C — {nodes} C X, each lift p; to ¥ has an associated normal operator
LY. Property (4.9) implies that the condition ker LY # 0 is well defined,
independent of the choice of lift of p to the normalization 3, cf. Remark 4.2.

4.2. Transversality for each stratum

Since our targets are curves, a generic real RT perturbation v compati-
ble with the divisor ensures that all strata are of expected dimension and
therefore as in [IP5], the real relative moduli spaces carry a VFC for all pa-
rameters, including v = 0. For completeness, we provide the details of this
argument here.
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Assume first ¥ is a smooth symmetric curve with conjugate marked
points V as in (2.5) and a fixed integrable complex structure J. As v varies
in the space of RT perturbations JV¥ (%, V) defined in (4.3), we get a family

(4.10) My 25, V) —= JVES,V)

of real relative moduli spaces, one for each choice of topological data d, x,
fi and we denote by M, 2(%,V), its fiber at v; it can be regarded as a

deformation of the moduli space M]ix, 7(2,V) in (3.11), which corresponds
to v = 0. Specifically, an element of the moduli space (4.10) is a pair ([f], v)
where

(4.11) f:C—3m]

is a (relatively stable) real (J,v)-holomorphic map satisfying the properties
(i)-(v) listed in Definition 3.1.

As in §3.4, the moduli space (4.10) is stratified with strata M, indexed
by the decorated dual graph 7 of the maps (4.11); therefore, along a stratum,
the topological type of the domain and target is fixed, as is the ramification
pattern of f over the special points of the target. Note that the preimage
of the nodes/marked points of ¥[m] consists only of nodes/marked points
of C. Denote by x the collection of special points of the target X[m], and
by y = f~1(x) its preimage. An element y of y is called a contact point,
and comes decorated by the contact multiplicity A(y) of f at y, cf. (A.39).
The other points of the domain are called ordinary points; they are mapped
away from the special points of the target, and their contact multiplicity is
0. Note that some of the nodes could be ordinary ones, but all the marked
points are contact points.

Fix a stratum M. of the moduli space. Restrict first to the case m = 0,
i.e. the target ¥[m] = X is smooth; here the domain could be nodal, but all
its nodes are ordinary (mapped away from V). When f : C' — 3 has contact
order X at the points y = f~1(V), the linearization (to this moduli problem)
is

* R *
Ly : Dy (*TS)* @ Te M,y — Ta—1y (Y ®c TR

4.12
(4.12) Ly(é,h) = 0¢ — [Vev + 5 Jdf ],

cf. (A.42) and §A.6. Here I'y.y (E)® denotes the subspace of invariant sections
of FE which vanish to order A(y) at y, for all y in y, and ﬂie denotes the real
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Deligne-Mumford moduli space containing C'. Here for simplicity we assume
C' is stable, but as in [IP3, §4.2], one can always use a ”local slice” (B.5) to
parametrize the variations in the domains, after first locally stabilizing the
domains if necessary. Those considerations extend to our case, as long as we
are working with symmetric choices throughout, by adding pairs of conjugate
marked points in the domain, mapped to fixed pairs of non-special conjugate
points of the target. For the strata-wise linearization, the second term in
(4.12) is replaced by the tangent space TS to the stratum S containing C'.

As in [MS, §3.1-§3.2], there are several choices of norms/completions one
can use to locally describe a stratum of the family (4.10) as the zero locus
of a Fredholm map

(4.13) U(f,v) =sf — vl

between Banach manifolds®. When W is transverse to 0 at f (i.e. ¥ is onto)
then a neighborhood of f in its stratum is a Banach manifold modeled on the
kernel of the strata-wise linearization. For more details on the standard set-
up, we refer the reader to [MS, §3.1-§3.2]; see also [IP3, §4.2] for a summary
of some analytic preliminaries.

After completing (4.12) in the A-weighted Sobolev norms (A.34), the
strata-wise linearization (to this moduli problem) at f:C — ¥ becomes
the Fredholm operator

k, k-1,
,Cftgfp@TCSHgf P

(4.14) _
Lf(€,h) =0 — [Vev + $Jdfh)™

cf. (A.44). While the weighted completions E}f’p and 9”;6 ~1? depend on the

choice of k,p > 1 (where kp > 2) the kernel and cokernel of L¢ are indepen-

dent of these choices, and consist of smooth elements. The full linearization

0V ¢, which also includes the variation p = v in the parameter v, is given

by

When m # 0, (J, v)-holomorphic maps f : C' — X[m] satisfying the prop-

erties listed in Definition 3.1 can be analyzed as in Remark 4.2 by consider-
ing their projection p(f) : C' — X under the collapsing map ¥[m] — ¥ in the

3the Banach manifolds used here are Hausdorff, separable, and paracompact, so
that Sard-Smale theorem applies.
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target. The rubber components of f continue to project to constant maps
to V (since V is 0 dimensional), and satisfy the condition

(4.16) ker LY # 0

along this projection, cf. [IP1, (6.3) and (7.1)]. Here LY is the normal oper-
ator, given by

(4.17) INg =0¢ — Ve,

see (A.67)-(A.70). When the index of L% is negative, condition (4.16) im-
poses additional restrictions on the rubber components as in [IP1, Lemma 6.4].

Remark 4.4. Assume X is connected and V' # (). If f : C' — X[m)] satisfies
conditions (i)-(iil) of Definition 3.1, then every connected component of its
domain has at least one marked point (the preimage of V[m]). Thus the
unstable domain components of a map in the moduli space (4.10) have genus
0; see also Remarks 3.3 and 3.4. One can also show that when (3,V) is a
stable curve, the trivial rubber components are the only unstable domain
components of the maps in the moduli space (4.10).

Below we assume for simplicity that ¥ is connected and V' # (), or more
generally that every rational component of 3 has at least one marked point;
otherwise, see Remark 4.7 below.

Standard arguments (cf. [MS, §3.2]) imply the following result whose
proof we sketch for completeness.

Lemma 4.5. Assume that every rational component of ¥ has at least one
marked point. Then over the parameter space jVR(E, V) of real RT-
perturbations on X compatible with V, every stratum of the real relative mod-
uli space (4.10) is cut transversally.

Proof. As in the proof of [MS, Proposition 3.2.1], transversality follows pro-
vided we have enough variations in the parameters v to ensure that the
linearization of the equations cutting out each stratum of the moduli space
has trivial cokernel.

Assume f: C — X[m] is a real (J,v)-holomorphic map as in (4.11) for
some v € JVE(X,V). Decompose its domain C into stable and unstable
components. When the divisor V is non-empty, also decompose f into rubber
components (collapsed to points in V' under the projection p : X[m] — %)
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and non-rubber ones (level zero components), and consider the projection
of f to X; see also (A.63)-(A.66).

By definition, the Ruan-Tian perturbations v used here are pulled back
from U x ¥ and v must vanish along U x V. Therefore such perturbations
identically vanish on both unstable domain components and on the projec-
tion to V of the rubber components, so these must be treated separately.
To obtain transversality on the stable components, we use the fact that the
restriction to these components defines an embedding into ¢ x X. Transver-
sality then follows by using variations either in v (on the non-rubber com-
ponents) or else in Vv (on the rubber components) which have prescribed
values at a suitable collection of points; we just need to ensure that the
variations can be chosen so that they are tangent to the parameter space
JVE(Z,V), i.e. satisfy conditions (4.2) and (4.4).

Specifically, decompose f as in (A.64) into a non-rubber part fo : Co — X
and rubber parts f, : C, — Py and consider the projection

(4.18) p=p(f):C—X

of f. Then the restriction of p to Cy is fy while its restriction p, to C, is a
map to V. Moreover,

1) p: C — X is (J,v)-holomorphic

2) the restriction p, : C;, — V' is a real map which satisfies the condition
(4.16), cf. (A.67)-(A.70).

We will first consider the conditions on the non-rubber part and then on
each rubber part, and show they are cut transversally.

STEP 1. (NON-RUBBER COMPONENTS) Consider first the conditions on
the non-rubber part of f, i.e. that fp: Cy — X is (J,v) holomorphic (here
Cp C C may be nodal). As in the proof of [MS, Proposition 3.2.1], the surjec-
tivity of the linearization ¥, fails only if we can find a nonzero n € (gg’p )V
such that

(4.19) | eagar =0 aa [ gum=o

forall¢ € £ };p and all variations y in the parameter v. But then n € coker Ly,
thus by elliptic regularity n is continuous on each component of Cjy. We next
show that the restriction of n must vanish on every component of Cj.

STEP 1A. (NON-RUBBER, STABLE COMPONENTS) Consider first the restric-
tion of f to a stable, non-rubber component. Assume that the restriction
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of 1 to this component is nonzero. Then we can find a point x on it where
n(z) # 0. By the continuity of 7, we can assume that

(i) = € U is not real and not special

(ii) f(x)is not in V (because the image of a non-rubber component cannot
lie entirely in V).

Regard 7(z) as an element of Hom"!(T,.C, T't()2)- Then as in the standard
transversality proof [MS, Proposition 3.2.1] (but after symmetrizing), we can
find a symmetric variation p in v supported sufficiently close to the image
of = (and its conjugate) such that the values of p and n agree at = (and
therefore also at c(z)), i.e.

(4.20) 1z, f(z)) = ().

By construction, such variation p satisfies condition (4.2). Since f(x) €
X \ 'V, it also satisfies (4.4) whenever pu is supported sufficiently close to
(z, f(z)) and its conjugate. Furthermore, if §. is a symmetric bump func-
tion supported near (x, f(x)) and its conjugate, then S.u is also a variation
in v satisfying (4.20) and whose support is arbitrarily close to x (and its
conjugate). But 7 is continuous and n(x) # 0, thus for sufficiently small ¢,

/Co%u, n #0

contradicting (4.19). Therefore n vanishes on all the stable, non-rubber com-
ponents.

STEP 1B. (NON-RUBBER, UNSTABLE COMPONENTS) Consider next the re-
striction of f:C — X[m] to the union Cp, C C of all the non-rubber but
unstable domain components. This is a J-holomorphic map fo, : Coy — %
since the perturbation v vanishes on these components. Consider the re-
striction f; of f to a connected component C; of Cp, (here C; C C' may be
nodal). Then the preimage of V' C ¥ consists of finitely many points y; of
C;, all of them special points of C'. Moreover, f; is a stable map (since f
is relatively stable), thus has positive degree. Assume for simplicity that 3
is connected. Then either (i) C; has genus 0, and y; and V' have at most 2
points or else (ii) C; has genus 1 and V' = {); see also Remark 4.4.

Case (i). This situation cannot occur when the target ¥ satisfies g(X) > 1
since such ¥ is aspherical. So the only possibility left is when V C 3 = 52
consists of at most one pair of conjugate points. Then the restriction of n
is in the cokernel of a holomorphic J-operator on this component C; (since
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Vv vanishes on unstable domain components). But C; is a genus zero curve
thus H!(C;, f#Tx) vanishes by Serre duality since ¢1(7x) = x(£\ V) > 0 in
this case.

Case (ii). This situation cannot occur when ¢g(X) > 2, since there are no
positive degree holomorphic maps from a genus 1 curve to a higher genus
curve. Since we assumed that X has no genus 0 components without marked
points, the only possibility left is that ¢g(¥X) =1 and f; is an unramified
cover of a torus by a torus. But then the cokernel of the restriction of the
linearization (4.14) to C; also vanishes.

Therefore n also vanishes on all the unstable, non-rubber components.

Thus 7 = 0 on all non-rubber components. This implies that d¥ is
surjective, which means that the conditions on the non-rubber part fo of f
are cut transversally.

STEP 2. (RUBBER COMPONENTS) Finally, consider the conditions on rubber
parts of f described in the paragraph containing (4.18), which we also want
to show are cut transversally.

Since V. =V* U (V1) cf. (2.5), the rubber parts of f come in conjugate
pairs, so it suffices to restrict attention to each connected component Cj
which is mapped to V' under the projection X[m] — X.

Consider the restriction of f to such connected component C’f . Here
C’;“ C C may be nodal, but note that it is either a trivial rubber component
or else it is stable cf. Remark 3.3. Either way, the pullback of v identically
vanishes along this component since it projects to a point in V. The re-
striction p; of p = p(f) to C’f is a constant map to VT which satisfies the
additional condition

(4.21) ker L)) # 0.

Here LfX = 0 — Vv is a holomorphic d-operator on the trivial complex line
bundle pf Ny over C;"; its complex index is equal to 1 — g(C;") cf. (A.69).
In particular, (4.21) is automatic on the genus zero components C;r , SO We
may assume that C’f is stable, has genus at least 1, and ind Lf,\f <0.

To check that the subset of such pairs (p, v) which satisfy the condition
(4.21) is cut transversally, we similarly adapt the proof of [IP1, Lemma 6.4]
to the real setting; see also the proof of [IP3, Proposition 5.3]. Regard the
normal operator as a section (p,v) — Lf)v of a bundle Fred — B of complex
Fredholm operators. Here B is the space of pairs (p, v) where v € JVE(Z, V),
and p : C;r — VT is a constant map on C;r C C'. Since C’j is connected, then
by the last sentence of Remark A.12 it suffices to prove that this section is



592 P. Georgieva and E.-N. Ionel

transverse to
Fred' = {D € Fred | dimc ker D = 1}.

The fiber at D of the normal bundle to Fred! is Hom(ker D; coker D).
Let 0# k € ker LY and 7 # 0 an element of the cokernel of L. By
unique continuation, we can find a point x on the domain so that

(i) both k(x) and n(z) are nonzero

(ii) = € U is not real and not special, but of course x must be mapped by
ptoV.

It therefore suffices to construct a variation p in v such that
@2 [ (@I == [ (Tu ) 20,
cf cf

Here 5#LN = —Vy is the variation in the normal operator as we vary v but
fix the map p: CZ* — V. Since C’;r is stable, then as in the proof of [IP1,
Lemma 6.4], after symmetrizing, we can find a variation p in v compatible
with V, supported near the image of x (and its conjugate) such that the
values of Vi and 7 agree at = (and therefore also at its conjugate), i.e.

(4.23) (V)| @p()(@)) = n(x)-

This variation p then satisfies both conditions (4.2) and (4.4). The result
then follows as before: multiplying p by (symmetric) bump functions f.
supported around the image of x (and its conjugate) in U x ¥ gives a se-
quence of variations S.pu, still satisfying (4.2), (4.4) and (4.23), but whose
support is arbitrarily close to x (and its conjugate). This shows that (4.22)
is satisfied. O

Remark 4.6. The virtual dimension of a stratum is the index of the strata-
wise linearization. For the real relative moduli space ﬂ]ix’ (%, V) or more
generally for (4.10), the virtual (co)dimensions of its strata can be calculated
as in [IP1, §7], see also Remark A.8. In particular, a stratum consisting of
maps f: C — ¥ (i.e. without rubber components) has virtual codimension
[, where [ is the number of (ordinary) nodes of the domain. A stratum
consisting of maps f : C'— X[m] has virtual codimension (at least) [ + 2|m]|.

Remark 4.7. In the proof above, the assumption that every rational com-
ponent of ¥ has at least one marked point is only used in Step 1B case (ii).
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When V = () and ¥ has genus 0 components, there are a few strata of the
(absolute) moduli space WSX(E, () in (4.10) which are not cut transversally.
These strata consist of stable maps f : C' — ¥ whose domain has a connected
component C; which is a nodal genus 1 curve without any marked points.
The restriction of f to C; is holomorphic since RT perturbations vanish on
such components. If C; contains a torus on which f is constant, then the
cokernel of the linearization (4.14) on C; is 1-dimensional. All the other
strata are cut transversally.

4.3. Transversality for a family of targets

Consider next a family F =U,X; of targets as in (3.1), and let P=JV¥(F /)
be the space of real RT perturbations defined in (4.7). For the rest of the
paper, we fix the topological data d, x, ii and denote by

(4.24) () = UMl (S, Vedy = P

the family of real relative moduli spaces defined as in (4.10) for ¥ = ¥ but
for parameters v € P. Note that the fiber over v € P depends only on the
pullback vg to X, cf. (4.8). We also fix sg # 0 in A and denote by I the
segment [0, sg] C A.

The families in (3.14) and (3.13) similarly extend to families

(4.25) W(I/I):Sglﬁ(zs) and ﬁ(z):ﬁdmk(z),

over P. Here ¥ is the normalization of the nodal fiber Yo and the fiber of

M\(X) at v € P is by definition

— — R
(4.26) M)y = Mgy qaon),zan (V)

Remark 4.8. Recall that elements f in 771(3g) have the property that
the preimage of the nodes of the target is a subset of the nodes of the
domain, cf. §3.5 and Definition 3.1(ii). When f has no rubber components,
let C' be the (partial) normalization of its domain at these contact nodes,
and let f: C — X be the lift of f to the normalizations. If f: Cy — Xy is
a real map satisfying the conditions (i)-(v) in Definition 3.1, then its lift
f:C — ¥ is also a real map satisfying essentially the same conditions, the
only difference being that each contact node y has been replaced by two
points y1, y2 at which f has the same contact multiplicity A(y). Thus locally
there is no difference between the conditions describing a stratum of 177(3o)
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near f: Cy — ¥ and a stratum of W(i) near ]?: C — 3. The same is true
when f has rubber components.

Below we assume that Yy has no connected component which has genus
0 but has no marked points on it. Then the normalization Y of Yo and the
smooth deformations ¢ of ¢ also have this property.

The proof of Lemma 4.5 extends essentially verbatim, after replacing -
by the family F, to give the following result.

Lemma 4.9. Assume that every rational connected component of Yo has
at least one marked point. Then over the space jVR(]:/A) of real RT pertur-
bations on the family, every stratum of the following families of real relative
moduli spaces

(4.27) g}ﬁ(zs), M), ME), and  T(2o)

are cut transversally.

Proof. A stratum of each one of these families consists of maps f whose do-
main and target are symmetric surfaces with fixed topological type. It suf-
fices to check that the variations in v constructed in the proof of Lemma 4.5
can be chosen tangent to the space of perturbations P = JVX(F /a) on the
family. This means they can be defined on U x F and chosen so that they
satisfy (a) mev =0, (b) condition (4.2) for X = F, and (c) condition (4.4)
for X = F and V C X the union of the marked divisor of F and the nodes
of Eo.

Let f be an element of any one of the moduli spaces (4.27). Its domain
is a real (possibly nodal) marked curve C and its target is a building 3[m)]
as in (4.11), where ¥ is either some fiber X5 of F for s € I or else is the
normalization X of the nodal fiber ¥g. In turn, both ¥, and ¥ map to F
cf. (3.4). In particular, f descends to a map p(f) to F, such that its rubber
components are mapped to the marked points of X5 or else to the marked
points and nodes of Y.

Moreover, locally every stratum of 171(Xg) can be described by the same
local defining equations as those of a stratum of 1(X) cf. Remark 4.8.

Thus it suffices to show that the strata of the moduli spaces 171(X) and
m(x s#0) are cut transversally over the parameter space P; for these moduli
spaces, the rest of the proof proceeds as in that of Lemma 4.5.

We again separately consider the condition that p(f): C — X4 C F be
(J, v)-holomorphic, and the additional condition ker LY # 0 on the rubber
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components. Unstable domain components continue to be holomorphic, and
must be treated separately exactly as in the proof of Lemma 4.5.

STEP 1 (NON-RUBBER COMPONENTS). Here it suffices to construct a vari-
ation p tangent to P satisfying (4.20) at a point x on the domain such
that

(i) = € U is not real and not special

(ii) the image f(z) € X5 C F is not a marked point nor a node.

For that, we use the fact that both ¢/ and F are locally trivial fibrations in a
sufficiently small neighborhood of such a point (z, f(x)) (and its conjugate),
thus the variation p constructed on a single fiber of F as in Lemma 4.5
extends to the family.

STEP 2 (RUBBER COMPONENTS) For each rubber component C’ of the
domain, denote by p the restriction of p(f) to C’. Then p maps C’ to a
single point of F; denote it ¢ € X5 C F. Note that ¢ must be a special point
of ¥5. We want to show that the condition on (p,v) that ker LY # 0 is cut
transversally. Here we separate the case when

(a) g is a marked point of the family; then Lf)V is an operator on p*N, =
[ PP

(b) ¢ is a node of ¥o; then ¢ has two lifts g1, g2 to the normalization. For
each one, we get a normal operator Lf)\f on p*Ny, = p*T,, 2. However, the
condition ker Lf}: # 0 is independent of the choice of lift, cf. Remark 4.3.

STEP 2A. Assume q is a marked point of >5. As in the paragraph containing
(4.22), it suffices to ensure that there exists a variation p tangent to P
satisfying (4.23) at a non-real, non-special point x € C’ where k(z) # 0 and
n(z) # 0. But at a marked point ¢ of the family F, 7 is a local fibration in
a sufficiently small neighborhood of the marked point, thus the variation
constructed on a single fiber of F as in Lemma 4.5 extends to the family.

STEP 2B. Assume ¢ is a node of ¥, and chose a lift ¢; € 3 to the nor-
malization. As in the proof of Lemma 4.5, we have k € ker LV and n €
coker L such that both x(z) and 7(z) are nonzero, cf. (i)-(ii) above (4.22).
Here z is a fixed nonspecial, nonreal point of C, k(x) € T, ¥ — T,F while
n(z) € Hom®(T,C, T, qli). It suffices to check that we can construct a vari-
ation p tangent to P such that (4.23) holds, i.e. (Vi) = n(2).

Using the local model (B.4) of F around the node ¢, we can construct
a variation p defined in a neighborhood of the point (z,q) in U X F as
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follows. Identify a neighborhood of ¢ in F with a neighborhood of 0 in
C? as in the paragraph containing (B.4). Let x4 € Hom"! (7, TF) be given
by pw,2) = (z101(w), 2202 (w)) for all w € U close to z and z = (21, 22) € C?
small. Here o;; € Hom®! (7, C) and o + az = 0. This ensures that u satisfies
conditions (a)-(c) below (4.7); see also (4.9). Moreover, since x(x),n(z) # 0
we can arrange that ai(z) ® k(z) = n(z) at the point z, thus (Viep)|me) =
n(z). Multiplying by a bump function and symmetrizing gives the desired
variation tangent to P. O

Combining the Sard-Smale Theorem with Lemma 4.9 gives the following
result.

Corollary 4.10. There ezists a Baire subset P* C P = jVR(]:/A) such
that for all v € P*, all the strata of the fibers over v of all the moduli spaces
(4.27) are cut transversally, thus are smooth manifolds of the expected di-
MENSLON.

By a generic parameter we mean an element of a Baire subset of the
parameter space (a Baire subset is a countable intersection of open and
dense sets).

5. VFCs for real relative moduli spaces

In this section we use the transversality results in §4.2 and §4.3 to show that
the moduli spaces considered there are thin compactifications (as briefly
reviewed in §2.3) or more generally thinly compactified families in the sense
of [IP5, §3]. This implies that the moduli spaces carry a virtual fundamental
class (VFC) in rational Cech homology, cf. [IP5, §4].

5.1. Thinly compactified families and their VFC

First we recall the general results of [IP5, §4]. Roughly speaking, a proper
map

(5.1) m-—7P

is a thinly compactified family over P provided (i) for generic v € P the fiber
N1, is a thin compactification, i.e. an oriented topological manifold away
from a (homologically) codimension 2 strata and (ii) over a generic path

v in P, 1M, is a thinly compactified cobordism, i.e. an oriented cobordism
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away from a (homologically) codimension 2 strata. See [IP5, Defn 2.1 and
3.1] and [IP5, §2.4] for the precise details.

Since the fundamental class (in rational Cech homology) of a manifold
uniquely extends to any thin compactification by [IP5, Thm 2.4], condition
(i) above defines the fundamental class of the moduli space for generic pa-
rameter v. For non-generic parameters, the virtual fundamental class (VFC)
is obtained as the limit (in rational Cech homology) of nearby classes, which
is well defined by condition (ii). In particular, as in [IP5, Thm 4.2] any thinly
compactified family 771 — P carries a unique VFC?*

(5'2) [my]vir S H* (WVQ @)

defined for all v € P, and satisfying a consistency condition over all paths v
in P, cf. [IP5, Defn 4.1].

Finally, thin compactifications behave well under passing to covers, cf.
[IP5, §2.1] or enlarging the parameter spaces cf. [IP5, §6].

5.2. The VFC for real relative moduli spaces

We next apply these consideration to the families of moduli spaces consid-
ered in section §4. Before we proceed, note that being a finite dimensional
manifold is a topological condition, which can be verified by providing a
local model; on the other hand, its orientability and a choice of orientation
are global questions. This section summarizes why the transversality results
proved so far suffice to address the first question for the generic fiber of
these moduli spaces (away from virtual codimension 2 strata), and to iden-
tify their (actual) orientation sheaf with a certain determinant line bundle
(away from virtual codimension 2 strata). Orientations are deferred to §8.
We start with the case of a fixed, smooth target, and then move to a
family of targets. Let ¥ be a (smooth) symmetric curve with r pairs of
conjugate marked points V', and assume that 3 has no rational components
without any marked points. For every d, x, i fixed, consider the family

(5.3) My 25, V) — TVES,V)
of moduli spaces defined by (4.10). Its virtual orientation line at f is the

determinant of the linearization. Recall that when f:C — X (i.e. f has
no rubber components) the linearization Ly is given by (4.12) and det Ly is

4called the relative fundamental class in [IP5].



598 P. Georgieva and E.-N. Ionel

defined using its Fredholm completion (A.44). However, it is more convenient
here to use an equivalent description of the linearization, as an operator of
the form

Dy : T(f* TR @ TeMy o — A (f*T)F
Dy(&,h) = Op-(Ter)€ + Ap(€) + bs(h)

cf. (A.47). Here T = Ty, is the relative tangent bundle (2.8) of the marked
curve X. The first term of Dy is the pullback of the (7 .,y operator on the
target, while Ay and by are 0’th order terms. By construction, the image of
both Ay and by are (smooth) (0, 1)-forms supported away from a neighbor-
hood of the special points of the domain. Operators of the form (5.4) are
completed to Fredholm operators as in (A.1)-(A.2); we refer the reader to
Lemma A.9 and rest of §A.6 for the identification between the two lineariza-
tions — Ly in (4.12) and Dy in (5.4) — as well as between the kernels and
cokernels of their Fredholm completions.

(5.4)

Up to 0’th order terms, the operator Dy in (5.4) is the same as 8 - (7., ) @

Oy, where W = Tcmﬂig parametrizes the variations in the domain of f and
Ow : W — 0. In particular, the virtual dimension of the moduli space is the
index of Dy, which is equal to (2.7). Moreover, since the virtual relative
orientation sheaf o0y of the family (5.3) is the determinant line bundle of
the family of linearizations D¢, we get canonical (up to homotopy) identifi-
cations

(5.5)  om = det D = det(d(7 .,y ®0) =det 7 ) @ F det Tﬂﬂig(m,

cf. [GL, (A.13)]. Here det (7 ,) denotes the determinant of the family of
pullback operators 5]‘*(7’,67) as f varies in 171, and

—R —R
F ol (3, V) = My g

denotes the forgetful morphism to the real Deligne-Mumford moduli space
parametrizing the domains.

The following theorem defines the VFC of the real relative moduli spaces.

Theorem 5.1. The family of real relative moduli spaces (5.3) is a thinly
compactified family. It therefore carries a VFC

(5.6) Mg (S, V)Y € Hy(My,, 2(5,V),: Q)
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for all v € JVR(X,V), including v =0, with b given by (2.7). The VFC
depends on the choice of (twisted) orientation data on the relative tangent
bundle T of ¥ as described in §8.

Proof. Fix d,x and ji. For simplicity, denote the family (5.3) by 711 — P as

in (5.1) and by 111, its fiber over v € P. Consider the open subset

(5.7) mcm

consisting of the union of strata of virtual codimension at most one. The
elements of these strata are maps f : C' — X whose domains have at most 1
real node and this node must be an ordinary real node, i.e. its image is away
from V; in particular these elements cannot have any rubber components
and they are all maps into a fixed, smooth target . All the other strata
have virtual codimension at least 2 by the formula in Remark 4.6.

By Lemma 4.5 and Sard-Smale Theorem, for generic parameter v € P,
all the strata of the real relative moduli space are cut transversally; in par-
ticular, the cokernel of the linearization along the top stratum and along the
codimension one stratum of 771,, vanishes. Furthermore all the maps in 771,
have the same fixed, smooth target X = 3 and at most one node, which is
an ordinary node. Therefore the proof of the usual gluing theorem in [P, §B|
or [LT] applies verbatim to the moduli space 111, after making the following
inconsequential changes:

(a) working throughout with symmetric choices (of metrics, bump functions
etc) as in [GZ1].

(b) the linearization is completed in norms which are weighted around the
ordinary node as in [P, §B.4], and have different weights around the
contact points. But these contact points are marked points of the domain
so they stay away from the node where the gluing is performed.

Therefore as in the usual gluing theorem, the generic fiber m, of (5.7) is a
b-dimensional topological manifold (without boundary), locally modeled on
the kernel of the linearization, cf. [P, Theorem B.1.1]. Moreover, the same
arguments show that the determinant of the family of linearizations is locally
trivial (thus forms a line bundle) as f: C' — X varies in 171, exactly as in
[GZ1, (3.3)] but with E = T'X replaced in our case by E = Ts.

Let det D be the determinant line bundle of the family of linearizations
Dy as f varies in 11, cf. (5.4). As in [GZ1], there is a canonical homotopy
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class of isomorphisms

~ a) Y * R
(5.8) det D = det(a(TycT) @ O ) = det 8(7-,07) ® " det TMXl(ﬁ)

as f: C — X varies over f)?v, even as the domains become nodal. This iden-
tifies the virtual (relative) orientation sheaf o of 171 with

~ ~ Y * W
(5.9) o7 = det D = det 97 ) @ f det TM, 4.

In §8 below we recall how a choice of (twisted) orientation data trivializes
(5.9). Note that a trivialization of det D orients the generic fibers 171, of the
family 711 — P.

Consider next the “singular locus”
(5.10) S=M\M.

By Lemma 4.5 and the Sard-Smale theorem, for generic parameter v € P,
its fiber S, = 1M, \ N, is stratified by smooth manifolds of the expected
dimension, which is at most dim77, — 2 as noted above. Then by [IP5,
Lemma 2.2] the singular locus S, is homologically codimension 2. Thus for

generic v, 11, is a thin compactification of the oriented manifold 77, and
therefore carries a fundamental class [111,].

Similarly, the moduli space WW over a generic path v is a thinly com-
pactified cobordism in the sense of [IP5, §2.4]. This means that the corre-
sponding subset 171, is an oriented topological manifold with boundary 115,,
and its complement in 771, is stratified by codimension 2 manifolds, as is the
complement of TfﬂvaV in Wav.

Therefore by [IP5, Lemma 5.4], 1l — P is a thinly compactified family
in the sense of [IP5, Definition 3.2]. Consequently, by [IP5, Theorem 4.2], it
carries a VFC as in (5.2) for all v € P, including v = 0. The VFC is defined

by [111,] for generic parameter v, and extended uniquely to all parameters
using the continuity property of rational Cech holomogy. (]

Remark 5.2. In particular, the VFC (2.11) of the (unperturbed) real rel-
ative moduli space MSM 7(2, V) can be defined by turning on RT perturba-
tions v in JV®(X, V) to obtain transversality strata-wise and then turning
them off by taking v — 0.
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We next show that the proof of Theorem 5.1 extends to the moduli
spaces

(5.11) M(Ser), T(E) = U NMN(E), and T7(%0)

described in the paragraph containing (4.24), for fixed d, x, i as in §4.3. As
in §4.3, we continue to assume that the nodal curve ¥ has no real special
points, and no rational connected components without any marked points.
Note that (5.11) are families of real relative moduli spaces over the parameter

space P = JV(F/a).

Theorem 5.3. Assume Yy has no rational connected components without
any marked points. Then the moduli spaces (5.11) are thinly compactified
families over P = jVR(}"/A). In particular, each one carries a VFC

[m(_)u]Vir € Hb(m(_)ld @)

for allv € P. The VFC depends on the choice of (twisted) orientation data
or on the relative tangent bundle T — F to the family F; the virtual di-
mension b is given by (2.7).

Proof. The strata of the moduli spaces (5.11) are cut transversally by
Lemma 4.9 and every stratum with at least one rubber component has codi-
mension at least 2, cf. Remark 4.6. Denote by

(5.12) M(Zsz0), M(E) =UNK(E), and (S

the union of their codimension at most 1 strata. Note that besides the nodes
in the preimage of the nodes of the target, the domains of maps in 777(X%)
can have at most one additional node, which must be a real ordinary node.
Moreover, these maps have no rubber components. B

Recall that by definition the fibers of the famlhes M(Z,) and M\(X) at
v 6 P are the real relative moduli spaces mdx u(257 Vs), and respectively
mdxw( )/M)\(E V)., and that X, and ¥ are smooth for s # 0. These
moduli spaces have the same virtual dimension

b= dx(Ss \ Va) = x + 20(ji) = dx(S\ V) = (x + 46(\)) + 2£(ji) + 4(\)

cf. (2.7); see also (A.46). Moreover, the relative orientation sheaf of the fam-
ily M(Xs20) and respectively 171, (3) over the parameter space P continues
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to be given by the corresponding formula (5.9) and is similarly orientable,
as reviewed in §8 below. B

Case 1. When ¥ = ¥, or X, the rest of the proof of Theorem 5.1
applies verbatim to 171(X) — P.

CASE 2. When ¥ = X, recall that every stratum of 771(Xo) can be de-
scribed by the same local defining equations as those of a stratum of W(}]),
cf. Remark 4.8. In particular, since for generic v every stratum of 771(X),
is a manifold, then so is every stratum of 171(%g),; the same is true over a
generic path. .

Consider next 11(%y), the subset consisting of maps fy : Cyp — Xy whose
domain has at most one ordinary node, in addition to the contact nodes
(recall that ordinary nodes are mapped away from the special points of ¥,
while contact nodes are the preimage of the nodes of ¥). At the beginning
of §6.1 below we show that a finite (global) cover of 171(¥g) (obtained by
ordering the contact nodes) can be identified with M1(3). Since the generic
fiber of M(X) is a finite dimensional manifold, then so is the generic fiber
of 1M(%); the same is true over a generic path.

The relative orientation sheaf of 111(%y) is analyzed in §6 below, and is
orientable as well, cf. paragraph above Lemma 6.1. The rest of the proof
proceeds as in that of Theorem 5.1. O

The same proof also provides the following specific result about the
generic fibers of these families. Let P* be the Baire subset of P = JV*(F/A)
appearing in Corollary 4.10.

Proposition 5.4. Assume Xg has no rational connected components with-
out any marked points. Then for all v € P*, we have the following properties:

(i) the spaces

(5.13) U M)y, M(Ss)w, M(So)y, and M),

are orientable topological manifolds;

(it) M(X), is a thin compactification of M(X),, for X equal to Xy, Xo, and
respectively X3;

(i) (L(_)J ]fﬁ(zs),, is a topological manifold with boundary fﬂv(EsO),,;
s€(0,s0

(iv) the complement of [%J ]fﬁ(ZS)V in [%J }W(ES),} is homologically
s€|0,s0 s€10,s0
codimension 2.
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In general, [U }fﬂv(Es),, is branched over s = 0, but a cover of it is a
s€10,s0
topological cobordism cf. §7.

A priori, the VFC as defined in [IP5] may depend on the parameter
space of perturbations used to achieve transversality. Using the results of
[IP5, §6] we end this section by comparing the VFCs of the (unperturbed)
real moduli spaces MR(E,V) constructed using perturbations defined on
Y = Y40 or ¥ with those constructed using perturbations defined on the
corresponding family F.

Lemma 5.5. For the first two families in (5.11), the VFC associated by
Theorem 5.3 agrees under (4.8) with the VFC associated by Theorem 5.1.

Proof. Assume for simplicity 3 is equal to ¥,z (the proof for Y is similar).
Denote by P — P’ the map jVR(}"/A) — JVE(Z,, V5) defined as in (4.8).
We can then consider the family of moduli spaces

7R
E/J md’Xﬁ(ZSa ‘/s)u

as v varies over either P or P’; denote these two families by 771 and respec-
tively m. By [IP5, Lemma 6.2] it suffices to check that the conditions in
[IP5, Definition 6.1] are satisfied. But the fiber 771,, of 711 — P is the same
as the fiber of 1 — P’ over the image of v in P’; moreover the former fiber
is cut transverally strata-wise if and only if the latter one is (because the
linearization is the same for both problems). Therefore the Baire subsets
of regular parameters (where the strata are cut transversally) satisfy the
required conditions of [IP5, Definition 6.1], completing the proof. (Il

6. Moduli spaces for nodal targets

In this section we describe in more detail the family of real relative moduli
spaces associated to the nodal curve Yy and analyze its orientation sheaf.
Recall that ¥ is a nodal curve with a single pair zF of conjugate nodes and
7 pairs of conjugate marked points, and ¥ is its normalization (3.3). We fix
the topological data d, x, i and consider the moduli spaces 171(Xq) and 171(X)
introduced in (4.24)-(4.27). We continue working over the parameter space
P = jVR(]:/A) of RT perturbations on the family F. Then the attaching
map (3.13) extends to give a map

(6.1) O M) — M(%)
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of moduli spaces over the parameter space P. Its restriction 7/7’7(5]) — 77?(20)
to the codimension at most 1 strata (5.12) can be described as follows.
Consider the cover of 111(%) obtained by ordering the nodes in the preimage
of the node ™ of 3g. It comes with a group action reordering those nodes
that have the same contact multiplicity. This cover is in fact homeomorphic

to M(X) and M(Xy) is the quotient by the corresponding group action, as
we next show.

6.1. The degree of the attaching map

We start with a useful result about the attaching map (6.1); to state it
precisely we need to introduce some extra notation. Recall that by definition
M(X) is a disjoint union of spaces 171,(X) indexed by A, cf. (4.25), thus so
is its open subset 171(3) = AEdmA(i).

Moreover the elements fy : Cp — X in 171(3g) have nodal domains and
the preimage y* = f;'(2F) of the target node 2 consists only of nodes
with matching contact multiplicity. We can similarly decompose the moduli
space

(6.2) M(S0) = U M\(%o)

as a disjoint union of (open and closed) subsets indexed by the contact order
A at the nodes y ™. Denote by xf, x; the two marked points of ¥ that get
attached to produce the node x* of ¥g. Order the £ = £(\) nodes yfr, . ,yzr
in y* so that the contact multiplicity of fo at yj is equal to A;, the i’th part
of the partition .

Then Cj is a nodal curve with £ pairs of conjugate nodesy = {yf, ey y;t}
in the preimage of the nodes of 3 and at most one other node. Denote by
C the (partial) normalization of Cp resolving only the nodes in y, and by
f: C — X the unique lift of fy which satisfies the following conditions:

(i) the lift to C of the node yj consists of two marked points denoted v}
and ng

(ii) fly}) =af foralli=1,... ¢

These conditions imply that the preimage f_l(a:;) consists of the marked
points ng, for i =1,...,¢ and the contact multiplicity of f at both ?/;5 and
yi'g is equal to \;, exactly as is the case for an element of 777, (X).
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__ Ordering the contact nodes y T as above therefore gives rise to a cover of
1M\ (X0), and this cover is canonically identified with 171 A(2); the elements
of TIZ)(E) are precisely the lifts f: C'— X of the elements fo: Co — X
of M\(Xg). Moreover, 111 (X) comes with two natural Aut(\) actions per-
muting the marked points in the preimage of xf and respectively :1:2+ (and
therefore also permuting the corresponding conjugate points); the restriction

(6.3) MA(S) —2s M(S).

of the attaching map is the quotient by the diagonal Aut(\) action.

Both moduli spaces in (6.3) are families over the parameter space
P =JVHF /a)- The first one is relatively orientable over P and an ori-
entation is determined by a choice of twisted orientation data o on f], as
reviewed in §8 below. Moreover, the group action above is orientation pre-
serving, thus the quotient is oriented. In particular, the moduli space 177(X%)
is (relatively) orientable over P = JV®(F /A)-

Lemma 6.1. The attaching map (6.1) restricts to a proper map (6.3) of
degree |Aut(\)| with respect to the orientations described above. Therefore,
if o has no rational connected components without any marked points, then

(6.4) O, [N\ (X),] = |Aut A| - [115(Z0)]
for generic v (i.e. for all v € P*).

Proof. Since the restriction of ® is the quotient map by the Aut(\) action,
it is a proper map and all its fibers are finite; the generic fiber consists of
|Aut A| points. Moreover, for generic v, the fibers of both families of moduli
spaces in (6.3) are topological manifolds by Proposition 5.4. They are ori-
ented by the procedure described above and the group action is orientation
preserving. Therefore their fundamental classes in rational Cech homology
are related by (6.4), cf. [IP5, §1 and §2.1]. O

6.2. Linearizations and the orientation sheaf

This section provides several equivalent descriptions of the linearization to
the moduli space 111(Xg) and its orientation sheaf. The first one is induced
via (6.3) from that of 11(2); another one naturally extends over the family of
moduli spaces Us111(3). For the proof of the splitting formula we must keep
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track of the identifications between these two perspectives, as they affect the
induced orientations and therefore the signs of the coefficients in (1.6).

Recall that the elements of M1(X) are maps f: Cp — Xg C F without
any rubber components, and that the total space X = F of the family (3.1)
is smooth. When

(6.5) (E,cg) — (F,cr)

is a Real bundle, and W is a finite dimensional real vector bundle over
1M (X0), then as f varies in 171(¥g) we get a family of (pullback) operators
Of+(B,cp) ® Ow,. The families of linearizations to 11(3g) described in this
section are of this form up to 0’th order terms. In that case, the results of
[GZ1], applied to families of real maps to the smooth target (F,cr), imply
that the determinant of such family of operators is identified with

(6.6) det(g(E,cE) ®0w) = detg(Ech) ® det W

(canonically up to homotopy). .
The linearization at fy : Cy — X to the moduli space 11(%y) is induced
by the linearization

(6.7) D7 D(fTe)f & TeM — A (FT)"

at a lift f: C = ¥ to the (partial) normalizations cf. §6.1. Because ¥ is
smooth, D is given by the formula (5.4) with f replaced by f. In particular,

as in (5.9), this identifies the orientation sheaf of ﬁ(i) with
(6.8) 0775y = det O cr) ® " det TM

(uniquely up to homotopy). Above 75 is the relative tangent bundle of 3,
while TM" denotes the tangent bundle of the Real Deligne-Mumford moduli
space parametrizing the variations in C' (We assume for simplicity C' is
stable).

Remark 6.2. For any complex bundle £ — Cjp, denote by E — C its lift to
the normalization C' of Cp. Recall that I'(Co; ) C I'(C; E) is the subspace
of sections that match at the nodes of Cy while AY(Cy; E) := A°H(C; E).
Moreover, note that the pullback E of E' = fj7s, to the normalization C' is
equal to f*Ts,.



Splitting formulas for the local real Gromov-Witten invariants 607

Using (3.6), together with the normalization short exact sequence (A.22)
and (A.23) for the bundle E = f;7x, allows us to rewrite the lineariza-
tion (6.7) as

(6.9) Dy :T(fiTe)® @ (fiToo)iys @ TaM — A (f5T5,)F.

Here an element ¢ € T'(f;Ts,)® gives rise to a variation in fy with fixed
domain, target, and also fixed product of the leading coefficients (A.39) at
each one of the contact nodes, while the middle term records the variation
in the product of leading coefficients, cf. §A.7. The operator (6.9) has the
form

(6.10) Dy, (¢ 00 h) = gy (7, 0 + Ap (O) + 5 () + by, (h).

where Ay, and by, are as in (5.4), while vy, is induced by (A.23) after a choice
of splitting of (A.22) for £ = f;Ts,, as reviewed in §A.7. Moreover, we can
arrange that v, be induced by pullback from a splitting of the normalization
short exact sequence for the bundle £ = Ty, .

As fp varies in Tﬁ(Eg) the middle term in the domain of (6.9) is in-
trinsically the pullback evy. (7,+) of 7;+ under the evaluation map at the £

nodes y ™ in the preimage of the node ", while the last term is TCON ¢ - Here
¢ is the number of nodes of Cy in the inverse image of z*, and NV, denotes
the nodal stratum of the real Deligne-Mumford moduli space consisting of
Real curves with £ pairs of conjugate nodes. Up to 0’th order terms, the
family of operators Dfu given by (6.9) is the same as 8(7—2 cr) ©0® 0. This

describes a family D of linearizations to m(zo) and identifies the virtual
orientation sheaf of m(zo) with

(6.11) (s = =~ det D = det 8(7—2 ) @detevy, (T, ) @ f* det TNH;
(uniquely up to homotopy).

Remark 6.3. When f is in fﬂv(Eo), for every node y in the preimage y*
of the node z* of ¢, we can consider the product a,(f) := a(f;y1)a(f;y2)
of the two leading coefficients (A.39)-(A.41) of f at y. Then after passing to
the cover of the moduli space 111(X) obtained by ordering the nodes as in
§6.1, this product is a nowhere vanishing section of a complex line bundle.
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This induces a canonical complex linear isomorphism

(6.12) vy (Tipr) 2 (T, M)

for each y in y', where A(y) is the contact multiplicity at y. Here
Ty =Ty, @ Ty, denotes the relative tangent bundle at the node y, which
is the pullback of the relative tangent bundle 7 on the universal curve by
the section f — (f,y). Note that zT is fixed, so the first term in (6.12) is
trivial (and canonically trivialized by a choice of a complex linear isomor-
phism 7.+ = C).

For a map fy: Cop — ¢ to a nodal target, there is another description
of the linearization (6.9) that is better suited for smoothing the target and
is used in the next two sections. It corresponds to the linearization defined
in [IP2, §7]. For that, we consider instead the operator

(6.13) Dy, i T(fiTey)E @ To, M- — A (f5T5,)%,

defined by the same formula (5.4) as D 7> but with f = f; instead of f = f.
Note that the first term of the domain of Dy, is a subspace of the first term

of the domain of D, while the second term T, M involves all variations
in Cyp, not just the ones tangent to the nodal stratum (the latter correspond
to T@ﬂR). Note that the operators Dy, and D]f; have the same target, cf.
Remark 6.2.

Decompose TCO./\/l]R into tangent and normal directions to the nodal
stratum N as in (A.31), where the normal direction is identified with 7.
As reviewed in §A.7, we can use the normalization short exact sequence for
the bundle E = 7¢, to rewrite (6.13) as an operator

(6.14) Dy i T(fi T @ Tyys @ TaM — A% (F*T5)F

Dy, (¢, v, h) = By (7 0+ Ag(©) + g, (0) + by, ().

Here Ay, and by, are exactly as in the formula (6.10) for the operator D o
while ¢, depends on the splitting of the normalization sequence associated
to E = T¢,. The middle term in (6.10) keeps track of the variation in the
product of the leading coefficients at the nodes, while the middle term in
(6.14) keeps track instead of the variation normal to the nodal stratum in
the real Deligne-Mumford moduli space.



Splitting formulas for the local real Gromov-Witten invariants 609

Remark 6.4. The discussion above describes the linearization along fﬂv(Eo)
in several equivalent ways: the linearization Dy, is obtained from D7 via a
splitting of the normalization short exact sequence for E = T¢,, while the
linearization Df0 is obtained from Dy, via a splitting of the normalization
short exact sequence for E = Ty,. The intermediate operators D 7, and D o
defined by (6.9) and (6.14) are equivalent via a complex linear isomorphism
between the middle terms of their domain induced by the linearization of
(6.12) cf. §A.7. In particular, these linearizations are all equivalent (just
written using different coordinates); either one could be used to obtain a
local model for M1(Xy) or to (globally) identify its virtual orientation sheaf.

In particular, we get the following result.

Lemma 6.5. The (relative) orientation sheaf 0771550 of ﬁl/(Eo) is canoni-
cally (up to homotopy) isomorphic to:

(6.15)
(6.16)

det 5(7—207@) @ detevy (T,,) ® f" det TN?
det 07y, o) ® f* det M.

— o~
om=y)
Oz, —

Proof. The first isomorphism is (6.11), obtained by using the family of lin-
earizations (6.10). The second one is obtained the same way as (6.11), but
using instead the family of linearizations (6.13). In (6.16), the last term
TM" denotes the tangent bundle of the real Deligne-Mumford moduli space
parametrizing all the variations in the nodal domain Cp, including those that
smooth out the nodes. g

7. The construction of the cobordism

In this section we continue working with the moduli spaces (5.13) over the
parameter space P = JVX(F /a) of RT perturbations on the family F. We

define an auxiliary space denoted m(f /1) and prove that generlcally its fiber

m(]—"/[)l, is a cobordism between m( so)v and a cover m(zo) of m(zo)
This will allow us to compare their fundamental classes (in rational Cech
homology).

7.1. The cover fn\(zo) of fﬁ(zo)

We start by defining a cover

(7.1) go : M(S0) — M()
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of the moduli space fﬂv(Zo). Decompose 7/7”7(20) as in (6.2) according to
the contact multiplicity A at the nodes in the preimage of the node z™
of the target ¥o. Fix local coordinates on ¥y around 27T this induces a
trivialization 7.+ = C. The elements of 171 (3) are (.J, v)-holomorphic maps
f:Cy — X9, without any rubber components, and such that

(i) the inverse image f~!(zT) =y™ consists only of nodes y;" of the do-
main with matching contact multiplicities \;, for i = 1,...,¢(\) and

(ii) the domain has at most 1 other node (which must be real).

The cover

—~ —~

(7.2) m(xoy) = = M\(%)

consists of essentially the same objects, except that

(iii) for each contact node yf with contact multiplicity \;, we also choose a
Ai-root «; € 7";} of the product of the leading coefficients of f at yi'|r ,
for every i = 1,...,4(\), cf. (A.39)-(A.41) and [IP2, (6.1)-(6.2)].

Denote the objects of 7/71\(20) by

(7.3) (f,o), where f € M(%y) and a = (a;)i € (Ty+)"
satisfies
(7.4) ozf"' =a(f;y})a(f;yh) forall i=1,....¢00)).

Here a(f;y) = ay(f) denotes the leading coefficient of f at the point y cf.
(A.39)-(A.41), while ); is the contact multiplicity at y = y;} and y3}.
With this definition, the map (7.1) is given by qo(f, «) = f.

Recall that the moduli space 7/77(20) over the parameter space P is rel-
atively orientable as discussed above Lemma 6.1. Fix any orientation on it

—~

and pull it back to 1M(X).

Lemma 7.1. The map qo : 777)\(20) — fn}(zo) s proper and has degree
C(A)/|Aut(N)| with respect to these orientations. Therefore if ¥y has no ra-
tional connected components without any marked points,

W)
~|Aut )|

(7.5) (0)+ [T\ (20),] M (S0)]

for generic v (i.e. for allv € P*).
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—~

Proof. By construction 171(Xy) comes with a group action on the choice of
root af by a A;-root of 1. So the quotient map ¢y is proper and the order
of the group is

W
1:[)\2 ~|Aut |

—~

cf. (2.1)-(2.2). Since here the orientation of 171(¥p) is pulled back from that
of (%), then the action is orientation preserving. Moreover for generic v,
the fiber of 1M1(%y), is an oriented topological manifold by Proposition 5.4,
and therefore so is its cover (with the pullback orientation), giving (7.5). O

7.2. The cobordism moduli space and its topology

Start with the subset T/ﬂv(}"/f) = ulm(zs) of the family (4.25). Consider
sE
next the set

(7.6) M(Fyr) = M(So) U Y ()

with the topology defined below. Extend gy as the identity on ;Jom(Es) to
S
get a map

o~ —~ —_—

(7.7) a: T(F)) = MFy) = U I(S).

The RHS is a subset of (J,v)-holomorphic maps f: C — X; C F without
any rubber components, for some s € I. Therefore it comes with the topology
induced by the usual Gromov topology on the moduli space of real (J,v)-

holomorphic maps to the total space X = F of the family of targets, cf.
[GZ1, §4.2].

Below we define a Hausdorff topology on the LHS of (7.7) with the
following properties: (a) ¢ is proper and continuous (b) ¢ restricts to the
covering map qg for s = 0 and to the identity for s # 0. In particular, since
g will be continuous, the topology on the LHS will be a refinement of the
Gromov topology as considered in [IP2, §4-5]. . -

By definition, (7.6) is the disjoint union of two sets 111(X) and S;JO m(zs)

and condition (b) canonically determines the topology on each one of these

— —

two subsets, where 171(X) = ¢~ 1(111(3g)) must be a closed subset by (a).
Therefore it suffices to describe what it means for a sequence of maps f, :
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Cy, — X, with s, # 0 to converge to an element (fp,«) € 77/1\(20), beyond
the fact that it must converge to fy in the usual Gromov topology. In short,
as in [IP2], the domains of these maps must converge to the domain Cj of fy
along a fixed direction normal to the nodal stratum of domains containing
Cy. To state this precisely, we use the set-up of [IP2, §3-5], adapted to our
setting. We start with a choice of local coordinates as follows; see also [IP2,
§4]. .

Fix an element (fy, ) of M(3) and let Cp denote the domain of fy.
Let w1, ws be the fixed local coordinates around the node z+ of the target;
then in a neighborhood of ™ the curve ¥, C F is described by wiws = s,
where s € I = [0, sg] C A is the gluing parameter. After rotating the disk A
parametrizing the family F,A of targets, we may assume that I C R>¢. Fix
local coordinates z1, z2 around each node y of Cp as in (B.3) and construct
a local slice S as in (B.5) parametrizing local deformations C,, of Cy. Here
u are local coordinates along the nodal stratum N; of the real Deligne-
Mumford moduli space while the gluing parameters

(7.8) 7= (7)i € Tly+, where7; € T}, foralli=1,... £(})

cf. (B.4) provide normal coordinates to this stratum cf. (A.30)-(A.31). Note
that a choice of local coordinates on Cy at yf induces a local trivialization
of the relative tangent bundle 7 around yj' .

Below we also use the notion and properties of J-flat maps in the sense of
[IP2, Definition 3.1] to describe a neighborhood of fy € M(%g) C usm(zs)
in the Gromov topology on the target of (7.7); for precise details see [IP2,
(3.1)-(3.5)] and [IP2, Lemma 3.2]. Roughly speaking, dJ-flat maps
f:C — X, C F donot have enough energy in the pre-image of a d-neighbor-
hood Us C F of the nodes x of ¥y C F for a rubber component to start
forming in there, cf. [IP2, (3.1)-(3.5)], thus giving rise to the uniform es-
timates of [IP2, §5]. As § — 0, J-flat maps exhaust the complement of the
strata with at least one rubber component, cf. [[P2, Lemma 3.2].

Consider now a sequence of (.J, v)-holomorphic maps f,, : C,, — Y5, with
$n # 0 and which converges in the Gromov topology to the map fo € 111(X).
Since fp has no components mapped to the singular locus x of Y, it is d-flat
in the sense of [IP2, Definition 3.1] for all sufficiently small 6 > 0, cf. [IP2,
(3.1)-(3.4)]. Gromov convergence then implies that after decreasing 0, f, is
0-flat for all sufficiently large n. Moreover, up to reparametrizations of the
domains and for large n, we may identify

Cn = C’rn Uy,
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as in the paragraph containing (7.8), where (7, u,) — 0 as n — oo. There-
fore by [[P2, Lemma 5.3]

. Sn
(7.9) 11113;0 T a(fo:yiv)a(fo; yih)

for each contact node yz+ of Cy. Here 7, = (73,,); are the gluing parameters
(7.8) corresponding to Cy, = C, . (for n large), while as before a(f;y) # 0
is the leading coefficient of f at y (in these local coordinates). In particular,
since s, # 0, this implies that 7;,, # 0 for all ¢ =1,...,¢ and n large.

With these preliminaries understood, a sequence f, : C,, = X, with

sn # 0 is said to converge in M (F ;) to (fo, ) if and only if f,, converges to
fo in the Gromov topology and moreover

(7.10) lim S g,

for all i = 1,...,¢. Here s, € Ry (by the simplifying assumption I C R>)
thus it has a unique A;-root (s,)/* € Rsg. The limit (fg,a) if it exists
is unique and is independent of the choice of local coordinates around Cj,
cf. (7.3) and (7.8). This completes the definition of the topology on the
domain of (7.7), which by construction satisfies all the properties listed in
the paragraph after (7.7).

Remark 7.2. In light of (7.4) and (7.9), condition (7.10) can be equiva-
lently replaced by

lim arg 7, = —arga;,

n—oo
where arg w denotes the argument of w; in particular, this means that the
domains C, = (7, 4, of f, converge to the domain Cy of fy along a fixed
direction normal to the nodal stratum Ny; see also [IP1, Lemma 4.2 and
(4.10)]. By [IP2, Lemma 5.4], this also implies that f,, converge to fy in the
A-weighted Sobolev norms of §A.5 used in the proof of the splitting formula;
see also (A.44).

This motivates considering the following local model, regarded as a sec-

—~

tion of the (pullback) bundle 7y, over 11(Xg) x R>q. It consists of tuples

(7.11) (f,a,7,s) such that aym =sYN  forall i=1,... L
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Here (f, «) is an element of 7/ﬁ(20), while 7 = (7;); € Ty, and s € Ry. Note
that in cylindrical coordinates the conditions defining (7.11) become linear
(i.e. loga; + log T = 1/A;log s).

7.3. The cobordism

Consider the family

o~ —~ —~

(7.12) TI’I(]-"/]) :m(EQ)US;JOm(ES) — P

with the topology defined above; it is a family over the parameter space
P =JV(F/a) of Ruan-Tian perturbations, as well as a family over the

—

interval I = [0, so]. We next verify that for generic v € P, the fiber 11(F;),
of (7.12) is a topological cobordism. This is the main step in the proof of
Theorem 1.2.

Proposition 7.3. Assume ¥y has no rational connected components with-
out any marked points. Then for generic RT perturbation v € P, the fiber

M(F 1)y of (7.12) is a (possibly non-compact) orientable topological cobor-

—

dism between M (X,), and the cover M(Xy), of ﬁ(zo)y defined by (7.1).

Proof. As in Proposition 5.4, for generic v,

(1) (L(_)J }777(23),, is an orientable topological manifold with boundary
s€(0,50

m(xs,), and

(ii) M (%), is an orientable manifold and therefore so is its cover 111(Xg),.

Moreover, as in (4.27), for generic v all the strata of 171(Xg) are cut transver-
sally, i.e. the cokernel of the linearization Dy is trivial at all elements f in
the fiber over v.

Fix such a generic parameter v. We next describe the local model of
a neighborhood in M(F;), of a fixed point fy: Co — o in 1M1(X0),. Re-
call that by definition mv(]:/]) = uselfﬁ(zs) is an open subset of the fam-
ily M (F /1) = Use 1M (%) of moduli spaces and consists of maps without
any rubber components. Moreover, since fy has no rubber components, a
sequence f, converges to fy in the topology of the compactified family
M(F;) = UserM () if and only if f,, : C;, — X5, C F converge to fo in the
Gromov topology on the space of real (J,v)-holomorphic maps
f: C — F. Therefore a sufficiently small neighborhood Uy, of fj in the fam-
ily W(f/,)y = UMM (X5), consists only of d-flat maps for some 6 > 0. Finally,



Splitting formulas for the local real Gromov-Witten invariants 615

the cokernel of the linearization at fy is onto, and shrinking the neighbor-
hood Uy, we may assume that it is a subset the open subset 111(F/;), of
M(Fr)v, thus disjoint from any of the codimension at least two strata.

Therefore, the gluing argument of [IP2] applies to describe a sufficiently
small neighborhood Uy, of fy in terms of the space of approximate maps,
which in turn are constructed starting from the model space (7.11), cf. [IP2,
Definitions 6.1-6.2] (noting the change in notation). .

For generic v, the local model of the neighborhood Uy, of fo in M(F1),
is therefore described by tuples

(7.13) (f,7,s) such that a(f;y;)a(f;y;g)q’\i =s forall i=1,...,¢

Here f : C' — Yo belongs to a neighborhood Oy, of fo : Cp — X¢ in the mod-
uli space 1M (X), and a(f;y) is the leading coefficient of f at y. As before,
7 = (7;); are the gluing parameters of the domain and s € R>¢ is the gluing
parameter of the target. Moreover 11(3), is an open subset of M(%),,
therefore we may assume that Oy, is a neighborhood of fy in 111(%), after
possibly shrinking it. .

By the definition (7.7) of the space 1(F,;) and of its topology, the
local model of 7/7”1\(]:/1)1, around the point (fo,ap) € fn\(zo),, is therefore
described by tuples (f, @, 7, s) as in (7.11) where (f, ) is in the neighborhood
of (fo, ) in M(Xy),, while 7 = (7;); and s are the gluing parameters as
above. But fﬂ\(Eo) v 1s a topological manifold and we can uniquely solve the
equations defining (7.11) for the variable 7 in terms of (f,«) and s € R>,
thus the fiber of the local model is a topological manifold with boundary at

s = 0, and therefore so is the fiber of 111(F ;) in a neighborhood of s = 0. [

__ We next consider the orientation sheaves of these spaces. When
M(F)r) = UserM(Xs) is regarded as a family over the parameter space
P x I, its fiber at (v,s) is ﬁ(ES)V, and the (fiber-wise) linearization Dy
is given by the formula (5.4), including when s = 0 cf. (6.13). The kernel of
this linearization encodes the (formal) tangent space to the fiber and its cok-
ernel is the obstruction. When 1M(F ;) = Use M (X;) is regarded as a family
over P, we can similarly consider the fiberwise linearization D, as s is now
allowed to vary in the interval I; the operator D is an extension of Dy and
its domain has an extra term keeping track of the variation ds € TsI = R in
s. As f: C — X5 C F varies in M(F;), we get a family of real maps to a
smooth target X = F and up to 0’th order terms, the family of operators
Dy is the same as a (pullback) family of the form 8. (7., ) ® Ow, & Og; see
also paragraphs containing (5.8) and (6.5). Therefore as before, we get an
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identification

det D 22 det(d(7.,) ® Ow & Og)
over 777(.7—" /1)
By definition, the (virtual) relative orientation sheaves of the moduli
spaces 111(¥o) and 171(F 1) over the parameter space P are the (pullback) of
the determinant bundle of the family of operators Dy and respectively D as

f varies in 1711(F ;). The proof above also implies that for generic v, the fiber

—~

M(F 1), is a topological cobordism whose orientation sheaf is canonically
identified with detD; (up to homotopy), including along the Cofvdimension
1 strata, while the orientation sheaf of its boundary 7/71\(20),, UM(Zs,), is
similarly given by det D;. Both statements follow from the proof of the
gluing theorem, which shows that the corresponding moduli space is a small
deformation of the space of approximate maps, and that the tangent space
to the space of approximate maps is a small deformation of the kernel of the
linearization.
This gives the following result.

—~

Corollary 7.4. The (relative) orientation sheaf of the family M(F ;) over
P can be canonically identified (up to homotopy) with the pullback under
(7.7) of the bundle

(7.14) det Dy op) @ det TM @ 7 det T1.
Here T — F is the relative tangent bundle (3.5).

The bundle (7.14) is orientable over fﬁ(f /1) and canonically oriented af-
ter choosing a twisted orientation data on 7 — F, as described after (8.17).
In particular, any/ghoice of orientation on (7.14) determines an orientation

of the cobodism 171(F ), as well as on its two boundaries. With respect to
this choice, Proposition 7.3 gives the equality of the fundamental classes

(7.15) M(S0),) = M(,,),]  in H((F 1) Q)
for generic v in P.

Remark 7.5. Here we are using the convention that if My and M; are
oriented topological manifolds, and W is an oriented cobordism from My to
M then W is a manifold whose boundary is OW = — My LI M7 as oriented
manifolds.
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8. Orientations

In this section we review the orientation procedure for all the moduli spaces
considered in §5-§7 and show that a choice of (twisted) orientation data on
Y or on the family F canonically orients these moduli spaces (over the space
of Ruan-Tian perturbations on ¥ or F).

First, recall that if X is a space with an involution ¢, then a Real® bundle
over (X,c) is a pair (E,¢) where E — X is a complex vector bundle and
¢ is an anti-complex linear involution on E covering c; then ¢ is called the
real structure on E. An isomorphism between two Real bundles (E;, ¢;) is a
complex linear isomorphism 1 compatible with the real structures i.e. such
that 1*¢2 = ¢1. We denote by E is the same real bundle as E, but with
opposite complex structure J — —.J.

Definition 8.1 ([GI, Appendix]). Let (X,c) be a Real symplectic mani-
fold and (W, ¢) a Real bundle over it. A twisted orientation 0 = (L,,s) for
the bundle (W, ¢) consists of

(i) a complex line bundle L — X such that the Real vector bundle (E, cg) =
(L& c*L, cyy) satisfies:
(8.1) wa(W?) = wo(E®)  and  APP(W,¢) = AYP(E, cp)

(7i) a homotopy class [Y] of isomorphisms satisfying (8.1).

(iii) a spin structure s on the real vector bundle W¢ & (EV)°E over the real
locus, compatible with the orientation induced by .

Here EV denotes the dual of E and the real structure ¢, on L & ¢*L is

defined by
(8.2) crw(z;v,w) = (c(x); w,v)

forallx € X,v € Lyand w € fc(x). Note that given any complex line bundle
L satisfying condition (i), one can then chose (not uniquely) a homotopy
class [¢] as in (ii) and a spin structure s as in (iii) such that together they
give a choice of twisted orientation on (W, ¢).

Scalled a real bundle pair in [GZ1, §1.1]
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As in [GZ1, Proposition 5.2], the conditions in Definition 8.1 determine
a canonical homotopy class of isomorphisms

(8.3) W@ EY,¢p®ch) = (C xC"™ 2 cyq)

which vary continuously as f varies in a space of real maps f:C — X.
(Here n is the complex rank of W). In particular, as in the proof of [GZ1,
Theorem 1.3] they determine a canonical homotopy class of isomorphisms

(8.4) det E(W@) ® det E(E,CE)V = det E(C"“,Csm)'

But since (E,cg)Y = (L @ c¢*L,cy)Y there is also a canonical isomor-
phism

(8.5) det E(E,CE)V = pidet Orv

obtained as in [GI, (2.9)] by projecting onto the first factor. The RHS of
(8.5) is the determinant bundle of a family of complex operators thus has a
canonical (complex) orientation. Together with the canonical orientation on
the square of a bundle, (8.4) induces a trivialization

(86) det 5(W,(;ﬁ) ® det 5(@“’,Csf,d) — R

which depends on the choice of twisted orientation data 0. Here R denotes
the trivial real line bundle (canonically trivialized). Note that the existence
of a complex line bundle L satisfying condition (i) of Definition 8.1 ensures
that the real line bundle on the right-hand side of (8.6) is orientable, while
conditions (ii)-(iii) of Definition 8.1 fix an orientation on it.

8.1. Existence of twisted orientations

We next show that, for symmetric curves without any real special points,
there exits a choice of twisted orientation data on their relative tangent
bundle. We also show that the same is true for the family of targets (3.1).

First, when (¥,c) is a (possibly nodal) symmetric curve, then up to
isomorphism, Real line bundles (W, ¢) over X are classified by ¢;(W) and
wy (W), cf. [GZ3, Theorem 1.1]. Thus such a bundle has a twisted orienta-
tion data if and only if wy(W?) = 0 and there exits a complex line bundle
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L — ¥ such that
(8.7) c1(L®c*L) = ¢ (W)

cf. (8.1); the first condition in (8.1) is automatic in this case.

Let (3, c¢) be a (possibly nodal) symmetric marked curve with marked
points V' and without any real special points. Let W = Tx, be its relative
tangent bundle, regarded here as a Real line bundle, i.e. a complex line
bundle with a real structure cy. Recall that Ty is given by (2.8) when ¥
is smooth and by (3.6) when ¥ is nodal. Since none of the special points
are real, the real locus of Ty is orientable. Thus a twisted orientation data
0 = (0,1,5) on Ty, exists provided we can find a complex line bundle ©® — %
such that

(8.8) c1(0®c0) = (Ty).

We next show that such a bundle © exists for any such (X, c¢). When X is
smooth and connected, then the bundle ©® must be a complex line bundle
whose Chern number is equal to 2¢1(75)[X] = 1x(X\ V) € Z; such a bundle
exists and is unique up to complex linear isomorphism.

When ¥ is a smooth doublet (i.e. has two connected components inter-
changed by ¢) then © can be any complex line bundle on ¥ whose Chern
numbers on the two halves sum to x(X\ V) € Z; see [GI, Example 2.2].
Therefore a bundle satisfying condition (8.8) exists on every smooth sym-
metric curve ¥ without real marked points. Finally, when 3 is a nodal
symmetric curve which has no real special points, the bundle ©g on X sat-
isfying condition (8.8) can be obtained from one on the normalization after
choosing an identification at the marked points corresponding to the nodes,
compatible with the real structure; such a choice is unique up to homotopy.

Consider next the family of targets (3.1), and let 7 — F be its rela-
tive tangent bundle (3.5), regarded as a Real line bundle. Note that (F, cx)
deformation retracts to (3o, cg) through real maps, so ¢y or is real homo-
topic to the identity, where r : F — ¥ denotes the retraction. Moreover,
isomorphism classes of Real bundles on a Real space X are in 1-1 corre-
spondence with homotopy classes of real maps from X to the classifying
space, cf. [E, Proposition 2.1]. In particular, 7*7x, = 7 as Real bundles.
Since F deformation retracts to g, every bundle on ¥ can be extended
over the family F. Thus the complex line bundle ©¢y — ¥ described above
extends to a complex line bundle © x over F with the property that there
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exists an isomorphism of Real bundles
QJZ)]: : (Tv CT) — (@.7: ® Cf;:@]-‘,th).

This, together with the fact that both the real part of 7 and the restriction
of O to F* are spin (i.e. have vanishing first and second Stiefel-Whitney

classes) implies that a twisted orientation o = (Or,1r,sr) exists on the
Real bundle 7 — F for any family F as in (3.1).

Remark 8.2. When X has no real special points, one can also show that
every choice of twisted orientation data on the relative tangent bundle of
the normalization ¥ descends to one on the nodal curve Xy and extends to
one on the relative tangent bundle 7 — F of the family of deformations of
>o.

8.2. Orienting the moduli spaces

The considerations above are used to orient the real relative moduli spaces
as described after [GI, (A.13)], and in fact to simultaneously orient all the
moduli spaces considered in §5-§7. For that it suffices to construct a ho-
motopy class of (global) trivializations of the determinant bundle of the
linearization over the union of virtual codimension at most 1 strata for each
one of these moduli spaces over their parameter space.

Specifically, assume X = X is a (smooth) marked symmetric curve, and
consider the union 777(X) of the virtual codimension at most 1 strata of the
real relative moduli space associated to ¥. Over the space of Ruan-Tian
perturbations, identify the (relative) orientation sheaf of 11(X) with

(8.9) 0771 = det Dz, o) @ T det TM, o7

me)

cf. (5.9). It suffices to describe a homotopy class of trivializations of the real
line bundle (8.9). A choice of twisted orientation data o = (©,,s) on the
relative tangent bundle 7Tx of 3 gives rise to a canonical homotopy class of
trivializations

(8.10) det 5(7270,” ® det 5(@705“1) %) R

cf. (8.6) with W = Tx. Combining this with the canonical homotopy class
of isomorphisms [GZ1, (3.1)]

* i 9
(8.11) f*det TM, , = det O(c c,.q)
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induces a trivialization of (8.9), canonically up to homotopy.

When ¥ = ¥ has a pair of conjugate nodes the procedure above also
applies to the moduli space 1711(3) by trivializing the line bundle

~ A * R
(8.12) ofﬁ(zo) = det 8(7—20,07,) ® 1" det TMX,K(/?)’

cf. (6.16). In this case a choice of twisted orientation data oo = (o, 10, 50)
on Ty, as in §8.1 determines by [GZ2, Proposition 4.3] a canonical homotopy
class of isomorphisms as in (8.3) and consequently as in (8.6) with W = Ty,
and L = @0.

This procedure also extends to simultaneously induce trivializations of
the determinant line bundles of the moduli spaces in (5.12), (7.1) and (7.7)
as follows.

Fix a choice of twisted orientation data o = (Or, 1, sx) for the bundle
(T, cr) over the family (F,cr) as in §8.1. The pullback under (3.4) of 7 to
¥, and & gives their corresponding relative tangent bundles. Furthermore
or pulls back to a twisted orientation data

(8.13) 0s =10 on Ty, — X

and respectively 8 = ¢*or on T — 3.

Applying the procedure in (8.9)-(8.11) for o5 and o to induce a canonical
(relative) orientation on each of the families of moduli spaces

(8.14) M(Seso), M), and M)

over P defined in (5.12); note that for s = 0 this procedure is applied to
orient (8.12), and it is the same as the one described in the paragraph
containing it. In particular, a choice of 07 determines a canonical orientation
on the generic fibers 171(—), of the moduli spaces in (8.14).

Consider next the families

o~ —

(8.15) M(Fr) — M(Fp)

over P defined in (7.7), and recall that by construction they restrict to a
covering

— —~

(816) qo : m(ZO) — 7’”(20)
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—~

over s = 0. By Corollary 7.4 the relative orientation sheaf of 1M(F;) is
canonically isomorphic to the pullback by (8.15) of

3 * AR *
(8.17) det a(Tch) ® 1" det TMX7e(ﬁ) ®@m*detT].

Moreover, after orienting the segment I from 0 to sg, the line bundle (8.17)
is canonically oriented by a choice of twisted orientation data or using the
same procedure of combining (8.11) with (8.6) for W =T over the mod-

uli space M(F)r) = UseM1(3s). Thus such a choice canonically orients the

cobordism 1M (F /), for generic v, and therefore also its boundary, in such
a way that

o~ —~ —

(i) m(ﬂj),, is an oriented cobordism from the cover 11(%g), of M (%),
to M(Xs, )y, and

(ii) the orientation on 777(20),, is the pullback of one on fnv(zo),,.

Furthermore, these orientations on fn’(zo)y and ﬁ(zSO)V agree with those
described in the paragraph containing (8.14) for the same choice of 0. With
respect to these orientations, the degree of the covering map qq is given by
Lemma 7.1.

However, there is another natural procedure of fixing a relative orien-
tation of the moduli space M(%y) over the parameter space P, which may
a priori lead to a different orientation on its generic fibers than the one
described in the paragraph above. As described above Lemma 6.1, the rela-
tive orientation of 171(X) induced by o descends to a relative orientation on

M (%) under the attaching map

(8.18) O M(S) — NM(S).

The degree of this cover with respect to these orientations is given by
Lemma 6.1.

8.3. Comparing orientations

The purpose of this section is to show that the two natural orientations on
M (%)) described in §8.2 (both induced by or) agree, cf. Proposition 8.3
below. This is the crucial sign computation in this paper, which fixes the
signs that might otherwise enter in the VFC splitting formula (1.6). Its
proof is a rather tedious but straightforward combination of many diagram
chases, while keeping careful track at each step of the identifications made
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in the process of trivializing the determinant bundles of various families of
operators.

Recall that as described in §6.2, the relative orientation sheaf of the
moduli space 171(3y) has several equivalent descriptions obtained by writing
the linearization in different coordinates, cf. Remark 6.4. Each of these can
be trivialized in more than one way, depending on the choice of the orienta-
tion procedure, leading to possibly different orientations on the moduli space
M (%y). However, the difference between any two such resulting orientations
can be, at least in principle, specifically determined, and our goal here is
to compare two such specific orientations. In practice, one way to do so is
by describing a natural family of identifications between the two families
of linearizations (de facto describing the linearization of the identity in two
types of charts on the moduli space) and then calculating the sign of the
resulting isomorphism at the level of determinant bundles with respect to
an a priori specified procedure of orienting each one of them (independent
of the identification between the two linearizations).

We start with some preliminary considerations comparing the pullback
under ® of the determinant bundle of a family of operators to the determi-
nant bundle of the pullback family over the normalization.

Assume (E, cg) is Real vector bundle over ¥y and let (E, cj) denote its
pullback to the normalization  of . Pulling back 5( E,cp) and 5( Freg) to

M (%) and respectively ﬁ”lv@) gives rise to two families of operators over
these moduli spaces; let det 9(g ) and det 0( F,c,) OF more precisely

E

(8.19) det [8(E,CE) — m(zo)] and det [8@%) — m(E)]

denote their corresponding determinant line bundles. Pulling back the nor-
malization short exact sequence (A.21) over the moduli space (and using
(A.25) for the pullback operators) gives an exact sequence

(8.20) 0 — detd — ®*det O, — det(evi E)* — 0,

(E,Cg)
inducing a canonical isomorphism

(8.21) ©* det J(p,) = det Jp, ) @ det(evy E)".
Here y denotes the collection of contact nodes of the domains, i.e. those
in the preimage of the nodes x of Xy. But recall that ¥ has a pair of

conjugate nodes denoted z* (and no other nodes). The restriction to z+
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induces a canonical identification
(8.22) (Ex,cp)® = B,

Furthermore, over the moduli space fﬁ(zo) this induces a canonical identi-
fication

(8.23) (evi E)* 2 evi i (E) = evyi (Ep+),

where y™ denotes the collection of nodes in the preimage of x+. But z is
fixed, and FE,+ is a complex vector space. Thus the isomorphism (8.21), after

using the complex orientation induced by (8.23) on its last term, induces the
isomorphism

(8.24) det [0

(Begy — MUE)] = @7 det (05,0, — M(%0)]

Next recall the relation described in §6.2 between the family of lineariza-

tions Dy, given by (6.13) as fo varies in 171(Xg), and the family of lineariza-
tions D given by (6.7), associated to the lifts f, as f varies in me).
The relation between these two families of linearizations, described in Re-
mark 6.4, is obtained via intermediate identifications with the linearizations
Dy, given by (6.14) and Dy, given by (6.9). Note that up to 0’th order
terms these are pullback families of operators of the form 9(g .,) @ Ow, as
described in paragraph containing (6.6). The natural identifications between
their domains, described in Remark 6.4, induce the following isomorphisms
at the level of the determinant bundles

(8.25) ®* det Dy, = ®* det Dy, = &* det Dy, 2det Dy,
where

(8.26) detDj, = detdr, .y ®det FTM, 4z,

(8.27) detDj, = detdr, .y ®det(Ty+) ® det TN,
(8.28)  det ﬁfo = det 7y, op) @ detevys (Tjp+) @ det f*Tﬁﬂj.
(8.20)  detD; = detdr cp) @ f"det TM 4y o) y2r-

Specifically, as in Remark 6.4, the first identification in (8.25), between
the pullbacks of (8.26) and (8.27), is induced by the decomposition (A.31)
into tangent and normal directions to the nodal stratum N (with ¢ = £()\)
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pairs of conjugate nodes), cf. (A.26) and (A.30), which induces the isomor-
phism

* TR ~ * 7R
(830) f det TMX7g(ﬁ) = det(7;,+) X f det TNg .

Here TN ﬂ; parametrizes those variations in C that do not smooth the nodes.
Note that its pullback under the attaching map is T'M, 4 ¢(ji)4+2¢ Which
parametrizes the variations in the normalization C of Cy, so

* ¢k AR A ex R
(831) ) f det TN@ :f det MXJFM’Z(!I)JF%.

The pullback of (8.30) combines with (8.31) to give

* gk R ~ * 7R
(8.32) P f det TMx,E(/I) = det 7;,4— ®f det TMX‘FM:f(ﬁ)'F%'

The second identification in (8.25), between the pullbacks of (8.27) and
(8.28) is induced by a complex linear isomorphism — the linearization of
(6.12) — cf. Remark 6.4. Finally, the last identification in (8.25), between
(8.29) and the pullback of (8.28), comes from the isomorphism (8.31) and
the isomorphism

(8.33) det 97 ) (8221) " det 7y, o) @ detevys (T, )

induced by the normalization short exact sequence for Ty, cf. Remark 6.4.

With these preliminary considerations understood, the main result in
this section is the following.

Proposition 8.3. Fiz a choice of orientation data o on the family F, and
orient m@) and M(X) by the procedure outlined in the paragraph contain-
ing (8.14). Then the attaching map ® in (8.18) is orientation preserving
with respect to these orientations.

Proof. Orient T"IN?(EO) by identifying its orientation sheaf with (8.26) and
trivializing the latter by combining

0o
~

(8.10)

—R
d f{f'detTM yz =
and  f"de XU oy

det 5(7—20 7) det 5((@70“{1)
(8.34)

det 5((@70“{1).
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We must compare the pullback under ® of this orientation with the orien-

tation of 171(X) obtained by trivializing (8.29) using

— [ —
det O(7;c,) = det dice,,)
(8.35) o, _
and f*det TMx+4f,€(ﬁ)+2€ (8211) det 8((@705”) .

This means calculating the sign, with respect to these orientations, of
the isomorphism

* Ay * e
(8.36) O (det 075,y ey @ ' det TM, y(z))
=~ det 8(7%,CT) ® f det TM)(+4€,Z(/I)+2€

obtained from the composition (8.25) described above. The discussion after
(8.25) implies that (8.36) is the composition

O* det D7y, o) @ DT det TM 4

~ * =) * Vi
= " det O(7,, o) ® det(Ty+) @ " det TM, |y p)42¢

~ * 3 * * M
:12) ®* det 8(7—20767) ® det EVy+ (ﬁx+) ® f* det TMx—i—M,Z(ﬁ)"‘M

oo

(

=)

(

~ =) * TR
(8:33) det 8(7%,67,) & f det TMx+4€,Z(ﬁ)+2Z'

The second isomorphism comes from the complex identification induced by
the linearization of (6.12).

We are now ready to calculate to sign of the isomorphism (8.36); we do
this in several steps. In addition to (8.32) and (8.33) we will also use the
identification

(8.37) ®* det J(c,c,,,) ® detevy (C) (8%21) det (¢ c.,.)

induced by the normalization short exact sequence for £ = C.

STEP 1. Consider first the tensor product of the isomorphisms (8.32)
and (8.37); it corresponds to [GZ2, (4.41)] (taking into account the change
of notation). After using the complex orientation on Ty+ and evy, (C) it
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induces the isomorphism

(8.38) ®*(det d(c,c.,,) ® f* det TMX z(m)
= det 8(C7Cstd) & f det TMX"F‘M/(ID'FQK'

Both sides are oriented via the canonical orientation on the tensor product of
the terms in (8.11), i.e. by the second isomorphism in (8.34) and respectively
(8.35). By [GZ2, Proposition 4.18], the sign of the isomorphism (8.38), with
respect to these orientations, is given by the number mod 2 of pairs of

conjugate nodes of the domain i.e. is equal to (—1)°.

STEP 2. Consider next the tensor product of the isomorphisms (8.33)
and (8.37) corresponding to the normalization short exact sequences for
E =Ty, and respectively E = C. After using the complex orientation on
evy+ (Tjz,) and evy (C) it induces the isomorphism

(8.39) o* ( det 5(7;%’67,) ® det E(C,csm)) (8%4) det 5(7%@7) ® det 5(@76“{1).

Both sides are oriented via the canonical trivialization (8.10) for og on Ty,
and 0 on T, i.e. by the first isomorphisms in (8.34) and respectively (8.35).
By Lemma 8.4 below, the sign of the isomorphism (8.39), with respect to
these orientations is also (—1)°.

STEP 3. Finally, consider the tensor product of two copies of the iso-
morphism (8.37); after using the complex orientation on evy, (C) twice, it
induces the isomorphism

(8.40) o* ( det E(C,cstd) ® det g(c’cﬂd)) (8224) det 5(@705“1) ® det g(C,cstd)'

Both sides are oriented via the canonical trivialization of twice of a bundle;
with respect to these orientations, (8.40) is orientation preserving since the
normalization short exact sequence is natural and the complex orientation
on evy ((C @ C) agrees with the one induced by regarding it as twice of a
bundle

The proof is completed by observing that the tensor product of (8.38)
and (8.39) agrees (up to homotopy) with the tensor product of (8.40) and
(8.36) and the orientations discussed above also agree. Thus the sign of
(8.36) with respect to the orientations induced by (8.34) and respectively
(8.35) is (—1)¢ - (=1)¢ = +1. O
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We conclude this section with two results on the behavior of the triv-
ialization (8.6) under pullback to the normalization. A special case of the
following result was used in Step 2 above.

Lemma 8.4. Assume og is a twisted orientation on a Real line bundle
(W, ¢) over the nodal symmetric marked curve g, and let o denote its pull-
back, which is a twisted orientation on the pullback bundle (W ¢) over the
normalization 3. Consider the isomorphism

(I)*(det 5(VV,(]ﬁ) ® det 5((C,Cstd)) (8% 4) det a(VV ?) ® det 8((C Cstd)

where the determinant line bundles are as in (8.19). Orient both sides by
(8.6) for og and respectively 0. Then, with respect to these orientations, this
isomorphism has sign (—1)¢, where £ is the number of conjugate pairs of
nodes of the domain.

Proof. The isomorphism (8.6) is obtained by combining the isomorphisms
(8.3)-(8.5) with the canonical orientation on the square of a bundle. There-
fore it suffices to understand how each one of these isomorphisms behaves
under pullback by ®

First of all, when (E, cg) = (2L, 2¢cy,) is twice a Real bundle, the isomor-
phism

(8.41) ®* det a(E cs) (22) 5(E cs)

is orientation preserving with respect to orienting both detg(Ech) and
det 8( F.p) 88 @ square of a real bundle. This follows by the naturality of
the normalization short exact sequence and the fact that both the pullback
of E and the restriction of E to y™ is twice a bundle. Moreover, the com-
plex orientation on twice of a complex bundle agrees with the canonical
orientation on twice a bundle.

We next focus on the isomorphism (8.4), which is induced by the canon-
ical homotopy class of isomophisms (8.3). But (8.3) pulls back to the nor-
malization to give (up to homotopy) the isomorphism (8.3) for the pullback
structure; it also restricts to the nodes y™ as a complex linear isomorphism
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(unique up to homotopy). Therefore the diagram

* 9 0o * Y
0" det dwp)a(E.es) (gg T detI(ert2c.na)

(8.24)i J{(8.24)

_ 5 o
det a(W,(Z)@(E,CE)V W det 8((Cn+2,05td)

commutes up to homotopy. Equivalently, consider the isomorphism

(8.42) ®*(det 5(W,¢>) ® det g(E,cE)V ® det 5(@&2765”))

= det 0 ® det 0 , © det dcnre

(8.24) Cota)

(W.9) (Bcp)
induced by the normalization short exact sequence and the complex orien-
tation on the restriction of the bundles W, E and C"*? to the nodes y*.
Orient both sides of (8.42) by the canonical isomorphism induced by the
tensor product of the two sides of (8.4) for 0y and respectively 0. Then with
respect to these orientations, the isomorphism (8.42) is orientation preserv-
ing.

It remains to understand the behavior of the isomorphism (8.5) un-
der pullback. For that, consider the isomorphism (8.24) for the bundle
(E,cg) = (L ® c*L,cu). By Lemma 8.5 below the sign of this isomorphism,
with respect to the complex orientations induced by (8.5), is the number
mod 2 of pairs of conjugate nodes of the domain i.e. is equal to (—1)*. This
completes the proof. O

Lemma 8.5. Assume L is a complex line bundle over Xo. Let (E,cp) =
(L ® c¢*L, cuy) and denote by E its pullback to the normalization ¥. Consider
the isomorphism

d*det O(g,o.y = detd =
CLI(B.cr) (8.24) VOB cr)

where the determinant line bundles are as in (8.19). Orient both sides by the
complex orientation induced by the isomorphism (8.5) for E and respectively
E. Then with respect to these orientations, this isomorphism has sign (—1)5,
where £ is the number of pairs of conjugate nodes of the domain.

Proof. The isomorphism (8.24) is induced by the normalization short exact
sequence (A.21) together with the identification (8.23). Consider also the
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normalization short exact sequence
0—L—L— Ly — 0.

for the complex line bundle L. Compare the pullback of the short exact
sequences for E and L with the isomorphisms (8.5) for E and E obtained
by projecting onto the first factor. We would get a commutative diagram if
we used the corresponding identification

(ev;;,E)]R p%: evyL =evy.L®evy L.
1
However, we are using instead the identification (8.23) induced by the re-
striction to y T, i.e.
(eviE)* =2 evi,E=evi. (L& c'L)=ev}  Ldev) L.

The difference between the complex orientations of the last two displayed
equations is (—1)€, coming from the rank ¢ of the complex bundle ev;_ L. O

9. Proof of the VFC Splitting Theorem 1.2

Let ¥ be a nodal symmetric curve with r pairs of conjugate marked points
Vp as in (2.5) and a pair of conjugate nodes x* (and no other special points).
We first assume that Xy has no rational connected components without
marked points; this assumption is removed at the end of this section, cf.
Remark 9.2.

Consider the family F = Ug¥; of targets from §3.1. Fix a parameter
so # 0 and let I denote the segment [0, sg] C A. Fix also the degree d, the
Euler characteristic x, and the ramification profile i = (u!,..., ") and con-
sider the families

M(F);) = %m(zs) and  MM(2)
of real relative moduli spaces defined in (4.25). Recall that these are families
over the parameter space P = JV(F/a) of RT-perturbations v, whose fibers
M(—), at v are respectively
= R
m(]:/l)l/ = LEJI md,x,ﬁ(z& V:?)l/
(9.1) ° R .

and  M(3), = )\Edmd,x+4£()\),ﬁ,>\,)\(z7V)V-
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By construction we have proper maps

ME) 2 M(Ze)  and M) —— NU(F)) = U M)

for all s € I, as in (3.13) and (3.15) (which correspond to v = 0). Moreover,
restricting to the open subsets 1711(—) C 11 (—), cf. (5.12), gives rise to proper
maps

S \ - " - def -

ME) — M(se)  and  TU(S,) — M(F) S U nmi(s,).

Notice that throughout this argument we must work with proper maps in
order to push forward classes in rational Cech homology (e.g. maps that
extend continuously to some compactification).

Fix an orientation data ox on the family F and let o5 and respectively
0 be its pullback to Xs and X.

Proof of the VFC Splitting Theorem 1.2. Assume that ¥y has no ra-
tional connected components without any marked points. Then by The-
orem 5.3, M(X,), M (o) and 171(X) are thinly compactified families over
the parameter space P = JV(F,a). In particular, for generic v, the fibers of
these families are thin compactifications of topological manifolds, cf. Propo-
sition 5.4. The latter are canonically oriented by the choice of 0 as described
in the paragraph containing (8.14). Our goal is to compare the images of
the fundamental classes

M(Ss,)0), @[M(E),], and [M(S),]  in Hy(M(F),; Q)

of these manifolds (for generic v). Here b is the dimension of these moduli
spaces, cf. (2.7).

For generic v, by Lemma 6.1 and Proposition 8.3, the attaching map
P restricts to a finite degree orientation preserving proper map between
the oriented topological manifolds 171(X), and 11(%y),; each of these spaces
decomposes as a disjoint union of open and closed subsets indexed by .
Moreover by (6.4)

(9.2) [115(20),] 0. [1M\(2),]

T JAut A

in I:Ib(fflvA(Zo)l,; Q) and therefore in Hb(ﬁ(zo)y; Q).
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Consider next the auxiliary spaces T/ﬁ(Eg) and T/ﬁ(}" /1) constructed in
§7. They are also families over the parameter space P and come with proper
maps

—~ o~

Mm(%o) —— M(F)r)

o I

M(Xo) —— M(Fp)

—~

cf. (7.1) and (7.7). But for generic v, by Proposition 7.3 the fiber m(ﬂl)y of

M(F 1) is a cobordism between the manifold 177(¥s, ), and the cover 111(X),

of the manifold 11(%y),. This cobordism is also canonically oriented by the
choice o0 and the restriction of this orientation to the boundary agrees with
the one above, cf. the paragraph containing (8.17). Thus

(9.3) M(S5,)0] = [M(S0)u] = D _[MA(So),]
A

in Hb(ﬁ(]: /1) Q), where the first equality is (7.15), and the second equality

o~

holds because, as in (7.2), the manifold 771(X), is a disjoint union of open
and closed subsets indexed by .
Furthermore, by Lemma 7.1

_ W
©|Aut A

(9.4) CORU [MA(%0),]
in H, (171(20),5 Q).
Pushing forward (9.3) by the proper map ¢ and combining it with the

pushforward of (9.4) and (9.2) by the proper inclusion 171(%), < M(F/1),
gives the equality

(95)  [M(Se)] =Y | Aiﬁ?&' M (o)) =D Mi(tA)AIZ L0, [M,\(3),]
A A

in Hb(ﬁ"l/(]:/[)l,; Q); this holds for generic v in P.

It remains to show that the equality (9.5) lifts to an equality between
the fundamental classes of the thin compactifications (for generic v) and
thus uniquely extends to an equality between their VFCs for all v.
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For that, as in (5.10), consider the difference

Sy = M(F;)u \ M(F1)s

which is a closed subset of 771(F /1)v- For generic v, by Proposition 5.4, it
has homological dimension at most (b+ 1) —2 =b — 1, i.e. H,(S,; Q)=0 for
all * > b — 1. As in the proof of [IP5, Lemma 2.10], the long exact sequence
(2.12) in rational Cech homology

= B85 Q) = HL(MU(F )0 Q) B B (M(F) 1) Q) — .

associated to the closed pair (171(F;),,S,) then implies that p is injective
in dimension * = b. Therefore (9.5) implies that for generic v

(9.6) ()] = Mi(tA)A!? -0, [MA(2),]
A

in Hb(m(}"ﬂ),}; Q) as follows. It suffices to check that p maps (9.6) to (9.5).
This follows from the naturality of the long exact sequence (2.12), combined

with the facts that by construction (i) the intersection of 1M(F /), with

M(Xs), is_equal to fﬁ(zs),,, (ii) the inverse image of 1M1(Xp), under ® is
equal to M(X),, and (iii) M (%, ), and W@V are thin compactifications
of the manifolds 771(,, ), and respectively 171(%), (for generic v in P) by
Proposition 5.4.

Finally, recall that by Theorem 5.3, 771(2,,) and 171(%) are thinly com-
pactified families over P, thus each fiber carries a VFC as in (5.2). By [IP5,
Lemma 3.4] the relation (9.6) for generic v extends uniquely to the cor-
responding relation between the VFCs for all parameters v € P, including
for v = 0. Applying Lemma 5.5 and switching back to the original notation
(9.1) for the fibers at v = 0 gives (1.6). This completes the proof of Theo-
rem 1.2 under the assumption that all rational connected components of g
have at least one marked point. The remaining case is treated in Remark 9.2
below. g

9.1. A relation between the absolute and relative VFCs

We end this section with a consequence of the VFC Splitting Theorem,
describing how the VFC behaves under adding a pair of conjugate marked
points of the target. To state it, we need to first introduce some notation.
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Recall that if ¥ is a smooth complex curve, there is a flat family C — C
of deformations of ¥ whose central fiber is the nodal curve ¥ UP! with
one node. It can be obtained by fixing a point « € ¥ and blowing up the
constant family ¥ x C — C at the point x x 0. The exceptional divisor is
P(T,X @ C) = PL. So the restriction of C over C\ 0 is the product family,
but C has a nodal fiber ¥ UP! over s = 0.

Assume next that (X,V) is a smooth symmetric curve with r pairs of
conjugate marked points as in (2.5), and choose x = {z*} an additional
pair of conjugate points on 3, disjoint from V. Blowing up the product
family ¥ x C? along the submanifold (z x 0 x C) U (z~ x C x 0) similarly
yields a flat family F of deformations as in (3.1)-(3.2). Each smooth fiber of
Fia= sgA dls is 3g = X for all s # 0, while the central fiber is a nodal curve

(9.7) Yo = S UP,

with a pair of conjugate nodes and an additional pair Px of conjugate spher-
ical components; see also (3.8). The marked points Vj of ¥ correspond to
the marked points V of ¥ under the inclusion ¥ C Y.

Let p : 39 — X denote the map which collapses Py to x and restricts to
the identity on Y. This induces a collapsing map from any building asso-
ciated to ¥y = X UPx to one associated to 3 (collapsing the entire chain
Px U Py U ... U Py attached at x, but keeping the chains at-

X0=Xoo X0=Xoo X0=Xoo

tached at V).
Therefore p induces a proper continuous map

-—R ——R
p . Md»(”a'(z:(], Vb) — Md,x,ﬁ<27 V)

at the level of (unperturbed) moduli spaces.

Consider the family of targets described above (9.7), and let o be a
choice of twisted orientation data on it. Assume that (3, V') has no rational
components without any special points; then the same is true for (Z V) and
(20, Vo). Therefore the moduli spaces M (3, V), M (30, Vo) and M (%,V)
have a well defined VFC, as defined in §5, and the VFC Splitting Theorem
holds, as proved at the beginning of §9. This has the following consequence.

Corollary 9.1. For every d, x, and [i, the equality

vir,o /\ S 17\]vir,o
(9.8) [deu(z V)] Zm())’g PP [de+43(>\) A, A V)T

A=d t(
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holds in the rational Cech homology of MSX,;?(E7 V).

Proof. By the VFC Splitting Theorem 1.2, for every s € A\ 0, we get the
equality

R vir,o, C A R S 1/\]vir,o
(9.9) Mgy z(Zs, Vo)™ = Z ‘Aui(i)’g D Mgy tae0), g (2 V)T

A-d

in the rational Cech homology of the family UA fo (25, Vs). It suffices to
s e

show that (9.9) pushes forward to (9.8) under a suitable proper continuous
map.
The collapsing map p : 3¢ — X is the restriction of the composition

(9.10) Foux A2y

where the first arrow collapses the exceptional divisor and the second arrow
is the projection onto ; note that both of these are holomorphic maps,
compatible with the real structures. Then the composition (9.10) similarly
induces a proper continuous map

— R ——R
Pi e Mayi(Bs; V) = Moy (5, V)

at the level of (unperturbed) moduli spaces, and therefore a map between
their rational Cech homology groups. Consider next the pushforward of (9.9)
under this map. Note that for s # 0, the map (9.10) restricts to the identity
s = X, therefore

R vir,o, 4R vir
p*[Md,X,ﬁ(Z& ‘/s)] 0= [Md,x,ﬁ(z7 V)] °
for all s # 0. Thus the pushforward of (9.9) is (9.8). O

Remark 9.2. So far both the construction of the VFC and the proof the
VFC Splitting Theorem were done under the technical assumption that the
target curves have no spherical components without any special points. In
general, we can always first deform ¥ to a nodal curve ¥y whose normaliza-
tion ¥ = X U Py has at least one marked ﬁ)oint on each spherical component
cf. (9.7), and then define the VFC of M (X, V) by the formula (9.8). This
is well defined, and the VFC Splitting Theorem 1.2 automatically holds in
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this case. In particular, when V = (), (9.8) becomes

AR vir,o0 C()‘) 4R vir,o
(Mg, (3] = )\ZFEI TAut(V)2 PP My apnan (B U P, x U xoo)|70°.

10. Proof of the RGW Splitting Theorem 1.1

We begin with a brief review of the definition of the integrand in (2.9) and
its properties.

10.1. Index bundles

Let E be a holomorphic vector bundle over a complex curve . The complex
operator O determines by pullback a family of complex operators over the
moduli spaces of holomorphic maps to ¥; the fiber at f:C — X is the
pullback operator Ef* g. Denote by

(10.1) Ind 0p = R*m.ev*(E)

the index bundle associated to this family of operators, regarded as an el-
ement in K-theory. Here 7 : C — M is the universal curve over the moduli
space and ev : C — ¥ is the evaluation map. When ¥ is a marked curve,
Bryan and Pandharipande considered the index bundle Ind 9z over the rela-
tive moduli space associated to X, cf. [BP2, §2.2] (they denote the evaluation
map ev by f). This index bundle is defined by the same formula (10.1), but
now the domain of 7 is the universal curve over the relative moduli space.
Let

(10.2) cx(—Ind Op)

denote the corresponding k’th Chern class, regarded as an element in the
Cech cohomology of the relative moduli space.

10.2. The integrand

Let (X, ¢) be a symmetric marked curve with marked points V' as in (2.5),
and let L — ¥ be a holomorphic line bundle over the underlying complex
curve X.. Fix the topological data d, x and ji and let b be as in (2.7).
Consider the real relative moduli space M;R,x,ﬁ(z’ V). It comes with a
forgetful map to the (usual) relative moduli space associated to the complex
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marked curve Y. Denote by
= bR
(10.3) I(Z;L) = epja(—Ind 8r) € H' (Mg, (%, V); Q)

the pullback of the corresponding Chern class (10.2) on the usual (complex)
relative moduli space. This is the integrand that appears in (2.9), regarded
as a cohomology class on the real relative moduli space. The RGW invariant
(2.9) is then the pairing

1

c,0 R vir,o
(10.4) RGW, (5, L)z = (I(%; L), m[Md,x,ﬁ(zvv)} )

with the corresponding VFC of the moduli space.
10.3. Splitting the integrand

Assume next that L — F is a holomorphic line bundle over the holomorphic
family F = UsXs where F is as in (3.1). Denote by Ls and respectively L
the pullback of L to X5 and respectively the normalization X of ¥y. As s
varies in A, consider the class

(S, Ls) = cyja(—ind dy,) € B (My, (S5, V5); Q)
associated to ¥ as in (10.3). Denote by
(10.5) I(F,L) = cyo(—ind dr) € H' (M i(F/a); Q)

the corresponding class on the family (3.14) of real relative moduli spaces;
as in (10.3), this is the pullback of the class ¢;/o(—R®*m«ev*L) on the fam-
ily of (complex) relative moduli spaces. We also consider the class [ (=, L)
associated by (10.3) to X. These classes are related as follows.

Lemma 10.1. The pullback of I(F, L) under the inclusion (3.15) is equal
to the class I(Xs, Ls). Moreover, the pullback of I(F, L) under the attaching
map (3.16) is the corresponding class I(X, L) associated to X, i.e.

(10.6) ®*I(F,L)=1(3,L).

Proof. Forgetting the real structure commutes with the maps at level of
moduli spaces induced by s — F and X — Yy < F. The lemma then fol-
lows from the corresponding results for the usual (complex) family of rela-
tive moduli spaces proved by Bryan-Pandharipande, as given in the proofs
of [BP2, Theorem 3.2] and [BP1, Proposition A.1].
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Specifically, the first statement is an immediate consequence of the fact
that the universal curve of the relative moduli space associated to X5 is the
pullback of the universal curve on the family of moduli spaces.

The second statement follows from the normalization exact sequence

0— Ly, — L— Ljz+ ® Li,- — 0,

for the holomorphic line bundle L, where 27 is the pair of (conjugate) nodes
of . Pulling this back over the (complex) moduli space gives

&*c(—Ind ngzo ) = ¢(~Ind 85)

for the total Chern classes as in [BP2], since the pullback of the last term is
a trivial rank 2¢(\) bundle. O

Proof of the RGW Splitting Theorem 1.1. Consider the invariant (2.9)
associated to X, written in the form (10.4). A priori, it is a pairing between

a homology and a cohomology class defined on the moduli space associated

to Xs. However, by Lemma 10.1 the integrand is pulled back from the class

(10.5) on the family. Combining this with the splitting of the VFC formula

(1.6) gives

1 . .
RGWS® (S, Ly)j = ———(I(F, L 2 (S, Vo)]mee
“Wax (%s: Lo |Aut(ﬁ)|< (728 M. Vo)) )

R S 17\]vir,o
I(F, L), Mg qae0),a a2 (5, V)T

g ()
= Aut(@)] 2= [Aut )P

AHd

o 1 C()‘> * R SN 1/)\]vir,o
- ]Aut(ﬁ)| % ]Aut()\)\Q <Q) I(fa L)> [Md,x+4€(/\),ﬁ,/\,)\(z7 V)] >
= Z C(A)RGW§,7;+4£()\) (E? L)ﬁ,)\,)\v

ARd

where the last equality uses (10.6). O

Using the fact that the local RGW invariants are constant under smooth
deformations of the target and passing to the (shifted) generating functions
(2.10) we also obtain the following consequence.

Corollary 10.2. Let (3g,co) be a symmetric marked curve with a pair
of conjugate nodes (and no real marked points), Ly a complex line bundle
on g, and o9 a choice of twisted orientation data on %g. Then the local
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RGW invariants of any smooth deformation (X,c, L,0) of (2o, co, Lo, 00)
are related to those of the normalization 3 of Yo by

RGWS°(S, L)z = Y ¢(M)$* JRGWS® (2, L) s -
AHd

As discussed in [GI, §4], every smooth symmetric curve ¥ (without any
real marked points) can be deformed into such a nodal symmetric curve %
by pinching a pair of conjugate splitting circles. Furthermore, every complex
line bundle L over ¥ and choice o of twisted orientation data for ¥ can
zilso be deformed to the nodal curve >y and then lifted to the normalization
Y of Y. Conversely, every complex line bundle L and twisted orientation
data 0 on ¥ descend to Xy and can be deformed to a complex line bun-
dle L and orientation data o on Y. Therefore Corollary 10.2 implies [GI,
Theorem 4.1].

Appendix A. Linearizations

In this appendix we include more details about the various linearizations
considered and the precise relation between them. For transversality and
gluing arguments, we use Fredholm completions in the type of (weighted)
Sobolev norms defined in [IP1, p. 80], [IP2, p. 971] and [IP2, (1.1) of Corri-
gendum)], reviewed in §A.5 and used in [IP1] and [IP2] to analyze the relative
moduli spaces (relative a smooth divisor) appearing in the symplectic sum
construction. For the absolute moduli spaces, similar norms are defined in
[P, §B.4], and used by Pardon for a proof of the usual gluing theorem. For
orientability and the construction of determinant line bundles of real CR-
operators we use [GZ1, Appendix A.2], where the authors take Fredholm
completions in a different variant of these norms, those originally used by
Li-Tian in the proof of the usual gluing theorem, cf. [LT, §3]. The monograph
[MS] uses both usual Sobolev norms reviewed in [MS, §B.1] for transversal-
ity [MS, §3.2] and another version of weighted Sobolev norms [MS, §10.3]
for the proof of the usual gluing theorem [MS, §10.1].

A.1. General considerations

Let (C, ¢) be a (smooth) symmetric marked curve, and x denote a symmetric
subset of the marked points of C. Let (F,cg) — (C,c) be a Real bundle, i.e.
a complex vector bundle with a real structure cg covering ¢ (called a real
bundle pair in [GZ1]). Denote by I'(E)® the space of smooth sections of E
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which are real, i.e. invariant under the involution £ — cg o £ o c. Let
(A1) D:T(E)® = A%E)R =1QY oc E)}, D¢ =0¢+ A€

be a real CR-operator on the Real bundle (E, cg). Here 0 is a holomorphic
O-operator on E compatible with the real structure (i.e. such that cp is
anti-holomorphic), and

A € T(C;Homg(E, QY ¢ E))F

is a 0’th order term; see [GZ1, (4.4)]. After completing in (weighted) Sobolev
norms, D becomes a Fredholm operator. Examples include

(i) Sobolev completions D : WFPT(E)R — WHE-LPAOL(E)R for p > 1 and
kp > 2 as in [MS, §B.1].
(ii) completions as in [LT, §3].
(iii) completions D : WFPOT(E)R — Wh=IPOAOL(E)R a5 in [P, §B.4],

weighted at the points in x, for § € (0,1) and k, p so that W#P? — C0
eg. k> 1, p >4 (Pardon uses p =2 and k > 6).

By elliptic regularity, the kernels and cokernels of all these Fredholm com-
pletions are the same, and consist of smooth elements, see eg. [MS, §C.1]
and [P, Lemma B.5.2]. Therefore we let

(A.2) ker D :=ker D, coker D := coker D
where D : &€ — F is any of the completions (i)-(iii) of the real CR operator
D :T(E)® — A% (E)®. Note that subspace ker D C I'(E)¥ is independent of
these choices. Moreover, coker D = ker D*, where D* is the formal adjoint of
(A.1), regarded as a real CR operator on the bundle F', where F' = Q%l R FE.
When (E,cg) — (C,c) is a Real line bundle, the index of (A.1) is equal to
(A.3) indD =inddg,,) = c1(E) + x(C).
Consider the short exact sequence of vector spaces

(A.4) 0— I (B = T(E)R & (By, cp)® — 0.

Here I'x(E)® denotes the subspace of sections which vanish at all the points
in x, and (Ex, cg) denotes the restriction of (E, c¢g) to x. A choice of splitting
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of (A.4) induces an isomorphism
(A.5) T(E)* = Ty (E)* @ (Bx)Y,
where (Ex)® := (Ex,cg)® denotes the real locus of (Ex,cg).

Remark A.1. A splitting of (A.4) can be obtained as follows. Fix a trivi-
alization of F in a neighborhood of x and bump functions 3, at each point
r € X. Starting with o = (az)zex € (Ex)¥, extend the values o, € F, to a
constant section of E in a neighborhood of x € x and multiply the result by
the bump function to get a section erx Bro of B with value o at = € x.
Finally symmetrize it to obtain a real section.

Consider next the restriction
(A.6) D' T (E)® - A%(B)E

of the real CR operator (A.1) to the subspace in (A.4). Regard D as defined
on the right hand side of (A.5), where it becomes the operator

(A7) Tx(E)* @ (Bx)" = AY(B)Y, (¢ a)m D'C+(a).

Here v : (Ex)® — A"Y(E)® depends on the choice of splitting in (A.5). Note
that when the 0’th order term A is supported away from x, then the splitting
~ can be chosen so that its image consists of forms supported away from
x. After completing in any of the (weighted) Sobolev norms (i)-(iii), (A.4)

becomes an exact sequence of Banach spaces and D and therefore D’ become
Fredholm operators. This induces a long exact sequence

(A.8) 0 — ker D' — ker D — (Fy)® — coker D' — coker D — 0.

The map (Fx)® — coker D’ is the projection of v to the cokernel.

Remark A.2. In fact, any short exact sequence

0 y & y E E" 0
(A.9) J’D’ J’D J(D”
0 > F F F 0
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of Fredholm operators induces (by the Snake Lemma) a long exact sequence

(A.10) 0 — ker D' — ker D — ker D”
— coker D' — coker D — coker D’ — 0.

Examples include the restriction D’ of a Fredholm operator D to a closed,
finite codimension subspace, e.g. as in (A.8).

A.2. Conjugating by a section

Consider next the holomorphic line bundle O(x) over (C, ¢) with its natural
real structure induced by the action of ¢ on x. This is defined as follows. Fix
local holomorphic coordinates on C' at the points = in x, compatible with
the real structure as in (B.2). Let

(A.11) s(z) =z forall z €U, and x € x,

and s(z) = 1 outside a smaller neighborhood U’ of x. Then s is a holomorphic

section of O(x) whose divisor is x. The real structure on C' induces a real

structure on ( - U;) x C and U’ x C, and thus on the bundle O(x), and
PASP.

the section s is equivariant with respect to the real structures.
When E — C'is a holomorphic bundle (with a compatible real structure

cg), multiplication by s gives rise to a short exact sequence of holomorphic
sheaves

(A.12) 0-E®0(-x) 3 E—-Ex—0

relating the two J-operators on F ® O(—x) and F; this exact sequence is
compatible with the real structures. Therefore it induces a long exact se-
quence in cohomology

(A13) 00— HYE®O(—x)® = HY(E)® — (Ex,cp)®
— H(E® O(—x))* = HY(E)* = 0.

Consider next a real CR operator (A.1l), and assume the 0’th order
term A vanishes in a neighborhood of the special points of C. Conjugate
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D = 0 + A by s to obtain the operator
(A.14) D*=5"'Ds =0+ s As.

This can be regarded as a real CR-operator on the Real bundle £ ® O(—x)
(well defined at least when the 0’th order term A vanishes on a neighborhood
of x). The following standard result for J-operators extends to real CR
operators.

Lemma A.3. Multiplication by s induces canonical identifications
(A.15) ker D®* 2 ker D' and  coker D® 2 coker D',
where D* and D' are given by (A.14) and (A.6).

Proof. Multiplication by s maps sections of E ® O(—x) to sections of E
which vanish at x so we get a diagram

0 —— INE®O(—x))F —2— I'y(E)F
(A.16) le lD'
0 —— ANE®O(—x)) 2= AV(E)E,

After completing in the usual Sobolev norms as above (A.2) and passing
to the quotient, we get a short exact sequence 0 — D* — D' — D" — 0 of
Fredholm operators, cf. (A.9)-(A.10). Note that ind D®* = ind D’. When E
is a Real line bundle, then c; (£ ® O(—x)) = c1(E) — >, ¢, 1 thus ind D* =
indD -3 ., 1=indD’, cf. (A.3) and (A.8).

As in the proof of [P, Lemma B.5.2], this implies (A.15) as follows. It
suffices to check that the induced map (i) ker D® — ker D’ is surjective (it
is injective by (A.10)), and (ii) coker D% — coker D’ is injective (surjectivity
then follows from (i) and the fact that ind D* = ind D").

This can be verified directly using (A.8) and elliptic regularity. Assume
& eker D'. Thus £ € ker D and £ vanishes at all the points in x. Then by
elliptic regularity it has an expansion £(z) = az(1 + O(|z|)) around a point
in x, thus s~1¢ € ker D®.

It remains to show that coker D® — coker D’ is injective. Let n € coker D,
Since D? is a real CR operator, then n € ker(D?®)* is smooth by elliptic reg-
ularity. It suffices to show that if sy = D¢ where ¢ € WP and &(z) =0
for all z in x then s~'¢ € WP, By elliptic regularity ¢ is smooth and
has an expansion {(z) = a1z + az(1 + O(|z|)) around each point in x. But
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then D¢ = a1 + O(]z]) while sn =bz(1 + O(|z])) thus ag = 0. This implies
s71¢ € WP completing the proof. ([

One can similarly obtain the exact sequence
(A17) 0 — ker D* — ker D — (Ex, cg)® — coker D® — coker D — 0

generalizing (A.13), which corresponds to D = d(gc,) (i.e. A =0).

More generally, fix A = (A\;)zex a symmetric sequence of positive integer
multiplicities. Let s = s) be a symmetric section of the Real line bundle
O(A-x) =00, Azx) such that

rex'T

(A.18) s(z) =2z forall zeU,and z in x,

and s is smooth and nonzero outside U = LiycxU;. Then the conjugate oper-
ator (A.14) is a real CR operator D* on E ®c O(—A\ - x), and multiplication
by s induces a canonical isomorphism

(A.19) ker D* = ker D*,  coker D® 2 coker D*
as in Lemma A.3. . Here
(A.20) D i Tax(E)® = AL (B)F

is the restriction of D = 9 + A to the subspace T’ >\;X(E)]R of sections which
vanish to order A at x and whose target is the subspace Agl_l;x(E )® of (0,1)-
forms which vanish to order A — 1 at x; it becomes a Fredholm operator D*
after completing in the usual Sobolev norms for k sufficiently large (so that
WkP < CA+ for all x € x). As in (A.2), these completions D* have the same
kernel and cokernel. The A =1 case of (A.19) corresponds to (A.15); for
A > 1, (A.19) follows by induction from (A.16) with D replaced by D**-*.

Remark A.4. The kernel and cokernel of the restriction D* of D consists
of those elements of ker D and coker D = ker D* which vanish to order A and
respectively A — 1 at x. There are other Fredholm completions of (A.20) that
have the same kernel and cokernel, cf. §A.5.

A.3. The normalization short exact sequence

The situation is similar in the case Cp is a nodal symmetric curve. Let
y ={y1,...,y¢} denote the collection of nodes of Cjy. Let C' denote the
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normalization of Cp, and let y;1, yi2 be the two points of C which are the
preimage of the node y;. Then C has a symmetric subset y of marked points,
where

y =y1 Uy2, and Yi = {Z/lk, .. 'ayfk’}v for k = 172

If (E,cg) — (Co,c) is a Real bundle, let (E,CE) denote the pullback
bundle. Then we have a normalization short exact sequence

(A.21) 0 — (E,cg) — (E,cz) — (By,cp) — 0.
It induces a short exact sequence
(A.22) 0 — I'(Co; E)® = T(C, E)} = (Ey,cp)® — 0,

recording the fact that a continuous section of £ is a section of E that has
the same value on the pair of points of C that correspond to a node of Cj.
Choosing a splitting of (A.22) provides an isomorphism

(A.23) D(C, BYR 2 T(Cos B)F & (By )
as before. Then similarly one can relate a real CR operator
(A.24) Dy : T(Co; E)* — A" (Co; E)®,  Do& = 9 + Ap(€)

on E to the pullback operator Don E. In particular, we get a long exact
sequence

(A.25) 0 — ker Dy — ker D — (Ey)® — coker Dy — coker D — 0.

Remark A.5. A splitting of (A.23) can be obtained by first lifting
v € Ey to the normalization as (v,—v) € Ey, & Ey, and then proceeding
as in Remark A.1 to obtain the section of I'(E)® supported in a neighbor-
hood of the marked points y; Uy2 of C' and taking opposite values on any
pair of marked points that correspond to a node of Cj.

A.4. Variations in the domain

Recall from [GZ1, p. 721] that the Kodaira-Spencer deformation theory
canonically identifies the tangent space of the real Deligne-Mumford moduli



646 P. Georgieva and E.-N. Ionel
space at a stable symmetric curve C' with
(A.26) TeM" = H (To)R

(after passing to covers in the presence of automorphisms); see also [L, §3].
Here 7¢ is the relative tangent bundle to C, cf. §B.2. In fact, as in [IP3,
§4.1], the variation in C' as a marked (symmetric) curve can be regarded as
a (symmetric) (0, 1)-form h with values in 7¢ and supported away from the
special points of C' (here h is the variation J§j in the complex structure j).
This gives a diagram

(A-27> & lﬂ-coker
Hl (TC)R

where the vertical arrow is the projection onto the cokernel H L(Te)E of the
0 operator on (T¢, cr).

Remark A.6. Assume C is a stable symmetric curve with marked points
x ={z1,...,2m} and let (T¢)|s, denote the restriction of To to z;. As C
varies in the real Deligne-Mumford moduli space, (7¢)|., defines a complex
orbibundle denoted 7, over the moduli space, equal to the pullback of the
relative tangent bundle 7 on the universal curve via the section C' — (C, z;);
see §B.2. An element (C,v;) € T}, \ 0 can be regarded as a curve C' together
with a germ of a local holomorphic coordinate z; at x;. Moreover, the exact
sequence (A.12) for E = T¢ induces the exact sequence

(A28) 0 —— (T)® —— HY(To ® O(—x))* —— HY(To)* —— 0,

cf. (A.13). The last term parametrizes the variation in the marked symmetric
curve C, cf. (A.26). The middle term in (A.28) encodes the variation in
(C,v), where v = (vg)zex consists of germs of holomorphic coordinates at
the marked points compatible with the real structure as in (B.2). The first
term encodes just the variation in v (with C fixed).

Assume next Cp is a nodal curve, let y denote its collection of nodes
and C' its normalization. Then the normalization short exact sequence for
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the holomorphic bundle E = 7¢, induces the long exact sequence
(A.29) 0— H(Te,)® = HY(TE)® — (Ty)F = H (Te,)® — HY(Tz)F — 0.

When Cj is stable so is C. Therefore both H° terms vanish, and the
H' terms model the tangent spaces to the real Deligne-Mumford spaces
containing Cy and respectively C, so (A.29) reduces to

(A.30) 0 —— (Ty)* —— HY(Tg,)* —— HY(T5)* —— 0.

The last term parametrizes variations in Cy that do not smooth its nodes,
while the middle one parametrizes all variations in Cy, including those that
smooth the nodes. A choice of splitting of the short exact sequence (A.30)
and the isomorphism (A.26) for C' = Cj and C determines a decomposition

(A.31) To, M = (Ty)* @ TN

Here N denotes the stratum containing Cp, and (ﬁy)R can be regarded
as its normal bundle. Moreover, those variations in Cy that map to 0 in
H'(T5)F via (A.30) can be regarded as variations in the gluing parameters
for a family (B.5) of versal deformations of C( smoothing the nodes. In local
coordinates, an element of (’7"),)]R can therefore be regarded as a variation
07 in the gluing parameter 7 (or in cylindrical coordinates as 577 =d(log 1)),
for example via similar considerations as those in Remark A.6.

Remark A.7. In (A.30), H'(7¢,)® and H*(75)® are the cokernels of the

O-operator on the relative tangent bundle to Cy and respectively 5; the
former operator is the restriction of the latter to a subspace. As in (A.25),
the second arrow in (A.30) is the projection onto the cokernel of (7, ) of

(A.32) he (Ty)® = AN (TE)® = A" (Te,)F,

where h(v) = E(Ta:C)T(U) for some choice of splitting 7 : (7j,)® — T'(T5)® of
(A.23) for E = T¢, as in Remark A.5.

A.5. Weighted Sobolev norms and real CR operators

Let C be a smooth curve. Fix a subset y of marked points of C', and A =
(Ay)yey a collection of multiplicities associated to y, where A, € Z\ 0 for all
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yiny. Fix z = e~ (1) g local holomorphic coordinate at each point y in y.
Let

C'=C\y

regarded as a manifold with infinite cylindrical ends parametrized by (¢, 6) €
[0,00) x S!, one for each point y € y. Fix a weight function p and a cylin-
drical metric ¢’ on C’ such that

(A.33) p=lzl=et, ¢ =dt* + db*

in the neighborhood U, of each point y € y and p > 0 elsewhere; denote by
UZ,’, C Uy a slightly smaller neighborhood of y. When E' is a bundle over C,
let

(A.34) IS

‘271?75;)\:/0 / Z V(P | dvoly

Uy \Iml<k

+Z/ Z |pt == 0vmP | dwoly,

yey YWy \ i<k

denote the A-weighted Sobolev norm on I'(E), associated to k> 1, p > 2,
weight 0 € R\ Z and the fixed multiplicities A = (\y)yey. The A\-norms on
A (E) =T(QY ®c E) are defined by the same formula. These norms are
defined with respect to a fixed metric and compatible connection on F, and
the cylindrical metric ¢’ and its Levi-Civita connection on TC’ = T'C|c.

When (C, ¢) is a symmetric curve and (E, cg) is a Real bundle over it,
the norms on I'(E)® and A% (E)® are defined by the same formulas by using
throughout choices compatible with the real structure, i.e. (i) symmetric
weight functions p and multiplicities A = (\,),ecy associated to a symmetric
collection of points y and (ii) symmetric hermitian metrics and connections
on F and TC’, with symmetric cylindrical ends.

Let D : T(E)® — A%(E)®, D = 3 + A be a real CR operator on (F, cg).
Completing in the A-norms (A.34) gives rise to an operator

(A35)  DM:WEPT(CHE)® — Wi "POANCH B, D=0+A4

on the punctured curve C' = C'\ y, which is Fredholm as in Lockhart and
McOwen [LM, Theorem 6.2] since ¢ ¢ Z is not an eigenvalue of the asymp-
totic linearized operator on any end (the eigenvalues are Z, corresponding
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to the powers 2" on the punctured disk). When (E, cg) is a line bundle and
5 € (0,1), the index of (A.35) is equal to

(A.36) ind D* = ¢ (E)[C] + $x(C) — > _ Ay.
yey

Assume next that the multiplicities A are positive, and fix ¢ € (0,1).
Then (A.35) can be regarded as an operator on the closed curve C as follows.
Restrict to k > 1, p >4 (or else k > 2 and p > 2) so that I/Vllch — CP) . by
the Sobolev embedding theorem. Then sections of E|cs with finite A-norm
are continuous on C’ and exponentially decay on the ends, thus extend

continuously to sections of £ on C' which vanish to order A at y. Let
(A.37) DY : Ty (E)® — AL, (E)F

denote the restriction of D = d + A defined as in (A.20). Note that on C,
smooth sections of E have finite A-norm if and only if they vanish to or-
der A at y; however, since |dz| = |z| in cylindrical coordinates, (0,1)-forms
with finite A-norm only vanish to order A — 1 at y. Fixing 6 € (0,1) and
completing (A.37) in the same A-norms as (A.35) gives rise to a Fredholm
operator

(A.38) DY ghp — k=L

on the closed curve C, canonically identified with (A.35). By elliptic regular-
ity its kernel and cokernel are independent of § € (0,1) and k, p in the range
above, and consist of those smooth elements in the kernel and respectively
cokernel of D with finite A-norm. In particular, the kernel and cokernel of
the Fredholm completion of (A.37) in these A\-norms is the same as that
of the Fredholm completion in the usual Sobolev norms (for k sufficiently
large) considered in §A.2.

A.6. Linearizations for smooth targets

The considerations above allow us to regard the linearization to the relative
moduli space HR(E, V') in several equivalent ways. Assume f : C' — X is an
element of the relative moduli space MR(E, V), and that f has no rubber
components. Then by definition it is an element of the absolute moduli space
MR(E, () which has a certain branching over V', where f~!(V') consists only
of marked points of the domain. This means that in local coordinates on the
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target around x € V' and on the domain in the neighborhood of each marked
point y € f~1(x), the map f has an expansion

(A.39) F(2) =a, 2" f(z),  where f(z) =1+ 0(|z]),

ay # 0 is the leading coefficient of f at y, and A(y) > 0 is the contact mul-
tiplicity. Intrinsically, the leading coefficient a,(f) of f at y is an element

(A.40) ay(f) € (T,0) W @c Ty, E.

As f: C — ¥ varies in M(Z, V)%, this determines a section a, of the com-
plex line bundle

(A.41) (T,) W @c evTE

cf. [IP2, Lemma 7.1]; note that f(y) =2 € V, thus the second factor in
(A.41) is trivial.

Conditions (i)-(iv) of Definition 3.1 imply that a local variation in the
map f : C' — ¥ with fixed domain and target (including fixed marked points)
also fixes the collection of contact points y and their contact multiplicity A.
Variations ¢ f in f along MR(E, V') will vanish to order A(y) at y, and in fact
will continue to have an expansion of the form (A.39). The leading coefficient
of the expansion of § f at y is the variation da, in the leading coefficient of f
at y (assuming the coordinate systems are fixed). In particular, variations 6 f
which vanish to next order at all the contact points fix the leading coefficients
of f. Of course, if a smooth function f vanishes of order A(y) at the point
y, then Jf vanishes to order A(y) — 1.

Fix a map f with contact multiplicity A and contact points y. Denote
by Ty (f*TE)® the subspace of sections that vanish to order A(y) at y for

y €y, asin (A.20). Then the linearization Ly to MR(E, V') is the restriction

(A.42) Ly : Tay (TSR @ Te M — QL (f*TS)F

of the "usual” linearization
(A.43) Ly : T(f*TS)E @ ToM — A% (f*TS)F
Ly(& h) = 0¢ + [Vev + 2 Jdf b

This follows as in the proof of [IP1, Lemma 4.2], which also applies in
our case by working with symmetric choices throughout. Specifically, fix
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9 € (0,1) and restrict to k > 1, p > 4 (or else k > 2 and p > 2). After pass-
ing to completions as in (A.38), the linearization (A.42) to MR(E, V) at a
map f with contact multiplicity A becomes the Fredholm operator

k, R k—1,

(A.44) N A o
Lp(&,h) =08+ [Vev + 5 Jdfh]" = Ope(rx.40)§ + Af(§) + bs(h)

obtained by completing (A.42) using the A-weighted Sobolev norms of §A.5,
cf. [IP2, p. 971}, as corrected in [IP2, eq. (1.1) of Corrigendum]|. Here

Ap € Homg(f*TE, AY @c A TE)F

is a (symmetric) 0’th order term given by A;(¢) = [Ve]”!, while the term
I;f : T(;ﬂ]R — APY(f*TE)® is induced by the map h %deh. Here h is a
(0,1)-form with values in the relative tangent bundle to C' which vanishes
in a sufficiently small neighborhood of the special points of C' (a variation
in C can be regarded as such a form h via (A.27), as reviewed in §A.4).

For a map f with contact multiplicity A, consider (a) the completion
(A.44) of Ly for k, p in the range above and fixed 0 € (0,1) or (b) the
completion L of Ly in the usual Sobolev norms as above (A.2), but with
k> 0. Then as in (A.37)-(A.38), ker Ly and coker L; are independent of
these choices, and are denoted

(A.45) ker Ly =ker Ly and coker Ly = coker Ly.

Remark A.8. The linearization (A.42) to the real relative moduli space
WR(E,V) is precisely the restriction to the invariant part of the domain
and target of the linearization to the (usual) relative moduli space M (%, V)
defined in [IP1]. In particular, the index of the former is half the index of the
latter. Thus the virtual dimension counts of [IP1, Lemmas 7.5-7.6] directly
translate into counts for the moduli spaces MR(Z,V) considered in this
paper. In particular, the virtual dimension of the moduli space MIS% ﬂ(Z, V)
is

(A46) b=ci(TS)A+ Ly — V- A+ dim My 5 = dx(E\ V) — x + 26(id)
= dx(X) — x + 26(fi).

Here A = f,[C] = d[X] € Hy(X) and V has 2r points, so V - A = 2dr, while
. ——R 3 R
dim fo(ﬁ) = —§X + 26(”)
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An equivalent description of the linearization at f is obtained as follows.
Consider an invariant section o of O(x) on the target ¥ whose divisor is
V' = x and such that ¢ is holomorphic in a neighborhood of x, and smooth
and nonzero elsewhere. Pull it back to get a section s = f*o of f*O(x) which
vanishes to order A at the points y and nowhere else. Conjugating (A.43)
by s as in §A.2 and §A.5 allows us to regard the linearization to MR(Z, V)
as

(A.47) Dy :T(f*To)fF @ ToM: — A% (f*Tx)®
given by the formula

(A.48) Dy(&h) = ?f*(T,cT)g + 5 [Veer + 5 Jdf ™!
= 0pe(T,er)§ + Af (&) + by (h).

By construction both Vv and h vanish in a sufficiently small neighborhood U
of the special points of the domain, so we can chose the section o (depending
on f) so that s = f*o is identically 1 outside this neighborhood. In that case
(A.47) is given by exactly the same formula as L, except that T'Y is replaced
by Ts, cf. (2.8).

Note that the linearization Dy is a 0’th order perturbation of 5(305) @0,
where d(g,) is a real CR operator (A.1) on the Real bundle (E,cg) =
f*(Ts, c1). Let Dy denote the Fredholm operator obtained by completing D¢
in the usual Sobolev norms or any other choice from those listed above (A.2).
Then as in (A.2), ker Dy and coker Dy are independent of these choices, and
are denoted ker Dy and coker Dy.

Lemma A.9. Dividing by s induces an identification
(A.49) ker Ly 2ker Dy and coker Ly = coker Dy,

canonical up to homotopy in Se Thus either one of these linearizations locally
describes the moduli space M (X, V') around f. This induces canonical (up
to homotopy) identifications between the determinant lines

A.50 det Ly = detD; =2 det(Ope(r . 0
(A.50) Ly a0 % f(A_48)e(f(Tz,T)@)

—~

= det gf*(Tz,cT) ® f* det TM".

Proof. Consider the operator Ly given by (A.43). Up to 0’'th order terms,
Ly is the same as J(g,c,) © 0, where 9, is a real CR operator (A.1) on
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the bundle (E,cg) = f*(T'S,dc). The linearization Ly is the restriction of
L to subspaces of sections which vanish to order A cf. (A.42) while Dy is
the conjugate operator s 'LLys cf. (A.48). Therefore (A.49) follows the same
way as (A.19).

Since up to 0’th order terms Dy is the same as 0. (7, ;) ® 0 cf. (A.48),
the second identification in (A.50) follows as in [GZ1, (3.3) and §4.3] with
E =TX replaced by = Tx. O

Remark A.10. Under the transformation & — f%ag , a variation §f in f

(regarded as a section of f*TY) is mapped to a section £ = ;ifg of f*Tx; the
leading coefficient of d f at y is mapped to the value

_ 0y

(A.51) E(y) = o = d(logay)

where da, denotes the variation in the leading coefficient a, of f at y,
cf. (A.39).

We can also separate the leading coefficient of the variation in f as in
[IP2]. For the linearization (A.47), this corresponds to separating the value
&(y) € (f*T)y at each contact point y, which is given by (A.51). Specifically,
using a decomposition such as in (A.7) for E = f*7x over C and x* replaced
by the contact points y™, the linearization (A.47) rewrites as the operator

D : Dy ([ To)* & (FTe)yr © ToM — A% (f*T)

(A.52)
Dy (¢ a,h) = Dy(C, h) + ().

Here ¢ € T(f*Tx)® gives rise to a variation in f with fixed domain and
target and also fixed leading coefficient (A.39) at each one of the marked
points, while the middle term records the variation in the leading coefficients,
cf. (A.51). The term ~ : (f*Tx)y+ — A" (f*T5)® depends on the choice of
splitting, see Remark A.1.

A.7. Linearizations for nodal targets

The discussion above extends to the case where the target is a nodal curve
> with complex conjugate nodes; here we are discussing the case when
the target has a single pair of complex conjugate nodes z*. Consider a
continuous real map fo: Co — X such that the preimage of x™ consists
only of nodes of the domain. Denote by y* = {y;,... y;} the preimage of
the node zt of the target, and let y = y* Uy~ where y; = c(y;"). Then
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y is a subset of nodes of C, and let C be the (partial) normalization of C
resolving the nodes in y; let 3 be the normalization of ¥¢. Then fy : Cy — X
lifts to a continuous real map

(A.53) f:C—%

with smooth target (but possibly nodal domain). When fy : Cy — X is an
element of the real relative moduli space 171(%g) of (4.24), then (local) vari-
ations in fp can be described in terms of those of its lift (A.53).

We can thus consider the linearization at fy : Co — g to 11(Xg) (with
fixed target and fixed v) induced by the linearization

(A.54) Dj: F(]?*TE)R ® T@MR N Ao’l(f*Ti)R
at a lift f: C—3of fo to the normalizations. This has the form
(A.55) (€. h) = OE + AF(€) +b(h)

cf. (A.48) with f replaced by ]7
Using (3.6) and the normalization short exact sequence (A.21) for
E = fiTs, we can rewrite (A.54) as a map

(A.56) Dy, :T(feTe) @ (fiTso)ys ® TaM® — AP (F*T5)E

An element ¢ € T'(f;Tx,)® corresponds to a variation in fy with fixed do-
main, target, and also fixed product of the leading order terms at each one
of the nodes in the inverse image of T, while the middle term records the
variation in the product of leading coefficients (or in cylindrical coordinates

Slaras) % + %) In particular, the linearization (A.56) has

the variation "

the form
(A57) Dy, (.o, h) = ¢ + Ay, () + () + by, ()

where Ay, is the restriction of Az to L(f3Ts,)%, and by, is equal to by cf.
(A.55). Here v depends on the choice of splitting of (A.21) for £ = f37Ts,;
such a splitting can be obtained for example by pulling back a splitting for
E =Ts,. The last term by, = b is induced by the map

(A.58) AN TR — AYN(C; frTE)R

obtained from h +— %J dfh after dividing by the section s = j?*a and pro-
jecting to the (0,1)-part.
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There is another perspective for the linearization at fy that is better
suited when deforming the nodal target by smoothing its nodes. For that
consider instead the operator

Dy, T(fTo)* @ To, M+ — A% (F*T2)F
Dy, (¢, h) = ¢ + Ay, (C) + by, ()

where Ay is as in (A.57) and by, is induced by the same formula (A.58).
However here, unlike in (A.57), the variation h € A% (7¢,)® is tangent to the
entire Real Deligne-Mumford moduli space, not just to the nodal stratum
containing Cj. Using the exact sequence (A.30) and a decomposition of
(A.31), this operator can therefore be identified with

(A.59)

Dy, (T )R @ T+ @ ToMR — A0 (FFT )R

(A.60) ~ _
Dy, (¢ 0,h) = 9C + Af, (€) +7(v) + by, ().
Here Ay, and by, are exactly as in (A.57), but 7 : Tjy+ — AOl(f*@)R de-
pends on the choice of splitting of (A.22) for E' = T¢,, while (A.57) depends
on one for E = Ty, . Specifically, 7 is the composition of (A.58) and (A.32).
The two forms (A.57) and (A.60) of the linearization at fy are in fact
equivalent: using the formulas for v and 7 in terms of the two splittings one
sees that the linearization (A.60) is the same as the linearization (A.56).
Their middle terms are identified via the complex linear isomorphism in-
duced by the linearization of (6.12), given by

(A.61)

Here a, denotes the product of the leading coefficients of fy at y, while 7,
can be regarded as the gluing parameter of the domain at the node y.

Remark A.11. The leading coefficients depend on the germs of holomor-
phic coordinates used, as do the gluing parameters. The product a, induces
the isomorphism (6.12), relating the gluing parameter in the target with a
power of that of the domain; its linearization gives (A.61).

A.8. The normal operator

ThRe discussion above extends to the strata of the real relative moduli space
1M (3, V) containing maps f : C' — X[m] with rubber components (i.e. with
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m # 0); the target X[m] is nodal but comes with an extra rescaling action, cf.
§3.3. To describe such strata, we adapt [IP1, Definition 7.2 and Remark 7.7]
to our setting. It is based on the following simple observation: away from
the infinity divisor, Py = P(Ny @ C) is equal to Ny, via the canonical em-
bedding w + [w, 1] in homogenous coordinates. Thus for a map p: C =V,
sections & of p* Ny (with finitely many zeros and poles) can be equivalently
regarded as lifts

(A.62) f=19)

of p to Py (with finitely many points in the preimage of the zero and infinity
divisor).

Let f : C' — X[m] represent an equivalence class in WR(E, V), cf. (4.10).
Let y C C denote the special points of the domain which are in the inverse
image of the special points x of the target X[m]. Let

(A.63) f:C— Sim]

denote the lift of f defined as in (A.53), where 2/][\777] is the normalization of
the building X[m], thus a disjoint union of ¥ and m; copies of P+ C Py, cf.
(3.8). We can then decompose the lift (A.63) as a disjoint union of pieces

(A.64) fo:Co—=XCXm] and f,:C.— Py, forr>1,

where C denotes the union of all level 0 (i.e. non-rubber) components, while
the other pieces C,., for r > 1, are symmetric curves consisting of (rubber)
components mapped to one of the m; copies of P+ C Py of the building
S[m). Z

In particular, for » > 1, each rubber piece f, : C, — Py of the decompo-
sition (A.64) is a real map with prescribed multiplicity |A,| > 0 of contact
to the 0 and oo-divisor of ]P’%/ at the special points y, of C; equivalently f,
is a nontrivial section &, of the pullback normal bundle Ny = T3 to V
with zeros and poles of prescribed order A, :y, — Z at the special points
and no other zeros/poles (recall that the order of a meromorphic section is
negative at a pole and positive at a zero). Therefore

(A.65) > A(y)=0 forallr>1,
YEYx
since the intersection numbers of f, with the zero and the infinity divisor of

Py are equal. Note that the C* action on [Py, induces a natural C* action both
on maps f : C, — Py and on sections &, of the pullback normal bundle.
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Moreover, along a stratum of WR(E, V') the topological type of the maps
f: C — X[m] and of their lifts (A.63)-(A.64) is fixed, including the topolog-
ical type of the domain, target and the contact multiplicities. Therefore the
conditions describing a stratum of WR(E, V') represented by maps

f:C—X[m] withm#0

can be expressed in terms of conditions on their lifts (A.63)-(A.64), or equiv-
alently on their projections

(A.66) fo:Co—=XCXm] and p.:C,—V, forr>1

under the collapsing map to 3, as in [IP1, §7]. If we denote by p = p(f)
the projection of f under the collapsing map X[m] — X, then these condi-
tions become (a) p is a real (J,v)-holomorphic map and (b) its restriction
pr : Cp = V to each rubber piece C) is a real map which satisfies the addi-
tional condition that there exits an element

(A.67) & €ker L)
such that &, is non-trivial on each irreducible component of C,.. Here

(A68) LY - WP (Cps pr Ny )® — W POAY(CLs prNy )
. N o

L, &= 08— Vev

denotes the normal operator associated to any real map p, : C,, — V, com-
pleted to a Fredholm operator on the punctured curve C| = C,. \ y, in the
Ar-norms as in (A.34)-(A.35), with § € (0,1). By (A.36) and (A.65) the index
of this operator is

(A.69) ind L)) = c1(pfNv) + 3x(Cr) = Y A(y) = 3x(C).

YEYr

Note that V is O-dimensional, so E = p;Ny is topologically trivial, thus
C1 (E) = 0.

Since V = VT LUV~ consists only of pairs of complex conjugate points,
then after further decomposing C' into its connected components and rein-
dexing the rubber ones, we may assume without loss of generality that we
get a decomposition (A.64) where (a) Cj is the union of all level 0 (i.e. non-
rubber) components and (b) the other pieces C,, for r > 1, are symmetric
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curves
C,=Crucy

consisting of rubber components, where Cf are connected and mapped to
a point p;© in V*. Then the restriction of (A.68) to C; is a complex linear
Fredholm operator by the second condition in (4.4), and therefore is a holo-
morphic J-operator on C;" with values in (p,")* Ny.. Every nontrivial element
¢ in the kernel of LY, is meromorphic and has finite A\,-norm. Therefore &
must have zeros/pole; of order at least \.(y) at the points y € y;" :=y, N C;F
and no other poles (otherwise its A,-norm would not be finite). But the first
Chern class of the bundle (p;7)* Ny is 0, and it is also equal to the sum of
the orders of the zeros and poles of any nontrivial meromorphic section of
it. Therefore & must have order exactly A.(y) at each y € y;" and no other
zeros nor poles. Note that the ratio of any two such sections is constant (on
connected components).

Remark A.12. An element &, satisfying (A.67) can be equivalently re-
garded as a real map

(A.70) & :C. — Py which is a solution of 09¢ = Vev

and which has prescribed multiplicity of contact to 0 and oo at the special
points y, of C,.. The C* action rescaling Py corresponds to the C*-action on
ker LY. Moreover as explained above, whenever C; is connected then either
ker LY = 0 or else ker LY = C.

Appendix B. Families
B.1. Smoothings of symmetric curves

Let (Co, co) be a (possibly nodal) symmetric marked curve, and denote by x
and y the collection of marked points and respectively nodes of Cy. In this
section Cj is allowed to have real nodes or real marked points. Flat families

(B.1) (C,c) = (B,cB)

of deformations of Cj are defined at the beginning of [GZ1, §4.2]; their
restriction to b € B® is a symmetric marked curve Cj, with the induced real
structure cp.

Such families (B.1) can be obtained by smoothing the nodes of Cj with
gluing parameters 7 € B, using standard local models in a neighborhood U
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of the nodes. This construction is described in [GZ1, §6.2] in the case Cj
has a single node (which must be real), and in [GZ2, §4.2] in the case Cj
has a pair of conjugate nodes. The general case when Cj has more nodes is
defined similarly as we briefly outline below.

Choose holomorphic coordinates z = z, on Cjy around each marked point
z € x identifying a neighborhood of x in Cjy with the unit disk |z| < 1. We
can furthermore arrange that in this neighborhood of x the real structure
co has a standard form in these coordinates, i.e. is given by

(B2) Zg b Zco(m)

as a map from the neighborhood of z to the neighborhood of cy(x). Simi-
larly, we can fix holomorphic coordinates z1, 23 on Cy at each node y € y
identifying a neighborhood of y in Cy with the locus

(B.S) Z1%9 = 0, ‘21|, ’22‘ S 1

and in which the real structure on Cj has a standard form (depending on
the type of node). Note that the coordinates 21,22 on Cp at the node y
correspond to local holomorphic coordinates on the normalization C at the
two points y1, y2 in the pre-image of y € y.

Then in a neighborhood U, C C of the node y, the fiber C; of C over
T = (7y)yey € B is given by

(B.4) 2122 = Ty, ’21‘7 ‘Z2’ <1

where 7, is called the gluing parameter at the node y, for y € y. Here B C CY
is a sufficiently small neighborhood of 0 and its real structure cp is defined
by 1, — T, if y is a real node and by 7,+ + T, for a pair yT of conjugate
nodes. The real structure on C also has a standard form in these coordinates,
given by [GZ1, (6.11)] in a neighborhood of a real node, and by [GZ2, (4.9)]
in the neighborhood of a pair of conjugate nodes. Finally, outside a smaller
neighborhood U’ of the nodes the family (B.1) is identified with the product
family (Co \ U’, cp) % (B,cB).

Intrinsically, the gluing parameters 7 encode variations normal to the
nodal stratum, cf. (A.30)-(A.31); for every node y of Cp, the gluing param-
eter can be regarded as an element 7, € 7),. Here 7|, = 7,, ® 7},, denotes
the relative tangent bundle at the node y, and 7 = (7y)yey € Tjy = SyeyT|y-
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One can also include local deformations Cy,, of Cy along the nodal stra-
tum N containing Cj e.g. obtained by varying j away from the nodes and
marked points. In that case, one gets flat families (B.1) parametrized by
pairs (7,u) € B = By X By, where u € By parametrizes local deformations
Clo,, of Cy preserving its nodes, and C,, is obtained from Cj, by smoothing
its nodes with gluing parameter 7. In particular, when Cj is stable and (7, u)
vary in a sufficiently small neighborhood & of 0 in 7, ® To, N = Tg, M, we
get versal families

(B.5) (C,c) —— (S, cs)

called “local slices” at Cp. Their restriction to S® C Tcoﬂ]R is a family
Cry of symmetric marked curves, where u € Te, N- R is a variation along the

nodal stratum A% containing Cy and 7 € (’7Ty)]R is a normal variation to it,
cf. §A 4.

B.2. The relative tangent bundle

Let (C,c) — (B, cp) be a flat family of deformations of a fixed marked sym-
metric curve as in §B.1. Denote by

(B.6) (T,er) — (Cye)

the relative tangent bundle to the fibers of this family. It is a holomorphic
line bundle (locally free sheaf) over C. Its dual T is the relative dualizing
sheaf of the family:

(i) in local coordinates (B.4) near a node y, it is generated by the sections

21 and 222 modulo the relation 0 = Z12) — dz | dzs
z1 22 2122 21 22

(ii) in local coordinates (B.2) near a marked point z, it is generated by the
section %, where the marked point corresponds to z = 0.

Both 7 and its dual 7V come with a natural real structure induced by c; see
[GZ1, Lemma 6.8] for the case Cp has one real node and [GZ2, Lemma 4.8]
for the case C has a pair conjugate nodes (the general case follows similarly).
The restriction of (B.6) to a fiber Cj, of C with b € B® is the relative tangent
bundle (2.8) of (Cy,cp). Moreover, if (C,¢) denotes the normalization of
(Co, co) then the pullback of 7 to C'is 7.

By the Kodaira-Spencer deformation theory, infinitesimal automorphisms
of the marked symmetric curve Cy correspond to HY(7¢,)® while infinitesi-
mal variations correspond to H(7¢, )R, cf. [GZ1, (5.22) and p. 736].
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B.3. Families of real CR operators

Let (E,cg) be a Real bundle over a flat family (C,c¢) of deformations of
a fixed symmetric curve as in §B.1. When V is a cg-compatible (complex
linear) connection on E, and A is a smooth 0’th order term, they determine
a (pull-back) family of CR operators

(B.7) Dy : T(Cy; i BY® — AN (Cy; i3 B)F

as in [GZ1, (4.7)-(4.8)], for b € B¥; here 1, : C, — C is the inclusion. Note
that (0,1)-forms on Cj with values in (jE can be regarded as sections of
uF = Q%bl ®c 1y E where F' = Qg’/lB ®c E. Let

det D = Uy det Dy,

denote the determinant line bundle of the family (B.7) of CR-operators,
defined as in [GZ1, (4.9) and Appendix A|. As explained there, the fact that
det D is a line bundle (i.e. is locally trivial over Bg) follows from the proof
of the gluing theorem (for linear CR operators).

Families of real CR-operators often arise by pulling back data associated
to Real bundles over smooth targets as in [GZ1, §4.3, p 711]. Specifically,
assume (X, J,cx) is a a smooth almost complex manifold with an anti-
complex involution, and (E,cg) — (X, cx) is Real bundle over it. Fix a
cg-compatible (complex linear) connection V on E. Given a family of real
maps f: C — X, we can consider a family of CR operators

Dy :T(C; f*E)® — A% (C, f*E)R,

(B.8) B
Di(€) = B} (pop + AgE

defined as in [GZ1, §4.3, p 711], where A is a 0’th order term.
When ¥ is smooth, 7y, — X is a Real bundle over a smooth target X = X3,
and we can similarly consider the family of linearizations

(B.9) Dy i D(Cs fT)* @ TeM: — AN (Cs £ To)
cf. (A.47) associated to a family of real maps f: C'— X. Note that up to

0’th order terms, Dy is equal to 5]‘*(7’2,07) @ Ow,, where Wy = TCWR and
the considerations in [GZ1, Appendix A] continue to apply in this case.
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